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Abstract In this paper, we present an O(n2)-time algorithm for finding the
exact shortest paths from a fixed source point to all other vertices on a tri-
angulated polyhedral surface of a convex polytope in three-dimensional space
using the concept of funnels on the surface. Our algorithm builds a funnel
tree to compute such shortest paths. The funnel tree is built by recursively
splitting funnels. Because their left borders are straightest geodesics, funnels
are determined explicitly by the law of cosines. Known approaches such as
the planar unfolding technique, source images and the projections of ones that
take a lot of operations are avoided in our algorithm. Therefore, our algorithm
outperforms the others on reduction of running time.

Our algorithm is implemented in Python. Comparing with Kaneva and
O’Rourke’s implementation of Chen and Han’s algorithm, our algorithm runs
significantly faster while the number of nodes in the tree is relatively small.
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1 Introduction

Computing exact shortest paths from a fixed source point to all other points
on a polyhedral surface is a well-studied problem in computational geometry.
Chen and Han [2] provided an O(n2)-time algorithm based on a key observa-
tion of “one angle one split” for determining the globally shortest path joining
a given source to any point on the surface. The algorithm was implemented
by Kaneva and O’Rourke [4]. Also, Kapoor [5] announced a further improve-
ment using the wavefront method. Xin and Wang [11] presented an efficient
visibility-based algorithm for determining a locally exact shortest path from
a source point to a destination point on a (triangulated) polyhedral surface.
Although Xin and Wang [12] improved Chen and Han’s algorithm [2] with
respect to the running time, finding exact solutions still requires a high time
cost for very large models. Then, Xin and Wang [13] applied the improved
Chen and Han’s algorithm to different versions of the shortest path problems.
They showed that the improved Chen and Han’s algorithm can be naturally
extended to the “multiple sources, any destination” version. Also, introducing
a well-chosen heuristic factor into the improved Chen and Han’s algorithm
induced an exact solution to the “single source, single destination” version.
All mentioned shortest paths are L2 shortest paths.

In [1], we introduced the concept of funnels along a sequence of adjacent
triangles in three-dimensional space and straightest geodesics inside a sequence
of adjacent triangles. The straightest geodesics along a sequence of adjacent
triangles are modified from the concept of straightest geodesics on a polyhe-
dral surface of Polthier and Schmies ([9] and [10]). These concepts are used
to compute the exact shortest path between two points along a sequence of
adjacent triangles, by constructing a sequence of funnels without using the
planar unfolding technique. Each funnel is determined by a final curve and
some orienting curves according to Phu’s method of orienting curves ([7] and
[8]).

In this paper, the funnels on the surface of a polytope are defined and put
in a tree to compute all globally shortest paths from the fixed source point to
all destination points on a polyhedral surface. The main differences between
Chen and Han’s algorithm and our funnel tree algorithm are that

– We do not use the planar unfolding technique of Chen and Han’s algorithm
that costs many operations.

– We do not use the technique of source images and the projections of ones of
Chen and Han’s algorithm that also cost many operations, instead compare
local angles.

– The left borders of our funnels are straightest geodesics that reduce many
operations.
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Therefore, the number of operations in our funnel tree algorithm is relatively
small compared to the number of operations in Chen and Han’s algorithm.

The funnel tree algorithm and Chen and Han’s algorithm have the same
O(n2) time complexity. We implemented our funnel tree algorithm in Python
3 and compared with Chen and Han’s algorithm (implemented by Kaneva and
O’Rourke [4]). The funnel tree algorithm runs significantly faster by a factor
of 1 to 12 on instances of 100–800 vertices in an experimental study on 10 data
sets (see Table 1) while the number of nodes in the funnel tree is relatively
small (see Table 2 and Figures 14, 15, and 16).

2 Funnels and Funnel Trees on a Polytope

Consider a sequence of adjacent triangles S :=
⋃m

i=1
fi, m ≥ 2, where fi are

faces, ei = fi ∩ fi+1 are edges of a polytope. For a, b ∈ S, denote by SPS(a, b)
the shortest path joining a and b in S.

In this paper, we define funnels on the surface of a polytope. Comparing
with [1], the definition of funnels has a slight change because a such sequence
S of adjacent triangles is not given and the number of adjacent triangles m ≥ 2
is not fixed.

Let s be a vertex of f1, p be a vertex of some fi (1 ≤ i ≤ m) and q be
a vertex of fm (the last triangle of S) such that q 6= p, s /∈ e1, i = 2, . . . ,m
and if i = m then SPS(p, q) = [p, q] = em. If we view the polytope from the
outside and from f1 to fm on S then SPS(s, p) is on the left of SPS(s, q). Let
u be the furthest common vertex of SPS(s, p) and SPS(s, q) with respect to
s. Let Fp,q,S(s) denote the region of S bounded by SPS(s, p), SPS(s, q) and
SPS(p, q).

