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Abstract We study a class of finite horizon optimal economic growth prob-
lems with nonlinear utility functions and linear production functions. By using
a maximum principle in the optimal control theory and employing the special
structure of the problems, we are able to explicitly describe the unique solu-
tion via input parameters. Economic interpretations of the obtained results
and an open problem about the case where the total factor productivity falls
into a bounded open interval defined by the growth rate of labor force, the
real interest rate, and the exponent of the utility function are also expressed.
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1 Introduction

Models of economic growth allow ones to analyze, plan, and predict relations
among global factors, which include capital, labor force, production technol-
ogy, and national product, of a particular economy in a given planning time
interval. The interval can be finite or infinite as well. One major issue regarding
a growth of an economy is the optimal economic growth problem, which asks
to define the amount of saving at each time moment to maximize a certain
target of consumption satisfaction while fulfilling the given economic relations.
Classical concepts and results on economic growth can be found in the works
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of Ramsey [1], Harrod [2], Domar [3], Solow [4], Swan [5], Cass [6], and Koop-
mans [7]. For subsequent studies on economic growth models, the interested
reader is referred to [8–14] and the references therein.

Following Takayama [8, Chapter 5], Huong [15] has considered the problem
of optimal growth of an aggregative economy and proved several theorems on
the solution existence of finite horizon optimal economic growth problems. The
solution existence is established in [15] not only for general problems but also
for typical ones with the production function and the utility function being
either the AK function or the Cobb–Douglas one. Interestingly, focusing on
the linearity/nonlinearity of the functions involved, Huong [15, Section 4] has
shown that the typical optimal economic growth problems can be classified into
four types. This classification is very useful, because it puts the optimal control
problems into different groups depending on the levels of difficulty. Since all the
problems have global solutions, it is natural to try to find the solutions, i.e., to
get a synthesis of the optimal processes based on the given data set. Results in
this direction would greatly enrich our knowledge on economic growth models
and certainly have profound economic meanings. It turns out that the desired
syntheses have no analogues in the literature and they are not easy to be
obtained.

Assuming that both the production function and the utility function are
linear, Huong [16] and Huong et al. [17] have solved the optimal economic
growth problem with six parameters formulated in [15] by using a maximum
principle for optimal control problems. The next natural question arises: Are
there some analogues of the results of [16,17] for optimal economic growth
problems with nonlinear utility functions and linear production functions, or
not? The present paper aims at solving this question. In other words, we are
interested in studying a class of finite horizon optimal economic growth prob-
lems with nonlinear utility functions and linear production functions. Each
problem from the class depends on seven parameters.

Thanks to the maximum principle in [18, Theorem 6.2.1] and a series of
seven technical lemmas employing the special structure of the problems, we
are able to explicitly describe the unique solution of the problem, provided
that some additional conditions on the input parameters are fulfilled. Like the
preceding syntheses of optimal solutions given in [16,17], our results have very
clear economic interpretations.

There are certain syntheses of optimal solutions for optimal economic
growth problems in both abstract and specified contexts; see, e.g., [13,14,
10,11]. But, our synthesis of optimal solutions are presented by explicit for-
mulas, while those in the just-mentioned papers are in a feedback form via the
solution of the Hamilton-Jacobi-Bellman equation associated with the given
problem.

It it worthy to stress that the economic meanings of all the concepts,
variables, functions, parameters, and relations concerning the finite horizon
optimal economic growth problems and the transformation of the latter to
constrained optimal control problems were explained thoroughly in Section 2
of [15]. Hence, in this paper, only brief explanations of the economic meanings
of the concepts in question will be given.

The paper is organized as follows. Section 2 describes the optimal economic
growth models of interest. Section 3 recalls a maximum principle from [18],
which is the main tool in our study. The main results are obtained in Section 4,
while the relevant economic interpretations and an open problem are given in
Section 5. The last section is devoted to several concluding remarks.
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2 Optimal Economic Growth Models

By IR (resp., IR+) we denote the set of real numbers (resp., the set of non-
negative real numbers). The Euclidean norm in the n-dimensional space IRn

is denoted by ‖.‖. By IRn
+ we denote the nonnegative orthant in IRn. The

open ball (resp., the closed ball) centered at a ∈ IRn with radius µ > 0
is denoted by B(a, µ) (resp., B̄(a, µ)). The Sobolev space W 1,1([t0, T ], IRn)
(see, e.g., [19, p. 21]) is the linear space of the absolutely continuous functions

x : [t0, T ]→ IRn equipped with the norm ‖x‖W 1,1 = ‖x(t0)‖+
∫ T
t0
‖ẋ(t)‖dt.

The interested reader is referred to the books [8, Chapter 5], [20, Chap-
ters 5, 7, 10, and 11], [21, Chapter 20], and [12, Chapters 7 and 8] for system-
atical expositions of optimal economic growth models. Note that the problem
of optimal growth of an aggregative economy with all the related economic
concepts is presented in detail in [15, Subsection 2.1] and recalled in Huong,
Yao and Yen [17, Section 2]. In the sequel, k(t) and s(t) respectively are the
capital-to-labor ratio and the propensity to save at a time moment t in the
planning interval [t0, T ]. The values φ(k), k ≥ 0, of the per capita production
function φ(·) express the outputs per capita. The utility function ω(·) depends
on the variable c, which is the per capita consumption. The problem is as
follows:

Maximize I(k, s) :=

∫ T

t0

ω[(1− s(t))φ(k(t))]e−λtdt (1)

over k ∈W 1,1([t0, T ], IR) and measurable functions s : [t0, T ]→ IR satisfying
k̇(t) = s(t)φ(k(t))− σk(t), a.e. t ∈ [t0, T ]

k(t0) = k0

s(t) ∈ [0, 1], a.e. t ∈ [t0, T ]

k(t) ≥ 0, ∀t ∈ [t0, T ],

(2)

where φ : IR+ → IR+ and ω : IR+ → IR are given functions, 0 ≤ t0 < T < +∞,
λ ≥ 0, σ > 0, and k0 > 0 are given as parameters. The problem (1)–(2) is
denoted by (GP ).

The integral

∫ T

t0

ω(c(t))e−λtdt, where c(t) is the per capita consumption

of the economy at time t and λ ≥ 0 is the real interest rate, represents the
total amount of the utility gained by the society on the time period [t0, T ].
Since c(t) = (1 − s(t))φ(k(t)) (see [15, equation (9)]) for all t ≥ 0, the just-
mentioned integral equals to the value I(k, s) defined in (1). The parameters
σ and k0 in (2) respectively stand for the growth rate of labor force and the
initial capital-to-labor ratio.

According to [22], (GP ) is a finite horizon optimal control problem of the
Lagrange type, where s and k play the roles of control variable and state
variable, respectively. Besides, due to the appearance of the state constraint
k(t) ≥ 0 for t ∈ [t0, T ], (GP ) belongs to the class of optimal control problems
with state constraints.

Several results on the existence of global solutions (k̄, s̄) for (GP ) were
obtained in [15] under some mild conditions on φ(·) and ω(·). In addition,
the solution existence for the problem (GP ) with φ(k) = Akα and ω(c) = cβ ,
where A > 0 and α, β ∈]0, 1] are parameters, was also considered in that paper.
Economically, the choosing of α and β either in ]0, 1[ or equal to 1 expresses
typical problems with the production function and the utility function being
either the Cobb–Douglas function or the AK function (see, e.g., [9] and [8]).
Meanwhile, as in [15], we can mathematically classify these typical problems
into four types depending on the displacement of α and β on ]0, 1]:
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(GP1) φ(k) = Ak and ω(c) = c (the “linear-linear” problem: both per
capita production function and utility functions are linear);

(GP2) φ(k) = Ak and ω(c) = cβ with β ∈]0, 1[ (the “linear-nonlinear”
problem: the per capita production function is linear, but the utility function
is nonlinear);

(GP3) φ(k) = Akα and ω(c) = c with α ∈]0, 1[ (the “nonlinear-linear”
problem: the per capita production function is nonlinear, but the utility func-
tion is linear);

(GP4) φ(k) = Akα and ω(c) = cβ with α ∈]0, 1[ and β ∈]0, 1[ (the
“nonlinear-nonlinear” problem: both the per capita production function and
the utility function are nonlinear).

By [15, Theorem 4.1], we know that any problem belonging to one of these
classes has a global solution. The above classification arranges the difficulties
of solving the four types of problems into a reasonable scale. Clearly, the first
problem is the easiest one, while the fourth one is the most difficult.

