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Abstract

We consider a version of the pole placement problem for continu-
ous time-varying linear systems. Our purpose is to prove that uniform
complete controllability is equivalent to possibility of arbitrary assign-
ment of the dichotomy spectrum. The main ingredients of the proof
are the reduction of system to upper triangular form and the use of the
concept of uniform complete stabilization. To illustrate the theoretical
result, we consider scalar continuous time-varying control systems. For
these systems we provide a simple necessary and sufficient condition
for uniform complete controllability and if this condition holds, then
we construct an explicit control to assign the dichotomy spectrum.

1 Introduction

To describe the properties of dynamical systems, a number of numerical
characteristics or spectra such as Lyapunov, Bohl, Perron or Sacker-Sell
spectra (see [8], [16] or [23] for a survey) have been introduced.
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The most known of them - the Lyapunov spectrum is closely related
to exponential stability. The negativity of the largest exponent guarantees
exponential stability. The disadvantage of the Lyapunov spectrum is its
discontinuity as a function of system parameters and one of the implications
of this property is the fact that in case of negative Lyapunov exponents,
the stability of nonlinearly perturbed systems is not guaranteed without an
additional regularity condition.

In [26] authors developed the Sacker—Sell spectrum theory, which is now
also called dichotomy spectrum for non-autonomous differential equations.
Now dichotomy spectrum is an important tool in qualitative theory of non-
autonomous dynamical systems. This is due the following reasons. The
dichotomy spectrum together with the spectral manifolds completely de-
scribe the dynamical skeleton of a linear system. This spectrum describes
uniform exponential stability as follows: if the dichotomy spectrum lies left
of zero, then the uniform exponential stability of nonlinearly perturbed sys-
tems is guaranteed [4]. More generally this concept may be used to discuss
the existence and the smoothness of invariant manifolds for non-autonomous
differential equations, to obtain a version of the Grobman—Hartman theorem
for non-autonomous systems (in this context the hyperbolicity is formulated
as zero does not belong to the dichotomy spectrum) [5], to characterize
the existence of center manifolds [27] and in the theory of Lyapunov reg-
ularity [6]. Using the resonance of the dichotomy spectrum to study the
normal forms of non-autonomous system, in [29] a finite order normal form
were obtained, and in [31] analytic normal forms of a class of analytic non-
autonomous differential systems were presented. Finally, information on the
fine structure of the dichotomy spectrum allows to classify various types of
non-autonomous bifurcations [22].

If we consider systems with control, the goals set for the control system
can be achieved by designing control in such a way that the spectrum of the
closed system has a predetermined position. This approach is well known in
the theory of time-invariant linear systems and is called the pole-placement
method. For continuous time-varying systems and the Lyapunov spectrum,
a broad discussion of this method is presented in the monograph [19], and for
discrete systems and the Lyapunov spectrum such an approach is described
in [3]. Assignability of dichotomy spectrum for discrete time-varying sys-
tems has been discussed in [11], where it was shown that uniform complete
controllability is a sufficient condition for placing the dichotomy spectrum
arbitrarily.

The main objective of this paper is to investigate the dichotomy spec-
trum assignability problem for continuous time-varying system. In fact, we



show that uniformly complete controllability is equivalent to assignability
of dichotomy spectrum for both one-sided and two-sided continuous time-
varying linear control systems. The paper is organized as follows: In Section
2, we introduce the notion of dichotomy spectrum, uniformly complete con-
trollability of linear continuous time-varying control systems and state the
main result of this paper. Section 3 is devoted to some preparatory results
including the equivalence between uniform complete controllability and uni-
form complete stabilizability, transforming uniform complete conrollability
systems to upper triangular linear systems by suitable linear state feedbacks
and dichotomy spectra of a specific class of upper triangular linear systems.
We give a proof of the main result in Section 4. Several examples are pre-
sented in Section 5 to illustrate the theoretical results of the paper.

