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Abstract We give a survey of our works on the natural extensions of the well-
known Sand Pile Model. These extensions consist of adding outside grains on
random columns, allowing sand grains to move from left to right and from right to
left, considering cycle graphs and the extension to infinity. We study the reachable
configurations and fixed points of each model and show how to compute the set of
fixed points, the time of convergence and the distribution of fixed points.

1 Introduction

The Sand PilesModel (SPM)was introduced in 1987 byBak, Tang andWiesenfeld as
a sample model of the Self organized criticality (SOC) phenomena [3]. The authors
simulated the behavior of a sand pile which builds up when sand is dropped on a
line. A configuration is modeled as a sequence of columns consisting of cubic sand
grains such that the height of columns is decreasing from left to right. In this model,
a sand grain can fall down from a column to its right neighbors if the difference of
height of the two columns is at least two. This model is investigated in many works
in physics, combinatorics and computer science [13, 22, 26, 33, 50]. Independtly, a
similar model - the Chip Firing Game - was defined by Björner, Lovász and Shor
in 1991 [8, 7]. Formally, a 𝐶𝐹𝐺 is a model consisting of a directed (or undirected)
multi-graph 𝐺 (also called support graph), the set of configurations on 𝐺 and an
evolution rule on this set.
In this paper, as the support graph has a linear structure, for convenient, we call

the model (Linear) Sand Pile Model. This model can be defined mathematically as
follows.
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Definition 1 Sand pile model, with respect to a positive integer 𝑛, denoted by
𝑆𝑃𝑀 (𝑛), is a model where configurations are partitions of 𝑛 such that:

• Initial configuration: (𝑛) (that means the position 0 has value 𝑛, or equivalently
𝑎0 = 𝑛 and 𝑎𝑖 = 0 for all 𝑖 ≠ 0).

• Local right vertical rule R: for all 𝑖 ≥ 0, (. . . , 𝑎𝑖 , 𝑎𝑖+1, . . . ) → (. . . , 𝑎𝑖 −1, 𝑎𝑖+1 +
1, . . . ) if 𝑎𝑖 ≥ 𝑎𝑖+1 + 2.

• Global rule: at each step, we apply once the R rule.
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Fig. 1 Example of configuration spaces of Sand piles model: 𝑆𝑃𝑀 (6) and 𝑆𝑃𝑀 (30)

On the other hand, in 1973, Brylawski described a model to generate all partitions
of a given arbitrary integer 𝑛 [9], this model can be considered as an extension of
𝑆𝑃𝑀 because it is nothing but the 𝑆𝑃𝑀 with an adding horizontal rule which allow
grain to slide along a plateau.

Definition 2 Brylawski’s model, with respect to a positive integer 𝑛, denoted by
𝐿𝐵 (𝑛), is a model where configurations are partitions of 𝑛 such that:

• Initial configuration: (𝑛).
• Local right vertical rule R: (. . . , 𝑎𝑖 , 𝑎𝑖+1, . . . ) → (. . . , 𝑎𝑖 − 1, 𝑎𝑖+1 + 1, . . . ) if

𝑎𝑖 ≥ 𝑎𝑖+1 + 2.
• Local right horizontal ruleH : (. . . , 𝑝+1, 𝑝, . . . , 𝑝, 𝑝−1, . . . ) → (. . . , 𝑝, 𝑝, . . . , 𝑝, 𝑝, . . . ).
• Global rule: at each step, we apply once the R rule, or once theH rule.

From these first steps, 𝑆𝑃𝑀 and Brylawski’s model have been extended in many
different directions [11, 14, 15, 16, 19, 22, 25, 26]. In particular, the problem is
derived from real-life questions and focusing on the following issues.
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• Reachability problem: study the necessary and sufficient conditions for a configu-
ration to be reachable from another one by applying a sequence of transition rules.
In most cases, based on the reachable relation, one can define an order relation.

• Configuration space: the set of all reachable configurations is called space con-
figuration. This set equipped with the order relation can have many interesting
structures.

• Stability problem: Determine if the model proceeds to stable configurations
(called also “fixed points”) or runs non-stop. This property is related to the
structure of the configuration space.

• Convergence problem: Almost all models are non-deterministic then if we con-
sider all the cases, it is possible that different sequences of transitions proceed to
various fixed points. The uniqueness of the fixed point is usually proven when the
configuration space has a lattice structure. Otherwise, the model can have many
fixed points.

• Characterization of fixed points: If there is several fixed points (and even if it is
unique), then it is important to find out their characterisation.

• Stabilization time of the model. If the model diverges, it is clear that the time
to reach different fixed points are variety. But even if the model converges, there
are different convergent times which depend on the local behavious of the model.
Hence evaluate the upper and lower bounds for convergence time is also an object
of study.

We define the order relation (if it exists) on the space configuration of a model
by: a configuration 𝑎 is greater than a configuration 𝑏 if 𝑏 is reachable from 𝑎 by
applying a sequence of transition rules (which is the inverse of the definition in
Chapter 2).
Both configuration spaces of 𝑆𝑃𝑀 (𝑛) and 𝐿𝐵 (𝑛) have an order relation, moreover

they have a lattice structure.
The following results were established for 𝑆𝑃𝑀 [22, 26, 27].

• Reachability of 𝑆𝑃𝑀 [22]. A partition of 𝑛 is a reachable configuration of 𝑆𝑃𝑀 (𝑛)
if and only if it does not contains subsequences of the two following forms:
(𝑝, 𝑝, 𝑝) or (𝑝 + 1, 𝑝 + 1, 𝑝, 𝑝 − 1, . . . , 𝑝 − 𝑞 + 1, 𝑝 − 𝑞, 𝑝 − 𝑞) (we call this
condition 𝑆𝑃𝑀 condition).

• Fixed point of SPM. The model 𝑆𝑃𝑀 (𝑛) has an unique fixed point, which is
(𝑝, 𝑝 − 1, . . . , 𝑞, +1, 𝑞, 𝑞, 𝑞 − 1, . . . , 2, 1) where 𝑝 and 𝑞 are uniquely defined by
𝑝(𝑝 + 1)/2 ≤ 𝑛 < (𝑝 + 1) (𝑝 + 2)/2 and 𝑞 = 𝑛− 𝑝(𝑝 + 1)/2 (𝑞 can be equal to 0).

• Lattice structure of the configuration space of SPM. The configuration space of
𝑆𝑃𝑀 equipped with the reachability order is a lattice.

• Length of chains in 𝑆𝑃𝑀 . Every chain between two configurations in 𝑆𝑃𝑀 (𝑛)
has the same length.

And results achieved for 𝐿𝐵 ([9, 28]):

• The exhaustive property of the model: all partitions are reachable. This property
is almost always true for all natural extensions of the model.
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• Therefore, the unique fixed point of the model is easy to determine, it is
(1, 1, . . . , 1).

• Lattice structure of the configuration space of 𝐿𝐵 (𝑛). The reachability order is
the dominance order, that mean 𝑏 is reachable from 𝑎 by 𝐿𝐵 transition if and only
if 𝑏 is smaller than 𝑎 by dominance ordering: for all 1 ≤ 𝑖,

∑𝑖
𝑗=1 𝑏 𝑗 ≤

∑𝑖
𝑗=1 𝑎 𝑗 .

• Length of chains in 𝐿𝐵. The property of the 𝑆𝑃𝑀 that all chains between two given
configurations have the same length is no longer true for 𝐿𝐵 model. Therefore the
problem of finding longest and shortest chains is particularly interesting. While it
is pretty simple to find shortest chains, finding longest chains is quite complicated
and requires a technical proof which is based on two energies, these energies are
defined for the vertical and the horizontal rules respectively.
Shortest chains. A shortest chain in 𝐿𝐵 can be constructed as follows: applying
the V-transition at the first position to obtain the partition (𝑛 − 1, 1). Then ap-
ply alternatively V-transition at the first position and H-transition at the second
position 𝑛 − 3 times to obtain the partition (2, 1, 1, . . . , 1). At this state, apply
the H-transition at the first position, and obtain the fixed point (1, 1, . . . , 1). This
chain has length 2𝑛 − 4.
Longest chains: in [28], the authors proved that longest chains are chains of a
sequence of V-transitions followed by a sequence of H-transitions. And their
length is 𝜃 (𝑛3/2).

These twomodels were extended by different approaches. First, by parameterizing
the horizontal rule, we defined the Ice pile model [26]. Then by considering that 𝑚
sand grains can fall down in the same time (for a given 𝑚), we introduced the model
𝐶𝐹𝐺 (𝑛, 𝑚) [27]. Independently, a similar model of 𝐶𝐹𝐺 (𝑛, 𝑚) was studied by the
physicist Kadanoff [31]. The enumeration of the number of reachable configurations
of these models was widely studied [44, 20]. On the other hand, a parallel version
of 𝑆𝑃𝑀 was studied in [15, 16]. This model is deterministic and converges to the
fixed point of the classical SPM. For this parallel model, the reachability problem
was studied by mean of language theory.
In this paper, we give a survey of our works, in collaborations with Enrico

Formenti, Kevin Perrot, Pham Van Trung and Tran Thi Thu Huong, on the following
natural extensions of two models 𝑆𝑃𝑀 and 𝐿𝐵.

• We investigate the study of all stable configurations when outside grains are added
on random columns [47]

• A very natural extension of 𝑆𝑃𝑀 is the symmetric 𝑆𝑃𝑀 on which sand grains can
move from left to right and from right to left. Here, the model lost its properties
of existence and uniqueness of the fixed point, therefore this raises the question of
how to compute the set of fixed points, the time of convergence and the distribution
of fixed points [21, 46, 43].

• We explore the Sand Pile Model and Chip Firing Game on cycle graphs. We study
the reachable configurations and fixed points of each model and the similarities
between these models [10].

• Finally, we investigate the extension to infinity of Brylawski model, this model
gives a method to generate partitions of all integers by rule of a dynamical model.
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Moreover, this model has a recursive structure from which one can deduce some
interesting enumerative formula on partitions [35, 38, 39].