If the data triple A, σ, λ satisfy certain strict linear inequalities, then ex-
plicit formulas for the unique global solution of the problem (GP1) can be
given. For more details, the reader is referred to [16] and [17].

We will focus on solving (GP2), which is considered as a parametric prob-
lem depending on seven parameters: A > 0, β ∈]0, 1[, σ > 0, λ ≥ 0, k0 > 0,
and t0, T with 0 ≤ t0 < T . So, we will have deal with the problem

Maximize

∫ T

t0

[1− s(t)]βkβ(t)e−λtdt (3)

over k ∈W 1,1([t0, T ], IR) and measurable functions s : [t0, T ]→ IR satisfying
k̇(t) = (As(t)− σ)k(t), a.e. t ∈ [t0, T ]

k(t0) = k0

s(t) ∈ [0, 1], a.e. t ∈ [t0, T ]

k(t) ≥ 0, ∀ t ∈ [t0, T ],

(4)

which has been denoted by (GP2).
The following theorem is a special case of [15, Theorem 4.1] and [16, The-

orem A.3].

Theorem 2.1 For any A > 0, β ∈]0, 1[, σ > 0, λ ≥ 0, k0 > 0, and and t0, T
with 0 ≤ t0 < T , (GP2) has a global solution.

3 A Maximum Principle

Now we present a simplified version of a maximum principle given in the book
of Vinter [18]. Consider the following finite horizon optimal control problem of
the Mayer type, denoted by M,

Minimize g(x(t0), x(T )) (5)

over x ∈W 1,1([t0, T ], IRn) and measurable functions u : [t0, T ]→ IRm satisfy-
ing 

ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [t0, T ]

(x(t0), x(T )) ∈ C
u(t) ∈ U(t), a.e. t ∈ [t0, T ]

h(t, x(t)) ≤ 0, ∀t ∈ [t0, T ],

(6)
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where [t0, T ] is a given interval, g : IRn×IRn → IR, f : [t0, T ]×IRn×IRm → IRn,
and h : [t0, T ] × IRn → IR are given functions, C ⊂ IRn × IRn is a closed set,
and U : [t0, T ] ⇒ IRm is a set-valued map.

A measurable function u : [t0, T ] → IRm satisfying u(t) ∈ U(t) for almost
every t ∈ [t0, T ] is called a control function. A process (x, u) consists of a control
function u and an arc x ∈W 1,1([t0, T ]; IRn) that is a solution to the differential
equation in (6). A state trajectory x is the first component of some process
(x, u). A process (x, u) is called feasible if the state trajectory satisfies the
endpoint constraint (x(t0), x(T )) ∈ C and the state constraint h(t, x(t)) ≤ 0,
t ∈ [t0, T ].

Due to the appearance of the state constraint h(t, x(t)) ≤ 0, t ∈ [t0, T ],
the problem M in (5)–(6) is said to be an optimal control problem with state
constraints. But, if the state constraint is fulfilled for any state trajectory x
with (x(t0), x(T )) ∈ C, i.e., the state constraint can be removed from (6), then
one says that M an optimal control problem without state constraints.

Definition 3.1 A feasible process (x̄, ū) is called a W 1,1 local minimizer for
M if there exists δ > 0 such that g(x̄(t0), x̄(T )) ≤ g(x(t0), x(T )) for any
feasible process (x, u) satisfying ‖x̄− x‖W 1,1 ≤ δ.

Definition 3.2 The Hamiltonian H : [t0, T ]× IRn × IRn × IRm → IR of (6) is
defined by

H(t, x, p, u) := 〈p, f(t, x, u)〉 =

n∑
i=1

pifi(t, x, u). (7)

Theorem 6.2.1 from [18] is a maximum principle for nonsmooth problems,
where the limiting normal cone and the limiting subdifferential are used. It is
well known that for continuously differentiable functions, the limiting subdif-
ferential is a singleton consisting of the gradient of the function at the point
in question. Also, for convex sets, the limiting normal cone coincides with
the normal cone of the set in question. We refer to [23,24] for comprehensive
treatments of the limiting normal cone, the limiting subdifferential, and the
related calculus rules. To analyze the problem (GP2), we need the next smooth
version of [18, Theorem 6.2.1].

Theorem 3.1 Suppose that M is an optimal control problem without state
constraints, C is a closed convex set, and U(t) = U for all t ∈ [t0, T ] with U
being a compact subset of IRm. Let (x̄, ū) be a W 1,1 local minimizer for M.
Assume that

(A1) The function f : [t0, T ]× IRn × IRm → IRn is continuous and, for some
δ > 0, f(t, ·, u) is continuously differentiable on the ball B(x̄(t), δ) for
all (t, u) ∈ [t0, T ] × U , and the derivative fx(t, x, u) of f(t, ·, u) at x is
continuous on the set of vectors (t, x, u) satisfying (t, u) ∈ [t0, T ] × U and
x ∈ B(x̄(t), δ);

(A2) g is continuously differentiable.

Then there exist p ∈ W 1,1([t0, T ]; IRn) and γ ≥ 0 such that (p, γ) 6= (0, 0) and
the following holds true:

(i) −ṗ(t) = Hx(t, x̄(t), p(t), ū(t)) a.e., where Hx(t, x̄(t), p(t), ū(t)) means the
derivative of the function H(t, ·, p(t), ū(t)) at x̄(t);

(ii) (p(t0),−p(T )) ∈ γ∇g(x̄(t0), x̄(T )) +NC(x̄(t0), x̄(T )), where

NC(z̄) :=
{
z∗ ∈ R2n : 〈z∗, z − z̄〉 ∀z ∈ C

}
is the normal cone to C at a point z̄ ∈ C;



6 Vu Thi Huong, Jen-Chih Yao, Nguyen Dong Yen

(iii) H(t, x̄(t), p(t), ū(t)) = maxu∈U(t)H(t, x̄(t), p(t), u) a.e..

Let us show that the assumptions made in Theorem 3.1 guarantee that
the hypothesis (H1) in [18, Theorem 6.2.1] is fulfilled. To do so, take any
δ′ ∈]0, δ[ and note that the set of all (t, x, u) satisfying (t, u) ∈ [t0, T ] × U
and x ∈ B̄(x̄(t), δ′), denoted by A, is compact. Hence, assumption (A1) in
Theorem 3.1 implies that the number γ = max{‖fx(t, x, u)‖ : (t, x, u) ∈ A}
is well defined. By the mean value theorem for vector-valued functions (see,
e.g., [19, p. 27]) we have

‖f(t, x, u)− f(t, x′, u)‖ ≤ γ‖x− x′‖, ∀t ∈ [t0, T ], x, x′ ∈ B̄(x̄(t), δ′), u ∈ U.

Thus, condition (H1) in [18, Theorem 6.2.1] is satisfied.

4 Partial Synthesis of the Optimal Processes

In order to apply Theorem 3.1 for finding optimal processes for (GP2), we have
to interpret the Lagrange problem (GP2) in the form of the Mayer problem
M. To do so, for t ∈ [0, T ], we set x(t) = (x1(t), x2(t)), where x1(t) plays the
role of k(t) in (3)–(4) and

x2(t) := −
∫ t

t0

[1− s(τ)]βxβ1 (τ)e−λτdτ (8)

Thus, (GP2) is equivalent to the following problem, denoted by (GP2a):

Minimize x2(T )

over x = (x1, x2) ∈W 1,1([t0, T ], IR2) and measurable functions s : [t0, T ]→ IR
satisfying 

ẋ1(t) = (As(t)− σ)x1(t), a.e. t ∈ [t0, T ]

ẋ2(t) = −[1− s(t)]βxβ1 (t)e−λt, a.e. t ∈ [t0, T ]

(x(t0), x(T )) ∈ {(k0, 0)} × IR2

s(t) ∈ [0, 1], a.e. t ∈ [t0, T ]

x1(t) ≥ 0, ∀t ∈ [t0, T ].