Notations: Let R, R, R_ denote the set of real numbers, non-negative
real numbers, non-positive real numbers, respectively. Let XC,, 1, (J), where
J is either Ry, R_ or R, denote the set of bounded and piecewise continuous
matrix-valued functions M : J — R™* ™. We say that a piecewise continuous
matrix function B : J — R™*™ is piecewise uniformly continuous on J if the
following conditions are satisfied: there exists a Ag > 0 such that the length
of each continuity interval I; (j € J C N) of the function B satisfies the
inequality |I;| > Ay, and for each € > 0, there exists a 6 = d(¢) > 0 such
that ||B(t) — B(s)|| < € for each j € J and for all t,s € I; satisfying the
inequality [t — s| < 4.

2 Preliminaries and the statement of the main re-
sults
2.1 Dichotomy spectra of linear time-varying systems

Consider a linear time-varying system
i = M)z, (1)

where M € KCp, ,(J). Denote by X (-, -) : JxJ the transition matriz of (1),
ie. Xpr(+,s)€ solves (1) with the initial value condition x(s) = £. Now, we
recall the notion of exponential dichotomy which is also known as uniform
hyperbolicity for time-varying systems, see also [9], [10], [20].

Definition 1 (Exponential dichotomy) System (1) is said to admit an
exponential dichotomy (ED) on J if there exist K,e > 0 and an invariant



family of projections P : J — R™™ i.e. P(t)Xn(t,s) = Xar(t,s)P(s) if s, t €
J, satisfying the following inequalities

| Xasr(t, s)P(s)|| < Ke st if s <t, s,t €], (2)

and
1 Xn(t,s) (I — P(s))|| < Kt if t <s, s,tel. (3)

Based on the notion of ED, we introduce the notion of dichotomy spec-
trum, see also [26].

Definition 2 (Dichotomy spectrum) The dichotomy spectrum of (1) is
defined by
Sip(M) = {yeR: i = (M(t)—y])z
has no ED on J} .

The structure of the dichotomy spectrum is described by the following
theorem. We refer the readers to [28, 25] for a proof of this theorem.

Theorem 1 (Spectral theory of time-varying linear systems) The
dichotomy spectrum EJ]IDD(M) of (1) consists of at most n disjoint closed
intervals i.e. Ypp(M) = [aq, 5], .- -, [aw, Be], where a1 < 1 < ag < fa <

< ap < B oand £ < n. Moreover, when J = R there exists a time-
dependent linear decomposition

R™ =Wi(s) ® -+ d Wy(s)
such that for any e > 0 there exists K > 1 such that for all & € W;(s) and
t>s,t, s €] we have
1

L= ] < | Xt )] < Kel0 g (4)

2.2 Linear time-varying control systems

Consider a linear time-varying control system described by the following
equation

& = A(t)x + B(t)u, tel, (5)
where A € KCy,,(J), B € KCp i (J) and u € KCyy,y1(J) is the control. For
(to,zo) € J x R™ the solution of system (5) satisfying x(t9) = zg, will be
denoted by z(-,tg, zg,u). Now we will introduce the definition of uniform
complete controllability. This concept was for the first time formulated by
Kalman in [17] in a different way but according to Theorem 4 these two
formulations are equivalent.



Definition 3 (Uniform complete controllability) System (5) is called
uniformly completely controllable on J, where J is Ry or R, if there exist
a, K > 0 such that for all (to, &) € J xR™ there exists a control u € KC,,1(J)
such that x(ty + K, t0,0,u) = & and

lu(®)l < alléll,  t € [to, to+ K]

If in system (5) we apply a control of the form

where the feedback F' € KCp, ,,(J), we obtain a so called closed loop system
= (A({)+B({t)F (t))x. (6)

Our interest in this paper is to know the possibility of assigning Z%D(A +
BF). We have the following definition of assignability of dichotomy spec-
trum which is a continuous time counterpart of the definition from [11].

Definition 4 (Assignability of dichotomy spectrum) The dichotomy
spectrum E‘]IEZD(A + BF) of (6) is called assignable on J if for arbitrary
1 < ¢ < n and arbitrary disjoint closed intervals [a, B1], ..., [ag, Be], there
exists a feedback F € KCp, n(J) such that E%D(A + BF) = U'_ oy, Bi].