2 The stability of SPM

In this section, we consider a more extended Sand Piles Model where outside grains
are added on random columns. More precisely, each time the model reach a stable
configuration, one grain is added to a random column, and the model evolves to
reach another stable configuration, and so on. We investigate the study of all such
stable configurations.
First, we give a formal definition of this model and prove that the set of all stable

configurations has a lattice structure which is a sub-lattice of the well-known Young
lattice. then we compute explicitly the smallest and greatest times to reach a stable
configuration from the initial configuration, and the smallest and greatest times to
reach a stable configuration from another stable configuration. These times illustrate
the behaviour of the model under outside actions. The key idea of this computation
is the introduction of the notion "energy". Indeed, for each configuration, we treat
each of its grain by defining the energy of a grain being the greatest number of its
possible moves.

2.1 Extended Sand Piles Model and its stable configurations

As well as in almost works of SPM, we represent configurations of this model by
integer partitions. So let us first give some preliminary notions:

Definition 3 (i) A partition is an integer sequence 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) such that
𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑘 > 0 (by convention, 𝑎 𝑗 = 0 for all 𝑗 > 𝑘 and 𝑎0 = ∞). We
call 𝑎𝑖 part of partition 𝑎; and 𝑘 length of 𝑎, and write 𝑙 (𝑎) = 𝑘 . We say that 𝑎 is
a partition of 𝑛, or 𝑛 is the weight of 𝑎, and write 𝑤(𝑎) = 𝑛, if

∑𝑖=𝑘
𝑖=1 𝑎𝑖 = 𝑛.

(ii)A smooth partition is a partition such that all differences between two consecutive
parts are at most 1.

(iv)Young’s lattice is the lattice of all partitions ordered by containment [51] (i.e.
𝑎 ≤ 𝑏 if and only if 𝑎𝑖 ≥ 𝑏𝑖 for all 𝑖 = 1, 2, . . . ,min{𝑙 (𝑎), 𝑙 (𝑏)}).

From this definition, one can see that a stable configuration is represented by a
smooth partition. So, in the following, we say partition (resp. smooth partition) for
configuration (resp. stable configuration).
The Extended Sand Piles Model (ESPM) is a discrete dynamical model where

all configurations are partitions and the initial configuration being the partition (0).
This model consists of two evolution (or transition) rules:
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• Falling rule (inside action): one grain on the column 𝑖 can fall down to the column
𝑖 + 1 if the height difference between the column 𝑖 and the column 𝑖 + 1 is greater
than or equal to 2.

• Adding rule (outside action): one grain can be added to one column of a smooth
partition such that the obtained one is still a partition.

We denote also 𝐸𝑆𝑃𝑀 the set of all reachable partitions from the initial (0). We
call a chain in this model a sequence of transitions. By convention, a chain of one
element (with no transitions) is of length 0. More particularly, a chain between two
smooth partitions is called an avalanche chain. Finally, we denote by 𝑎↓𝑖 the integer
sequence obtained from 𝑎 by increasing part 𝑖 of 𝑎 by 1.
Figure 2 shows first elements of 𝐸𝑆𝑃𝑀 . One can see that 𝐸𝑆𝑃𝑀 does not contain

all partitions. However, we prove that this model contains all smooth partitions.

0
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31
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1111 211

211111111
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221

222

111111 21111 2211 321

3111

Fig. 2 First elements of the poset 𝐸𝑆𝑃𝑀

Proposition 1 All smooth partitions are reachable from the initial partition.

In order to study the behaviour of the model under outside actions, we investigate
the set of all stable configurations and the relations between them. We denote the
induced subposet of all smooth partitions of the poset 𝐸𝑆𝑃𝑀 by (𝑆𝐸𝑆𝑃𝑀, ≤𝑆). We
will describe the nature of order relation in 𝑆𝐸𝑆𝑃𝑀 .
First, we analyze the movement of a grain when it is added from outside to a

stable configuration. So, let 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) be a smooth partition. One grain is
added on column 𝑖 of 𝑎 with the condition that 𝑎𝑖 < 𝑎𝑖−1. After that, if 𝑎𝑖 = 𝑎𝑖+1,
this grain stays at column 𝑖 and does not move anymore. Otherwise, this grain move
to a new position 𝑗 > 𝑖 such that 𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗 is a consecutive decreasing integers
and that 𝑎 𝑗 = 𝑎 𝑗+1. Finally, this grain stays at column 𝑗 and does not move anymore.
The obtained configuration 𝑏 of this sequence of moves of this grain is the same
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as the configuration obtained by only one move: adding a grain directly on position
𝑗 . Hence, this analyze proves the following result: In the 𝑆𝐸𝑆𝑃𝑀 , an element 𝑏 is
an immediate successor of an element 𝑎 if and only if 𝑏 can be obtained from 𝑎 by
adding one grain at some column. Figure 3 shows some first elements of the poset
𝑆𝐸𝑆𝑃𝑀 . To finish, we discuss about the relation between 𝑆𝐸𝑆𝑃𝑀 and the Young
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Fig. 3 First elements of the poset 𝑆𝐸𝑆𝑃𝑀

lattice. Due to the characterization of the containment order, we know that the poset
𝑆𝐸𝑆𝑃𝑀 is a suborder of the Young lattice. Futhermore we prove that this relation is
in fact a sublattice relation.
Theorem 1 The poset 𝑆𝐸𝑆𝑃𝑀 is ordered by containment, moreover it is a sublattice
of the Young lattice.

2.2 Avalanche chains

The purpose of this subsection is to describe the needed time to reach a stable
configuration in the Extended Sand Piles Model. We know that there are probably
different sequences of evolutions to reach a stable configuration from another stable
configuration. Their sizes may be quite different and depend on the columns in which
evolution rules are applied. We next show that the smallest length of avalanche chain
depends only on the weight of the considered stable configurations. Otherwise, the
problem is much more complicated than for the greatest length.
Theorem 2 Let 𝑎 and 𝑏 be two smooth partitions and 𝑏 <𝑆 𝑎. Then
(i) The smallest length of avalanche chain from the initial configuration (0) to 𝑎 is
equal to 𝑤(𝑎).
(ii) The smallest length of avalanche chain from 𝑎 to 𝑏 is equal to 𝑤(𝑏) − 𝑤(𝑎).
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To compute the greatest length of avalanche chains, we consider the movement
of grains. We constate that, when one grain is added to a smooth partition, it slides
down to a position until the obtained partition is smooth and after that this grain
can not be moved. Hence the number of moves of a grain depends only the position
(column) where it is added. We will define by energy of a grain its greatest number
of possible moves. Then we will define energy of a configuration the summation of
energy of all of its grains. The main result of this section is to prove that the greatest
length of avalanche chain to reach a stable configuration is equal to its energy.
Let us recall that, in our model, each configuration is represented by a partition,

or more precisely, by its Ferrers diagram, where each grain is represented by a case
(𝑖, 𝑗) where 𝑖 (resp. 𝑗) is the column (resp. row) index. So, let us denoted by 𝐹 (𝑎)
the diagram of a partition 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ), and we write (𝑖, 𝑗) ∈ 𝐹 (𝑎) for all
case (𝑖, 𝑗) such that 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑎𝑖 (see Figure 4 as an example). We say

Fig. 4 The representation of the Ferrer diagram of the partition 𝑎 = (4, 3, 2, 2, 2, 1)

that 𝑖 is a smooth column of 𝑎 if 𝑖 = 1 or 𝑎𝑖 = 𝑎𝑖−1 for 𝑖 > 1. Moreover, for a case
(𝑖, 𝑗), we define diagonal 𝐷 (𝑖, 𝑗) the set of all case (𝑖′, 𝑗 ′) such that 𝑖′+ 𝑗 ′ = 𝑖+ 𝑗 and
1 ≤ 𝑗 ′ ≤ 𝑗 (see Figure 5). We give now the formal definition and some properties

∆1

D1 D2 D3 D4

✻

✻ ✻
✻

(1, 4)

(4, 2) (5, 2)

(7, 1)

Fig. 5 Smooth columns (1, 4, 5, 7) and conresponding diagonals 𝐷1, 𝐷2, 𝐷3, 𝐷4 of 𝑏 =

(4, 3, 2, 2, 2, 1, 1)

of energy.

Definition 4 Let 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) be a smooth partition.
(i) The energy 𝑒𝑎 (𝑖, 𝑗) is the greatest possible moves that a grain can do to reach the
position (𝑖, 𝑗).
(ii) The energy 𝐸 (𝑎) of 𝑎 is 𝐸 (𝑎) = ∑

(𝑖, 𝑗) ∈𝐹 (𝑎) 𝑒𝑎 (𝑖, 𝑗).
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Lemma 1 Let 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) be a smooth partition.
(i) We have: 𝑒𝑎 (𝑖, 𝑗) = 𝑖 + 1 −min{𝑟 : 𝑎𝑟 < 𝑎𝑟−1 and 𝑎𝑟 + 𝑟 ≥ 𝑗 + 𝑖 − 1}.
(ii) Moreover, if (𝑖, 𝑗) ∈ 𝐹 (𝑎) and (𝑖 − 1, 𝑗 + 1) ∈ 𝐹 (𝑎) then

𝑒𝑎 (𝑖 − 1, 𝑗 + 1) = 𝑒𝑎 (𝑖, 𝑗) − 1.

Now, we want to compute explicitly the energy of a smooth partition 𝑎 =

(𝑎1, . . . , 𝑎𝑘 ). Let 1 = 𝑖1 < 𝑖2 < . . . < 𝑖ℓ be all smooth columns of 𝑎. And let
𝐷𝑖 the diagonal (𝑖, 𝑎𝑖). It is evident that we can decompose 𝐹 (𝑎) as the following
disjoint union:

𝐹 (𝑎) = Δ1
⊔

𝐷2
⊔

. . .
⊔

𝐷ℓ

where Δ1 is the set of all case (𝑖, 𝑗) such that 1 ≤ 𝑖, 𝑗 and 𝑖 + 𝑗 ≤ 𝑎1 + 1. We then
compute the energy of 𝑎 in each of such subset.