(9)

To see (GP2a) in the form of the Mayer problemM, we choose n = m = 1,
C = {(k0, 0)} × IR2, U(t) = [0, 1] for t ∈ [t0, T ], g(x, y) = y2 for x = (x1, x2),
y = (y1, y2) ∈ IR2, h(t, x) = −x1 for (t, x) ∈ [t0, T ] × IR2. Besides, we let
f(t, x, s) := ((Ax1s− σ)x1,−|1− s|β |x1|βe−λt) for (t, x, s) ∈ [t0, T ]× IR2× IR.
Then, f(.) is well-defined on [t0, T ]× IR2 × IR and

f(t, x, s) = ((Ax1s− σ)x1,−(1− s)βxβ1 e−λt) (10)

for every (t, x, s) ∈ [t0, T ]×(IR+×IR)×[0, 1]. Moreover, by (7), the Hamiltonian
of (GP2a) is given by H(t, x, p, s) = (As− σ)x1p1 − |1− s|β |x1|βp2e

−λt for all
(t, x, p, s) ∈ [t0, T ]× IR2 × IR2 × IR. In particular,

H(t, x, p, s) = (As− σ)x1p1 − (1− s)βxβ1p2e
−λt (11)

for each (t, x, p, s) ∈ [t0, T ] × (IR+ × IR) × IR2 × [0, 1]. Thus, at such a point
(t, x, p, s) with x1 > 0, H(·) is continuously differentiable in x and, one has

Hx(t, x, p, u) =
{

((As− σ)p1 − β(1− s)βxβ−1
1 p2e

−λt, 0)
}
. (12)

The relationships between a control function s(·) and the corresponding
trajectory x(·) of (9) can be described as follows.
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Lemma 4.1 For each measurable function s(·) : [t0, T ]→ IR with s(t) ∈ [0, 1],
there exists a unique function x = (x1, x2) ∈W 1,1([t0, T ], IR2) such that (x, s)
is a feasible process of (GP2a). Moreover, for every τ ∈ [t0, T ], one has

x1(t) = x1(τ)e
∫ t
τ

(As(z)−σ)dz, ∀t ∈ [t0, T ]. (13)

In particular, x1(t) > 0 for all t ∈ [t0, T ].

Proof Given a function s(·) satisfying the assumptions of the lemma, consider
the Cauchy problem of finding absolutely functions x1(·) : [t0, T ] → IR such
that {

ẋ1(t) = [As(t)− σ]x1(t), a.e. t ∈ [t0, T ]

x1(t0) = k0.
(14)

Since s(·) is measurable and bounded on [t0, T ], so is t 7→ As(t)−σ. In partic-
ular, the latter is Lebesgue integrable on [t0, T ]. Hence, by the lemma in [25,
pp. 121–122] on the solution existence and uniqueness of the Cauchy problem
for linear differential equations, one knows that (14) has a unique solution.
Thus, x1(·) is defined uniquely via s(·). This and (8) imply the uniqueness
of the absolutely continuous function x2(·) : [t0, T ] → IR such that (x, s) is a
feasible process of (GP2a).

To prove the second assertion, put

Ω(t, τ) = e
∫ t
τ

(As(z)−σ)dz, ∀t, τ ∈ [t0, T ]. (15)

By the Lebesgue integrability of the function t 7→ As(t)− σ on [t0, T ], Ω(t, τ)
is well defined on [t0, T ]× [t0, T ], and by [29, Theorem 8, p. 324] one has

d

dt

(∫ t

τ

(As(z)− σ)dz

)
= As(t)− σ, a.e. t ∈ [t0, T ]. (16)

Therefore, from (15) and (16) it follows that Ω(·, τ) is the solution of the
Cauchy problem

d

dt
Ω(t, τ) = (As(t)− σ)Ω(t, τ), a.e. t ∈ [t0, T ]

Ω(τ, τ) = 1.

In other words, the real-valued function Ω(t, τ) of the variables t and τ is
the principal matrix solution (see [25, p. 123]) specialized to the homogeneous
differential equation in (14). Hence, by the theorem in [25, p. 123] on the
solution of linear differential equations, we obtain (13). Since x1(t0) = k0 > 0,
applying (13) for τ = t0 implies that x1(t) > 0 for all t ∈ [t0, T ]. 2

By Lemma 4.1, any process satisfying the first four conditions in (9) auto-
matically satisfies the state constraint x1(t) ≥ 0, t ∈ [t0, T ]. Thus, the latter
can be omitted in the problem formulation. This means that now we can apply
the maximum principle for optimal control problems without state constraints
in Theorem 3.1 to derive necessary optimality conditions for (GP2a).

From now on, let (x̄, s̄) be a fixed W 1,1 local minimizer for (GP2a).
By Lemma 4.1, one can find a constant ε̄ > 0 such that x̄1(t) ≥ ε̄ for all

t ∈ [t0, T ]. Since (10) is valid for any (t, x, s) ∈ [t0, T ] × (IR+ × IR) × [0, 1],
we can find some δ > 0 such that the assumption (A1) of Theorem 3.1 is
satisfied. The fulfillment of (A2) is obvious. So, by Theorem 3.1 we can find
p ∈ W 1,1([t0, T ]; IR2) and γ ≥ 0 such that (p, γ) 6= (0, 0) and the conditions
(i)–(iii) hold true.

For (GP2a), the conditions (i)–(iii) in Theorem 3.1 imply the following.
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Condition (i): By (12), (i) implies that

−ṗ(t) = ((As̄(t)− σ)p1(t)− β(1− s̄(t))β x̄β−1
1 (t)p2(t)e−λt, 0), a.e. t ∈ [t0, T ].

Hence, p2(t) is a constant for all t ∈ [t0, T ] and

ṗ1(t) = −(As̄(t)−σ)p1(t)+β(1− s̄(t))β x̄β−1
1 (t)p2(t)e−λt, a.e. t ∈ [t0, T ]. (17)

Condition (ii): By the formulas for g and C, ∂g(x̄(t0), x̄(T )) = {(0, 0, 0, 1)}
and NC(x̄(t0), x̄(T )) = IR2 × {(0, 0)}. Thus, (iii) yields

(p(t0),−p(T )) ∈ {(0, 0, 0, γ)}+ IR2 × {(0, 0)},

which means that p1(T ) = 0 and p2(T ) = −γ.
Condition (iii): By (11), from (iii) one gets

(As̄(t)− σ)x̄1(t)p1(t)−(1− s̄(t))β x̄β1 (t)p2(t)e−λt

= max
s∈[0,1]

[
(As− σ)x̄1(t)p1(t)− (1− s)β x̄β1 (t)p2(t)e−λt

]
for almost every t ∈ [t0, T ]. Equivalently, we have

Ax̄1(t)p1(t)s̄(t)− (1−s̄(t))β x̄β1 (t)p2(t)e−λt

= max
s∈[0,1]

[
Ax̄1(t)p1(t)s− (1− s)β x̄β1 (t)p2(t)e−λt

]
(18)

for almost every t ∈ [t0, T ].

We are going to analyze furthermore the above Conditions (i)–(iii). As p2(t)
is a constant for all t ∈ [t0, T ] and p2(T ) = −γ, one must have p2(t) = −γ for
all t ∈ [t0, T ]. Substituting p2(t) = −γ into (17) and (18) yields

ṗ1(t) = −(As̄(t)− σ)p1(t)− γβ(1− s̄(t))β x̄β−1
1 (t)e−λt, a.e. t ∈ [t0, T ] (19)

and

Ax̄1(t)p1(t)s̄(t) + γ(1−s̄(t))β x̄β1 (t)e−λt

= max
s∈[0,1]

[
Ax̄1(t)p1(t)s+ γ(1− s)β x̄β1 (t)e−λt

]
(20)

for almost every t ∈ [t0, T ]. Denote by Σ the set of t ∈ [t0, T ] such that the
equality (20) holds. Then, the Lebesgue measure of Σ is T − t0.

The next lemma describes the function p1(·) corresponding to the control
function s̄(·). It is an analogue of Lemma 4.1, which describes the function
x1(·) w.r.t. a control function s(·).