Remark 1 (i) Recall that for system (1) the Lyapunov exponent of a non-
trivial solution Xps(-,0)¢ of (1) is given by

1
x(€) := limsup n log || Xas(t,0)&]|.

t—o00

The Lyapunov spectrum of (1) is defined as

Z:Lya(]w’) = U X(g)

0££€Rn

It is known that X1y (M) consists of at most n elements (cf. [1, Chapter
II]). Furthermore, suppose that EEB(M) is represented as a disjoint union
of ¢ intervals Ule[ai, bi]. Then,

Siya(M) C 25 (M), Spya(M) O [ev, Bi] # 0, (7)

foralli=1,...,¢, see, e.qg. [24, p. 106] (cf. [16]).



(ii) Suppose that the dichotomy spectrum of system (5) is assignable.
Now, let {\1,...,\¢} be an arbitrary set of ¢ real numbers, where 1 < { < n.
Let o; = i = Ai for 1 <@ < L. There exists a feedback F' € KCy, ,, such that

EEB(A + BF) = Ule{)\i}. This together with (7) implies that
l
Sp(A + BF) = S (A + BF) = | J{\).
i=1

Consequently, for continuous time-varying linear control systems assignabil-
ity of dichotomy spectrum implies assignability of Lyapunov spectrum. How-
ever, the converse statement is, in general, not true, see Example 2 at the
end of the paper.

We now state the main result of this paper.

Theorem 2 (Characterization of assignability of dichotomy spec-
trum) Consider system (5) on J, where J is Ry or R. Assume that B : J —
R™ ™ s piecewise uniformly continuous and bounded. Then the dichotomy
spectrum of (6) on J is assignable if and only if system (5) is uniformly
completely controllable on J.

3 Preparatory results

3.1 Uniform complete stablization

The concept of uniform complete stabilizability was used for the first time
in the paper of Ikeda et al. [15] with J =R, (see also the discussion in
Remark 3.10 in [2]).

Definition 5 (Uniform complete stabilizability) System (5) (J is Ry
or R) is called uniformly completely stabilizable if for any o € Ry, there
exist a feedback F' € KCp,p, (J) and C € Ry such that

| XarBr (t2,t1)]] < Ce—alt2—t1) (8)
for all to, t1 € J, ta > t1.

The proof of the next theorem for J =R, can be found in [15] and for
J =R in [30].

Theorem 3 System (5) is uniformly completely controllable on J (J is Ry
or R ) if and only if it is uniformly completely stabilizable on J.



3.2 Conjugating uniform complete controllability systems to
upper triangular systems by linear state feedback

We start this subsection by recalling the notion of asymptotical equivalence
for continuous time-varying linear systems (this concept is also known in
the literature as kinematic similarity, Lyapunov similarity or simply equiv-
alence).

Definition 6 (Asymptotical Equivalence) Suppose that T : J — R"*"
s a family of invertible matrices such that T is continuously differentiable
and T, T, T are bounded, then T is called a Lyapunov matriz. The linear
transformation y = T(t)x is called then the Lyapunov transformation. Two
linear continuous time-varying systems

i=M@®z, 5= Ny,

where M, N € KCpn(J), are said to be asymptotically equivalent if there
exists a Lyapunov matriz T : J — R™™ such that

T(t) = N@)T(t)—Tt)M(@t)  fortel.

Observe that the set of all Lyapunov transformations of R” form a group
with composition of maps.

Before stating and proving the main result of this section on conjugating
uniform complete controllability systems to upper triangular systems by
linear state feedback, we recall the following well known characterization of
uniform complete controllability (see [17] for J = R, and [19] for J = R).

Theorem 4 (Kalman’s characterization of uniform complete con-
trollability) System (5) is uniformly completely controllable on J if and
only if there exist positive numbers p and ¥ such that the controllability
matrix

to+9
W(to,to—H?):/ X a(to, s)B(s)BT(5)X 73 (to, s)ds

to

of system (5) on the interval [to,to + 9] satisfies the inequality
E"W (to, to +9) € = p 1€ (9)

for any to € J and £ € R™.