Proposition 2 Let 𝑎 be a smooth partition, and let 1 = 𝑖1 < 𝑖2 < . . . < 𝑖ℓ be all
smooth columns of 𝑎. We have:

𝐸 (𝑎) = 𝑎1 (𝑎1 + 1) (𝑎1 + 2)
6

+
ℓ∑︁

𝑟=2
𝑖𝑟𝑎𝑖𝑟 −

ℓ∑︁
𝑟=3

𝑖𝑟−1𝑎𝑖𝑟 +
ℓ∑︁

𝑟=2

𝑎𝑖𝑟 (𝑎𝑖𝑟 − 1)
2

.

1

1

1

1 2

2 3

2

3

4

4 5

1

2 2

Fig. 6 Representation of the partition 𝑏 = (4, 3, 2, 2, 2, 1, 1) , the number in each case is the energy
of the corresponding grain. The greatest length from (0) to (𝑏) is 34

We state now the main result of this subsection.

Theorem 3 Let 𝑎 be a smooth partition. Then the greatest length of avalanche chains
from (0) to 𝑎 is equal to 𝐸 (𝑎).

From this theorem we can study avalanche chain between two stable configurations.

Corollary 1 Let 𝑏 ≤𝑆 𝑎 be two smooth partitions. Then the greatest length of
avalanche chains from 𝑎 to 𝑏 is

∑
(𝑖, 𝑗) ∈𝐹 (𝑏)−𝐹 (𝑎) 𝑒𝑏 (𝑖, 𝑗).

Nevertheless, it is important to note that the greatest length from 𝑎 to 𝑏 is not equal
to 𝐸 (𝑏) −𝐸 (𝑎) because for (𝑖, 𝑗) ∈ 𝐹 (𝑏), we have not 𝑒𝑎 (𝑖, 𝑗) = 𝑒𝑏 (𝑖, 𝑗) (see Figure
9 for an encounter example). Moreover, it is easy to see that 𝑒𝑏 (𝑖, 𝑗) ≥ 𝑒𝑎 (𝑖, 𝑗). This
implies that the greatest length of avalanche chains from 𝑎 to 𝑏 is smaller than or
equal to the difference of the one from (0) to 𝑏 and the one from (0) to 𝑎. This result
is opposite to the result in the case of smallest length where the egality is hold.
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Fig. 7 A greatest chain from 0 to 𝑏. Each arrow→𝑘 to a column 𝑖 means that 𝑘 grains are added
to column 𝑖
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2
✲ ✲

❄

✛

Fig. 8 A greatest chain from 𝑎 to 𝑏. Each arrow→𝑘 to a column 𝑖 means that 𝑘 grains are added
to column 𝑖. The greatest length from 𝑎 to 𝑏 is 12

Furthermore, we remark that the avalanche chain of greatest length from (0) to
𝑎 is unique. Indeed, from the proof of Theorem 3, we constate that the grain 𝐺 at
position (𝑖, 𝑗) on the diagonal 𝐷𝑟 for 𝑟 ≥ 2 (resp. Δ1) has exactly 𝑒𝑎 (𝑖, 𝑗) transitions
if and only if 𝐺 is added at the column 𝑖𝑟−1 + 1 (resp. 1) and then it slides diagonally
and stops at position (𝑖, 𝑗). So the diagonal 𝐷𝑟−1 must be fulfilled,moreover the
grain at position (𝑖 + 1, 𝑗 − 1) must be presented before the adding of the grain 𝐺.
So by recurrence we claim that the avalanche chain of greatest length from (0) to 𝑎
must be defined explicitly as in the proof of Theorem 3, hence it is unique.
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Fig. 9 (a):energy tableau of 𝑎; (b): energy tableau of 𝑏 and 2 = 𝑒𝑎 (5, 1) ≠ 𝑒𝑏 (5, 1) = 5

However, there are many avalanche chains of greatest length from 𝑎 to 𝑏. For
instance, if we take 𝑎 = (2, 2, 1, 1, 1) and 𝑏 = (2, 2, 2, 1, 1, 1). Then by Corollary 1
we have 𝑙 (𝑎, 𝑏) = 2. Moreover, we have two following avalanche chains of length 2:

𝑎 = (2, 2, 1, 1, 1) → (2, 2, 2, 1, 1) → (2, 2, 2, 1, 1, 1) = 𝑏

and 𝑎 = (2, 2, 1, 1, 1) → (2, 2, 1, 1, 1) → (2, 2, 2, 1, 1, 1) = 𝑏.

3 Symmetric Sand Pile Model and unimodal sequences

Sand Pile Model was first introduced in the context of SOC phenomena. In order to
bring it closer to real physical models, we consider the model such that grains can
fall to the both sides (left and right). This generalized model is called two sided sand
piles model [46] or symmetric sand piles model [19], and denoted by SSPM.

Definition 5 SSPM is a model defined by:

• Initial configuration: (𝑛).
• Local left vertical rule L: (. . . , 𝑎𝑖−1, 𝑎𝑖 , . . . ) → (. . . , 𝑎𝑖−1 + 1, 𝑎𝑖 − 1, . . . ) if

𝑎𝑖−1 + 2 ≤ 𝑎𝑖 .
• Local right vertical rule R: (. . . , 𝑎𝑖 , 𝑎𝑖+1, . . . ) → (. . . , 𝑎𝑖 − 1, 𝑎𝑖+1 + 1, . . . ) if

𝑎𝑖 ≥ 𝑎𝑖+1 + 2.
• Global rule: we apply the L rule once , or the R rule once .

When studying this model, we formulate the characterization of reachable con-
figurations and of fixed points. Note that a configuration is defined by its form and
its position. If at the beginning, we have a pile of 𝑛 sand grains at position 0, then a
reachable configuration 𝑎 = (𝑎𝑝 , 𝑎𝑝+1, . . . 𝑎𝑝+𝑘−1) can have grains in negative and
positive positions. We call position of 𝑎 the smallest index 𝑝 such that 𝑎𝑝 > 0, and
we call the form of 𝑎 the sequence 𝑏 = (𝑏1, . . . , 𝑏𝑘 ) such that 𝑏𝑖 = 𝑎𝑝+1−𝑖 for all
1 ≤ 𝑖 ≤ 𝑘 .
It is easy to see that a configuration can be represented by a unimodal sequence

which is defined as follows.
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1(1)21

(5)

Fig. 10 Configuration space 𝑆𝑆𝑃𝑀 (5)

Definition 6 A unimodal sequence is a sequence of positive integers (𝑎1, 𝑎2, . . . , 𝑎𝑘 )
such that there exists an index 1 ≤ 𝑖 ≤ 𝑘 satisfying the condition 𝑎1 ≤ 𝑎2 ≤ . . . 𝑎𝑖1 ≤
𝑎𝑖 ≥ 𝑎𝑖+1 ≥ . . . ≥ 𝑎𝑘−1 ≥ 𝑎𝑘 . The quantities defined by

ℎ(𝑎) = max{𝑎𝑖}𝑘𝑖=1 and 𝑤(𝑎) =
𝑘∑︁
𝑖=1

𝑎𝑖

are respectively called the height and the weight of 𝑎. We say also that 𝑎 a unimodal
sequence of 𝑤(𝑎).
Given an index 1 ≤ 𝑖 ≤ 𝑘 , we denote

𝑎<𝑖 := (𝑎1, . . . , 𝑎𝑖−1) and 𝑎>𝑖 := (𝑎𝑖+1, . . . , 𝑎𝑘 ),

𝑎≤𝑖 := (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖) and 𝑎≥𝑖 := (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑘 ),

and call them the strict left sequence and the strict right sequence of 𝑎 by 𝑖, the left
sequence and the right sequence of 𝑎 by 𝑖, respectively.

We give a characterization for the form and the position of reachable configuration
[46].

Theorem 4 An integer sequence 𝑎 is a configuration of 𝑆𝑆𝑃𝑀 if and only if

• The form of 𝑎 is a unimodal sequence which has a decomposition 𝑎 = (𝑎<𝑖 , 𝑎≥𝑖)
where 𝑎<𝑖 and 𝑎≥𝑖 are two partitions satisfying 𝑆𝑃𝑀 condition.

• the position 𝑖 satisfies:

– if 𝑖 ≥ 0 then: 𝑖𝑎𝑖 + 𝑖 (𝑖+1)
2 + ∑

𝑗≥𝑖 𝑎 𝑗 ≤ 𝑛 if 𝑎≥𝑖 begins with a slide step
(subsequence of the form (𝑝, 𝑝1, . . . , 𝑞 + 1, 𝑞, 𝑞) with 𝑝 ≥ 𝑞 > 0), or 𝑖𝑎𝑖 +
𝑖 (𝑖−1)
2 +∑ 𝑗≥𝑖 𝑎 𝑗 ≤ 𝑛 otherwise.
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– if 𝑖 < 0 then: −𝑖𝑎𝑖−1 + 𝑖 (𝑖−1)
2 +∑ 𝑗<𝑖 𝑎 𝑗 ≤ 𝑛 if 𝑎<𝑖 begins with a slide step, or

−𝑖𝑎𝑖−1 + 𝑖 (𝑖+1)
2 +∑ 𝑗<𝑖 𝑎 𝑗 ≤ 𝑛 otherwise.

Such a decomposition is called a 𝑆𝑆𝑃𝑀 decomposition.
For the fixed point of 𝑆𝑆𝑃𝑀 , we give the following condition [46].

Theorem 5 An integer sequence 𝑃 is a fixed point of 𝑆𝑆𝑃𝑀 (𝑛) if 𝑃 has an 𝑆𝑆𝑃𝑀

decomposition at some position 𝑖 such that:

• 𝑃<𝑖 and 𝑃≥𝑖 are 𝑆𝑃𝑀 fixed points and |𝑃𝑖 − 𝑃𝑖−1 | ≤ 1,
• the height 𝑘 of 𝑃 is either b

√
𝑛c or b

√
𝑛c − 1, and

• the position 𝑖 satisfies 𝑘 + |𝑖 | ≤ b
√
2𝑛c.

As consequence, the number of fixed point forms of 𝑆𝑆𝑃𝑀 (𝑛) is d
√
𝑛e [19].

4 Fixed points of Parallel Symmetric Sand Pile Model

The Parallel Symmetric Sand Pile Model is a variant of the Symmetric Sand Pile
Model where we allow to apply at the same time all possible transitions [21, 43].

