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Abstract

This paper discusses some qualitative properties of solutions to fractional delay
neutral differential equations. By combining a new weighted norm, the Banach
fixed point theorem and an elegant technique for extending solutions, results on
existence, uniqueness, and growth rate of global solutions under a might Lipschitz
continuous condition of the vector field are first established. Then, the exact solution
of linear delay fractional neutral differential equations are derived and the stability
of two equations of this kind are studied by using use Rouché’s theorem to describe
the position of poles of the characteristic polynomials and the Final value theorem
to detect the asymptotic behavior of solutions. Numerical simulations are finally
presented to illustrate the theoretical findings.
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1 Introduction

The interconnection between two (or more) physical systems is always accompanied by
transfer phenomena (of material, energy, or information), such as transport and propa-
gation, which can be represented mathematically by delay elements. This is a cause why
delay differential equations are usually used in modeling problems coming from physics.
Delay differential equations also play an important role in describing various phenomena
in biosciences, chemistry, or economics. For more applications of these equations, see
[3, 12] and references therein.
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Recently, delay fractional-order systems have received considerable research attention be-
cause they provide models of practical systems in which the fractional rate of change
depends on the influence of their present and hereditary effects. In [13], by the Final
value theorem for Laplace transforms, the well-known method of steps, and the Argu-
ment principle, the authors have presented several analytical and numerical approaches
for the stability analysis of linear fractional-order delay differential equations. In [4], the
authors have obtained a general results on the existence, uniqueness and growth rate of
solutions to fractional-order systems with delays based on the Banach fixed point theo-
rem and a weighted norm. In [21], the authors have proposed a necessary and sufficient
condition for the stability of the system via eigenvalues of the system matrix and their
location in a specific area of the complex plane. By the linearization method and general-
ized Mittag-Leffler functions, in [19, 18] the authors have proved the stability of nonlinear
fractional-order delay systems. Furthermore, using Lyapunov applicant functional, in [8]
the authors also obtained a sufficient condition for stability. In [9], the authors have
discussed the initialization of fractional delay differential equations and they have in-
vestigated the effects of the initial condition not only on the solution but also on the
fractional operator as well and they discussed the difference between solutions obtained
by incorporating or not the initial function in the memory of the fractional derivative.

Neutral delay differential equation is a kind of delay differential equation containing the
derivative of the unknown function both with and without delays. Hence, the theory of
neutral delay differential equations is even more complicated than the theory of their non-
neutral counterpart. To the best of our knowledge, up to now, there are only few works
on fractional neutral delay differential equation (FNDDEs) published in the literature.
Below we review briefly some contributions to this topic.

In [1], based on Krasnoselskii’s fixed point theorem, the author proved the existence
of at least one solution to a class of fractional neutral functional differential equations
with bounded delay. The existence of mild solutions for a class of abstract fractional
neutral integro-differential equations with state-dependent delay is studied in [7] by the
Leray–Schauder alternative fixed point theorem. Recently, in [22], the authors have de-
rived a new fractional Halanay-like inequality, which is used to characterize the long-term
behavior of solutions to fractional neutral functional differential equations of Hale type.
Conditions for contractivity and dissipativity of these equations have been established
under almost the same assumptions for the classical integer-order case. They have also
proposed a numerical scheme based on the L1-method coupled with linear interpolation
to illustrate the theoretical results. In [2], the authors have studied the robust stability
of uncertain fractional order nonlinear systems having neutral-type delay and input sat-
uration; by combining Lyapunov–Krasovskii functional, sufficient criteria on asymptotic
robust stability of such systems with the help of linear matrix inequalities are specified
to compute the gain of state-feedback controller. An optimization is also derived using
the cone complementarity linearization method for finding the controller gains subject to
maximizing the domain of attraction.

This paper is devoted to discussing some qualitative properties of solutions to FNDDEs.
The paper is organized as follows. In Section 2, we recall briefly some basic notations
concerning fractional derivatives and delay fractional differential equations. In Section
3, we give a result on the existence and uniqueness of global solutions to FNDDEs and
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in Section 4 we prove their exponential boundedness. In Section 5 we derive an explicit
representation, based on generalized three-parameter Mittag-Leffler functions, of the so-
lution of some linear FNDDEs. In Section 6 we discuss in details the stability of two
classes of linear FNDDEs and some numerical simulations are presented in Section 7 to
illustrate the theoretical results obtained in the paper.

2 Preliminaries

In this section we recall some definitions and a result on the integral representation of
solutions of fractional-order equations that will be used in the sequel. For 0 < α < 1,
[a, b] ⊂ R and a measurable function x : [a, b] → R such that

∫ b
a
|x(τ)|dτ < ∞, the

Riemann-Liouville (RL) integral of order α is defined by

Iαa+x(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds, t ∈ (a, b) ,

where Γ(·) is the Gamma function. The Riemann–Liouville fractional derivative RLDα
a+x

of a integrable function x : [a, b]→ R is defined by

RLDα
a+x(t) = DI1−α

a+ x(t) for almost t ∈ (a, b],

with D = d/dt the usual integer-order derivative. The Caputo fractional derivative CDα
a+x

of a continuous function x : [a, b]→ R is defined

CDα
a+x)(t) := RLDα

a+(x(t)− x(a)) for almost t ∈ (a, b].