Theorem 5 If system (5) is uniformly completely controllable on J (J is R4
or R ) and B is piecewise uniformly continuous, then for arbitrary piece-
wise continuous bounded functions p; : J — R, i = 1,...,n, there exists a
feedback F € KCp,pn(J) such that the closed loop system (6) is asymptoti-
cally equivalent to a system with an upper triangular piecewise continuous
bounded matrix function whose diagonal coincides with (pi,...,pn)-

The main ingredient of the proof is from paper [21] in which a proof for
two-sided time system has been done. It seems that the statement of the
proof for two-sided time system can be carried over to the case ] = R4 by a
slight modification of notations of the proof from [21]. However, to make the
paper self-contained, we establish below a direct way to use the result in [21]
(two-sided time system) to one-sided time system. This way was done by a
suitable extension of a one-sided time system to two-sided time systems.
Proof of Theorem 5. We only consider the case J = Ry. Let us
extend the original system A : Ry — R™" B : Ry — R™™ to a system
A:R = R™™ B:R — R™™ as follows

A(t) = A(—t) and B(t) = B(—t)

for t € R_ (A(t) = A(t) and B(t) = B(t) for t € Ry). From Theorem 4 it
follows that uniform complete controllability of the pair (A, B) implies the
uniform complete controllability of (Z, E) . Indeed, suppose that 9 and p
are the constants from (9) for the pair (A, B). We will show that

ETW (to, to + 20) € > 7 ||€|° (10)

for any tg € J and £ € R™, where

W (to, to + 20) =

and

p

sup || X4 (0,5)]°
s€[—1,0]

For tp > 0 and for tg < — ¥ the inequality (10) follows from the fact that

p=min{ p,



W (to,to + 29) > W (to,to + ). Suppose now that tg € (—9,0), then
o to+2¢ o T
Wiinto+20) = [ X(to, BB (X500, )

> / X+ (to,s)B(s)B (S)X%(tg,s)ds

= Xz(to,0)W (0,9) X (to,0).

Therefore
W (to, to +20) & > &7 X5(to, 0)W (0,9) X7 (to,0)¢
2
> pl|X5(to, 0)¢|
P 2
> EN” .
sup [ X4 (0, )]

s€[—1,0]

This completes the proof of (10). Using the result in [21] to the pair (4, B)
and functions p; : R — R™™ p(t) = 0 for t € R_ and p(t) = p(t) for
t € R,, we obtain a feedback F : R — R™*" whose restriction F|R+ is the
desired feedback for the pair (A,B). m

3.3 Dichotomy spectrum of upper-triangular time-varying
linear systems

Our aim in this subsection is to develop some results in computing the
dichotomy spectrum of upper triangular time-varying linear systems. To do
this, we start with the simplest form of linear time-varying system

T =m(t)z, (11)

where m € KCy1(J). A necessary and sufficient condition for possessing an
ED of (11) on J and an explicit form of the dichotomy spectrum of (11) are
given by the following Lemma. It was mentioned in the literature (see [7]
and Proposition 5 in [14]) but without proof.

Lemma 1 System (11) has an ED if and only if

t—s—ocot — 8

¢
1
a := liminf /m(T) dr >0 (12)



or
t

1
B = limsup—— [ m(7)dr <0 (13)
t—s—ool — 8§

Moreover, E%D(m) = |o, 5]

Proof. For the transition operator of system (11) we have
t
Xm(t,s) =exp /m(T) dr for s,t €]
S

Suppose that system (11) has an ED, then P(s) = 1 or P(s) = 0. In the
first case we get from (2)

t
Xm(t,s) =exp /m(T) dr | < Ke=s(t=)

and therefore

t
1 log K
/m(r)d7-§ 8
t—s t—s

for all s <t, s,t €Jand certain K > 1, ¢ > 0. Taking the upper limit when
t — s — oo we obtain (13). Similarly, in case of P(s) = 0, from (3) we get
(12).