Definition 7 PSSPM is a model defined with the same initial configuration and local
rule as SSPM, and with the following global rule.

• Global rule: we apply L and R in parallel on all possible columns. We apply at
most once of the two rules on each column.

(5)

1(4) (4)1

2(3) 1(3)1 (3)2

2(2)1 1(2)2

1(2)1111(2)1

Fig. 11 Configuration space 𝑃𝑆𝑆𝑃𝑀 (5)
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4.1 Forms of fixed points

Remark that while the parallel 𝑆𝑃𝑀 is deterministic, the parallel 𝑆𝑆𝑃𝑀 is not
because there may have columns from which grains can fall down on both sides.
Recall that 𝑆𝑃𝑀 has a unique fixed point which implies that PSPM have the same
fixed point as 𝑆𝑃𝑀 . But 𝑆𝑆𝑃𝑀 can have more than one fixed points therefore
𝑃𝑆𝑆𝑃𝑀 may not have the same set of fixed points as SSPM. Actually, there exists
fixed points of 𝑆𝑆𝑃𝑀 which is not reachable in 𝑃𝑆𝑆𝑃𝑀 because its position is far
from the position 0. Nevertheless, it is surprising that the set of forms of fixed points
of 𝑃𝑆𝑆𝑃𝑀 is the same as that of SSPM. And this fact is the main result of this
subsection [21].

Theorem 6 The set of fixed point forms of 𝑃𝑆𝑆𝑃𝑀 (𝑛) is equal to that of 𝑆𝑆𝑃𝑀 (𝑛).
Consequently, there is d

√
𝑛e fixed point forms of 𝑃𝑆𝑆𝑃𝑀 (𝑛).

This theorem need a very long and technical proof but the idea is very constructive
and can be presented as follows.
For a fixed point 𝑃 of 𝑆𝑆𝑃𝑀 (𝑛), we construct a sequence of 𝑃𝑆𝑆𝑃𝑀 transitions

to obtain a fixed point having the same form as 𝑃. Because we are interested in the
form of 𝑃 but not in its position, we can suppose that the center column of 𝑃 is at
position 0 (the center of a configuration 𝑎 is the position 𝑖 satisfying the condition
that |𝑤(𝑎<𝑖)−𝑤(𝑎≥𝑖) | get the minimum value). In the constructed evolution, column
0 is always a highest one, so the choice of 𝑃𝑆𝑆𝑃𝑀 rules in each step is in fact the
choice of the transition’s direction at column 0.

• For a symmetric fixed point 𝑃, i.e. (𝑃<0)−1 = 𝑃>0, the evolution is an Alternating
Procedure, described as follows: at odd steps, the rule 𝑅 is applied at position 0,
and at even steps, the rule 𝐿 is applied at position 0. From (𝑛) this procedure will
converge to the symmetric fixed point 𝑃.

• For 𝑃 not symmetric, we can suppose that the column 0 is the center of 𝑃, i.e.

𝑑 = |𝑤(𝑃>0) − 𝑤(𝑃<0) | = min
𝑖
|𝑤(𝑃>𝑖) − 𝑤(𝑃<𝑖) |.

Without loss of generality we may assume that 𝑤(𝑃>0) − 𝑤(𝑃<0) > 0. The
evolution by 𝑃𝑆𝑆𝑃𝑀 rule is composed of three procedures:

i) Pseudo-Alternating Procedure: a procedure from (𝑛) to the configuration 𝑄 =(
1, 2, . . . , 𝑑 − 1, (𝑛 − 𝑑2), 𝑑, 𝑑 − 1, . . . , 2, 1

)
. Note that 𝑤(𝑄>0) − 𝑤(𝑄<0) is

exactly 𝑑.
ii) Alternating Procedure: a procedure from 𝑄 to the configuration 𝑅 on which
we could not apply any more the Alternating Procedure.

iii)Deterministic procedure: a deterministic procedure from 𝑅 to 𝑃, where at each
of its step, on each position, only one rule can be applied.
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R L R L

R L

Fig. 12 6 first steps of Alternating Procedure from (9). The arrow together with the direction 𝑅

or 𝐿 (Right or Left) corresponding to the direction along which the transition at column 0 (dark
column) is applied

R R L R R

R

L

L R

Fig. 13 9 first steps of Pseudo-Alternating Procedure on (13)

4.2 Positions of fixed points

We have already a characterization of the form of fixed points of 𝑃𝑆𝑆𝑃𝑀 , but what
about their positions?. Remark that for 𝑆𝑆𝑃𝑀 one can obtained a fixed point at a
position very far on the left (or on the right) when one applies as much as possible
left transition (or right transition respectively). But for 𝑃𝑆𝑆𝑃𝑀 all transitions are
applied at the same time at each step, so one can not apply as much left transition
as he wants to. This explains why many fixed points of 𝑆𝑆𝑃𝑀 very far on the left
can not be reached by 𝑃𝑆𝑆𝑃𝑀 . Nevertheless, we can prove that all fixed points of
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𝑆𝑆𝑃𝑀 whose the position is between the leftmost and the rightmost fixed points of
𝑃𝑆𝑆𝑃𝑀 can be reached also by PSSPM. This is related to the continuity of fixed
points of PSSPM. The notion of leftmost, rightmost and continuity will be explained
clearly by using relation ⊳, a notion of closeness between configurations [43].

Definition 8 Let Δ(𝑎,𝑏) be the sequence of differences between configurations 𝑎
and 𝑏, Δ𝑖 (𝑎,𝑏) = 𝑎𝑖 − 𝑏𝑖 .
We define a notion of similarity or closeness between configurations, denoted by the
following relations:

𝑎 ⊳ 𝑏 ⇐⇒ Δ(𝑎, 𝑏) ∈ 0∗1̄0∗10∗

𝑎
∗
⊳ 𝑏 ⇐⇒ Δ(𝑎, 𝑏) ∈ (0∗1̄0∗10∗)∗

where 1̄ is a minus one value. As a convention 𝜖 = 0𝜔 , so that 𝑎 = 𝑏 implies 𝑎 ∗⊳ 𝑏.

Notation We use the symbols ≤𝑙𝑒𝑥 to denote the lexicographic order over con-
figurations. Note that 𝑎 ∗⊳ 𝑏 ⇒ 𝑎 ≤𝑙𝑒𝑥 𝑏 and 𝑎 ⊳ 𝑏 ⇒ 𝑎 <𝑙𝑒𝑥 𝑏.

Theorem 7 [43]
Let

𝜋0 <𝑙𝑒𝑥 𝜋1 <𝑙𝑒𝑥 · · · <𝑙𝑒𝑥 𝜋𝑘−1 <𝑙𝑒𝑥 𝜋𝑘

be the sequence of all fixed points of PSSPM(𝑛) ordered lexicographically. Then this
sequence has the following strong relation:

𝜋0 ⊳ 𝜋1 ⊳ · · · ⊳ 𝜋𝑘−1 ⊳ 𝜋𝑘 .

Moreover, for any fixed point 𝜋 of SSPM(𝑛) such that 𝜋0 ≤𝑙𝑒𝑥 𝜋 ≤𝑙𝑒𝑥 𝜋𝑘 , there exists
an index 𝑖, 0 ≤ 𝑖 ≤ 𝑘 , such that 𝜋𝑖 = 𝜋.

5 Signed Chip Firing Game and Symmetric Sandpile Model on
the cycles

We explore the Sandpile Model and Chip Firing Game and an extension of these
models on cycle graphs. These problems also have a strong relationship to the class
of problems on cycles such as games of cards [12, 25, 30]. Furthermore, we are also
interested in the signed versions of these models, i.e., we allow the vertices to contain
negative numbers of chips for 𝐶𝐹𝐺 and the sandpiles to have negative heights
for SPM. This also reflects deeply some natural phenomena: between sandpiles
there may be holes (of negative heights), and besides the delivering chips from
vertices containing many chips, it is dually possible receiving chips from vertices
lacking (negative enough) chips [32]. We give the characterization of reachable
configurations and of fixed points of each model. At the end, we give an explicit
formula for the number of their fixed points [10].
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5.1 SPM, CFG, 𝑺𝑺𝑷𝑴 and SCFG on cycles: definitions and notations

Let 𝐶𝑛 be a cycle graph of n vertices {1, 2, ..., 𝑛} (𝑛 ≥ 3). Each integer sequence
(𝑎1, 𝑎2, . . . , 𝑎𝑛) on vertices of 𝐶𝑛 is called circular distribution and we say that
vertex 𝑖 contains 𝑎𝑖 chips (note that 𝑎𝑖 may be negative). We identify two circular
distributions if they differ by a rotation of the cycle.

Definition 9 Let 𝑘 be a non-negative integer. The Sandpile model on 𝐶𝑛 of weight
𝑘 (and its configuration space), denoted by 𝑆𝑃𝑀 (𝐶𝑛, 𝑘), is described as follows:

(i) The initial configuration is (𝑘, 0, 0, . . . , 0),
(ii)The evolution rule is the right rule as follows: a vertex gives one chip to its right
neighbor vertex if it has at least 2 higher than this neighbor.

Definition 10 Let 𝑘 be a non-negative integer. The Symmetric Sandpile model on𝐶𝑛

of weight 𝑘 (and its configuration space), denoted by 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘), is described as
follows:

(i) The initial configuration is (𝑘, 0, 0, . . . , 0),
(ii)The evolution rule: addition to the right rule in 𝑆𝑃𝑀 (𝐶𝑛, 𝑘), there is also the left

rule, that means a vertex gives one chip to its left neighbor vertex if it has at least
2 higher than this left neighbor.

Definition 11 Let 𝑘 be a non-negative integer. The Chip Firing Game on 𝐶𝑛 of
weight 𝑘 (and its configuration space), denoted by 𝐶𝐹𝐺 (𝐶𝑛, 𝑘), is described as
follows:

(i) The initial configuration is (𝑘, 0, 0, . . . , 0,−𝑘),
(ii)The evolution rule is the positive rule as follows: a vertex containing at least 2
chips gives one chip to each of its two neighbors.