For more details on fractional calculus, we would like to introduce the reader to the
monographs [5, 14, 16] and to the interesting work by G. Vainikko [20]. Let τ and N
be arbitrary real constants such that τ > 0, N 6= 0, and φ ∈ C1

(
[−τ, 0];R

)
be a given

function. In this paper we consider the following FNDDE

CDα
0+

[
x(t) +Nx(t− τ)

]
= f(t, x(t), x(t− τ)), t ≥ 0, (1)

subject to the initial condition

x(t) = φ(t), ∀t ∈ [−τ, 0], (2)

where x : [0,∞)→ R is a unknown function and f : [0,∞)×R×R→ R is continuous. To
prove the existence of solutions to the initial condition problem (1)–(2), we need to convert
it into an equivalent delay integral equation. This is stated in the following lemma.

Lemma 2.1. A function x ∈ C
(
[−τ,∞);R

)
is a solution of the problem (1)-(2) on

[−τ,∞) if and only if it is a solution of the delay integral equation

x(t) = φ(0) +Nφ(−τ)−Nx(t− τ)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), x(s− τ))ds, ∀t ∈ [0,∞),
(3)

and satisfies
x(t) = φ(t), ∀t ∈ [−τ, 0].

Proof. The proof of this lemma is similar to the one of [5, Lemma 2] and thus we omit
it.
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3 Existence and uniqueness of global solutions of FND-

DEs

Let T > 0 be arbitrary. Consider the following initial value problem on a finite interval
[−τ, T ]:

CDα
0+

[
x(t) +Nx(t− τ)

]
= f(t, x(t), x(t− τ)), t ∈ (0, T ], (4)

x(t) = φ(t), t ∈ [−τ, 0]. (5)

Here f : [0, T ]× R× R→ R satisfies the following assumptions:

(A1) f is continuous on [0, T ]× R× R→ R;

(A2) there exists a continuous function L : [0, T ]×R→ R≥0 such that for any t ∈ [0, T ],
x, x̂, y ∈ R, it is

|f(t, x, y)− f(t, x̂, y)| ≤ L(t, y)|x− x̂|.

By proposing a new weighted norm and modifying the approach in the proof of [4, The-
orem 3.1], we are able to obtain the following result on the existence and uniqueness of a
global solution to the system (4)–(5).

Theorem 3.1. Assume that conditions (A1) and (A2) hold. Then, the fractional delay
neutral differential equation (4) with the initial condition (5) has a unique solution on the
interval [−τ, T ].

Proof. By the same arguments as in the proof of [5, lemma 6.2], the system (4)–(5) is
equivalent to the integral equation

x(t) = φ(0) +Nφ(−τ)−Nx(t− τ)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), x(s− τ))ds, ∀t ∈ [0, T ],

with the initial condition

x(t) = φ(t), ∀t ∈ [−τ, 0]. (6)

First, we consider the case 0 < T ≤ τ . In this case, the equation (6) becomes

x(t) = φ(0) +Nφ(−τ)−Nφ(t− τ)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), φ(s− τ))ds, t ∈ [0, T ]. (7)

Let β := maxt∈[0,T ] L(t, φ(t− τ)) and λ be a large positive constant which will be chosen
later. On the space C([0, τ ];R), we define the metric
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dλ(ξ, ξ̂) := sup
t∈[0,r]

|ξ(t)− ξ̂(t)|
eλt

, ∀ξ, ξ̂ ∈ C([0, τ ];R).

It is obvious that C([0, r];R) equipped the metric dλ is complete. We now consider the
operator Tφ : C([0, τ ];R)→ C([0, τ ];R) defined as

(Tφ ξ)(t) :=φ(0) +Nφ(−τ)−Nφ(t− τ)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ξ(s), φ(s− τ))ds, ∀t ∈ [0, τ ].

For any ξ, ξ̂ ∈ C([0, r];R) and any t ∈ [0, T ], we have

|(Tφ ξ)(t)− (Tφ ξ̂)(t)| ≤
maxs∈[0,t] L(s, φ(s− τ))

Γ(α)

∫ t

0

(t− s)α−1|ξ(s)− ξ̂(s)|ds

≤ eλtβ

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s) |ξ(s)− ξ̂(s)|
eλs

ds

≤ eλtβ

λα
dλ(ξ, ξ̂).

This implies that

|(Tφ ξ)(t)− (Tφ ξ̂)(t)|
eλt

≤ β

λα
dλ(ξ, ξ̂), ∀t ∈ [0, T ].

Therefore,

dλ(Tφ ξ, Tφ ξ̂) ≤
β

λα
dλ(ξ, ξ̂), ∀ξ, ξ̂ ∈ C([0, T ];R).

Take λ > 0 large enough, for example, λα > β. Then, the operator Tφ is contractive
on (C([0, T ];R), dλ). By virtue of Banach fixed point theorem, there exist a unique fixed
point ξ∗τ (·) of Tφ in C([0, T ];R). Put

ΦT (t, φ) :=

{
φ(t) if t ∈ [−τ, 0],

ξ∗τ (t) if t ∈ [0, T ].