Suppose now that (12) holds. Let us fix § > 0 such that a — ¢ > 0, then
by the definition of lower limit there exists A > 0 such that

t

/m(T)dea—a

S

1
t—s

and therefore

t
exp /m(T) dr | > et=s)(a=9)

forall t —s > A, s,t € J. Since m is bounded, there exists K > 0 such that

t
exp /m(T) dr | > Kelt=5)(@=9)

10



for all s, t € J. The last inequality implies that system (11) has an ED
with P(s) = 0. Similarly we may show that (13) implies an ED of (11) with
P(s) = 1. Finally, the equality E%D(m) = [a, ] follows from the first part
of the lemma and the definition of dichotomy spectrum. m

Next, we study upper triangular time-varying systems of the form

(t) = U(t)a(t), (14)

where U € KCp,,,(I) and U(t) = (u45(t))1<i,j<n is an upper triangular matrix
for any t € J. The following theorem gives some relations between the
dichotomy spectra of Z“E;D(U ) and the dichotomy spectra of the diagonal of
U. A proof of the first part is in [13] Theorem 5.5, see also Proposition 5 in
[14]. A proof of the second part can be seen in [7], Section 4.

Theorem 6 Consider system (14) on J with upper triangular matriz U.
Then the following statements hold:

(i) fJ =Ry or J =R_ then
J
Yep(U U EED Ui;),

(ii) If J = R then
U YRD (i) (15)

It is worth to notice that the inclusion (15) may be strict as demonstrated
by the following example inspired by Example 5.10 in [23].

Example 1 Consider a two dimensional system (14) with

U(t) = [ ui(t)  wia(t) ] B [ (1) —11 } fort >0,
_ s [ oo ] fort <O0.
0 1

A direct calculation shows that xp(U) = {—1,1}, whereas Yap(u11) =
Sip(uz2) = [-1,1].

11



Finally, we will show that if the diagonal elements have a special form,
then the dichotomy spectrum on R of an upper triangular system is the union
of the dichotomy spectra of the subsystems corresponding to the diagonal
entries.

Theorem 7 Consider system (14) on R with upper triangular matriz U
and suppose that

wii(t) = uii(—1) (16)
foralli=1,...n andt € R. Then

Z%D(U) = U E%D(uii)'
i=1

Proof. According to Theorem 6(ii) to complete the proof it is sufficient to
show that
R R+ R_

ZED(“%) - EED(“”) U EED (U“) (17)
for all i = 1,...,n. For this purpose let us fix i = 1,...,n and 7 ¢ EEB(W@-).
Then, by definition of dichotomy spectrum one of the following alternatives
holds:

(A1) There exist K > 1 and « > 0 such that

t

exp /Uii(T)dT <

s

Ke(—a)(t—s)
if s <t, s, teRy.

Thus, by (16) we also have
t 0
exp /uii(T)dT = exp /uii(T)dT-f—

= exp /uii(T)dT+
0

K2e(—a)(t—5)

IA

12



ifs<0<t,steR and
t —s

exp /uii(T)dT = exp /UZ‘Z‘(T)dT <

s —t

Ke(y—a)(t—s)
if s <t<0,s,teR. It means that v ¢ X8 (uy).

(A2) There exist K > 1 and > 0 such that

t
exp /uii(T)dT < KeOtht=9) it < 5. st € R,

S

Thus, by (16) we also have

¢
exp /uii(r)dv' = exp /UZ‘Z‘(T)dT—I-

—S

= exp /uii(T)dT—f—

0

< K2e0+B)(t=s)
ifs<0<t, s,teR and
t —5
exp /’u,ii(T)ClT = exp /uii(r)dT <
S —t

KertB)(t—s)

if s <t<0,s,teR. It means that v ¢ Y&y (u;).
Since v ¢ Zﬂég(u“) is arbitrary it follows that S5y (ui;) C EHE% (ug;). This
shows (17) and the proof is complete. m

4 Proof of the Main result

The proof uses the obvious fact that the ED and therefore EJ]I:D of system
(5) is preserved under Lyapunov transformations (see also Theorem 3.1 in
Chapter IV in [12]).