Definition 1 The region Fp,q,S(u) is called a funnel (of the polytope) asso-
ciated with the vertex u and the path SPS(p, q). u is called the cusp of the
funnel, SPS(u, p) is called the left border and SPS(u, q) is called the right
border of the funnel. If [v, q] is an edge of the polytope, v is called the direct
destination of the funnel Fp,q,S .

In this paper, the polytope is assumed to be convex. Then, SP (s, p) ∩
SP (s, q) = {s} if p /∈ SP (s, q) and q /∈ SP (s, p). Hence, in Definition 1, u ≡ s.
Therefore in the notations of funnels, the cusp u of funnels is omitted and we
also use the notation Fp,q for Fp,q,S(u) and omit “the corresponding sequence
S and the cusp u” if there is no confusion.

We recall the notion of straightest geodesics on polyhedral surface which
was introduced by Polthier and Schimes ([9] and [10]). Let γ be a path on the
surface of the polytope. Let w be a vertex of K and {g1, . . . , gk} be the set of
faces of the polytope containing w as a vertex and αi be the interior angle of
the face fi at the vertex w. Then the total angle αw is given by αw =

∑m

i=1
αi.

Because the polytope is convex, we have α(w) ≤ 2π. If α(w) < 2π (α(w) = 2π,
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respectively), then w is called a spherical (an Euclidean, respectively) vertex.
If w is a relative interior point of a face or an edge of the polytope, then w
is an Euclidean vertex. We denote by αl and αr the left and right angles of
the path at a point in which αl + αr = α, where α is the total vertex angle of
the point. γ is a straightest geodesic on the polytope if αl = αr at w, for each
point w ∈ γ.

As a shortest path joining s and a vertex is a straightest geodesic, such
a path is the left border of some funnel with cusp s. From now on, we con-
sider only funnels such that those left borders are straightest geodesics. If S
consists of only one △spq then Fp,q,S itself is the triangle. In Fig. 1, the
funnel F5,0,S1

is triangle △(7, 5, 0), where S1 = △(7, 5, 0). In this example,
SP (7, 5) = SP (p, q) = [p, q] is an edge of the cube. In Fig. 2, the shaded
regions are funnels, but SP (p, q) is not an edge of the polytope.

Fig. 1 Two funnels F5,0,S1
and F0,4,S2

on the surface of a cube, where s := 7, S1 =
△(7, 5, 0), S2 = △(7, 5, 0) ∪△(0, 5, 4).

Consider a funnel Fp,q,S and suppose that em = [p, q]. Let v /∈ S be a
vertex of the polytope such that [q, v] is an edge of the polytope. Let △pqv be
the sequence of adjacent triangles of the polytope between ei and [q, v] having
two edges incident to the vertex q and S ∩△pqv = ei. S

′ = S ∪△pqv is called
a sequence of adjacent triangles of the polytope between two edges [q, p] and
[q, v].

Definition 2 Consider a funnel Fp,q,S , its direct destination v and S′ = S ∪
△pqv. If Fp,v,S′ or Fv,q,S′ exist (i.e. Fp,q,S and Fp,v,S′ or Fv,q,S′ have the same
cusp s), it is called a child of Fp,q,S .
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Fig. 2 The funnel F0,11,S (the region formed by the edge [s, 0] and white and red paths) is
associated with the vertex s = 2 and the path SPS(0, 11), where S = △(2, 0, 3)∪△(0, 4, 3)∪
△(4, 0, 5) ∪△(5, 11, 4).

In Fig. 1, vertex 1 is a direct destination of F5,4,S1
and funnel F1,4,S′

1
is a

child of F5,4,S1
, where S1 = △(7, 5, 4) and S′

1 = S1 ∪△(1, 5, 4).
Let s be a point on the polyhedral surface. In [2], Chen and Han built

a tree, called a sequence tree, that contains the shortest paths from s to all
vertices of the surface, using the planar unfolding technique and the source
images and the projections of them. Without loss of generality, assume that
s is a vertex of the surface. In this section, we build a funnel tree using the
concept of funnels. As can be seen below that a node of the funnel tree is a
funnel with some direction. Let a funnel Fp,q,S be defined as in Definition 1.

Definition 3 A funnel tree is a tree with s, where each node other than the
root s is a triple (Fp,q,S , SPS(p, q), s), denoted by Fp,q,S . A node Fp,v,S′ is a
child of the node Fp,q,S if the funnel Fp,v,S′ is a child of the funnel Fp,q,S .

Two nodes (or two funnels with the same cusp) Fp,q,S and Fp,q,S1
occupy

a vertex v if v is the direct destination of both funnels Fp,q,S and Fp,q,S1
.

3 Determining Children of a Funnel

Let △pqvg be the sequence of adjacent triangles of the polytope between two
edges [q, p] and [q, v]. Let S′ = S ∪△pqv. The existance of funnels Fp,v,S′ and
Fv,q,S′ can be checked by comparing angles of triangles as follows.