Then, ΦT (·, φ) is the unique solution of the problem (4)–(5) on [−τ, T ]. For the case T > τ ,
using the approach as in [4], we divide the interval [0, T ] into subintervals [0, τ ] ∪ · · · ∪
[(k − 1)τ, T ], where k ∈ N satisfying 0 ≤ T − kτ < τ . The existence and uniqueness of
solutions to (4)–(5) on [−τ, kτ ] will be showed by induction. Suppose that (4)–(5) has a
unique solution denoted by Φ`τ (·) on [−τ, `τ ] with ` ∈ Z≥0 and 0 ≤ ` < k. On the space
C([`τ, (`+ 1)τ ];R), let
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T(`+1)τξ(t) := φ(0) +Nφ(−τ)−NΦ`τ (t− τ)

+
1

Γ(α)

∫ `τ

0

(t− s)α−1f(s,Φ`τ (s),Φ`τ (s− τ))ds

+
1

Γ(α)

∫ t

`τ

(t− s)α−1f(s, ξ(s),Φ`τ (s− τ))ds, t ∈ [`τ, (`+ 1)τ ].

Take β` := maxt∈[`τ,(`+1)τ ] L(t,Φ`τ (t− τ)). Then,

|(T(`+1)τξ)(t)− (T(`+1)τ ξ̂)(t)| ≤
β`

Γ(α)

∫ t

`τ

(t− s)α−1|ξ(s)− ξ̂(s)|ds

≤ eλtβ`
Γ(α)

∫ t

`τ

(t− s)α−1e−λ(t−s) |ξ(s)− ξ̂(s)|
eλs

ds

≤ eλtβ`
λα

d`,λ(ξ, ξ̂), ∀t ∈ [`τ, (`+ 1)τ ].

Here, d`,λ(ξ, ξ̂) := maxt∈[`τ,(`+1)τ ]
|ξ(t)−ξ̂(t)|

eλt
for any ξ, ξ̂ ∈ C([`τ, (` + 1)τ ];R). Choose λ >

β
1/α
` , the the operator T(`+1)τ is contractive on the Banach space (C([`τ, (`+1)τ ];R), d`,λ).

Hence, T(`+1)τ has a unique fixed point ξ∗`τ in C([`τ, (` + 1)τ ];R). Define a new function
Φ(`+1)τ (·) by

Φ(`+1)τ (t) :=

{
Φ`τ (t) if t ∈ [−τ, `τ ],

ξ∗`τ (t) if t ∈ [`τ, (`+ 1)τ ].

Then, Φ(`+1)τ (·) is the unique solution of (4)–(5) on [−τ, (` + 1)τ ]. Finally, let Φkτ (·) be
the unique solution to (4)–(5) on [−τ, kτ ]. We construct an operator Tf on C([kτ, T ];R)
by

Tfξ(t) := φ(0) +Nφ(−τ)−NΦkτ (t− τ)

+
1

Γ(α)

∫ kτ

0

(t− s)α−1f(s,Φkτ (s),Φkτ (s− τ))ds

+
1

Γ(α)

∫ t

kτ

(t− s)α−1f(s, ξ(s),Φkτ (s− τ))ds, t ∈ [kτ, T ].

Using the estimates shown as above, Tf has a unique fixed point ξ∗f in C([kτ, T ];R). Take

Φ(t, φ) :=

{
Φkτ (t) if t ∈ [−τ, kτ ],

ξ∗f (t) if t ∈ [kτ, T ].

This function is the unique solution of the original system on [−τ, T ]. The proof is
complete.

Corollary 3.2. Consider the system (1)–(2). Suppose that the function f satisfies as-
sumptions (A1) and (A2) for t ∈ [0,∞). Then, this system has a unique global solution
on [−τ,∞).

Proof. The proof of this corollary is similar to [4, Corollary 3.2]. Hence, we omit it.
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4 Exponential boundedness of FNDDEs

Let φ ∈ C1([−τ, 0],R) be an arbitrary function. Consider the system

CDα
0+

[
x(t) +Nx(t− τ)

]
= f(t, x(t), x(t− τ)), t ∈ (0,∞), (8)

x(t) = φ(t), t ∈ [−τ, 0]. (9)

Suppose that f is continuous and satisfies the following condition:

(H1) there exits a positive constant L such that

|f(t, x, y)− f(t, x̂, ŷ)| ≤ L
(
|x− x̂|+ |y − ŷ|

)
, ∀t ≥ 0, x, y, x̂, ŷ ∈ R;

(H2) there exits a positive constant λ such that

sup
t≥0

∫ t
0
(t− s)α−1|f(s, 0, 0)|ds

eλt
<∞.

We now show a bound of growth rate of solutions to the system (8)–(9).

Theorem 4.1. Assume that the conditions (H1) and (H2) are satisfied. Then, the global
solution Φ(·, φ) on the interval [−τ,∞) of (8)–(9) is exponentially bounded.

Proof. Let λ > 0 be the constant satisfying the condition (H2). Denote by Cλ([−τ,∞);R)
the set of all continuous functions ξ : [−τ,∞)→ R such that

||ξ||λ := sup
t≥0

ξ∗(t)

exp(λt)
<∞, ξ∗(t) := sup

−τ≤θ≤t
|ξ(θ)|.