Lemma 4.2 The Cauchy problem defined by the differential equation (19) and
the condition p1(T ) = 0 possesses a unique solution p1(·) : [t0, T ]→ IR,

p1(t) =

∫ T

t

c(z)Ω̄(z, t)dz, ∀t ∈ [t0, T ], (21)

where Ω̄(t, τ) is defined by (15) for s(t) = s̄(t), i.e.,

Ω̄(t, τ) := e
∫ t
τ

(As̄(z)−σ)dz, ∀t, τ ∈ [t0, T ], (22)

and
c(t) := γβ(1− s̄(t))β x̄β−1

1 (t)e−λt, ∀t ∈ [t0, T ]. (23)

In addition, for any fixed value τ ∈ [t0, T ], one has

p1(t) = p1(τ)Ω̄(τ, t) +

∫ τ

t

c(z)Ω̄(z, t)dz, ∀t ∈ [t0, T ]. (24)
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Proof Since s̄(·) is measurable, bounded, and x̄1(·) is absolutely continuous,
the function t 7→ c(t) defined by (23) is measurable and bounded on [t0, T ].
Moreover, the function t 7→ As̄(t) − σ is also measurable and bounded on
[t0, T ]. In particular, both functions c(·) and As̄(·)−σ are Lebesgue integrable
on [t0, T ]. Hence, by the lemma in [25, pp. 121–122] we can assert that, for any
τ ∈ [t0, T ] and η ∈ R, the Cauchy problem defined by the linear differential
equation (19) and the initial condition p1(τ) = η has a unique solution p1(·).
As shown in the proof of Lemma 4.1, Ω̄(t, τ) given in (22) is the principal
solution of the homogeneous equation

˙̄x1(t) = (As̄(t)− σ)x̄1(t), a.e. t ∈ [t0, T ]. (25)

Besides, by the form of (19) and by the theorem in [25, p. 123], the solution
of (19) is given by (24). Especially, applying this formula for the case τ = T
and note that p1(T ) = 0, we obtain (21). 2

Looking back to the maximum principle in Theorem 3.1, we see that the
objective function g is taken into a full account in condition (iii) only if γ > 0.
In such a situation, the maximum principle is said to be normal. The reader is
referred to [26–28] for investigations on the normality of maximum principles
for optimal control problems. For (GP2a), we can exclude the situation γ = 0.

Lemma 4.3 One must have γ > 0.

Proof If γ = 0, then (23) implies that c(t) ≡ 0. Hence, from (21) it follows
that p1(t) ≡ 0. Combining this with the facts that p2(t) = −γ = 0 for all
t ∈ [t0, T ], we get (p, γ) = (0, 0). This contradicts the property (p, γ) 6= (0, 0)
assured by Theorem 3.1. 2

Since γ > 0, the conditions (i)–(iii) in Theorem 3.1 are satisfied with the
pair of multipliers (p, γ) being replaced by (p̃, γ̃) := γ−1(p, γ) = (γ−1p, 1). So,
in what follows we will admit that γ = 1.

Lemma 4.4 One has p1(t) ≥ 0 for all t ∈ [t0, T ].

Proof Thanks to Lemmas 4.1 and 4.3, we have x̄1(t) > 0 for all t ∈ [t0, T ] and,
as aforesaid, γ = 1. Thus, (23) yields c(t) ≥ 0 for all t ∈ [t0, T ]. From this,
(21), and (22), we get the desired assertion. 2

To investigate the condition (20) in more details, it is convenient for us to
consider the functions

ψ1(t) := Ax̄1(t)p1(t), ψ2(t) := x̄β1 (t)e−λt, ∀t ∈ [t0, T ], (26)

ϕ(t, s) := ψ1(t)s+ ψ2(t)(1− s)β , ∀(t, s) ∈ [t0, T ]×]−∞, 1]. (27)

Since x̄1(t) > 0 and p1(t) ≥ 0 for t ∈ [t0, T ], we have ψ1(t) ≥ 0 and ψ2(t) > 0
for t ∈ [t0, T ]. In addition, as the functions x̄1(·) and p1(·) are absolutely
continuous on [t0, T ], so are ψ1(·) and ψ2(·).

Condition (20) requires that for almost every t ∈ [t0, T ], the function ϕ(t, ·)
attains a maximum on [0, 1] and s̄(t) is one of the maximizers. Fix an arbitrary
value t ∈ [t0, T ]. As ϕ(t, ·) is continuous on ] − ∞, 1] and differentiable on
] −∞, 1[, any maximizer of ϕ(t, ·) on [0, 1] must be one of the endpoints 0, 1
of the segment, or one solution of the equation

∂ϕ(t, s)

∂s
= 0, (28)
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where s ∈]0, 1[. The equation (28) means that

(1− s)β−1 =
ψ1(t)

βψ2(t)
. (29)

If ψ1(t) = 0, then (29) has no solution in ]0, 1[. If ψ1(t) > 0, then (29) is
equivalent to

s = 1− eρ(t) (30)

with

ρ(t) :=
1

β − 1
ln

ψ1(t)

βψ2(t)
. (31)

From (31) and the condition β ∈]0, 1[, it follows that the value s in (30) belongs
to ]0, 1[ if and only if ψ1(t) > βψ2(t). In that case, we denote this value s,
which is the unique solution of (28) in ]0, 1[, by s∗(t).

Consequently, if ψ1(t) ≤ βψ2(t), then by comparing the values ϕ(t, 0), and
ϕ(t, 1) one finds a maximizer of ϕ(t, ·) on [0, 1]. If ψ1(t) > βψ2(t), then one
has to compare the values ϕ(t, s∗(t)), ϕ(t, 0), and ϕ(t, 1) to find a maximizer .

At any t ∈ [t0, T ] with ψ1(t) ≤ βψ2(t), by the properties ψ2(t) > 0 and
β ∈]0, 1[, one has ϕ(t, 0) = ψ2(t) > βψ2(t) ≥ ψ1(t) = ϕ(t, 1). Thus, the unique
maximizer of ϕ(t, ·) on [0, 1] is s = 0.

At any t ∈ [t0, T ] with ψ1(t) > βψ2(t), the inequality ψ2(t) > 0 yields

ψ1(t) > 0. Besides, it follows from (29) that (1−s∗(t))β =
ψ1(t)

βψ2(t)
(1−s∗(t)). So,

substituting this into (27), we have ϕ(t, s∗(t)) = ψ1(t)s∗(t)+
1

β
ψ1(t)(1−s∗(t)).

Thus, we get ϕ(t, s∗(t)) − ϕ(t, 1) = ψ1(t)(1 − s∗(t))( 1

β
− 1). Since ψ1(t) > 0,

s∗(t) ∈]0, 1[, and β ∈]0, 1[, we have ϕ(t, s∗(t)) > ϕ(t, 1). So, s = 1 cannot be a

maximizer of ϕ(t, ·) on [0, 1]. As
∂2ϕ(t, s)

∂s2
= β(β − 1)ψ2(t)(1− s)β−2 < 0, for

all s ∈]−∞, 1[ the function ϕ(t, ·) is strictly concave on [0, 1). Therefore, the

equality
∂ϕ(t, s∗(t))

∂s
= 0 and the inclusion s∗(t) ∈]0, 1[ show that s = s∗(t) is

the unique maximizer ϕ(t, ·) on [0, 1].

In summary, we have proved that for each t ∈ [t0, T ], the function ϕ(t, ·)
has a unique maximizer ŝ(t) on [0, 1], which greatly depends on the sign of the
value

ψ(t) := ψ1(t)− βψ2(t). (32)

Namely, one has ŝ(t) = 0 if ψ(t) ≤ 0 and ŝ(t) = s∗(t) if ψ(t) > 0. Thus, by (20)
and the construction of the set Σ, for any t ∈ Σ, next alternatives are valid:

(a1) If ψ(t) ≤ 0, then s̄(t) = 0;

(a2) If ψ(t) > 0, then s̄(t) = s∗(t).

This crucial property of the optimal control function s̄(·) motivates our
further investigation on the sign of ψ(t) for t ∈ [t0, T ].

By (26), ψ(T ) = Ax̄1(T )p1(T )−βx̄β1 (T )e−λT . Since β > 0, x̄1(T ) > 0, and
p1(T ) = 0 by Condition (ii), this equality implies that ψ(T ) < 0. Besides, as
ψ1(·) and ψ2(·) are absolutely continuous on [t0, T ], from (32) it follows that
ψ(·) is also absolutely continuous on [t0, T ].

For any subinterval of [t0, T ] where ψ(·) has a fixed sign, formulas for s̄(·),
x̄1(·), and p1(·) can be given. Namely, the following statement is valid.