Let [v1, q], . . . , [vj , q] be edges incident to q. Set

βv = βvj
:= ∠spq + ∠vjpq. (1)
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Fig. 3 F is formed by the yellow paths. As βp < π, the funnel F has a child.

The edge pvj can be computed from the relation

l([p, vj ]) =

√

√

√

√l([vj , q])2 + l([p, q])2 − 2l([vj , q]) · l([p, q]) cos

j
∑

i=0

∠viqp, (2)

(where v0 := p) and then the angle ∠vjpq can be computed from the relation

l([vj , p])

sin∠vjqp
=

l([vj , q])

sin∠vjpq
(3)

(see Fig. 3). It follows from (1), (2), and (3) that

βv = βvj

:= ∠spq + arcsin





l([vj , q]) sin∠vjqp
√

l([vj , q])2 + l([p, q])2 − 2l([vj , q]) · l([p, q]) cos
∑j

i=0
∠viqp



 .

(4)
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Let v = vj be a direct destination of Fp,q,S and B1, B2 denote the left
border and the right border of Fp,q,S , respectively. B1 is a straightest geodesic.
If β ≥ π then the relative interior of the funnel Fp,v,S′(s) is empty, where s
is a cusp of the funnel Fp,v,S′(s). Hence Fp,q,S has no child, see Fig. 4 (1).
Otherwise, i.e.,

βv < π, (5)

let w be the first vertex on B2 right after s. If

∠psv < ∠psw (6)

then Fp,q,S has two children Fp,v,S′ and Fv,q,S′ (see Fig. 4 (2)). If ∠psv ≥ ∠psw,
then Fp,q,S has one child Fvp,S′ , see Fig. 4 (3).

In the case of (5), the triangle △pqv is well-defined by two edges [q, v], [q, p]

and the angle
∑j

i=0
∠viqp between these edges. Let △pqv be the sequence of

adjacent triangles of the polytope between two edges [q, p] and [q, v].

Fig. 4 (1) Funnel Fp,q,S coloured in red, has no child (i.e., (5) does not hold), (2) Funnel
Fp,q,S coloured in yellow, has two children Fpv and Fv,q , (3) Funnel Fp,q,S coloured green, in
has one child Fpv (right boundary of the corresponding funnel includes the segment [s, w]).

Consider funnel Fp,t and destination vertex v such that SP (p, t) is not a
line segment and some angles at t are not angles of faces of the polytope (in
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Fig. 5, SP (p, t) 6= [p, t] and the angle αt at t is not the sume of angles of the
polytope).

Fig. 5 Funnel Fp,q is coloured in yellows. SP (p, t) is not a line segment. Funnel Fp,t formed
by the yellow path SP (s, p), the green path SP (s, t), and the blue path SP (p, v), has two
children.

To find children of Fp,t, we use the law of cosines as follows:

– Using law of cosines for △ptq to get the length of SP (p, v) and ∠ptq,
– Using law of cosines for △ptv to get the length of SP (p, t) and ∠vpt,
– Using law of cosines for △puv to get the length of SP (u, v), angles ∠upv
and ∠tup,

here △ptq, ∠vpt, and ∠puv indicate the corresponding triangles that have
edges such that whose lengths are of the paths SP (p, t), SP (t, q), SP (p, q),
SP (v, t), SP (v, p), SP (u, v), SP (p, u).

4 The Funnel Tree Algorithm

The Algorithm 1 below builds the funnel tree by recursively splitting funnels.
For both cases when determining children of one funnel, if the next triangle
belong to sequence triangles S, then the funnel has no child.

Procedure Clip off Funnels(△pqv, S, S1) executes the three cases 2)-4)
of Lemma 3 of the Appendix. It compares two funnels Fp,q,S and Fp,q,S1

that
occupy a vertex v of the sequence △pqv and their children to determine which
children will be deleted.
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Algorithm 1 Funnel tree for finding shortest paths

Input: s is a vertex of the polyhedral surface.
Output: A funnel tree that contains the shortest paths from s to all vertices of the surface.

1: root := s
2: For all the edge [p, q] opposite to s:
3: Set S = △spq
4: Insert Fp,q,S as root’s children.

5: While k ≤ n and the kth level has nodes: ⊲ n is the number of faces

6: For each funnel (node) Fp,q,S at the kth level:
7: Let v = vj = direct destination of the funnel Fp,q,S and βv be determined by (4).
8: While βv < π ⊲ i.e., (5) holds
9: Take the sequence S′ of adjacent triangles of the polytope between [p, q] and [q, v]

having two edges incident at q.
10: Set S′ := S ∪△pqv.
11: If the funnels Fp,v,S′ (t1) and Fv,q,S′ (t2) has the same cusp s (i.e., s = t1 = t2)

and (6) holds
12: Then Fp,q,S has two children Fp,v,S′ , Fv,q,S′

13: Insert the children that Fp,q,S can have as follows
14: If ∠pvq is previously marked by another funnel called Fp,q,S1

15: Then call Procedure Clip off Funnels(△pqv, S, S1)
⊲ This procedure allows to implement the conclusions 2)-4) of Lemma 3

determines that child
16: Insert the two both children of Fp,q,S and mark ∠pvq
17: Else, Fp,q,S has one child, then insert the child.
18: k+ = 1

Procedure 2 Clip off Funnels(△pqv, S, S1)

1: Let l (l1, respectively) be the length of the path SPS(s, v) (SPS1
(s, v), respectively).