It is obvious that (Cλ([−τ,∞);R); || · ||λ) is a Banach space. We construct an operator
Tφ on this space as follows:

(Tφξ)(t) := φ(t), t ∈ [−τ, 0],

(Tφξ)(t) := φ(0) +Nφ(−τ)−Nξ(t− τ)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ξ(s), ξ(s− τ))ds, t ≥ 0.

It is easily to see that Tφξ ∈ C([−τ,∞);R) for all ξ ∈ Cλ([−τ,∞);R). Now we will show
that Tφξ ∈ Cλ([−τ,∞);R) for all ξ ∈ Cλ([−τ,∞);R). Indeed, let ξ ∈ Cλ([−τ,∞);R) be
arbitrary, for any t ≥ τ , we have
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|(Tφξ)(t)| ≤ |φ(0)|+ |N ||φ(−τ)|+ |N ||ξ(t− τ)|

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ξ(s), ξ(s− τ))− f(s, 0, 0)|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, 0, 0)|ds

≤ C1 + |N |ξ∗(t) +
L

Γ(α)

∫ t

0

(t− s)α−1(|ξ(s)|+ |ξ(s− τ)|)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, 0, 0)|ds.

This implies that

|(Tφξ)(t)| ≤ C1 + |N |eλt ξ
∗(t)

eλt
+

2Leλt

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s) ξ
∗(s)

eλs
ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, 0, 0)|ds

≤ C1 + |N |eλt||ξ||λ +
2Leλt

λα
||ξ||λ

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, 0, 0)|ds, ∀t ≥ τ.

Hence, for any t ≥ τ ,

(Tφξ)∗(t)
eλt

≤ C1

eλt
+ |N |||ξ||λ +

2L

λα
||ξ||λ

+
1

Γ(α)
sup
t≥0

∫ t
0
(t− s)α−1|f(s, 0, 0)|ds

eλt
.

Thus,

sup
t≥0

(Tφξ)∗(t)
eλt

<∞.

Next, we will show that operator Tφ is contractive on (Cλ([−τ,∞);R); || · ||λ). Let ξ, ξ̂ ∈
(Cλ([−τ,∞);R); || · ||λ) be arbitrary, we have the following estimates on intervals [−τ, 0],
[0, τ ] and [τ,∞). Consider t ∈ [−τ, 0], we see that

|(Tφξ)(t)− (Tφξ̂)(t)| = 0.

On the interval [0, τ ], then
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|(Tφξ)(t)− (Tφξ̂)(t)| ≤
L

Γ(α)

∫ t

0

(t− s)α−1(|ξ(s)− ξ̂(s)|+ |ξ(s− τ)− ξ̂(s− τ)|)ds

≤ 2L

Γ(α)

∫ t

0

(t− s)α−1(ξ − ξ̂)∗(s)ds

≤ 2Leλt

Γ(α)

∫ t

0

(t− s)α−1e−λ(t−s) (ξ − ξ̂)∗(s)
eλs

ds

≤ 2Leλt

λα
||ξ − ξ̂||λ.

For t ∈ [τ,∞), then

|(TΦξ)(t)− (TΦξ̂)(t)| ≤ |N ||ξ(t− τ)− ξ̂(t− τ)|

+
L

Γ(α)

∫ t

0

(t− s)α−1(|ξ(s)− ξ̂(s)|+ |ξ(s− τ)− ξ̂(s− τ)|)ds

≤ |N |eλt (ξ − ξ̂)
∗(t− τ)

eλ(t−τ)eλτ
+

2L

Γ(α)

∫ t

0

(t− s)α−1(ξ − ξ̂)∗(s)ds

≤ eλt
|N |
eλτ
||ξ − ξ̂||λ + eλt

2L

λα
||ξ − ξ̂||λ.

Hence,

|(Tφξ)(t)− (Tφξ̂)(t)| ≤ eλt
(
|N |
eλτ

+
2L

λα

)
||ξ − ξ̂||λ, ∀t ∈ [−τ,∞).

It implies that

(Tφξ − Tφξ̂)∗(t) ≤ eλt
(
|N |
eλτ

+
2L

λα

)
||ξ − ξ̂||λ, ∀t ≥ 0.

Thus,

||(Tφξ − Tφξ̂)||λ ≤
(
|N |
eλτ

+
2L

λα

)
||ξ − ξ̂||λ.

Choose λ large enough such that

|N |
eλτ

+
2L

λα
< 1,

then Tφ is contractive on (Cλ([−τ,∞);R); || · ||λ). The unique fixed point ξ∗ of Tφ is the
unique solution to (8)–(9) in Cλ([−τ,∞);R). Moreover, this solution is exponentially
bounded. The proof is complete.
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5 Explicit representation of the solution of linear FND-

DEs

For a, b,N ∈ R and an arbitrary continuous function φ(t) : [−τ, 0]→ R, we now consider
the special case of the linear FNDDE{

CDα
0

[
x(t) +Nx(t− τ)

]
= ax(t) + bx(t− τ)

x(t) = φ(t), t ∈ [−τ, 0]
(10)

for which we are interested in providing an explicit representation of its solution. Since
assumptions (H1) and (H2) introduced in Section 4 are trivially satisfied, the solution
x(t) possesses the LT, say X(s), and from well-known results on the LT of the fractional
Caputo derivative we have

L
(

CDα
0 x(r) , s

)
= sαX(s)− sα−1φ(0).