Lemma 4.5 Let [t1, t2] ⊂ [t0, T ], t1 < t2, and τ ∈ [t1, t2] be given arbitrarily.
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(a) If ψ(t) ≤ 0 for every t ∈ [t1, t2], then

s̄(t) = 0, a.e. t ∈ [t1, t2], (33)

x̄1(t) = x̄1(τ)e−σ(t−τ), ∀t ∈ [t1, t2] (34)

and

p1(t) = p1(τ)eσ(t−τ) +
β

βσ + λ
x̄β−1

1 (τ)eσ(β−1)τeσt
[
e−(βσ+λ)t − e−(βσ+λ)τ

]
(35)

for all t ∈ [t1, t2].
(b) If ψ(t) > 0 for every t ∈]t1, t2[, then

s̄(t) = s∗(t), a.e. t ∈ [t1, t2], (36)

p1(t) = p1(τ)e(σ−A)(t−τ), ∀t ∈ [t1, t2], (37)

and x̄1(·) is described as follows:
(b1) If Aβ = βσ + λ, then

x̄1(t) = x̄1(τ)e(A−σ)(t−τ) −A
[A
β
p1(τ)e(A−σ)τ

] 1
β−1

e(A−σ)t(t− τ)

(38)
for all t ∈ [t1, t2].

(b2) If Aβ 6= βσ + λ, then

x̄1(t) = x̄1(τ)e(A−σ)(t−τ)− A(β − 1)

βσ + λ−Aβ

[A
β
p1(τ)e(A−σ)τ

] 1
β−1

× e(A−σ)t
[
e
βσ+λ−Aβ

β−1 t − e
βσ+λ−Aβ

β−1 τ
]

(39)

for all t ∈ [t1, t2].

Proof To prove assertion (a), suppose that ψ(t) ≤ 0 for every t ∈ [t1, t2]. Then,
by the alternative (a1) we have s̄(t) = 0 for every t ∈ [t1, t2] ∩ Σ. Since the
set Σ ⊂ [t0, T ] is of full Lebesgue measure, this shows that (33) is fulfilled. To
obtain (34), it suffices to substitute x1(·) = x̄1(·) and s(·) = s̄(·) into (13).
To prove (35), we can use (24) and the obtained formulas of s̄(·) and x̄1(·)
on [t1, t2]. Namely, by (22) we have Ω̄(τ, t) = eσ(t−τ), Ω̄(z, t) = eσ(t−z) for all
t, z ∈ [t1, t2]. In addition, from (23) and (34) it follows that

c(z) = βx̄β−1
1 (z)e−λz = βx̄β−1

1 (τ)eσ(β−1)τe−[σ(β−1)+λ]z

for all t, z ∈ [t1, t2]. Substituting these formulas to (24) yields (35).
To prove assertion (b), suppose that ψ(t) > 0 for all t ∈ [t1, t2]. Then, by

the alternative (a2) we have s̄(t) = s∗(t) for every t ∈ [t1, t2] ∩Σ. Hence (36)
is valid. To obtain (37), observe from (36), the fact that (29) is fulfilled with

s = s∗(t), and (26) that (1 − s̄(t))β−1 =
Ax̄1(t)p1(t)

βx̄β1 (t)e−λt
for a.e. t ∈ [t1, t2].

Therefore, by (19), we have

ṗ1(t) = −(As̄(t)− σ)p1(t)− βAx̄1(t)p1(t)

βx̄β1 (t)e−λt
(1− s̄(t))x̄β−1

1 (t)e−λt = (σ −A)p1(t)

for almost every t ∈ [t1, t2]. So, (37) is valid. It remains to prove (38) and (39).
As (x̄, s̄) is a W 1,1 local minimizer of (GP2a), it satisfies the constraint

system (9). In particular, we have

˙̄x1(t) = (As̄(t)− σ)x̄1(t), a.e. t ∈ [t1, t2]. (40)
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For almost every t ∈ [t1, t2], it follows from (36), (30), (31), and (26) that

s̄(t) = 1−
[Ax̄1(t)p1(t)

βx̄β1 (t)e−λt

] 1
β−1

= 1− 1

x̄1(t)

[A
β
p1(t)eλt

] 1
β−1

.

Thus, by (40) we have

˙̄x1(t) = (A− σ)x̄1(t)−A
[A
β
p1(t)eλt

] 1
β−1

, a.e. t ∈ [t1, t2].

So, x̄1(·) is a solution of the linear differential equation

˙̄x1(t) = (A− σ)x̄1(t) + a(t), a.e. t ∈ [t1, t2], (41)

where

a(t) := −A
[A
β
p1(t)eλt

] 1
β−1

, t ∈ [t1, t2]. (42)

The principal matrix solution Ω1(t, s) of the homogeneous differential equation
corresponding to (41) is given by Ω1(t, s) = e(A−σ)(t−s), for all t, s ∈ [t1, t2].
Hence, by the theorem from [25, p. 123], (42), and (37), we obtain

x̄1(t) = x̄1(τ)Ω1(t, τ) +

∫ t

τ

Ω1(t, s)a(s)ds

= x̄1(τ)e(A−σ)(t−τ) −A
[A
β
p1(τ)e(A−σ)τ

] 1
β−1

e(A−σ)t

∫ t

τ

e
βσ+λ−Aβ

β−1 sds

for all t ∈ [t1, t2]. If Aβ = βσ+λ, then this implies (38). If Aβ 6= βσ+λ, then
one gets (39) from the just obtained integral expression for x̄1(·).

The proof is complete. 2

Lemma 4.6 The following assertions hold.

(a) If A ≤ βσ + λ, then ψ(·) is nondecreasing on [t0, T ].

(b) If A ≥ σ +
λ

β
, then ψ(·) is nonincreasing on [t0, T ].

Proof Since ψ(·) is absolutely continuous on [t0, T ], it is Fréchet differentiable
almost everywhere on [t0, T ]. Moreover, according to [29, Theorem 6, p. 340],
the Fréchet derivative ψ̇(·) of ψ(·) is Lebesgue integrable on [t0, T ] and it holds
that

ψ(t) = ψ(t0) +

∫ t

t0

ψ̇(s)ds, ∀t ∈ [t0, T ]. (43)

From formulas (32) and (26), it follows that

ψ̇(t) = A
[

˙̄x1(t)p1(t) + x̄1(t)ṗ1(t)
]
− β

[
βx̄β−1

1 (t) ˙̄x1(t)e−λt − λx̄β1 (t)e−λt
]

for almost every t ∈ [t0, T ]. Thus, by invoking (19) and (25), we have

ψ̇(t) = −βx̄β1 (t)e−λt
[
A(1− s̄(t))β +Aβs̄(t)− (βσ + λ)

]
, a.e. t ∈ [t0, T ].

So, by letting

z(s) := A(1− s)β +Aβs− (βσ + λ), s ∈]−∞, 1], (44)

we have
ψ̇(t) = −βx̄β1 (t)e−λtz(s̄(t)), a.e. t ∈ [t0, T ]. (45)

We see that z(·) :]−∞, 1]→ IR is twice differentiable on ]−∞, 1[ and

ż(s) = −Aβ(1− s)β−1 +Aβ, ∀s ∈]−∞, 1[,
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z̈(s) = Aβ(β − 1)(1− s)β−2, ∀s ∈]−∞, 1[. (46)

As β ∈]0, 1[, it follows from (46) that z̈(s) < 0 for all s ∈]−∞, 1[. This means
that ż(·) is strictly decreasing on ] −∞, 1[. In particular, ż(s) < ż(0) = 0 for
all z ∈]0, 1[, which implies that z(·) is decreasing on [0, 1).

We are now in a position to prove the two assertions of the lemma.
If A ≤ βσ+λ, then from (44) one has z(0) = A− (βσ+λ) ≤ 0. Combining

this with the facts that z(·) is decreasing on [0, 1[ and s̄(t) ∈ [0, 1[ for almost
every t ∈ [t0, T ] yields z(s̄(t)) ≤ z(0) ≤ 0 for almost every t ∈ [t0, T ]. Thus, by
(45), one has ψ̇(t) ≥ 0 for almost every t ∈ [t0, T ]. Therefore, from formula (43)
it follows that ψ(·) is nondecreasing on [t0, T ]. So, assertion (a) is proved.