Definition 12 Let 𝑘 be a non-negative integer. The Signed Chip Firing Game on 𝐶𝑛

of weight 𝑘 (and its configuration space), denoted by 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘), is described as
follows:

(i) The initial configuration is (𝑘, 0, 0, . . . , 0,−𝑘).
(ii)The evolution rule: addition to the positive rule in 𝐶𝐹𝐺 (𝐶𝑛, 𝑘), there is also the

negative rule, that means a vertex containing at most -2 chips receives one chip
from each of its two neighbors.

Notations.

• We define 𝑆𝑃𝑀 (𝐶𝑛) the disjoint union of 𝑆𝑃𝑀 (𝐶𝑛, 𝑘) for 𝑘 ≥ 0, and similarly
for 𝑆𝑆𝑃𝑀 (𝐶𝑛), 𝐶𝐹𝐺 (𝐶𝑛), 𝑆𝐶𝐹𝐺 (𝐶𝑛).

• Let 𝑎 and 𝑏 be two distributions of non-negative integers on𝐶𝑛, we write 𝑎
(𝑖,𝑟 )
−→ 𝑏

(resp. 𝑎
(𝑖,𝑙)
−→ 𝑏) if 𝑏 is obtained from 𝑎 by applying the rule at the vertex 𝑖 on the

right (resp. left); and 𝑎
(𝑖,+)
−→ 𝑏 (resp. 𝑎

(𝑖,−)
−→ 𝑏) if 𝑏 is obtained from 𝑎 by applying

the positive rule (resp. negative rule) at the vertex 𝑖.



18 PHAN Thi Ha Duong

Remark. It is straightforward from the definitions that

• The configurations of 𝑆𝑃𝑀 (𝐶𝑛) and 𝑆𝑆𝑃𝑀 (𝐶𝑛) are circular distributions of
non-negative integers whereas the ones of𝐶𝐹𝐺 (𝐶𝑛) and 𝑆𝐶𝐹𝐺 (𝐶𝑛) are circular
distributions of integers (may be negative),

• We have the two following inclusions

𝑆𝑃𝑀 (𝐶𝑛, 𝑘) ⊂ 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘) and 𝐶𝐹𝐺 (𝐶𝑛, 𝑘) ⊂ 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘).

Recall that two models are called isomorphic if there exists a bĳection between
their configuration spaces and this bĳection preserves their evolution rule.
Now, let 𝑎 = (𝑎1, . . . , 𝑎𝑛) be a circular distribution on 𝐶𝑛. We define

𝑑 (𝑎) = (𝑎1 − 𝑎2, . . . , 𝑎𝑛−1 − 𝑎𝑛, 𝑎𝑛 − 𝑎1).

It is straightforward that 𝑑 is a well-defined map from the set of circular distribu-
tions on 𝐶𝑛 to itself. Furthermore, we have the following result.

Proposition 3 Under the map 𝑑 two models 𝑆𝑃𝑀 (𝐶𝑛, 𝑘) and 𝐶𝐹𝐺 (𝐶𝑛, 𝑘) are
isomorphic; and two models 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘) and 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) are isomorphic.

It is remarkable that although 𝑑 is bĳective from 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘) (resp. 𝑆𝑃𝑀 (𝐶𝑛, 𝑘))
to 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) (resp. 𝐶𝐹𝐺 (𝐶𝑛, 𝑘)), it is not bĳective from 𝑆𝑆𝑃𝑀 (𝐶𝑛) (resp.
𝑆𝑃𝑀 (𝐶𝑛)) to 𝑆𝐶𝐹𝐺 (𝐶𝑛) (resp. 𝐶𝐹𝐺 (𝐶𝑛)). Moreover, while 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘) and
𝑆𝑃𝑀 (𝐶𝑛, 𝑘)) are absolutely disjoint for different values 𝑘 , 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) and
𝐶𝐹𝐺 (𝐶𝑛, 𝑘) may overlap each other, especially for values 𝑘 differing by a multiple
of 𝑛. Then a configuration of 𝑆𝐶𝐹𝐺 (𝐶𝑛) may correspond to many configurations of
SSPM(Cn) whose weights differ by a multiple of 𝑛.
Next, we study a characterization for the configurations of the four models. Let

𝑎 = (𝑎1, 𝑎2, . . .) be a sequence of positive integers. A pair (𝑎𝑖 , 𝑎𝑖+1) is called a cliff
(resp. plateau) of a at position 𝑖 if 𝑎𝑖 − 𝑎𝑖+1 ≥ 2 (resp. 𝑎𝑖 − 𝑎𝑖+1 = 0).

Theorem 8 Let 𝑎 be a circular distribution on 𝐶𝑛. Then 𝑎 is a configuration of
𝑆𝑃𝑀 (𝐶𝑛, 𝑘) if and only if there is a rotation vertices of 𝐶𝑛 such that 𝑎 (in the
sequence form) is a configuration of 𝑆𝑃𝑀 (𝑘) with the length at most 𝑛.

Corollary 2 Let 𝑎 = (𝑎1, 𝑎2, . . .) be a circular distribution. Then 𝑎 is a configuration
of 𝐶𝐹𝐺 (𝐶𝑛, 𝑘) if and only if 𝑑−1 (𝑎) is a configuration of 𝑆𝑃𝑀 (𝐶𝑛, 𝑘).

Corollary 3 The unique fixed point of 𝑆𝑃𝑀 (𝐶𝑛, 𝑘) is of the form

• (𝑝, 𝑝 − 1, . . . , 𝑞, 𝑞, 𝑞 − 1, . . . , 1, 0, . . .) if 𝑘 ≤ 𝑛(𝑛−1)
2 , where

𝑝 =

[
3 +
√
9 + 8𝑘
2

]
and 𝑞 = 𝑘 − 𝑝(𝑝 + 1)

2
.

• (𝑝, 𝑝 − 1, . . . , 𝑞, 𝑞, 𝑞 − 1, . . . , 𝑝 − 𝑛 + 3, 𝑝 − 𝑛 + 2) if 𝑘 ≥ 𝑛(𝑛−1)
2 + 1, where
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𝑝 =

[
2𝑘 + (𝑛 − 2) (𝑛 + 1)

2𝑛

]
and 𝑞 = 𝑘 − (2𝑝 − 𝑛 + 2) (𝑛 − 1)

2
.

Here [𝑥] is the largest integer not greater than 𝑥.

Next, we give a characterization for configurations of the 𝑆𝑆𝑃𝑀s as well as
𝑆𝐶𝐹𝐺s on 𝐶𝑛. To do this we first present the concept of 2-decomposable configu-
rations on the cycle which is different a bit from the definition of LR-decomposition
(left-right decomposition) on the line defined in [46].

Definition 13 Let 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) be a circular distribution on 𝐶𝑛, then 𝑎

is called 2-decomposable at (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 if (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗 )
and (𝑎𝑖−1, 𝑎𝑖−2, . . . , 𝑎1, 𝑎𝑛, . . . , 𝑎 𝑗+1) are 𝑆𝑃𝑀 configurations. Furthermore, 𝑎 is
called 2-decomposable if there exist two indices 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 such that 𝑎 is
2-decomposable at (𝑖, 𝑗).

Theorem 9 Let 𝑎 be a circular distribution on 𝐶𝑛. Then a is a configuration of
𝑆𝑆𝑃𝑀 (𝐶𝑛) if and only if a is 2-decomposable.

Corollary 4 Let 𝑎 = (𝑎1, 𝑎2, . . .) be a circular distribution. Then 𝑎 is a configuration
of 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) if and only if 𝑑−1 (𝑎) is 2-decomposable.

5.2 Fixed points of 𝑪𝑭𝑮 (𝑪𝒏) and 𝑺𝑪𝑭𝑮 (𝑪𝒏)

Although we have a criterion for the configurations of 𝑆𝐶𝐹𝐺 (𝐶𝑛), it requires us
to calculate their inverse images by 𝑑 and then to check their 2-decomposability
in 𝑆𝑆𝑃𝑀 (𝐶𝑛). In this section, we present a simple and direct characterization for
the fixed points (not all their configurations) of 𝑆𝐶𝐹𝐺 (𝐶𝑛). Based on this char-
acterization, we give an enumeration for these fixed points. We first classify the
configurations of 𝐶𝐹𝐺 (𝐶𝑛) and those of 𝑆𝐶𝐹𝐺 (𝐶𝑛) [10].

Proposition 4 Let 𝑘, 𝑙 be positive integers.

(i) If 𝑘 ≠ 𝑙 mod 𝑛 then

𝐶𝐹𝐺 (𝐶𝑛, 𝑘) ∩ 𝐶𝐹𝐺 (𝐶𝑛, 𝑙) = ∅

and
𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) ∩ 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑙) = ∅.

Consequently, the intersection of the set of fixed points of 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) and that
of 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑙) is empty.

(ii)If 𝑘 = 𝑙 mod 𝑛 and 𝑘, 𝑙 ≥ ( 𝑛+12 )
2 then the set of fixed points of 𝐶𝐹𝐺 (𝐶𝑛, 𝑘)

(resp. 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘)) is equal to that of 𝐶𝐹𝐺 (𝐶𝑛, 𝑙) (resp. 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑙)).

As we remarked in the previous section that for large enough values of 𝑘 in
a residue class modulo 𝑛, although the set of fixed points of 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘) (resp.
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𝑆𝑃𝑀 (𝐶𝑛, 𝑘)) are disjoint, the heights of their columns differ up-to a constant. In other
words, if (𝑎1, . . . , 𝑎𝑛) is a fixed point of 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘) (resp. 𝑆𝑃𝑀 (𝐶𝑛, 𝑘)), then
(𝑎1+1, . . . , 𝑎𝑛+1) is a fixed point of 𝑆𝑆𝑃𝑀 (𝐶𝑛, 𝑘+𝑛) (resp. 𝑆𝑃𝑀 (𝐶𝑛, 𝑘+𝑛)). Hence
their images by 𝑑 in 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) (resp. 𝐶𝐹𝐺 (𝐶𝑛, 𝑘)) and in 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘 + 𝑛)
(resp.𝐶𝐹𝐺 (𝐶𝑛, 𝑘 +𝑛)) coincide. By Corollary 2.12,𝐶𝐹𝐺 (𝐶𝑛, 𝑘) has a unique fixed
point whereas 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) may have many fixed points. The set of fixed points of
𝑆𝐶𝐹𝐺 (𝐶𝑛) includes the fixed points of 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) for small values of 𝑘 and the
𝑛 distinct residue classes of fixed points of 𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) for large values of 𝑘 . For a
small 𝑘 , their fixed points can be found directly by taking the inverse images of d of
2-decomposable fixed points. We next characterize and enumerate the fixed points
of 𝑆𝐶𝐹𝐺 (𝐶𝑛) for all 𝑘 ≥ ( 𝑛+12 )

2.
For convenience, we denote by 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) the set of fixed points of

𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘) and

𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛)) = ∩𝑘≥( 𝑛+12 )2𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛, 𝑘)).