2: if l < l1 ⊲ applying Lemma 3 2)
3: if ∠pvz > ∠pvz1 ⊲ z and z1, respectively are the intersections of paths

SP
S∪△pqv

(s, v) and SP
S1∪△pqv

(s, v), respectively with the line segment [p, q].

4: then delete child F
v,q,S1∪△pqv

of Fp,q,S1

5: else if ∠pvz < ∠pvz1
6: then delete child F

p,v,S1∪△pqv
of Fp,q,S1

7: if l1 < l ⊲ applying Lemma 3 3)
8: if ∠pvz > ∠pvz1
9: then delete child F

p,v,S∪△pqv
of Fp,q,S

10: else if ∠pvz < ∠pvz1
11: then delete child F

v,q,S∪△pqv
of Fp,q,S

12: else ⊲ applying Lemma 3 4)
13: if ∠pvz > ∠pvz1
14: then delete child F

p,v,S∪△pqv
of Fp,q,S and child F

v,q,S1∪△pqv
of Fp,q,S1

15: else if ∠pvz < ∠pvz1
16: then delete child F

v,q,S∪△pqv
of Fp,q,S and child F

p,v,S1∪△pqv
of Fp,q,S1

Theorem 1 Algorithm 1 computes all shortest paths on a triangulated poly-
hedron surface P from s to the other vertices of P in O(n2) time.

Proof. Clearly, the left border of the funnel Fp,q,S is a locally shortest path
from s to p. Then a children which is not deleted, determines a locally shortest
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path from s to v. Thus a funnel tree determines the shortest paths from the
vertex s to some vertices. By Lemma 4, Algorithm 1 determines all shortest
paths from s to all other vertices.

For k = 1, the tree consists of just triangles incident to s, which is in fact
the shortest paths from s to all vertices of those triangles. The tree grows
by exploring a new vertex and updating shorter path lengths. Incrementing
i for the next iteration of for loop and determing new funnels then preserve
the loop invariant. The for terminate when no new funnel can be found, then
there is no shortest path can be found.

As checking (4), (6), and (6) takes constant, time complexity can be de-
termined if we determine the number of nodes of the funnel tree at the fixed
kth-level.

Take a fixed k ≤ n. It follows from Lemma 3 that Procedure Clip off

Funnels(△pqv, S, S1) compares two funnels Fp,q,S and Fp,q,S1
that occupy a

vertex v of the sequence △pqv and their children to determine which children
will be deleted. Hence, the number of children is scalar with the number of
funnels. Therefore, Algorithm 1 runs in O(n2).

Note that Algorithm 1 computes all globally shortest paths from s to the
other vertices of P.

4.1 Examples

We now illustrate Algorithm 1. By writing Fp,q, we omit “the corresponding
sequence S” in the notation of the funnel Fp,q,S in the next example if there
is no confusion.

Example 4.1.1: Given a cube with 8 vertices numbered from 0 to 7. The
cube is triangulated as in Fig. 6.
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' 1997-2015, JavaView v.4.60

Fig. 6 A triangulated cube with 8 vertices and 12 faces.

The vertex 4 is chosen as the source point (s = 4 is the root of the funnel
tree). There are 5 faces adjacent to the vertex 4 then the root of the funnel
tree has 5 children: F7,5, F5,1, F1,0, F0,3, and F3,7.

2

6

5

4

7

3

F7,5

F 7
,6

F
6,5

F 6
,2

F2,5

Fig. 7 For more intutive, funnel F7,5 and other faces are planar unfoled.

Consider the funnel F7,5 (Fig. 7).

l(SP (4, 7)) = l([4, 7]), ∠475 =
π

4
, ∠745 =

π

2
.
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The direct destination of F7,5 is vertex 6. We have ∠675 =
π

4
, then ∠476 =

∠475 + ∠675 =
π

2
< π. By (2), we get

l([4, 6]) =
√

l([4, 7])2 + l([7, 6])2 − 2l([4, 7])l([7, 6]) cos∠476.

By (3), we have sin∠746 =
l([7, 6]) sin∠476

l([4, 6])
. It implies that ∠746 =

π

4
. Since

∠746 < ∠745, we obtain that F7,5 has two children F7,6 and F6,5.

Funnel F7,6 is determined by

l(SP (4, 7)) = l([4, 7]), ∠476 =
π

2
, ∠746 =

π

4
.