Consider the situation where A ≥ σ+
λ

β
and let Σ′ be the set of t ∈ [t0, T ]

such that (45) holds. Then, Σ′ ⊂ [t0, T ] is of full Lebesgue measure, and the
subset Σ ∩ Σ′ of [t0, T ] also has full Lebesgue measure. For each t ∈ Σ ∩ Σ′,

either s̄(t) = 0 or s̄(t) = s∗(t) (see alternatives (a1) and (a2)). Since A ≥ σ+
λ

β
and β ∈]0, 1[, one has A > Aβ ≥ βσ + λ. So, if s̄(t) = 0, then from (44), one
has z(s̄(t)) = z(0) = A − (βσ + λ) > 0. If s̄(t) = s∗(t), then (a2) occurs; so
one must have ψ(t) > 0. By (32), the latter means that ψ1(t) > βψ2(t). As
β ∈]0, 1[, A and ψ2(t) are positive, the last inequality yields

A
ψ1(t)

βψ2(t)
> Aβ. (47)

Since (29) is fulfilled with s = s∗(t) and s̄(t) = s∗(t), (1− s̄(t))β−1 =
ψ1(t)

βψ2(t)
.

As s̄(t) ∈]0, 1[, the last equality is equivalent to (1− s̄(t))β =
ψ1(t)

βψ2(t)
(1− s̄(t)).

Thus, by (44), one has z(s̄(t)) =
[
A
ψ1(t)

βψ2(t)
−Aβ

]
(1− s̄(t)) +Aβ − (βσ + λ).

So, by the strict inequality in (47) and the facts that s̄(t) ∈]0, 1[, Aβ ≥ βσ+λ,
we can deduce that z(s̄(t)) > 0. We have thus shown that z(s̄(t)) > 0 for
any t ∈ Σ ∩ Σ′. Thus, having in mind that the set Σ ∩ Σ′ ⊂ [t0, T ] is of full
Lebesgue measure, we obtain by formula (45), which is valid for all t ∈ Σ′,
that ψ̇(t) < 0 for almost every t ∈ [t0, T ].

The proof is complete. 2

Lemma 4.7 If the condition

A 6= βσ + λ (48)

is fulfilled, then the situation ψ(t) = 0 for all t from an open subinterval ]t1, t2[
of [t0, T ] with t1 < t2 cannot occur.

Proof To prove by contradiction, suppose that (48) is valid, but there exist
t1, t2 ∈ [t0, T ] with t1 < t2 such that ψ(t) = 0 for t ∈]t1, t2[. Then, formula (32)
yields ψ1(t) = βψ2(t) for t ∈]t1, t2[. Thus, by (26) we have

p1(t) =
β

A
x̄β−1

1 (t)e−λt, ∀t ∈]t1, t2[. (49)

Combining (49) with (25) gives ṗ1(t) =
[
(β−1)(As̄(t)−σ)−λ

]
p1(t), for almost

every t ∈]t1, t2[. Thus, by (19) we get

−(As̄(t)− σ)p1(t)− β(1− s̄(t))β x̄β−1
1 (t)e−λt =

[
(β − 1)(As̄(t)− σ)− λ

]
p1(t)
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for almost every t ∈]t1, t2[. According to (49), this means that

−(As̄(t)− σ)p1(t)−A(1− s̄(t))βp1(t) =
[
(β − 1)(As̄(t)− σ)− λ

]
p1(t) (50)

for almost every t ∈]t1, t2[. Since ψ(t) = 0 for all t ∈]t1, t2[, the continuity of
ψ(·) yields ψ(t) = 0 for all t ∈ [t1, t2]. Therefore, by assertion (a) of Lemma 4.5,
we have s̄(t) = 0 for almost every t ∈ [t1, t2]. Thus, (50) implies that

(σ −A)p1(t) = (σ − βσ − λ)p1(t), a.e. t ∈ [t1, t2]. (51)

Since x̄1(t) > 0 for every t ∈ [t0, T ], by (49) we have p1(t) > 0 for all t ∈]t1, t2[.
So, from (51) it follows that A = βσ + λ. This contradicts (48).

The proof is complete. 2

Theorem 4.1 Consider the problem (GP2). If the parameters A, β, λ, σ are
such that

A ≤ βσ + λ, (52)

then (GP2) has a unique global solution (k̄, s̄), which is given by

s̄(t) = 0, a.e. t ∈ [t0, T ], and k̄(t) = k0e
−σ(t−t0), ∀t ∈ [t0, T ]. (53)

If A, β, λ, σ satisfy the condition

A ≥ σ +
λ

β
, (54)

then (GP2) has a unique global solution (k̄, s̄). Moreover, for

ρ :=
1

βσ + λ
ln

A

A− (βσ + λ)
and t̄ := T − ρ, (55)

the optimal process (k̄, s̄) can be described as follows:

(a) [Short planning period] If T − t0 ≤ ρ, then (k̄, s̄) is given by (53).
(b) [Long planning period] If T − t0 > ρ, then s̄(·) is given by

s̄(t) =

{
1− e

λ+σ−A
β−1 (t−t̄), a.e. t ∈ [t0, t̄[

0, a.e. t ∈ [t̄, T ]

and k̄(·) is defined as follows:

(b1) If A = σ +
λ

β
, then

k̄(t) =

{
k̄(t̄)e(A−σ)(t−t̄)

[
1 +A(t̄− t)e

Aβ−βσ−λ
β−1 t̄

]
, t ∈ [t0, t̄]

k̄(t̄)e−σ(t−t̄), t ∈]t̄, T ]

with

k̄(t̄) :=
k0e

(A−σ)(t̄−t0)

1 +A(t̄− t0)e
Aβ−βσ−λ

β−1 t̄
.

(b2) If A > σ +
λ

β
, then

k̄(t) =

{
k̄(t̄)e(A−σ)(t−t̄)

[
1 + A(β−1)

βσ+λ−Aβ
(
1− e

βσ+λ−Aβ
β−1 (t−t̄))], t ∈ [t0, t̄]

k̄(t̄)e−σ(t−t̄), t ∈]t̄, T ]

with

k̄(t̄) =
k0e

(A−σ)(t̄−t0)

1 + A(β−1)
βσ+λ−Aβ

(
1− e

βσ+λ−Aβ
β−1 (t0−t̄)) .
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Proof According to Theorem 2.1, (GP2) has a global solution. Hence (GP2a)
also has a global solution. Let (x̄, s̄) be a W 1,1 local minimizer of (GP2a). By
Theorem 3.1, there exist p ∈ W 1,1([t0, T ]; IR2) and γ ≥ 0 with (p, γ) 6= (0, 0)
such that conditions (i)–(iii) in Theorem 3.1 hold true. In what follows, we will
employ the results of the analysis of those conditions, which was given before
the formulation of our theorem. All the notations used in the that analysis will
be kept. Thanks to Lemma 4.3, we have admitted that γ = 1. Recall also that
ψ(t) is given by (32) and s = s∗(t) is the unique solution in ]0, 1[ of (28), which
is equivalent to (30), when ψ(t) > 0. In addition, ψ(·) is absolutely continuous
on [t0, T ] with ψ(T ) < 0.

First, let A, β, λ, σ be such that (52) holds. Then, Lemma 4.6 shows that
ψ(·) is nondecreasing on [t0, T ]. So, one has ψ(t) ≤ ψ(T ) < 0 for all t ∈ [t0, T ].
Therefore, by choosing t1 = t0, t2 = T , τ = t0, and applying assertion (a) of
Lemma 4.5, we have s̄(t) = 0 for a.e. t ∈ [t0, T ] and x̄1(t) = k0e

−σ(t−t0) for all
t ∈ [t0, T ]. It follows that (GP2) has a unique global solution (k̄, s̄), which is
given by (53).

Now, suppose that the constants A, β, λ, σ satisfy the condition (54). By
Lemma 4.6 we know that ψ(·) is nonincreasing on [t0, T ]. We claim that there
is at most one point t ∈ [t0, T ] such that ψ(t) = 0. To prove this, suppose
for a while that there are some points t1 and t2 from [t0, T ] with t1 < t2 and
ψ(t1) = ψ(t2) = 0. Since ψ(·) is nonincreasing on [t1, t2], we must have ψ(t) = 0
for all t ∈]t1, t2[. As β ∈]0, 1[, from (54) one deduces that A > Aβ ≥ βσ + λ.
Hence, by Lemma 4.7 we get a contradiction. Our claim is justified.

There are two possibilities: (P1) ψ(t0) ≤ 0; (P2) ψ(t0) > 0. We will consider
these situations separately.