Recall that each fixed point of 𝑆𝐶𝐹𝐺 (𝐶𝑛) is a circular distribution on 𝐶𝑛 and its
chips at vertices are 0, 1,−1. By a rotation, first we can consider 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛))
as words on the alphabet {0, 1, 1̄} where the letter 1̄ is understood as −1.

Theorem 10 The set 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛)) is determined as follows

• 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶3)) = {(000); (101̄); (11̄0)}.
• 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶4)) = {(0000); (11̄00); (101̄0); (1001̄); (111̄1̄)}.
• 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛)), with 𝑛 ≥ 5, consists of the words 𝑤 on the alphabet {0, 1, 1̄}

satisfying the following properties:

– 𝑤 starts from 1;
– in 𝑤, the number of occurrences of 1 is equal to that of 1̄;
– 𝑤 avoids the subsequences: 1̄1, 1001, 1̄001̄ and 00000;
– If 𝑤 has 4 occurrences of 0 then it must end by 0 and does not contain the

sub-word 11̄.

Theorem 11 The cardinality of 𝐹𝑃(𝑆𝐶𝐹𝐺 (𝐶𝑛)) is

• 3 if 𝑛 = 3;
• 5 if 𝑛 = 4;
• (𝑛−1)2

2 if 𝑛 is odd and 𝑛 ≥ 5;
• 𝑛(𝑛−2)

2 if 𝑛 is even and 𝑛 ≥ 6.

6 Extension of Brylwaski’s model

In the previous section, we presented many kinds of extensions of 𝑆𝑃𝑀 model. For
each kind of extension, it is natural to think about a similar extension of Brylawski’s
model. Recall that for the classical models, while the configuration space of 𝑆𝑃𝑀 are
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clearly characterized with explicit criteria, we also have the exhaustive property of
Brylawski’s model: all integer partitions are reachable. Is we adapt the similar notion
of slide transition in each extension of the 𝑆𝑃𝑀 model, we have the corresponding
extension of Brylawski’s model. And this is very interesting that the exhaustive
property remains for these extensions. It is also very surprising that the shortest and
longest chains in extended models have the same length as in the classical model of
Brylawski.
Let us recall here the definition of Brylawski’s model.

Definition 14 Brylawski’s model, with respect to a positive integer 𝑛, denoted by
𝐿𝐵 (𝑛), is a model where configurations are partitions of 𝑛 such that:

• Initial configuration: (𝑛).
• Local right vertical rule R: (. . . , 𝑎𝑖 , 𝑎𝑖+1, . . . ) → (. . . , 𝑎𝑖 − 1, 𝑎𝑖+1 + 1, . . . ) if

𝑎𝑖 ≥ 𝑎𝑖+1 + 2.
• Local right horizontal ruleH : (. . . , 𝑝+1, 𝑝, . . . , 𝑝, 𝑝−1, . . . ) → (. . . , 𝑝, 𝑝, . . . , 𝑝, 𝑝, . . . ).
• Global rule: apply the R rule once, or theH rule once.

6.1 The symmetric Brylawski’model

Let us first investigate to the extended symmetric Brylawski’s model (𝑆𝐵𝐿) [14].

Definition 15 The symmetric Brylawski’s model, with respect to 𝑛, denoted by
𝑆𝐵𝐿 (𝑛), is a model defined by:

• Initial configuration: (𝑛).
• Local left vertical rule L: (. . . , 𝑎𝑖−1, 𝑎𝑖 , . . . ) → (. . . , 𝑎𝑖−1 + 1, 𝑎𝑖 − 1, . . . ) if

𝑎𝑖−1 + 2 ≤ 𝑎𝑖 .
• Local right vertical rule R: (. . . , 𝑎𝑖 , 𝑎𝑖+1, . . . ) → (. . . , 𝑎𝑖 − 1, 𝑎𝑖+1 + 1, . . . ) if

𝑎𝑖 ≥ 𝑎𝑖+1 + 2.
• Local left horizontal ruleL𝐻 : (. . . , 𝑝+1, 𝑝, . . . , 𝑝, 𝑝−1, . . . ) → (. . . , 𝑝, 𝑝, . . . , 𝑝, 𝑝, . . . ).
• Local right horizontal ruleR𝐻 : (. . . , 𝑝−1, 𝑝, . . . , 𝑝, 𝑝+1, . . . ) → (. . . , 𝑝, 𝑝, . . . , 𝑝, 𝑝, . . . ).
• Global rule: we apply the L rule once, or the R rule once.

The exhaustive property of 𝑆𝐿𝐵 is presented as follows.

Lemma 2 The set of configuration forms of 𝑆𝐿𝐵 (𝑛) are the set of all unimodal
sequences of weight 𝑛.

We have the following straightforward result on fixed points.

Corollary 5 𝑆𝐿𝐵 (𝑛) has 𝑛 fixed points of form (1, . . . , 1) where the first position
can take value from −𝑛 + 1 to 0.

And results on shortest and longest chains.

Proposition 5 For 𝑛 ≥ 4, the shortest chains in 𝑆𝐿𝐵 (𝑛) have length 2𝑛 − 5 and the
longest chains in 𝑆𝐿𝐵 (𝑛) have the same length as that in 𝐿𝐵 (𝑛) which is 𝜃 (𝑛3/2).
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7 Infinite Extension

All the previous extensions have a common property: the total number of sand grains
is unchanged. Now, we investigate an extended models where the total number of
grains can be changed. Furthermore, we consider model where the first column has
not a fix number but an infinite number of grains. It is natural to ask how one can
construct the lattice 𝐿𝐵 (𝑛 + 1) from the lattice 𝐿𝐵 (𝑛). We construct a linear time
algorithm which gives a translation from 𝐿𝐵 (𝑛) to 𝐿𝐵 (𝑛 + 1) and which reserves
the lattice structure. From this algorithm, one can construct the lattice 𝐿𝐵 with an
arbitrary number of grains at the first position. And by the way, we can see that
𝐿𝐵 (∞) is the limit of 𝐿𝐵 (𝑛) where 𝑛 goes to infinity. To do that, we consider
the model with three transition rules: the vertical rule, the horizontal rule and the
adding rule (adding one grain at the first position). It is obvious that all reachable
configurations are still integer partitions, but what is interesting is that all integer
partitions are reachable in this models [35].

7.1 Constructing 𝑳𝑩(𝒏 + 1) from 𝑳𝑩(𝒏)

Before entering the core of algorithms, we need one more notation. If the 𝑘-
tuple 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) is a partition, then the 𝑘-tuple (𝑎1, 𝑎2, . . . , 𝑎𝑖−1, 𝑎𝑖 +
1, 𝑎𝑖+1, . . . , 𝑎𝑘 ) is denoted by 𝑎↓𝑖 . In other words, 𝑎↓𝑖 is obtained from 𝑎 by adding
one grain on its 𝑖-th column. Notice that the 𝑘-tuple obtained this way is not nec-
essarily a partition. If 𝑆 is a set of partitions, then 𝑆↓𝑖 denotes the set {𝑎↓𝑖 |𝑎 ∈ 𝑆}.
Finally, we denote by 𝑆𝑢𝑐𝑐(𝑎) the set of configurations directly reachable from 𝑎,
i.e. the set {𝑏 | 𝑎 𝑖−→ 𝑏 for some 𝑖}.
Write 𝑑𝑖 (𝑎) = 𝑎𝑖 − 𝑎𝑖+1 with the convention that 𝑎𝑘+1 = 0. We say that 𝑎 has a

cliff at position 𝑖 if 𝑑𝑖 (𝑎) ≥ 2. If there exists an ℓ ≥ 𝑖 such that 𝑑 𝑗 (𝑎) = 0 for all
𝑖 ≤ 𝑗 < ℓ and 𝑑ℓ (𝑎) = 1, then we say that 𝑎 has a slippery plateau at 𝑖. Likewise, 𝑎
has a non-slippery plateau at 𝑖 if 𝑑 𝑗 (𝑎) = 0 for all 𝑖 ≤ 𝑗 < ℓ and it has a cliff at ℓ.
The integer ℓ − 𝑖 is called the length of the plateau at 𝑖. Note that in the special case
ℓ = 𝑖, the plateau is of length 0.
The set of elements of 𝐿𝐵 (𝑛) that begin with a cliff, a slippery plateau of length

ℓ and a non-slippery plateau of length ℓ are denoted by 𝐶, 𝑆𝑃ℓ , 𝑛𝑆𝑃ℓ respectively.
Let 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) be a partition. It is clear that 𝑎↓1 is again a partition.

This define an embedding 𝜋 : 𝐿𝐵 (𝑛) → 𝐿𝐵 (𝑛)↓1 ⊂ 𝐿𝐵 (𝑛 + 1) which can be proved,
by using infimum formula of 𝐿𝐵 (𝑛) and 𝐿𝐵 (𝑛 + 1), as a lattice map.

Lemma 3 𝐿𝐵 (𝑛)↓1 is a sub-lattice of 𝐿𝐵 (𝑛 + 1).

Our next result characterizes the remaining elements of 𝐿𝐵 (𝑛 + 1) that are not in
𝐿𝐵 (𝑛)↓1 .