13



Proof of Theorem 2. We separate the proof into two cases: J = Ry or
J=R:

Case 1: J = R;. Suppose that dichotomy spectrum of (5) is assignable on
R.. Let us fix & € R4 . Then there exists a bounded feedback F € K, ,(J)
such that

EEB(A + BF) = {-d}, where o/ > a.

Thus, (—a/,00) € pph(A+ BF), where pph(A+ BF) := R\ St (A + BF).
Then for each v € (—a/, 00) the system

#(t) = (AQt) + B6)F(t) — v1n)x(t)

exhibits an exponential dichotomy with an invariant family of projections
P, : Ry — R™". Thanks to [25, Lemma 6.5], we have

imP,, (t) = imP,(t) for 1,72 € (—d’, 00). (18)
Since A(t) + B(t)F(t) is bounded on Ry, there exist K, 8 > 0 such that
IXa1pr(t, s)|| < KeP%) fort > s> 0.

In other words, Pg(t) = I, for all t € Ry.. This together with (18) implies
that P_,/(t) = I, for all t € Ry. Then, there exist C,e > 0 such that

| XarBr(t,s)|| < Cel¥ =99 fort > 5> 0.

Since a € Ry is arbitrary, then (5) is uniformly completely stabilizable and
therefore by Theorem 3 it is uniformly completely controllable.

Conversely, suppose now that (5) is uniformly completely controllable. Let
us fix £, 1 < ¢ < n, and arbitrary disjoint closed intervals a1, B1], .. ., [ae, Be].
Consider any piecewise continuous bounded functions u; : Ry — R, i =
1, ..., such that

t

. 1
oy = 1151_1?_1};;;; Uis (7’) dr
T

and
t

1
B; = limsup—— [ wuy(7)drT.
s

t—s—oo U —
s

14



Moreover for /+1 < i < n we define u;; = u11. According to Theorem 5, there
exists a feedback F' € KCy, ,(J) such that the closed system (6) is asymptot-
ically equivalent to a system with an upper triangular piecewise continuous
bounded matrix function whose diagonal coincides with (w11, ..., upy). The
assignability of the dichotomy spectrum on R, now follows from Theorem 6.

Case 2: J =R. The fact that assignability of the dichotomy spectrum on
R implies uniformly completely controllable may be proved exactly in the
same as in the case of J = R, . Proving the opposite implication is enough
to extend the functions u; : Ry — R to functions u;; : R — R by setting
ui;(—t) = u(t) for t € Ry and then we may use Theorem 7. m

Let us identify each system (1) with the function M € KCp,(J). A.
M. Lyapunov in his famous paper [18] considered quantities or properties of
systems that are preserved under the action of the group of Lyapunov trans-
formations. These quantities or properties are nowadays called Lyapunov
invariants. Examples of Lyapunov invariants serve Lyapunov exponents,
dichotomy spectrum, asymtotic stability. Consider some set of Lyapunov
invariants ¢o, @ € A. A possible value of this set is defined as a set {4 }aca

for which there exists a system M e KCpn(J) such that ¢, (]\/4\) =1, for all

a € A; here i, <J\/4\> is the value of the invariant ¢,, for the system M. We say

([21]) that system (6) has the property of simultaneous global assignability
of the set of invariants {¢q }aca if, for any possible value {7, }aeca of this set,
there exists a feedback F' € KC,,»(J) such that 1o(A + BF) = 7, for each
a € A. Let Z be the set of all Lyapunov invariants of systems in XC, ,,(J)
determined by the diagonal approximation systems for systems with trian-
gular matrices; i.e., ¢ € Z if and only if «(M) = «(diag(mi1, ..., Mny)) for
arbitrary system with upper triangular matrix M (t) = (mg;(t)),<; ;<, -The
set Z is nonempty and contains, for example, the dichotomy spectrum (see
Theorem 6) in case of J =R, and J =R_.