If (P1) occurs, then the fact that ψ(·) is nonincreasing on [t0, T ] gives
ψ(t) ≤ 0 for all t ∈ [t0, T ]. Consequently, setting t1 = t0, t2 = T , τ = t0
and applying assertion (a) of Lemma 4.5, we get s̄(t) = 0 for almost every
t ∈ [t0, T ], x̄1(t) = k0e

−σ(t−t0) for all t ∈ [t0, T ], and

p1(t) = p1(t0)eσ(t−t0) +
β

βσ + λ
x̄β−1

1 (t0)eσ(β−1)t0eσt
[
e−(βσ+λ)t − e−(βσ+λ)t0

]
for all t ∈ [t0, T ]. As p1(T ) = 0, it follows that

p1(t0)eσ(T−t0) +
β

βσ + λ
x̄β−1

1 (t0)eσ(β−1)t0eσT
[
e−(βσ+λ)T − e−(βσ+λ)t0

]
= 0.

Equivalently, we have p1(t0) = β
βσ+λ x̄

β−1
1 (t0)eσβt0

[
e−(βσ+λ)t0 − e−(βσ+λ)T

]
.

Since ψ(t0) ≤ 0, by (32) we get ψ1(t0) ≤ βψ2(t0). Combining this with (26)

gives p1(t0) ≤ β

A
x̄β−1

1 (t0)e−λt0 . Substituting the above formula for p1(t0) into

the last inequality yields

β

βσ + λ
x̄β−1

1 (t0)eσβt0
[
e−(βσ+λ)t0 − e−(βσ+λ)T

]
≤ β

A
x̄β−1

1 (t0)e−λt0 .

As x̄1(t0) = k0 > 0, this is equivalent to e(βσ+λ)(t0−T ) ≥ A− (βσ + λ)

A
. Since

A > βσ+λ, the latter means that T − t0 ≤ ρ with ρ > 0 being defined in (55).
If (P2) occurs then, by the inequality ψ(T ) < 0 and the continuity of ψ(·)

on [t0, T ], one can find some t̄ ∈]t0, T [ such that ψ(t̄) = 0. Since there is at
most one point t ∈ [t0, T ] such that ψ(t) = 0, this point t̄ is uniquely defined.
Moreover, one has ψ(t) > 0 for all t ∈ [t0, t̄[ and ψ(t) < 0 for all t ∈]t̄, T ].
We will compute t̄ and, on that basis, find formulas for the functions s̄(·) and
x̄1(·) on [t0, T ].
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As ψ(t̄) = 0, it follows from (26) and (32) that

p1(t̄) =
β

A
x̄β−1

1 (t̄)e−λt̄. (56)

Choosing t1 = t̄, t2 = T , and τ = t̄, by assertion (a) of Lemma 4.5 one gets
s̄(t) = 0 for almost every t ∈ [t̄, T ], x̄1(t) = x̄1(t̄)e−σ(t−t̄) for all t ∈ [t̄, T ], and

p1(t) = p1(t̄)eσ(t−t̄) +
β

βσ + λ
x̄β−1

1 (t̄)eσ(β−1)t̄eσt
[
e−(βσ+λ)t − e−(βσ+λ)t̄

]
for all t ∈ [t̄, T ]. Substituting (56) into the last formula yields

p1(t) =
β

A
x̄β−1

1 (t̄)e−λt̄eσ(t−t̄)+
β

βσ + λ
x̄β−1

1 (t̄)eσ(β−1)t̄eσt
[
e−(βσ+λ)t−e−(βσ+λ)t̄

]
for all t ∈ [t̄, T ]. Equivalently, one has

p1(t) =
β

A
e−λt̄x̄β−1

1 (t̄)eσ(t−t̄)
{

1 +
A

βσ + λ

[
e(βσ+λ)(t̄−t) − 1

]}
(57)

for all t ∈ [t̄, T ]. By (57) and the condition p1(T ) = 0, we have

β

A
e−λt̄x̄β−1

1 (t̄)eσ(T−t̄)
{

1 +
A

βσ + λ

[
e(βσ+λ)(t̄−T ) − 1

]}
= 0.

As x̄1(t̄) > 0, this equality is equivalent to 1 +
A

βσ + λ

[
e(βσ+λ)(t̄−T ) − 1

]
= 0.

Since A > βσ + λ, the latter means that t̄ = T − ρ with ρ > 0 being given
in (55). From this formula it is clear that the condition t̄ ∈]t0, T [ is satisfied if
and only if T − t0 > ρ.

For t1 = t0, t2 = t̄, and τ = t̄, since ψ(t) > 0 for all t ∈]t0, t̄[, applying
assertion (b) of Lemma 4.5 we get s̄(t) = s∗(t), for almost every t ∈ [t0, t̄] and

p1(t) = p1(t̄)e(σ−A)(t−t̄), ∀t ∈ [t0, t̄]. (58)

The formula for x̄1(·) depends on the relationships between A and the con-
stants σ, λ, β. Namely, the following statements are valid.

– If A = σ +
λ

β
, then

x̄1(t) = x̄1(t̄)e(A−σ)(t−t̄)−A
[A
β
p1(t̄)e(A−σ)t̄

] 1
β−1

e(A−σ)t(t−t̄), ∀t ∈ [t0, t̄].

(59)

– If A > σ +
λ

β
, then

x̄1(t) = x̄1(t̄)e(A−σ)(t−t̄)− A(β − 1)

βσ + λ−Aβ

[A
β
p1(t̄)e(A−σ)t̄

] 1
β−1

× e(A−σ)t(e
βσ+λ−Aβ

β−1 t − e
βσ+λ−Aβ

β−1 t̄) (60)

for all t ∈ [t0, t̄].

As ψ(t) > 0 for all t ∈ [t0, t̄[, (30) is satisfied with s = s∗(t) for all t ∈ [t0, t̄[.
Thus, from (31) and (26) it follows that

s∗(t) = 1− 1

x̄1(t)

[A
β
p1(t)eλt

] 1
β−1

, ∀t ∈ [t0, t̄[. (61)
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Substituting (56) into (58), we get

p1(t) =
β

A
x̄β−1

1 (t̄)e−λt̄e(σ−A)(t−t̄), ∀t ∈ [t0, t̄]. (62)

Combining (62) with (61) yields s∗(t) = 1− e
λ+σ−A
β−1 (t−t̄) for all t ∈ [t0, t̄[.

By (56), the next transformations are valid for any t ∈ [t0, t̄]:[A
β
p1(t̄)e(A−σ)t̄

] 1
β−1

e(A−σ)t =
[A
β

β

A
x̄β−1

1 (t̄)e−λt̄e(A−σ)t̄
] 1
β−1

e(A−σ)t̄e(A−σ)(t−t̄)

= x̄1(t̄)e
A−σ−λ
β−1 t̄e(A−σ)t̄e(A−σ)(t−t̄).

So, for any t ∈ [t0, t̄], one has[A
β
p1(t̄)e(A−σ)t̄

] 1
β−1

e(A−σ)t = x̄1(t̄)e
Aβ−βσ−λ

β−1 t̄e(A−σ)(t−t̄). (63)

If A = σ +
λ

β
, then inserting (63) to (59) yields

x̄1(t) = x̄1(t̄)e(A−σ)(t−t̄) −Ax̄1(t̄)e
Aβ−βσ−λ

β−1 t̄e(A−σ)(t−t̄)(t− t̄), ∀t ∈ [t0, t̄].

Equivalently, we have

x̄1(t) = x̄1(t̄)e(A−σ)(t−t̄)
[
1 +A(t̄− t)e

Aβ−βσ−λ
β−1 t̄

]
, ∀t ∈ [t0, t̄].

As x̄1(t0) = k0, it follows that k0 = x̄1(t̄)e(A−σ)(t0−t̄)
[
1 +A(t̄− t0)e

Aβ−βσ−λ
β−1 t̄

]
.

Since 1 +A(t̄− t0)e
Aβ−βσ−λ

β−1 t̄ > 0, the last equality implies that

x̄1(t̄) =
k0e

(A−σ)(t̄−t0)

1 +A(t̄− t0)e
Aβ−βσ−λ

β−1 t̄
. (64)

If A > σ +
λ

β
, then substituting (63) into (60) yields

x̄1(t) = x̄1(t̄)e(A−σ)(t−t̄)

− A(β − 1)

βσ + λ−Aβ
x̄1(t̄)e

Aβ−βσ−λ
β−1 t̄e(A−σ)(t−t̄)

(
e
βσ+λ−Aβ

β−1 t − e
βσ+λ−Aβ

β−1 t̄
)

for all t ∈ [t0, t̄]. Equivalently,

x̄1(t) = x̄1(t̄)e(A−σ)(t−t̄)
[
1 +

A(β − 1)

βσ + λ−Aβ
(
1− e

βσ+λ−Aβ
β−1 (t−t̄))], ∀t ∈ [t0, t̄].