Funnel F6,5 is determined by

l(SP (4, 6)) = l([4, 6]),

∠465 = ∠765− ∠764 = ∠765− (π − ∠476− ∠746) =
π

4
,

∠645 = ∠745− ∠746 =
π

4
.

Consider funnel F7,6, its direct destination is vertex 3. We have ∠376 =
π

2
.

Then ∠476 + ∠376 = π. In this case, funnel F76 has no child with the direct
destination point 3, but the funnel will have a child at some direct destination
point. In this case, such a funnel and the corresponding node are called as
abnormal funnel and abnormal node, respectively.

Consider funnel F6,5, its direct destination is vertex 2. From (2)-(3), we
check that F6,5 has two children F6,2 and F2,5. The other funnels of funnel
tree are found in the same way. This tree has 106 nodes including 41 abnormal
nodes (abnormal funnel). Figure 9 shows three levels of this tree.

For example, to find the shortest path joining vertex 4 to vertex 2, we see
that funnels F6,5, F1,3 and F3,6 occupy vertex 2. The shortest path SP (4, 2)
along F2,5 passes through the interior of edges 65 and 75. Our problem changes
to find the shortest path SP (4, 2) passes through the interior of edges 75 and
65. We use JavaView function to show the shortest path (Fig. 8). This is
exactly the shortest path we are looking for.
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Fig. 8 The shortest path joining vertex 4 to vertex 2 passes through edges 75 and 65.

Example 4.1.2: Given a polytope has 12 vertices with 20 faces as in Fig. 10.
Vertex 0 is choosen as the source point. In this example the needed information
of a funnel Fp,q is stored in a 3-tuple (x, y, z) where x is the angle the cusp
in degree, y = [s, p] is the length of its left boundary (length from the source
point s to point p), and z is the angle ∠spq.

Fig. 9 The first three level of funnel tree for example 4.1.1
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' 1997-2015, JavaView v.4.60

Fig. 10 A polytope with 12 vertices and 20 faces.

For k = 1, the source point 0 has five children:

1. F5,4 = (65.95, 0.77, 68.71)
2. F4,3 = (60.20, 1.01, 59.09)
3. F3,2 = (60, 0.99, 60)
4. F2,1 = (59.66, 0.99, 60.67)
5. F1,5 = (49.39, 1, 49.39).

For k = 2, the children at nodes are as follows

1. F5,4 has two children: F5,11 and F11,4. F5,11 = (29.52, 0.77, 128.25), F11,4 =
(36.43, 1.59, 37.30).

2. F4,3 has two children F4,10 and F10,3. F4,10 = (30.91, 1.01, 118.18), F10,3 =
(29.30, 1.73, 29.30).

3. F3,2 has two children F3,9 and F9,2. F3,9 = (29.66, 0.99, 120.67), F9,2 =
(30.34, 1.72, 30).

4. F2,1 has two children F2,7 and F7,1. F2,7 = (29.66, 0.99, 120.67), F7,1 =
(30, 1.72, 30.34).

5. F1,5 has two children F1,6 and F6, 5. F1,6 = (35.43, 1, 107, 62), F6,5 =
(13.96, 1.59, 12.44).

For k = 3, we have 14 nodes. For k = 4, we have 23 nodes. The other levels
can be calculated in the same way. This tree has 196 nodes. Figure 11 shows
the shortest paths for Example 4.1.2.
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Fig. 11 The shortest paths from vertex 0 to other vertices.

4.2 Advantages of the Funnel Tree Algorithm over Chen and Hans’s one

Chen and Han’s algorithm used the planar unfolding technique and projection
method. Our algorithm uses funnel trees. In concrete,

– Using the conditions (1)-(5)-(6), we build funnel trees without using the
planar unfolding technique that costs many operations.

– In our algorithm, we do not need to check if a vertex belongs to the shadow
of a node, rotating operations, two sign-area operations.

– In our algorithm, the children of a funnel can be determined by comparing
the angles with a small number of operations.

Experimental results given the the next section also show that our funnel tree
algorithm runs faster in clock time for several instances of spheres, cubes, and
spirals.

4.3 Implementation and Experimental Results

To build a funnel tree, we find children of a given funnel, namely, determine
funnels Fp,v,S′ , Fv,q,S′ from a given funnel Fp,q,S , where its direct destination
is v and S′ = S ∪△pqv. (5)-(6) are enough to determine such funnels with a
small number of operations.

Indeed, the funnels Fp,v,S′ and Fv,q,S′ can be determined by comparing the
angle ∠spv and π then comparing angles ∠psv and ∠psw. It takes 2 operations
to compute the angle ∠spv and compare this angle with π, 9 operations to
compute edge sv in (2) and 4 operations to compute the angle ∠psv in (3).
Therefore, for the present funnel Fp,q,S , the new funnel Fp,v,S′ can be deter-
mined in 15 operations. If ∠psv < ∠psq then Fp,q,S has child Fv,q,S′ and this
child can be determined in 5 more operations.
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Experimental results.