Hence, by taking the LT to both sides of (10), we obtain

sαX(s) +NsαL
(
x(t− τ) , s

)
− sα−1

[
φ(0) +Nφ(−τ)

]
= aX(s) + bL

(
x(t− τ) , s

)
. (11)

We know (see, for instance, [21, Eq (3.2)] or [9, Proposition 4.2]) that

L
(
x(t− τ) , s

)
= e−sτX(s) + e−sτX̂τ (s), X̂τ (s) =

∫ 0

−τ
e−stφ(t)dt (12)

and, therefore, one immediately obtains(
1− b−Nsα

sα − a
e−sτ

)
X(s) =

sα−1

sα − a
[
φ(0) +Nφ(−τ)

]
+
b−Nsα

sα − a
e−sτX̂τ (s).

For sufficiently large |s| the use of the series expansion(
1− b−Nsα

sα − a
e−sτ

)−1

=
∞∑
k=0

(b−Nsα)k

(sα − a)k
e−sτk

leads to

X(s) =
sα−1

sα − a

∞∑
k=0

(b−Nsα)k

(sα − a)k
e−sτk

[
φ(0) +Nφ(−τ)

]
+
∞∑
k=1

(b−Nsα)k

(sα − a)k
e−sτkX̂τ (s)

and, hence, after exploiting standard rules for powers of binomials

(b−Nsα)k =
k∑
`=0

(
k

`

)
(−1)`N `bk−`sα`

we obtain the following representation of the LT of the solution of the linear FNDDE (10)

X(s) =
∞∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα+α`−1

(sα − a)k+1
e−sτk

[
φ(0) +Nφ(−τ)

]
+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`

(sα − a)k
e−sτkX̂τ (s)

(13)
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An explicit representation of the solution of (10) in the time domain can be obtained by
inversion of its LT (13) only once the the initial function φ(t) has been specified. The
following preliminary results are however necessary.

Let α > 0 and β, γ ∈ R be some parameters, and consider the three-parameter Mittag-
Leffler function (also known as the Prabhakar function) [11, 15]

Eγ
α,β(z) =

1

Γ(γ)

∞∑
j=0

Γ(γ + j)zj

j!Γ(αj + β)
,

for which, when t ≥ 0 and a is any real or complex value, we have the following result
concerning the LT

L
(
eγα,β(t; a) , s

)
=

sαγ−β

(sα − a)γ
, eγα,β(t; a) = tβ−1Eγ

α,β(atα), Re(s) > 0 and |s| > |a|
1
α .

(14)
Furthermore, whenever τ ≥ 0 it is a basic fact in the theory of LT (see, for instance, [17,
Theorem 1.31]) that

L−1
( sαγ−β

(sα − a)γ
e−sp , s

)
=

{
eγα,β(t− τ ; a) t ≥ τ

0 t < τ
(15)

We are now able to provide an explicit representation of the solution of linear FNDDEs
for some examples of initial functions φ(t) (we consider here the same function φ(t) which
will be used later on in the Section devoted to present numerical simulations; The solution
for further functions φ(t) can be however obtained in a very similar way). In the following,
for any real value x, with bxc we will denote the greatest integer less than x.

Proposition 5.1. If φ(t) = x0, ∀t ∈ [−τ, 0], the exact solution of the linear FNDDE (10)
is

x(t) =

bt/τc∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`ek+1

α,α(k−`)+1(t− τk; a)(1 +N)x0

−
bt/τc∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk; a)x0

+

bt/τc+1∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk + τ ; a)x0.

Proof. Since φ(t) = x0, ∀t ∈ [−τ, 0], it is immediate to compute

X̂τ (s) = −1

s

(
1− esτ

)
x0

11



and, hence, the LT X(s) obtained in (13) becomes

X(s) =
∞∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα+α`−1

(sα − a)k+1
e−sτk(1 +N)x0

−
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτkx0

+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτ(k−1)x0.

The proof now follows after recognizing the presence in each summation of the LT (14)
of the three-parameter ML function, applying Eq. (15), and, for any t, truncating each
summation at the maximum index k such that t ≥ τk (first and second summation) or
t ≥ τ(k − 1) (third summation).

Proposition 5.2. If φ(t) = x0 +mt, ∀t ∈ [−τ, 0], the exact solution of the linear FNDDE
(10) is

x(t) =

bt/τc∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`ek+1

α,α(k−`)+1(t− τk; a)
[
x0 +Nφ(−τ)

]
−
bt/τc∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk; a)x0

+

bt/τc+1∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk + τ ; a)φ(−τ)

−
bt/τc∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+2(t− τk; a)m

+

bt/τc+1∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+2(t− τk + τ ; a)m.