Since x̄1(t0) = k0, the latter implies that

k0 = x̄1(t̄)e(A−σ)(t0−t̄)
[
1 +

A(β − 1)

βσ + λ−Aβ
(
1− e

βσ+λ−Aβ
β−1 (t0−t̄))].

Since A(β−1)
βσ+λ−Aβ

(
1− e

βσ+λ−Aβ
β−1 (t0−t̄)) > 0, the last equality yields

x̄1(t̄) =
k0e

(A−σ)(t̄−t0)

1 + A(β−1)
βσ+λ−Aβ

(
1− e

βσ+λ−Aβ
β−1 (t0−t̄)) . (65)

Summing up, we have seen that the situation (P1) occurs if and only if
T−t0 ≤ ρ, while the situation (P2) occurs if and only if T−t0 > ρ. Therefore, if
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T − t0 ≤ ρ, then s̄(t) = 0 for almost everywhere t ∈ [t0, T ], x̄1(t) = k0e
−σ(t−t0)

for all t ∈ [t0, T ]. In addition, if T − t0 > ρ, then s̄(·) is given by

s̄(t) =

{
s∗(t), a.e. t ∈ [t0, t̄]

0, a.e. t ∈]t̄, T ]
with s∗(t) = 1−e

λ+σ−A
β−1 (t−t̄), ∀t ∈ [t0, t̄[,

and x̄1(·) is described as follows:

• If A = σ +
λ

β
, then

x̄1(t) =

{
x̄1(t̄)e(A−σ)(t−t̄)

[
1 +A(t̄− t)e

Aβ−βσ−λ
β−1 t̄

]
, t ∈ [t0, t̄]

x̄1(t̄)e−σ(t−t̄), t ∈]t̄, T ]

with x̄1(t̄) being given by (64).

• If A > σ +
λ

β
, then

x̄1(t) =

{
x̄1(t̄)e(A−σ)(t−t̄)

[
1 + A(β−1)

βσ+λ−Aβ
(
1− e

βσ+λ−Aβ
β−1 (t−t̄))], t ∈ [t0, t̄]

x̄1(t̄)e−σ(t−t̄), t ∈]t̄, T ]

with x̄1(t̄) being given by (65).
Recalling that the variable x̄1 in (GP2a) plays the role of the variable k̄ in

(GP2), from the just obtained results we get all the desired assertions. 2

5 Economic Interpretations of Theorem 4.1

To give some clear economic interpretations of Theorem 4.1, we now recall
the roles of the parameters A, β, λ, σ in the optimal economic growth prob-
lems under consideration. The two constants λ and σ appearing in the general
problem (GP ) are the real interest rate and the growth rate of labor force, re-
spectively. The remaining parameters A and β are the characteristic index of
the typical problem (GP2). Namely, A in the per capita function expresses the
total factor productivity1 (TFP) and β is the exponent of the Cobb–Douglas
utility function. Note that TFP is a measure of economic efficiency that rep-
resents the increase in total production which is in excess of the increase that
results from increase in inputs and depends on some intangible factors such
as technological change, education, research and development, etc. Using σ,

λ, and β, we can define two constants χ1 = βσ + λ and χ2 = σ +
λ

β
, which

play important roles in the analysis of problem (GP2). Since σ, λ are positive,

β ∈]0, 1[, and χ2 =
χ1

β
, one has 0 < χ1 < χ2. So, the constants χ1, χ2 divide

the positive half-line ]0,+∞[ into three domains ]0, χ1], ]χ1, χ2[, and [χ2,+∞[.
Interpreting the half-line ]0,+∞[ as the parameter space for the total factor
productivity A > 0, one may say that “the total factor productivity is relatively
small” (resp., “the total factor productivity is enough high”) when A ∈]0, χ1]
(resp., A ∈ [χ2,+∞[).

Adopting the above terminologies, we can read (52) as the condition saying
that the total factor productivity is relatively small. Similarly, condition (54)
is read as the total factor productivity is enough high. In the case where (54)
occurs, we define two more constants by the formulas in (55): ρ > 0 is to decide
whether the planning period is short (T − t0 ≤ ρ), or it is long (T − t0 > ρ);

1 See, e.g., https://en.wikipedia.org/wiki/Total factor productivity.
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t̄ ∈]t0, T [ is the special time of ceasing the expansion of the production facility
when the control process is optimal. So, Theorem 4.1 postulates the following
on the model (GP2):

(a) If the total factor productivity is relatively small, then the expansion of
the production facility does not lead to a higher total consumption satisfaction
of the society;

(b) If the total factor productivity is enough high and the planning period
is short, then expanding the production facility also does not lead to a higher
total consumption satisfaction of the society;

(c) If the total factor productivity is enough high and the planning period is
relatively long, then the highest total consumption satisfaction of the society
is attained only if the expansion of the production facility is ceased after a
special time.

The following three figures depict the synthesis of the optimal trajectory
k̄(t) and the corresponding optimal control s̄(t), t ∈ [t0, T ], which is given by
Theorem 4.1. Note that the explicit formulas of k̄ and s̄ can be found in the
theorem.

For the optimal economic growth problems withA ∈]0, χ1[, one has s̄(t) = 0
for all t ∈ [t0, T ] and the optimal capital-to-labor ratio function k̄(t) monoton-
ically decreases on the whole planning interval [t0, T ] (see Figure 1).

For the problems with A = χ2 (see Figure 2), the optimal propensity to
save function s̄(t) may be either identically zero on [t0, T ] or monotonically
decreasing until the moment t̄ and identically zero on [t̄, T ]. The function k̄(t)
monotonically decreases on the whole planning interval [t0, T ], but its shape
is different from the one of k̄(t) in Figure 1.

For the problems with A > χ2 (see Figure 3), the behavior of the optimal
capital-to-labor ratio function is rather complicated and interesting. Namely,
the function s̄(t) may be either identically zero on [t0, T ] or monotonically
decreasing until the moment t̄ and identically zero on [t̄, T ]. However, the
function k̄(t) monotonically decreases on the whole planning interval [t0, T ]
only if the planning period T − t0 is relatively short. If the period is relatively
long, then the function k̄(t) first monotonically increases and monotonically
decreases afterwards.

Fig. 1 The optimal processes (k̄, s̄) of (GP2) w.r.t. parameters A = 0.15, β = 0.5, λ = 0.1,
σ = 0.2, k0 = 2, T = 6, and either t0 = 4 or t0 = 0

The obtained results lead us to the following open problem.

Problem 1: Is it possible to perform a synthesis of the optimal processes of the
economic growth problem (GP2) in the case where the total factor productivity
A falls into the bounded open interval ]χ1, χ2[ defined by the growth rate of
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Fig. 2 The optimal processes (k̄, s̄) of (GP2) w.r.t. parameters A = 0.4, β = 0.5, λ = 0.1,
σ = 0.2, k0 = 2, T = 6, and either t0 = 4 (T − t0 < ρ) or t0 = 0 (T − t0 > ρ)

Fig. 3 The optimal processes (k̄, s̄) of (GP2) w.r.t. parameters A = 0.5, β = 0.5, λ = 0.1,
σ = 0.2, k0 = 2, T = 6, and either t0 = 4 (T − t0 < ρ) or t0 = 0 (T − t0 > ρ)

labor force, the real interest rate, and the exponent of the Cobb–Douglas utility
function, or not?

6 Conclusions

We have proved that a parametric optimal economic growth problem with non-
linear utility function and linear production function, which satisfies certain
conditions on the input parameters, has a unique global solution. Moreover,
we have provided an explicit description of the solution.

Since we still have not been able to deal with the case where the total fac-
tor productivity falls into a bounded open interval defined by the growth rate
of labor force, the real interest rate, and the exponent of the utility function,
further research is needed to give a complete picture about the optimal solu-
tions of a finite horizon optimal economic growth problem with a nonlinear
utility function and linear production function. We think that this interesting
open question can hardly be solved without invoking new tools and applying
different ideas.

A solution of Problem 1 would complement the synthesis of the optimal
processes given in Theorem 4.1 and yield a comprehensive analysis of (GP2).
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