We implemented our funnel tree algorithm in Python 3 and compared
with Chen and Han’s algorithm (implemented by Kaneva and O’Rourke [4]).
Computer configurations: Ubuntu 16.04, CPU Core i7 2.6 GHz, RAM 16 GB.

• Table 1 shows the running time of two algorithms. We can see in most
cases that the Funnel Tree algorithm is faster than Chen and Han’s algorithm,
especially in the case where the polytope has a cube shape.

• Table 2 shows the number of nodes on the trees generated by two al-
gorithms. The number of nodes on the funnel tree is smaller than one of the
Chen and Han’s algorithm.

• Figures 14, 15, and 16 show the trend of the number of nodes generated
by the funnel tree algorithm. Based on this trend we can see that the number
of nodes does not increase too fast and will decrease when it reaches the peak.

Dataset
Number of
vertices

Number of
faces

Running time
Funnel tree (ms)

Running time
Chen & Han (ms)

cube1 115 226 35 32
cube2 132 260 40 45
cube3 170 336 31 80
cube4 192 380 51 111
sphere1 195 898 46 79
sphere2 347 1076 75 283
sphere3 523 658 121 857
sphere4 807 394 159 2037
spiral1 300 196 101 208
spiral2 400 596 112 373

Table 1 Running time of the funnel tree algorithm, and Kaneva & O’Rourke’s implemen-
tation for Chen and Han’s algorithm

Dataset
Number
of vertices

Number
of faces

Number of
nodes

Funnel tree

Number of
nodes

Chen & Han
cube5 141 278 1492 3809
cube6 298 592 4377 9456
cube7 229 454 3742 6828
cube8 276 548 4703 9165
sphere3 451 898 3554 13447
sphere4 540 1076 3959 17649
sphere5 331 658 3293 9104
sphere6 199 394 1797 6177
spiral3 100 196 1663 3399
spiral4 300 596 3805 9321

Table 2 The number of nodes of the funnel tree algorithm, and Kaneva & O’Rourke’s
implementation for Chen and Han’s algorithm
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Fig. 12 The polytope named “spiral1’ given in Table 1 and
having 300 vertices.

Fig. 13 The shortest paths joining a vertex with all other
299 vertices of the polytope “spiral1” determined by the
funnel tree algorithm.
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Fig. 14 The trend of the number of nodes when running algorithm which a polytope has
a cube shape given in Table 2

Fig. 15 The trend of the number of nodes when running algorithm which a polytope has
a sphere shape given in Table 2

5 Concluding Remarks

In this paper, for a clear exposition, we restrict our dicussion to the case of
convex polytope and build a funnel tree. The case of non-convex polytope is
done similarly as in Sect. 5 [2].
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Fig. 16 The trend of the number of nodes when running algorithm which a polytope has
a spiral shape given in Table 2

The concept of funnels associated with an edge and having the cusp u
can be extended to the concept of segment-funnels associated with two edges.
Similar to Algorithm 1, we can build a funnel tree of segment-funnels and
then get the shortest paths from the source edge e to all destination edges on
a polyhedral surface.

Given a number of circular obstacles in a plane, the problem of computing
the shortest path between two points can be solved approximately by approx-
imating circular obstacles with convex polygonal obstacles, then compute the
shortest path avoiding polygonal obstacles. Therefore, the result is an approx-
imate solution. We want to find the exact solution of the fowlling problem:
“Given a set of disks with different radii on the faces of a terrain (each face
may have some such disks), given an object s on terrain (s may be points, seg-
ments, faces), but outside the disks, our aim is to present efficient algorithms
for computing disk-avoiding shortest paths from s to all destionation objects
on the terrain”. The special case when the terrain is in a plane, s and t are
points was considered by Kim et al. in [6]. Hopefully, the funnel technique still
is used successfully for this problem.

The problem of finding all shortest paths from a source point s to all
destination vertices t can be used to solve the problem of finding all shortest
paths from a source point s to all destination points t on the polytopes with
the same complexity, where n is the number of vertices of the polytope. Indeed,
let t be an arbitrary point in a triangle face abc of the polytope. Then SP (s, t)
belongs to one of funnels Fa,b, Fb,c, or Fc,a.
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6 Appendix

Lemma 1 Take s1, s2, p, q, v are on the plane such that l([v, s1]) ≥ l([v, s2])
(l([v, s1]) ≤ l([v, s2]), respectively), [v, s1] ∩ [p, q] 6= ∅, [v, s2] ∩ [p, q] 6= ∅, q and
s2 are on the same side with the line vs1. Then l([x, s1]) > l([x, s2]) for all
x ∈ [v, q] (l([x, s1]) < l([x, s2]) for all x ∈ [p, v], respectively).