Proof. When φ(t) = x0 +mt, t ∈ [−τ, 0], a standard computation allows to evaluate

X̂τ (s) =

∫ 0

−τ
e−stφ(t)dt = −1

s

(
1− esτ

)
x0 +m

[
− 1

s2
− τ

s
esτ +

1

s2
esτ
]

= −1

s
x0 +

1

s
esτφ(−τ)− 1

s2
m+

1

s2
esτm

and, after inserting the above expression for X̂τ (s) in the formula (13) for the LT of the

12



solution of (10), we obtain

X(s) =
∞∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα+α`−1

(sα − a)k+1
e−sτk

(
x0 +Nφ(−τ)

)
−
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτkx0

+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτ(k−1)φ(−τ)

−
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−2

(sα − a)k
e−sτkm

+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−2

(sα − a)k
e−sτ(k−1)m

and the proof is concluded in the same way as the proof of Proposition 5.

The above explicit representations of exact solutions is of interest since it allows to accu-
rately evaluate the solutions of linear FNDDEs once a procedure for the computation of
the three-parameter ML functions ekα,β(t; a) is available. To this purpose the method de-

vised in [10] to compute k-the order derivatives E
(k)
α,β(z) of the two-parameter ML function

Eα,β(z) can be exploited since three-parameter ML functions are related to derivatives of

two-parameter ML functions by the relationship Ek
α,β(z) = E

(k)
α,β−αk+α(z)/(k − 1).

Anyway, this approach does not seems suitable for computation on intervals of large
size since it could require the evaluation of a considerable number of three-parameter
ML functions. Moreover, a specific explicit representation of the exact solution must be
derived in dependence of the selected initial function φ(t). For this reason, in the Section
devoted to present numerical simulations we will derive a specific numerical scheme.

6 Asymptotic behavior of solutions of linear FND-

DEs

This section is devoted to discuss the asymptotic behavior of solutions to linear FNDDEs
(10). Our approach is to use the Final value theorem for Laplace transforms (see, e.g., [5,
Theorem D. 13, p. 232]). We will focus on two different cases.

6.1 Case (C1): a < 0, b = 0

In this case, the linear FNDDE becomes

CDα
0+

[
x(t) +Nx(t− τ)

]
= ax(t), t ≥ 0, (16)

13



and, thanks to (11) and (12), the LT X(s) of the solution x(t) is

X(s) =
sα−1(φ(0) +Nφ(−τ))−Nsαe−sτ

∫ 0

−τ e−suφ(u)du

sα +Nsαe−sτ − a
. (17)

To investigate the asymptotic behavior of x(t) it is necessary to locate possible poles of
X(s) in the complex plane. Denote the denominator of X(s) by

Q(s) := sα +Nsαe−sτ − a.

Due to the fact that X(s) and Q(s) have the same non-zero poles and X(s) only has
just a further single pole at the origin, we can restrict to study the roots of the equation
Q(s) = 0.

Lemma 6.1. Let a < 0. The following statements hold:

(i) if |N | ≤ 1, then Q(s) has no pole in the closed right half plane {z ∈ C : <(z) ≥ 0};

(ii) if |N | > 1, then Q(s) has at least one pole in the open right half plane {z ∈ C :
<(z) > 0}.

Proof. (i) Since Q(0) 6= 0, the equation Q(s) = 0 is equivalent to

1 +Ne−τs = as−α, s 6= 0. (18)

We will show that (18) has no root in {z ∈ C : <(z) ≥ 0}. Indeed, on the contrary,
assume that (18) has a root s0 6= 0 with <(s0) ≥ 0. Note that 1 + Ne−τs0 ∈ D1 := {z ∈
C : |z − (−1)| ≤ |N |} and as−α0 ∈ D2 := {z ∈ C : | arg (z)| ≤ απ

2
}. Furthermore, for

|N | ≤ 1, two domains D1 and D2 intersect at most one point at the origin which implies
a contradiction.

(ii) To prove this point, we only have to show that the equation (18)

1 +Ne−τs − as−α = 0 (19)

has at last one root in the open right half plane {z ∈ C : <(z) > 0}. Let Q1 :=
1 + Ne−τs − as−α, f(s) := 1 + Ne−sτ and g(s) := −as−α. First, we find roots of the
equation f(s) = 0 in {z ∈ C : <(z) > 0}. To determine, we consider the case N > 1.

The case where N < −1 is proved similarly. It is easy to see that sk := logN
τ

+ i (2k+1)π
τ

,
k ∈ Z are roots of the equation f(s) = 0. Let R be a fixed positive constant which will
be chosen later. Define C := C1 ∪ C2 ∪ C3 ∪ C4, where

C1 :=

{
z ∈ C : z = s1 + iR,

logN

2τ
≤ s1 ≤

3 logN

2τ

}
,

C2 :=

{
z ∈ C : z =

3 logN

2τ
+ is2, R ≤ s2 ≤ R +

2π

τ

}
,

C3 :=

{
z ∈ C : z = s1 + i(R +

2π

τ
),

logN

2τ
≤ s1 ≤

3 logN

2τ

}
,

C4 :=

{
z ∈ C : z =

logN

2τ
+ is2, R ≤ s2 ≤ R +

2π

τ

}
,

14



and let D be the domain bounded by the contour C. On C, we obtain the estimates

|f(s)| > 1− N

e−τR
>

1

2
, for R is large enough,

|g(s)| < |a|
Rα
→ 0 as R→∞.

Thus, by choosing R large, then

|f(s)| > |g(s)|, ∀s ∈ C.