Theorem 12 For all 𝑛 ≥ 1, we have 𝐿𝐵 (𝑛 + 1) = 𝐿𝐵 (𝑛)↓1 tℓ 𝑆𝑃↓ℓ+1ℓ
.
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Proof It is easy to check that each element in one of the sets 𝐿𝐵 (𝑛)↓1 and 𝑆𝑃↓ℓ+1ℓ

is an element of 𝐿𝐵 (𝑛 + 1), and that these sets are disjoint. Now let us consider an
element 𝑏 of 𝐿𝐵 (𝑛 + 1). If 𝑏 begins with a cliff or a step then 𝑏 is in 𝐿𝐵 (𝑛)↓1 . If 𝑏
begins with a plateau of length ℓ + 1, ℓ ≥ 2, then 𝑏 is in 𝑆𝑃↓ℓ+1

ℓ
.

Finally, we describe an algorithm to compute the successors of any given element
of 𝐿𝐵 (𝑛 + 1), thus giving a complete construction of 𝐿𝐵 (𝑛 + 1) from 𝐿𝐵 (𝑛).
Proposition 6 Let 𝑥 be an element of 𝐿𝐵 (𝑛 + 1).
1. Suppose 𝑥 = 𝑎↓1 ∈ 𝐿𝐵 (𝑛)↓1 .

*) If 𝑎 is in 𝐶 or 𝑛𝑆𝑃 then 𝑆𝑢𝑐𝑐(𝑎↓1 ) = 𝑆𝑢𝑐𝑐(𝑎)↓1 ,
*) If 𝑎 is in 𝑆𝑃𝑙 then 𝑆𝑢𝑐𝑐(𝑎↓1 ) = 𝑆𝑢𝑐𝑐(𝑎)↓1 ∪ {𝑎↓ℓ+1 },

2. If 𝑥 = 𝑎↓ℓ+1 ∈ 𝑆𝑃↓ℓ+1
ℓ

for some 𝑎 ∈ 𝑆𝑃ℓ , then
*) If 𝑎 has a cliff at ℓ + 1 or a non-slippery plateau at ℓ + 1, then 𝑆𝑢𝑐𝑐(𝑎↓ℓ+1 ) =
𝑆𝑢𝑐𝑐(𝑎)↓ℓ+1 ,
*) If 𝑎 has a slippery plateau at ℓ + 1, let 𝑏 such that 𝑎 ℓ−→ 𝑏 in 𝐿𝐵 (𝑛), then
𝑆𝑢𝑐𝑐(𝑎↓ℓ+1 ) = (𝑆𝑢𝑐𝑐(𝑎) \ {𝑏})↓ℓ+1 ∪ {𝑏↓ℓ }. �

Proposition 6 makes it possible to write an algorithm to construct the lattice
𝐿𝐵 (𝑛) in linear time (with respect to its size).

7.2 The infinite lattice 𝑳𝑩(∞)

Imagine that (∞) is the initial configuration where the first column contains infinitely
many grains and all the other columns contain no grains. Then the transitions 𝑉 and
𝐻 can be performed on (∞) just as if it is finite, and we call 𝐿𝐵 (∞) the set of all
the configurations reachable from (∞). A typical element 𝑎 of 𝐿𝐵 (∞) has the form
(∞, 𝑎2, 𝑎3, . . . , 𝑎𝑘 ). As in the previous section, we find that the dominance ordering
on 𝐿𝐵 (∞) (when the first component is ignored) is equivalent to the order induced
by the dynamical model.
For any two elements 𝑎 = (∞, 𝑎2, . . . , 𝑎𝑘 ) and 𝑏 = (∞, 𝑏2, . . . , 𝑏ℓ) of 𝐿𝐵 (∞),

we define 𝑐 by: 𝑐𝑖 = 𝑚𝑎𝑥(∑ 𝑗≥𝑖 𝑎 𝑗 ,
∑

𝑗≥𝑖 𝑏 𝑗 ) −
∑

𝑗>𝑖 𝑐 𝑗 for all 𝑖 such that 2 ≤ 𝑖 ≤
𝑚𝑎𝑥(𝑘, ℓ). One can check that 𝑐 is an element of 𝐿𝐵 (∞), i.e. 𝑐1 = ∞ and 𝑐𝑖 > 𝑐𝑖+1
for all 𝑖 > 1, and then 𝑐 = 𝑎 ∧ 𝑏. This implies that:

Theorem 13 The set 𝐿𝐵 (∞) is a lattice. �

Now for any 𝑛 > 1, there are two canonical embeddings of 𝐿𝐵 (𝑛) in 𝐿𝐵 (∞), defined
by

𝜋 : 𝐿𝐵 (𝑛) −→ 𝐿𝐵 (∞)
𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) ↦→ 𝜋(𝑎) = (∞, 𝑎2, . . . , 𝑎𝑘 ),

𝜒 : 𝐿𝐵 (𝑛) −→ 𝐿𝐵 (∞)
𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) ↦→ 𝜒(𝑎) = (∞, 𝑎1, 𝑎2, . . . , 𝑎𝑘 ).

The following result is straightforward:
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Proposition 7 Both 𝜋 and 𝜒 are embedding of lattices.

By using the embedding Π, one can consider 𝐿𝐵 (∞) as the limit of 𝐿𝐵 (𝑛) when
𝑛 goes to infinity. By using the embedding 𝜒, one can consider 𝐿𝐵 (∞) as the disjoint
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Fig. 14 The first elements and transitions of 𝐿𝐵 (∞) . As shown on this figure for 𝑛 = 6, we have
two ways to find parts of 𝐿𝐵 (∞) isomorphic to 𝐿𝐵 (𝑛) for any 𝑛.

union of 𝐿𝐵 (𝑛) for all 𝑛, 𝐿𝐵 (∞) =
⊔

𝑛≥0 𝐿𝐵 (𝑛).
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7.3 The infinite binary tree 𝑻𝑩(∞)

As shown in our procedure to construct 𝐿𝐵 (𝑛 + 1) from 𝐿𝐵 (𝑛), each element 𝑎 of
𝐿𝐵 (𝑛 + 1) is obtained from an element 𝑎′ of 𝐿𝐵 (𝑛) by adding of one grain: 𝑎 = 𝑎′↓𝑖

for some integer 𝑖. We will now represent this relation by a tree where 𝑎 ∈ 𝐿𝐵 (𝑛+1)
is the son of 𝑎′ ∈ 𝐿𝐵 (𝑛) if and only if 𝑎 = 𝑎′↓𝑖 and we label with 𝑖 the edge 𝑎′ −→ 𝑎

in this tree. We denote this tree by 𝑆𝑇 (∞). The root of this tree is the empty partition
(). We will show two ways to find the partitions of a given integer 𝑛 in 𝑇 (∞), which
will make it possible to give an efficient and simple algorithm to compute them.
Moreover, the recursive structure of this tree will allow us to obtain a recursive
formula for the cardinal of 𝐿𝐵 (𝑛) and some special classes of partitions.
From the construction of 𝐿𝐵 (𝑛 + 1) from 𝐿𝐵 (𝑛), it follows that the nodes of this

tree are the elements of
⊔

𝑛≥0 𝐿𝐵 (𝑛), and that each node 𝑎 has at least one son,
𝑎↓1 , and one more if 𝑎 begins with a slippery plateau of length 𝑙: the element 𝑎↓ℓ+1 .
Therefore, 𝑇 (∞) is a binary tree. We will call left son the first of two sons, and right
son the other (if it exists). We call the level 𝑛 of the tree the set of elements of depth
𝑛. The first levels of 𝑇 (∞) are shown in Figure 14.
Like in the case of 𝐿𝐵 (∞), there are two ways to find the elements of 𝐿𝐵 (𝑛) in
𝑆𝑇 (∞). Based on the construction of 𝐿𝐵 (𝑛 + 1) from 𝐿𝐵 (𝑛) as given above, it is
straightforward that:

Proposition 8 The level 𝑛 of 𝑆𝑇 (∞) is exactly the set of the elements of 𝐿𝐵 (𝑛). �

Wewill now give a recursive description of𝑇 (∞). We first define a certain kind of
subtrees of 𝑇 (∞). Then, we show how the whole structure of 𝑇 (∞) can be described
in terms of such subtrees.

Definition 16 We will call 𝑋𝑘 subtree any subtree 𝑇 of 𝑇 (∞) which is rooted at an
element 𝑎 = (𝑖, . . . , 𝑖←−−−−−−→

𝑘

, 𝑎𝑘+1, . . . ) with 𝑎𝑘+1 ≤ 𝑖 − 1 and which is either the whole

subtree of 𝑇 (∞) rooted at 𝑎 in the case 𝑎 has only one son, or 𝑎 and its left subtree
otherwise. Moreover, we define 𝑋0 as a simple node. �

The next proposition shows that all the 𝑋𝑘 subtrees are isomorphic (see Figure 16).

Proposition 9 An 𝑋𝑘 subtree, with 𝑘 ≥ 1, is composed by a chain of 𝑘 + 1 nodes
(the rightmost chain) whose edges are labeled 1, 2, . . . , 𝑘 and whose 𝑖-th node is the
root of an 𝑋𝑖−1 subtree for all i between 1 and 𝑘 + 1.

This recursive structure and the above propositions allow us to give a compact
representation of the tree by a chain (see Figure 17).

Theorem 14 The tree 𝑇 (∞) can be represented by the infinite chain defined as
follows: the 𝑖-th node of this chain, (1, . . . , 1←−−−−−−−→

𝑖−1
), is linked to the following node in the

chain by an edge labeled with 𝑖 and is the root of an 𝑋𝑖−1 subtree.

Moreover, we can prove a stronger property for each subtree in this chain:
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Fig. 15 Generating tree of partitions

X1 X 2 X 3 X k-2 X k-1
X k

1 4 k-2 k-1 k2 3

Fig. 16 Self-referencing structure of 𝑋𝑘 subtrees

Corollary 6 The 𝑋𝑘 subtree of 𝑇 (∞) with root (1, . . . , 1) contains exactly the par-
titions of length 𝑘 .

We can now state our last result:



A survey on the stability of (Extended) Linear Sand Pile Model 27

X1 X 2 X 3 X 5 X 6

1 11 111
1 2 3 4

X 4

1111 11111
5 6

111111
7

Fig. 17 Representation of 𝑇𝑃 as a chain

Corollary 7 Let 𝑐(ℓ, 𝑘) denote the number of paths in an 𝑋𝑘 tree originating from
the root and having length ℓ. We have:

𝑐(ℓ, 𝑘) =
{
1 if ℓ = 0 or 𝑘 = 1;∑𝑖𝑛 𝑓 (ℓ,𝑘)

𝑖=1 𝑐(ℓ − 𝑖, 𝑖) otherwise.