Remark 2 The proof of the fact that uniform complete controllability on
R, implies the assignability of the dichotomy spectrum on Ry may be also
concluded from Corollary 2 in [21], where it has been shown that system
(6) has the property of simultaneous global assignable of any set of Lya-
punov invariants in L. But this line of reasoning is not longer true when
we consider J = R since then the dichotomy spectrum of an upper triangu-
lar matriz-valued linear system may be a proper subset of the union of the

dichotomy spectra of its diagonal system as it was demonstrated in FExample
1.

15



5 Examples

This section is devoted to study scalar continuous time-varying control sys-
tem

#(t) = alt)a + b(t)u(t), (19)

where a,b € KC11(Ry). The following result consists of two parts. In
the first part, a simple necessary and sufficient condition for which (19) is
uniformly completely controllable is provided. Next, in the second part we
construct an explicit control to assign a given dichotomy spectral interval.

Proposition 1 (i) System (19) is uniformly completely controllable iff there
exist p >0 and ¥ > 0 such that

t+19
/ b(s)2 ds > p (20)

for allt > 0.
(ii) Suppose that (20) holds. Let [a, 5] be an arbitrary given spectral
interval. Define T := UnEZzo{22n7 220 4 1,...,220% 1} and

aﬁ—fk(:;Jrl)ﬁ a(s) ds t € [k, (k+1)0),
b(t> 1§§+1W b(s)? ds fOT ke 1_7

ﬁﬁ—fkq;Jrl)ﬂ a(s) ds t e [k?’l9, (k —+ 1)’[9)
MO T T ke zs0\T.

f(t) =

Then, f € KC1,1(R) and the dichotomy spectrum EEB(CH-bf) of the closed
loop system

b = (alt) + b(2) F(1) (1) (21)
satisfies Eﬂéﬁ(a +bf) = [o, 5].

Proof. (i) A direct computation yields that the controllability matrix of
(19) is given by

to s
W (b, ts) = / (2In e dry g g (22)

t1

Suppose that (19) is uniformly completely controllable. Then, by virtue of
Theorem 4 there exist positive numbers p and ¢ such that W (tg, to +19) > p
for all to € Ry. Let & := sup,eg, |a(t)]. Thus, by (22), we arrive at

t+0
62*“9/ b(s)? ds > W(t,t +9) > p,
t
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which proves (20) with p := 2,“9 Conversely, suppose that there exist p > 0
and ¥ > 0 such that (20) holds. Then, for £ := sup,cg, |a(t)| we have for
all t € Ry

t+19 s
W(t,t4+9) = / 2 ) dTp(5)2 g
t

t+0
> 6_2’“9/ b(s)2 ds > 6_2’“9;).
t

Hence, in light of Theorem 4, system (19) is uniformly completely control-
lable. The proof of this part is complete.
(ii) By (i), it is obvious that f € KCy1(R4). Now, it remains to compute
ZR+ 5(a+bf). For this purpose, let X, 4f(,-) denote the transition matrix
asso<31ated with (21). Then, for s,t € Ry

t
Xosaglt.s) =exp [ atu) + b0)1(w) ). (23)
In particular, for all £ € Z>o we have

Xatop((k+1)9, k) =

(k+1)0
exp </W (a(s) +b(s)f(s)) ds) :

Then, by definition of f we arrive at

e ifkeT,

a+bf((k + 1)9, k) = { B ik 2T : (24)

Thus, for arbitrary but fixed v € [«, 5] we have
Xorop (k4 10, k9) < for kel

and
Xarop((k+1)9,k09) > 7 for k & T.

By the structure of Z, we arrive at
Xopop (2211 — 1)9,22"9) < e forn € Z>0

and
Xa+bf((22n+2 - 1)19, 2271—1—119) > €W922n+1 for n € Zzo.
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Consequently, the shifted system

&= (a(t) +0(t) f(t) = )=(t)

does not admit an exponential dichotomy. Since v can be chosen arbitrarily
in [a, (] it follows that [a, 8] C EEB(a—I—bf). To conclude the proof, we need
to verify that for all v & [a, 8] the shifted system & = (a(t)+b(t) f(t) —~)x(t)
exhibits an exponential dichotomy. Since a + bf € K;1(R;) there exists
K > 1 such that

sup [ Xayor(t,5)| < K,
[t—s|<d

which implies that

sup | Xatpr(t, s)e P9 < K where K := Kel®l”.
|t—s|<¥

Thus, by virtue of (23), for all t > s > 0 we have

[ Xatos (L s)]
[Xaros ([5]9, [5]9)]

exp ( J!(a(w) + b(u) f(w)) du)
exp (f[f;]ﬁ (a(u) + b(u) f(u)) du)