On the other hand, as shown above, there is at least one zero point of f inside C. By
Rouché’s theorem (see, e.g., [3, Theorem 12.2, p. 398]), there is at least one zero point of
Q1 in {z ∈ C : <(z) > 0}. The proof is complete.

We are now in a position to state the main result of this part.

Theorem 6.2. Let a < 0 and consider the linear FNDDE (16). Then, the following
statements hold:

(i) if |N | ≤ 1, then this equation is asymptotically stable;

(ii) if |N | > 1, then the equation is unstable.

Proof. (i) As shown above X(s) does not have any poles in the closed right half-plane
{s ∈ C : <s ≥ 0} except for a simple pole at the origin. Hence, since from (17) it is
lims→0 sX(s) = 0, by The final value theorem for Laplace transforms [5, Theorem D. 13,
p. 232], we have

lim
t→∞

x(t) = lim
s→0

sX(s) = 0

which implies that (16) is asymptotically stable.
(ii) The proof of this part is obvious from the property of a function that its Laplace
transform has at least one pole in the open right half-plane of the complex domain.

6.2 Case (C2): a < 0, |b| < |a|

The linear FNDDE is now

CDα
0+

[
x(t) +Nx(t− τ)

]
= ax(t) + bx(t− τ), t ≥ 0 (20)

and, again, by exploiting (11) and (12), the LT X(s) of the solution x(t) is

X(s) =
sα−1(φ(0) +Nφ(−τ)) + (−Nsα + b)e−sτ

∫ 0

−τ e−suφ(u)du

sα +Nsαe−sτ − a− be−τs
(21)

It is easy to see that s = 0 is only a simple pole of X(s). Put

P (s) := sα +Nsαe−sτ − a− be−τs.

The following lemma gives information about zero points of P .
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Lemma 6.3. Assume that a < 0 and |b| < |a|.

(i) If |N | ≤ 1, then the equation P (s) = 0 has no root in the closed right half-plane
{s ∈ C : <(s) ≥ 0}.

(ii) If |N | > 1, then the equation above has at least one root in the open right half-plane
{s ∈ C : <(s) > 0}.

Proof. (i) Denote D1 := {z ∈ C : <(z) ≥ 0}. Due to P (0) 6= 0, there exists ε > 0 which is
small enough such that P (s) 6= 0 in the ball B := {s ∈ C : |s| ≤ ε}. On the other hand,

|P (s)| ≥ |s|α(1− |N |)− (|a|+ |b|)→∞

as s ∈ D1 and |s| → ∞. Thus, there is R > 0 such that P (s) 6= 0 for all s ∈ D1∩{z ∈ C :
|z| ≥ R}. Denote C1 := {z ∈ C : z = ε(cosϕ+i sinϕ), −π/2 ≤ ϕ ≤ π/2}, C3 := {z ∈ C :
z = R(cosϕ + i sinϕ), −π/2 ≤ ϕ ≤ π/2)}, C2 := {z ∈ C : z = r(cosπ/2− i sinπ/2} and
C4 := {z ∈ C : z = r(cosπ/2 + i sin π/2)}. Put f(s) := sα − a, g(s) := Nsαe−sτ − be−τs.
On C1 and C3, let s = s1 + is2 = r(cosϕ + i sinϕ), where s1 > 0, r = ε or r = R and
ϕ ∈ [−π/2, π/2]. We have

f(s) = sα − a = rα cos(αϕ)− a+ irα sin(αϕ),

g(s) = Nrαeiαϕe−τ(s1+is2) − be−τ(s1+is2)

= Nrαe−τs1(cos(αϕ− τs2) + i sin(αϕ− τs2))

− be−τs1(cos(τs2)− i sin(τs2))

= Nrαe−τs1 cos(αϕ− τs2)− be−τs1 cos(τs2)

+ i(Nrαe−τs1 sin(αϕ− τs2) + be−τs1 sin(τs2)).

This implies that

|f(s)|2 = r2α + a2 − 2arα cos(αϕ), (22)

|g(s)|2 = N2r2αe−2τs1 + b2e−2τs1 − 2bNrαe−2τs1 cos(αϕ). (23)

From (22), (23) and the assumptions that s1 ≥ 0, |N | ≤ 1 and |b| < |a|, we see that

|f(s)| > |g(s)| on C1 and C3. (24)

Now, we will compare |f | and |g| on C4. For any s ∈ C4, we describe s = ir = r(cos π/2+
i sin π/2), where r ∈ [ε, R]. By a simple computation, we obtain the estimates

|f(s)|2 = r2α + a2 − 2arα cos
απ

2
,

|g(s)|2 = N2r2α + b2 − 2Nrαb cos
απ

2
≤ N2r2α + b2 + 2|N |rα|b| cos

απ

2
,

which implies that
|f(s)| > |g(s)| on C4. (25)

Similarly, on C2, we also have
|f(s)| > |g(s)|.
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This together with (24), (25) imply that

|f(s)| > |g(s)| on C := C1 ∪ C2 ∪ C3 ∪ C4. (26)

From (26), by Rouché’s theorem, P has no zero in the domain D bounded by the contour
C defined as above. Thus, P has no zero point in the closed right half-plane of the complex
plane.
(ii) As in the proof of Lemma 6.1 (ii), we only need to show that the following equation
has at least one root in the open right half-plane {z ∈ C : <(z) > 0}:

1 +Ne−τs − a

sα
− be−τs

sα
= 0. (27)

To do this, we set f(s) := 1 + Ne−τs and g(s) := − a
sα
− be−τs

sα
. Take the contour C as in

the proof of Lemma 6.1 (ii) with R is large enough. It is known that f has one zero in
the domain bounded by C and f(s) 6= 0 on this contour. On the other hand,

|g(s)| → 0

as s ∈ {z ∈ C : <(z) > 0} and |s| → ∞. Thus, for R is large, we have

|g(s)| < min
s∈C
|f(s)| ≤ |f(s)| for all s ∈ C,

which together with Rouché’s theorem imply that (27) has one root in the domain bounded
by C, that is, this equation has at least one root in {z ∈ C : <(z) > 0}. The proof is
complete.

Based on Lemma 6.3 and arguments as in the proof of Theorem 6.2, we obtain the
following result.

Theorem 6.4. Consider the linear FNDDE (20). Assume that a < 0, |b| < |a|. Then,

• (i) if |N | < 1, then this equation is asymptotically stable;

• (ii) if |N | > 1, then it is unstable.

7 Numerical simulations

With the aim of verify the theoretical findings on the asymptotic behavior of solutions
of linear FNDDEs, we consider here a numerical scheme based on the application of a
standard product-integration rule of rectangular rule to the integral representation (3).
Methods of this kind are widely employed to solve fractional differential equations (see,
for instance [6]) and they can be easily adapted to solve FNDDEs as well.

Let h > 0 and consider an equispaced grid tn = nh, n = 0, 1, . . . , thanks to which the
integral in (3) can be rewritten in a piece-wise way

x(tn) = φ(0) +Nφ(−τ)−Nx(tn − τ)

+
1

Γ(α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)α−1f(s, x(s), x(s− τ))ds,
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Figure 1: Trajectory of the solution Φ(·, φ) to system (28) when φ(t) = 0.2 on [−1, 0].

and hence the vector field f(s, x(s), x(s− τ)) is approximated in each interval [tk, tk+1] by
the constant values assumed in one of the endpoints of [tk, tk+1]. For stability reasons, and
avoid to introduce in the simulations spurious instabilities, we prefer to device an implicit
method and adopt the approximation f(s, x(s), x(s − τ)) ≈ f(tk+1, x(tk+1), x(tk+1 − τ)),
s ∈ [tk, tk+1]. After integrating in an exact way each integral we obtain the approximations
xn ≈ x(tn)

xn = φ(0) +Nφ(−τ)−Nx(tn − τ) + hα
n∑
k=1

b
(α)
n−kf(tk, xk, xk−τ/h),

where convolution weights bn are defined as b
(α)
n = ((n + 1)α − nα)/Γ(α + 1). The ap-

proximation xk−τ/h of x(tk − τ) is obtained by interpolation of the two closest available
approximations of the solution when tk − τ is not a grid point and when it does not
belong to [−τ, 0]. First-degree polynomial interpolation is clearly sufficient to preserve
the first-order convergence of the PI rule. Finally, Newton-Raphson iterations are used
to determine xn from the above implicit scheme.

We now apply the above scheme to present some numerical examples illustrating the main
results proposed in this paper.

Example 7.1. Consider the equation

CD0.7
0+

[
x(t) + x(t− 1)

]
= −5x(t), t > 0 (28)

x(·) ∈ C([−1, 0];R).

This equation is stable. In Figure 1, we simulate a trajectory of the solution Φ(·, φ) to
(28) with the initial condition φ(t) = 0.2 on [−1, 0].

Example 7.2. Consider the equation

CD0.7
0+

[
x(t)− 1.5x(t− 1)

]
= −5x(t), t > 0 (29)

x(·) ∈ C([−1, 0];R).

The equation (29) is unstable. We depict the trajectory of its solution Φ(·, φ) when
φ(t) = 0.2 on [−1, 0] in Figure 2 below.
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Figure 2: Trajectory of the solution Φ(·, φ) to system (29) when φ(t) = 0.2 on [−1, 0].
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Figure 3: Trajectory of the solution Φ(·, φ) to system (30) when φ(t) = 0.2 on [−1, 0].
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Figure 4: Trajectory of the solution Φ(·, φ) to system (31) when φ(t) = 0.2 on [−1, 0].

Example 7.3. Consider the equation

CD0.7
0+

[
x(t) + 0.5x(t− 1)

]
= −5x(t) + 0.5x(t− 1), t > 0 (30)

x(·) ∈ C([−1, 0];R).

As shown in Theorem 6.4 (i), this equation is asymptotically stable. In Figure 3, we
simulate the trajectory of the solution Φ(·, φ) to (30) with the initial condition φ(t) = 0.2
on [−1, 0].

Example 7.4. Consider the equation

CD0.7
0+

[
x(t) + 1.5x(t− 1)

]
= −5x(t) + 0.5x(t− 1), t > 0 (31)

x(·) ∈ C([−1, 0];R).

As shown in Theorem 6.4 (ii), this equation is unstable. We simulate the trajectory of
the solution Φ(·, φ) to (31) with the initial condition φ(t) = 0.2 on [−1, 0].
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