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Abstract. This paper is motivated by the transverse stability properties of
the line solitary wave solutions of the (a,b,c,d) class of Boussinesq systems

introduced in [12]. We first review the known results on existence of one-

dimensional solitary waves. Then we address the question of long time ex-
istence of the systems satisfied by a localized perturbation of a line solitary

wave.

1. Introduction

The motivation of this paper is the study of transverse stability issues of line
solitary waves to the (a,b,c,d) Boussinesq systems introduced in [12] to model sur-
face water waves. They couple the elevation η and the horizontal velocity u of the
wave:

(1.1)

{
ηt +∇ · u + ε∇ · (ηu) + µ[a∇ ·∆u− b∆ηt] = 0,
ut +∇η + ε 12∇|u|

2 + µ[c∇∆η − d∆ut] = 0, in Rd × R, d = 1, 2.

Here µ and ε are the small parameters (shallowness and nonlinearity parameters
respectively) defined as

µ =
h2

λ2
, ε =

α

h
where α is a typical amplitude of the wave, h a typical depth and λ a typical
horizontal wavelength.

In the Boussinesq regime, ε and µ are supposed to be of same order, ε ∼ µ� 1,
and we will take for simplicity ε = µ, writing (1.1) as

(1.2)

{
ηt +∇ · u + ε[∇ · (ηu) + a∇ ·∆u− b∆ηt] = 0
ut +∇η + ε[ 12∇|u|

2 + c∇∆η − d∆ut] = 0,

The class of systems (1.1), (1.2) models water waves on a flat bottom propagating
in both directions in the aforementioned regime (see [12, 13, 11]).

One could also derive similar systems with a non trivial bathymetry (non flat
bottom), see [18], and one has then to distinguish between the case when the bottom
varies slowly and the case where it is strongly varying. In the former case, (1.2)
has to be slightly modified and becomes

(1.3)

{
ηt +∇ · u + ε[∇ · ((η − β)u) + a∇ ·∆u− b∆ηt] = 0,
ut +∇η + ε[ 12∇|u|

2 + c∇∆η − d∆ut] = 0,

where β is a smooth function on Rd, d = 1, 2, bounded together with its derivatives
measuring the bathymetry. In the second case one gets much more complicated
systems [18, 47].
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Also, systems similar to (1.2) can be derived for internal waves, see for instance
[14, 30, 35].

Recall (see [12, 31]) that the modeling parameters are constrained by the relation

a+ b+ c+ d =
1

3
− τ,

where τ ≥ 0 is the surface tension parameter (Bond number).
Recall also [12] that (1.2) is linearly well-posed when

(1.4) a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0,

and when

(1.5) a = c, b ≥ 0, d ≥ 0.

It has been established in [11] that the (a,b,c,d) systems are good approximations
of the full water waves system, in the relevant regime, with an error of order O(ε2t).
The complete justification of the Boussinesq systems needs thus to establish the
long time existence for the Cauchy problem, that is on time scales of order O(1/ε).
This has been achieved for all linearly well-posed Boussinesq systems in [48, 55, 16,
56]. Note that no global well-posedness result seems to be known for the Cauchy
problem of (1.2) in the spatial two-dimensional case (however the global existence
of solutions is established in a few one-dimensional cases, see [13, 2, 57]).

It has been proved by Zakharov [62] that the full water waves system is Hamil-
tonian. This is not the case in general for the (a,b,c,d) systems due to the trans-
formations made to derive them starting from the following (ill-posed) ”original”
Boussinesq system obtained by expanding the Dirichlet-Neumann operator with
respect to ε (see [12, 44]):

(1.6)

{
ηt +∇ · u + ε

3∆∇ · u + ε∇ · (ηu) = 0
ut +∇η + ε

2∇|u|
2 = 0.

Nevertheless, an Hamiltonian structure is found when b = d. More precisely,
denoting by Jε the skew adjoint matrix operator

Jε =

 0 ∂x(I − εb∆)−1 ∂y(I − εb∆)−1

∂x(I − εb∆)−1 0 0
∂y(I − εb∆)−1 0 0

 ,

and

U =

(
η
u

)
,

the Boussinesq systems write in this case

∂tU = −Jε(gradHε)(U),

where Hε(U) is the Hamiltonian given by

Hε(U) =
1

2

∫
R2

(
− cε|∇η|2 − aε|∇u|2 + η2 + |u|2 + εη|u|2

)
dxdy,

so that Hε(U) is (formally) conserved by the flow.
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Note that when d = 1 the following quantity (momentum) is also formally con-
served

Iε(U) =

∫
R
(ηu+ εbηxux)dx.