[SAES
53

exp (i) (alu) + blu) () du)
exp (Jfyy(a(w) + b(u) f(w)) du)

= [ Xator (’57 [H ﬁ) [ Xaos ([%} %, S) |

< R2eS-s—([§]0-[5]0)

i

where [z] denotes the largest integer smaller or equal x. On the other hand,
by (24) we have for allt > s >0

Xasss ([§] 2. [5]9)] =TI Bosar (e 0.0

3]

< AGI-[519),
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Consequently, we have
| Xatnr(t,s)] < K2eP=9)  forallt > s.

Thus, for any v > [ the shifted system & = (a(t) 4+ b(t)f(t) — v)x(t)
exhibits an exponential dichotomy. Similarly, for v < « the corresponding
shifted system also exhibits an exponential dichotomy. The proof is com-
plete. m

We end this paragraph with an example of a system that has assignable
Lyapunov spectrum but its dichotomy spectrum is not assignable.

Example 2 Let us define a sequence (tx)ren by the recurrent formula
1 =1, tom =milam—1, lomt1 =m+tom

for all m € N. The sequence (tg)ren is strictly increasing for k > 2 and
tends to +oo.

Put
b() 1 if either t € (—00,2) ort € [tam—1,tom) ,
0 ift€ [tam, tams1)
form =2,3,..., and consider the scalar linear control system

& = b(t)u. (25)

This example has been considered in [21], where it has been shown that sys-
tem (25) is not uniformly completely controllable neither on R nor on Ry
but it has assignable Lyapunov spectrum. From Theorem 2 it follows that
system (25) does not have the dichotomy spectrum assignable. Consider this
system on Ry. We will show that only intervals of the form |«, 5], where
0 € [a, B] may be a dichotomy spectrum of system

& =b(t)f(t)z, (26)

where f € KCy1,1(R4) and that each such interval is a dichotomy spectrum
of system (26) for certain linear piecewise continuous and bounded feedback.
To prove this we will use Lemma 1. Suppose that for certain f € KCy 1(R4)
an interval [z, y] is the dichotomy spectrum of (26). Since tom+1 — tom — 00
when m — oo, then

t

[umsyar =

s

y = lim sup
t—s—ool — 8§

1 tom+1
lim sup——— b(r)f(r)dr =0

m—00 t2m+1 - t2m
tom
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and
t

s <
x %1_121_1}1% _S/b(r)f(T)dT <
1 tam+1
liminf ———— b(T)f(m)dr = 0.
W s o (T)f(7)
2m

Therefore, 0 € [z, y].
Now let us fix an interval [, B] such that 0 € [a, B] and define the linear
feedback gain f as follows

B fort € [ty o, it}
f) =9 a forte 7t2m+§2m_1 ; t2m) ,
0 otherwise,

for m € N. To calculate the dichotomy spectrum [z, y| of this system we will
apply Lemma 1. Since toy, — toy—1 — 00 when m — oo, then we have

t

Junsniar <

T

z = lim inf
t—s—oot — 8

tom
2
liminf ———— / b(t)f(T)dT = a.
m—=00 Lo — tom—1 o
2m 22777‘71

On the other hand, since b(t)f(7) > «, then
t

/ b(r)f(r)dr > a

S

z = liminf
t—s—oot — 8

and therefore x = «. In the same way we may show that y = (.

6 Conclusions

In this paper we investigated a problem of assignability of dichotomy spec-
trum by time-varying bounded linear feedback for continuous time-varying
control system. We have shown that the dichotomy spectrum is assignable if
and only if the system is uniformly completely controllable. We proved this
by using the concept of uniform complete stabilizability which is equivalent
to uniform complete controllability.
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