Moreover, |𝐿𝐵 (𝑛) | = 𝑐(𝑛, 𝑛) and the number of partitions of 𝑛 with length exactly 𝑘

is 𝑐(𝑛 − 𝑘, 𝑘). �

8 Conclusion

In this work, we seek characterization of reachable configurations and of stable
configurations of many extensions of Sand Pile Model. In SPM and their extensions,
a configuration is represented by an integer partition or by a unimodal sequence.
In almost all cases, the initial configuration is just a 1-part partition. There are
also models where the initial configuration is an arbitrary integer partition, some
enumerations for this more general models were studied in [44], but questions about
convergence time, the structure of configuration space, etc, remained open. It will be
interesting to investigate similar problems for other classes of graphs such as trees
or planar graphs.
The SPMs taken together when the number of grains is arbitrarily large form

another lattice, called the infinite SPM. This yields an infinite lattice as well as an
infinite tree on the set of all integer partitions. There are different ways to label
the edges of this tree, each labeling gives rise to a generating function on the set of
corresponding partitions. This approach is potentially useful in constructing partition
identities. We provide some examples and discuss some questions around this point
of view.

Acknowledgements This work was supported by the Vietnam National Foundation for Science
ans Technology Development under the grant number NAFOSTED 101.99-2016.16 and by the
Vietnam Institute for Advanced Study in Mathematics.



28 PHAN Thi Ha Duong

References

1. R. Anderson, L. Lovász, P. Shor, J. Spencer, E. Tardos, and S. Winograd. Disks, ball, and
walls: analysis of a combinatorial game. Amer. math. Monthly, 96:481–493, 1989.

2. P. Bak. How Nature Works: The Science of Self-Organized Criticality. Springer, 1 edition,
April 1999.

3. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of 1/f noise.
Phys. Rev. Lett., 59:381–384, 1987.

4. M. Baker and F. Shokrieh. Chip-firing games, potential theory on graphs, and spanning trees.
J. Combin. Theory Ser. A, 120(1):164 – 182, 2013.

5. N. Biggs. Algebraic potential theory on graphs. Bull. London math. Soc, 29:641–682, 1997.
6. N. Biggs. Chip firing and the critical group on a graph. J. Algebraic Combin., 9:25–42, 1999.
7. A. Bj ¥𝑜rner and L. Lovász. Chip firing games on directed graphs. J. Algebraic Combin.,
1:305–328, 1992.

8. A. Bj ¥𝑜rner, L. Lovász, and W. Shor. Chip-firing games on graphs. European J. Combin.,
12:283–291, 1991.

9. T. Brylawski. The lattice of interger partitions. Discrete Math., 6:201–219, 1973.
10. R. Cori, T. H. D. Phan, and T. T. H. Tran. Signed chip firing games and symmetric sandpile
models on the cycles. RAIRO Inform. Théor. Appl., 47(2):133–146, 2013.

11. R. Cori andD.Rossin. On the sandpile group of dual graphs. European J.Combin., 21:447–459,
2000.

12. J. Desel, E. Kindler, T. Vesper, and R. Walter. A simplified proof for the self-stabilizing
protocol: a game of cards. Inform. Proc. Lett., 54:327–328, 1995.

13. D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett., 64:1613–
1616, 1990.

14. E. Duchi, R. Mantaci, T. H. D. Phan, and D. Rossin. Bidimensional sand pile and ice pile
models. Pure Math. Appl. (PU.M.A.), 17(1-2):71–96, 2006.

15. J. Durand-Lose. Grain sorting in the one dimensional sand pile model. Complex Systems,
10(3):195–206, 1996.

16. J. Durand-Lose. Parallel transient time of one-dimensional sand pile. Theoret. Comput. Sci.,
205(1-2):183–193, 1998.

17. K. Eriksson. No polynomial bound for the chip firing game on graphs. Proc. Amer. Math.
Soc., 112(4):1203–1205, 1991.

18. E. Formenti and B.Masson. On computing fixed points for generalized sandpiles. International
Journal of Unconventional Computing, 2(1):13–25, 2006.

19. E. Formenti, B. Masson, and T. Pisokas. Advances in symmetric sandpiles. Fundam. Inf.,
76(1-2):91–112, 2007.

20. E. Formenti, K. Perrot, and E. Rémila. Computational complexity of the avalanche problem on
one dimensional kadanoff sandpiles. Proceedings of AUTOMATA’2014, 8996(LNCS):21–30,
2014.

21. E. Formenti, T. V. Pham, Thi Ha Duong T. H. D. Phan, and T. T. H. Tran. Fixed-point forms
of the parallel symmetric sandpile model. Theoret. Comput. Sci., 533:1–14, 2014.

22. E. Goles and M. A. Kiwi. Games on line graphs and sand piles. Theoret. Comput. Sci.,
115:321–349, 1993.

23. E. Goles, M. Latapy, C. Magnien, M. Morvan, and H. D. Phan. Sandpile models and lattices:
a comprehensive survey. Theoret. Comput. Sci., 322(2):383–407, 2004.

24. E. Goles and M. Margenstern. Universality of chip firing game. Theoret. Comput. Sci.,
172:121–134, 1997.

25. E. Goles, M. Morvan, and H.D. Phan. Lattice structure and convergence of a game of cards.
Ann. of Combinatorics, 6:327–335, 2002.

26. E. Goles, M. Morvan, and H.D. Phan. Sandpiles and order structure of integer partitions.
Discrete Appl. Math., 117:51–64, 2002.

27. E. Goles, M. Morvan, and H.D. Phan. The structure of linear chip firing game and related
models. Theoret. Comput. Sci., 270:827–841, 2002.



A survey on the stability of (Extended) Linear Sand Pile Model 29

28. C. Greene and D. J. Kleiman. Longest chains in the lattice of integer partitions ordered by
majorization. European J.Combin., 7:1–10, 1986.

29. A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp, and D. B. Wilson. Chip-firing and
rotor-routing on directed graphs. In In and out of equilibrium. 2, volume 60 of Progr. Probab.,
pages 331–364. Birkhäuser, Basel, 2008.

30. S.-T. Huang. Leader election in uniform rings. ACM Trans. Programming Languages Systems,
15(3):563–573, 1993.

31. L. P. Kadanoff, S. R. Nagel, L. Wu, and S. m. Zhou. Scaling and universality in avalanches.
Phys. Rev., A 39(12):6524–6537, Jun 1989.

32. R. Karmakar and S.S. Manna. Particle hole symmetry in a sandpile model. J. Statistical
Mechanics: Theory and Experiment, 2005(01):L01002, 2005.

33. M. Latapy, R.Mataci,M.Morvan, andH.D. Phan. Structure of some sand pilesmodel. Theoret.
Comput. Sci, 262:525–556, 2001.

34. M. Latapy and H.D. Phan. The lattice structure of chip firing games. Phys. D, 115:69–82,
2001.

35. M. Latapy and T. H. D. Phan. The lattice of integer partitions and its infinite extension. Discrete
Math., 309(6):1357–1367, 2009.

36. M. H. Le, T. V. Pham, and T. H. D. Phan. A polynomial-time algorithm for reachability problem
of a subclass of petri net and chip firing games. In Computing and Communication Technolo-
gies, Research, Innovation, and Vision for the Future (RIVF), 2012 IEEE RIVF International
Conference on, pages 1–6. IEEE, 2012.

37. M. H. Le and T. H. D. Phan. Order structure and energy of conflicting chip firing game. Acta
Mathematica Vietnamica, year=2008.

38. M. H. Le and T. H. D. Phan. Integer partitions in discrete dynamical models and ECOmethod.
Vietnam J. Math., 37(2-3):273–293, 2009.

39. MinhHa Le and Thi HaDuong Phan. Strict partitions and discrete dynamical systems. Theoret.
Comput. Sci.

40. L. Levine. Sandpile groups and spanning trees of directed line graphs. J. Combin. Theory Ser.
A, 118(2):350–364, 2011.

41. C. Magnien, H. D. Phan, and L. Vuillon. An extension of the model of chip firing game.
Discrete Math. Theoret. Comput. Sci., AA:229–244, 2001.

42. K. Perrot and T. V. Pham. Feedback arc set problem and np-hardness of minimum recurrent
configuration problem of chip-firing game on directed graphs. Ann. Comb., 19(2):373–396,
2015.

43. K. Perrot, T. V. Pham, and T. H. D. Phan. On the set of fixed points of the parallel symmetric
sand pile model. Automata 2011 - 17th International Workshop on Cellular Automata and
Discrete Complex Systems, Discrete Math. Theor. Comput. Sci. Proc. AP, pages 17–28, 2012.

44. K. Perrot and E. Rémila. Kadanoff sand pile model. avalanche structure and wave shape.
Theoret. Comput. Sci., 504:52–72, 2013.

45. T. V. Pham and T.H.D. Phan. Lattices generated by chip firing game models: Criteria and
recognition algorithms. European J. Combin., 34(5):812–832, 2013.

46. T. H. D. Phan. Two sided sand piles model and unimodal sequences. RAIRO Inform. Théor.
Appl., 42(3):631–646, 2008.

47. T. H. D. Phan and T. T. H. Tran. On the stability of sand piles model. Theoret. Comput. Sci.,
411(3):594–601, 2010.

48. Y. Le Borgne R. Cori. The riemann-roch theorem for graphs and the rank in complete graphs.
Electron. J. Combin., 23, 2016.

49. D. Rossin and Y. Le Borgne. On the identity of the sandpile group. Discrete Math., 256,
3:756–790, 2002.

50. J. Spencer. Balancing vectors in the max norm. Combinatorica, 6:55–65, 1986.
51. R. P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge University Press, Cambridge,
1999.

52. G. Tardos. Polynomial bound for a chip firing game on graphs. SIAM J. Discrete Math.,
1(3):397–398, 1988.