Proof. Since [v, s1] ∩ [p, q] 6= ∅, [v, s2] ∩ [p, q] 6= ∅, q and s2 are on the same
side with the line vs1, we conclude that v and q are on the same side with
the perpendicular bisector of the line segment [s1, s2] (see Fig. 17). l([v, s1]) >
l([v, s2]) implies that l([x, s1]) > l([x, s2]) for all x ∈ [v, q].

v

p

q

s1 s2

x

ℓ

Fig. 17 As v and q are on the same side with the perpendicular bisector m of the line
segment [s1, s2], we have l([x, s1]) > l([x, s2]) for all x ∈ [v, q].

Lemma 2 Given on the same path SPS(p, q) two funnels Fp,q,S and Fp,q,S1
,

assume that S 6= S1. Then ∠pvz 6= ∠pvz1, where z and z1, respectively are the
intersections of paths SPS∪△xqv(s, v) and SPS1∪△xqv(s, v), respectively with

the path SPS(p, q), where △xqv: the sequence of adjacent triangles of the poly-
tope between two edges [q, v] and [q, x].
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v

r̄

f2

fm

p q

z = z1

f1

s1

s

Fig. 18 ∠pvz = ∠pvz1 implies that s, s1 and v are collinear. Hence, if s, s1 /∈ △pqr̄ then
S1 ⊂ S or S ⊂ S1.

Proof. For simplicity, for the funnel Fa,b and its direct destination c, we assume
that △abc has only one triangle, i.e., △abc = △abc.

Assume the contrary that ∠pvz = ∠pvz1. Suppose that I and I1 are the
images of s via the unfolds S and S1 on the plane of SPS(p, q) and v. ∠pvz =
∠pvz1 implies that I, I1 and v are collinear on the plane of SPS(p, q) and v.
Assume that △pqr is an adjacent triangle with △pqv (see Fig. 18). Then, r̄
is an image of r on the plane △pqv via both two unfolds as △pqr ⊂ S ∩ S1.
There are two cases:

i) I ∈ △pqr̄ or I1 ∈ △pqr̄. Then S = S1 = △pqr, a contradiction.

ii) I, I1 /∈ △pqr̄. Then the line segment vI intersects the ege pr̄ or the
edge qr̄ of △pqr̄. Assume that vI intersects the ege pr̄. Because I, I1 and v
are collinear and vI and vI1 lie on the images of S and S1 via the unfold,
S1 ⊂ S or S ⊂ S1. Hence, these two unfolds coincide and therefore, S = S1, a
contradiction.

On the same path SPS(p, q), assume that Fp,q,S and Fp,q,S1
(S 6= S1) have

the same direct destination v. Then at most one of these funnels can have two
children which can be used to define the funnel tree. This can be seen in the
following.

Lemma 3 Given on the same path SPS(p, q) two funnels Fp,q,S and Fp,q,S1

(S 6= S1) which occupy vertex v of the sequence △xqv, let l (l1, respectively) be
the length of the path SPS(s, v) (SPS1

(s, v), respectively), z and z1, respectively
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be the intersections of paths SPS(s, v) and SPS1
(s, v), respectively with the path

SPS(p, q). Then

1) If l < l1 then Fp,q,S has two children Fp,v,S∪△xqv and Fv,q,S∪△xqv.

If ∠pvz > ∠pvz1 then the child Fv,q,S1∪△xqv of Fp,q,S1
is deleted.

If ∠pvz < ∠pvz1 then the child Fp,v,S1∪△xqv of Fp,q,S1
is deleted.

2) If l > l1 then Fp,q,S1
has two children Fp,v,S1∪△xqv and Fv,q,S1∪△xqv

and one child of Fp,q,S is deleted similar to case 2), namely,

If ∠pvz > ∠pvz1 then the child Fp,v,S∪△xqv of Fp,q,S is deleted.

If ∠pvz < ∠pvz1 then the child Fv,q,S∪△xqv of Fp,q,S is deleted.

3) If l = l1 then Fp,q,S ties Fp,q,S1
and one child of Fp,q,S and one child of

Fp,q,S1
are deleted similar to case 2), namely,

If ∠pvz > ∠pvz1 then the child Fp,v,S∪△xqv of Fp,q,S and the child Fv,q,S1∪△xqv

of Fp,q,S1
are deleted.

If ∠pvz < ∠pvz1 then the child Fv,q,S∪△xqv of Fp,q,S and the child Fp,v,S1∪△xqv

of Fp,q,S1
are deleted.

Proof. For simplicity, for the funnel Fa,b and its direct destination c, we assume
that △abc has only one triangle, i.e., △abc = △abc.

We indicate that which funnel can have two children. Set S′ = S ∪ △xqv
and S′

1 = S1 ∪△xqv. We consider the followings:

i) If l < l1 then we prove that Fp,q,S1
has one child and we let Fp,q,S have

two children. Indeed, we unfold S and S1 on the plane of SPS(p, q) and v, and
suppose thatI, I1 are images of s on the plane of SPS(p, q) and v. It follows
from S 6= S1 and Lemma 2 that ∠pvz 6= ∠pvz1.

i1) If ∠pvz > ∠pvz1 then by Lemma 1, l([s, k]) < l([s1, k]) for all k ∈ [v, q].
We are in position to prove that the funnel Fv,q,S′

1
is deleted. Assume that

Fv,q,S′

1
and Fv,q,S′ occupy some vertex y of the polytope and △vqy and △xqv

have the same SPS(v, q). It follows that

l(SPS′∪△vqy(s, y)) < l(SPS′

1
∪△vqy(s, y)).

Then, the funnel Fv,q,S′

1
is deleted.

i2) If ∠pvz < ∠pvz1 then again, by Lemma 1, l([s, k]) < l([s1, k]) for all
k ∈ [p, v]. We are in position to prove that the funnel Fp,v,S1

is deleted. Assume
that Fp,v,S′

1
and Fp,v,S′ occupy some vertex w of the polytope and △xvw and

△xqv have the same common SPS(p, v). It follows that

l(SPS′∪△vpy(s, w)) < l(SPS′

1
∪△vpy(s, w)).

Then, the funnel Fp,v,S′

1
is deleted.

ii) Similarly, if l1 < l, Fp,q,S1
has two children while Fp,q,S has only one

child which can be used to define the funnel tree.
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Fig. 19 l1 = l. ∠pvz > ∠pvz1 implies that F := Fv,q,S and F1 := Fv,p,S1
are not overlap

then Fv,q,S and Fv,p,S1
can be used to define the funnel tree.

iii) Finally, if l = l1 then Fp,q,S ties Fp,q,S1
. If ∠pvz > ∠pvz1 (∠pvz <

∠pvz1, respectively) then, as seen in Fig. 19, F := Fv,q,S′ and F1 := Fp,v,S′

1

(Fp,v,S′ and Fv,q,S′

1
, respectively) are not overlap then Fv,q,S′ and Fp,v,S′

1

(Fp,v,S and Fv,q,S1
, respectively) can be used to define the funnel tree.

We now consider whether Fv,q,S′

1
(Fp,v,S′ , respectively) is not a child of the

funnel Fp,q,S1
(Fp,q,S , respectively).

iii1) If ∠pvz > ∠pvz1 then by Lemma 1, l([s, k]) < l([s1, k]) for all k ∈ [v, q]
and l([s, k̄]) > l([s1, k̄]) for all k ∈ [v, p]. Assume that Fv,q,S′

1
and Fv,q,S′

occupy some vertex y of the polytope and △vqy and △xqv have the same
SPS(v, q) and Fp,v,S′ and Fp,v,S′

1
occupy some vertex w of the polytope and

△vxw and △xqv have the same SPS(v, p). It follows that

l(SPS′∪△vqy(s, y)) < l(SPS′

1
∪△vqy(s, y))

and

l(SPS′

1
∪△vxw(s, w)) < l(SPS′∪△vxw(s, w)).

Then, the funnels Fv,q,S′

1
and Fp,v,S′ are deleted.

iii2) If ∠pvz < ∠pvz1 then again, by Lemma 1, l([s, k]) > l([s1, k]) for all
k ∈ [v, q] and l([s, k̄]) < l([s1, k̄]) for all k ∈ [v, p]. Assume that Fv,q,S′

1
and

Fv,q,S′ occupy some vertex y of the polytope and △vqy and △xqv have the
same SPS(v, q) and Fp,v,S′ and Fp,v,S′

1
occupy some vertex w of the polytope

and △vxw and △xqv have the same SPS(v, p). It follows that

l(SPS′∪△vqy(s, y)) > l(SPS′

1
∪△vqy(s, y))

and

l(SPS′

1
∪△vxw(s, w)) > l(SPS′∪△vxw(s, w)).

Then, the funnels Fv,q,S′ and Fp,v,S1
are deleted.

Lemma 4 All funnels that contain shortest paths starting from s are among
the funnels computed in Algorithm 1.
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Proof. Let v be an arbitrary vertex on the surface of the polyhedron. Because
the polyhedron is convex, there always exists at least on shortest path SP (s, v)
from s to v on the polyhedral surface. Let S be the sequences of triangles
that contains SP (s, v). Because the number of faces is finite, the number of
triangles in S and the number of direct destinations are also finite. For a
funnel Fp,q,S∗ (S∗ ⊂ S), and for a direct destination u ∈ S of Fp,q,S∗ , if
Fp,q,S∗ has no child as in line 8 of Algorithm 1, the algorithm skips vertex u,
updates S∗ = S∗ ∪ △pqu, and then moves on the next direct destination in
the next level. Therefore, after finite steps when vertex v is reached, a funnel
Fv,q,S having SP (s, v) as the left border is formed. Assume for the purpose of
contradiction that Fv,q,S is deleted by Lemma 3, then there exists a shorter
path from s to v along the surface of the polyhedron. This contradicts the fact
that SP (s, v) is the shortest path joining s and v on the polyhedral surface.
The proof of the lemma is completed.
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