We are interested here in localized solitary wave solutions to (1.2). No such
solutions are known to exist in the two-dimensional case (see however [26] for the
existence of asymmetric periodic two-dimensional wave patterns).

We will thus focus on one-dimensional solitary waves and more specifically to
their transverse stability. To start with we review the known results on the existence
of one dimensional traveling waves to (1.2).

We thus look for solutions of (1.2) of the form η = η(x − ωt), u = u(x − ωt)
where x ∈ R and (η(x), u(x))→ (0, 0) as |x| → ∞ yielding the system

(1.7)

{
−ωη + u+ εuη + εauxx − εbηxx = 0
−ωu+ η + ε

2u
2 + εcuxx − εdηxx = 0.

Min Chen [19, 20] has found in a few cases exact solutions when η and u are
proportional but it turns out that the only case compatible with the well posedness
conditions (1.4) and (1.5) are

(1.8) a− b+ 2d = 0, a = c, d > 0

and

(1.9)

a−b+2d 6= 0 and p > 0, (p−1

2
)((b−a)p−b) > 0 where p = (−b+c+2d)/(a−b+2d) > 0.

The exact solutions have a sech profile, namely

η(x, t) = η0sech2 (λ(x+ x0 − cst))
and

u(x, t) = ±
√

3

η0 + 3
η0sech2(λ(x+ x0 − cst)),

where λ and cs are appropriate constants.
Note that conditions (1.8), (1.9) can hold in the non Hamiltonian case b 6= d.

On the other hand no general non existence result seems to be available. One
has nevertheless the following remark which excludes the existence of solitary waves
with small velocity when the well-posedness condition (1.5) holds true with more-
over b = d.

Proposition 1.1. Let b = d ≥ 0. Then any H1 solitary wave solution (η, u) satisfies
the identity ∫

(u2 + η2 + 5ε(au2x + cη2x))dx = 2ω

∫
(3uη − 5εbuxηx)dx
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Proof. This is a standard Pohojaev type argument. The following computations
can be justified by a regularizing procedure.

We multiply the first equation in (1.7) by xux, the second one by xηx. Integrating
the resulting equations and adding one gets

(1.10)
1

2

∫
(u2 + η2 + aεu2x + cεη2x) =

∫
(ωuη − εbωuxηx −

ε

2
u2η).

We then multiply the first equation in (1.7) by u the second one by η. Integrating
the resulting equations and adding one gets

(1.11)

∫
(u2 + η2 − aεu2x − cεη2x) = ε

∫
(2ωbuxηx −

3

2
ηu2).

The proposition results from substracting three times (1.10) from (1.11).
�

As a consequence, one obtains that no non trivial solitary waves with ω small
exist when

a ≥ 0, c ≥ 0, b = d = 0,

or

a > 0, c > 0, b > 0.

We recall that one need the condition a = c to get a well-posed system when a,
c are not negative.

The paper is organized as follows. In the next section we survey the known
existing results on existence (and stability) of one-dimensional traveling waves to
(1.2). In section 3 we prove the suitable long time existence result for the systems
derived from (1.2) by a localized perturbation of a line solitary wave.
Notation:

1) The notation “ :=′′ means the definition notation.
2) |.|p the Lp(Rn) norm.
3) The L2(Rn) scalar product is denoted by (u, v)2 :=

∫
Rn uvdx.

4) For any s ∈ R, we denote by Hs(Rn) the L2 based Sobolev spaces with the
norm |.|Hs .

5) The notation f ∼ g means that there exists a constant C such that 1
C f ≤

g ≤ Cf and f . g means that there exists a constant B such that f ≤ Bg.
6) The condensed notation As = Bs + 〈Cs〉s≥s̃ means that As = Bs if s ≤ s̃

and As = Bs + Cs if s > s̃.
7) Vectors is denoted in bold letters, e.g. u. When X is a Banach space,

u ∈X means that each component of u belongs to X and the norm of u
is denoted by |u|X . If the components of u belong to different spaces, we
will precise the notations.

8) The Fourier transform of a tempered distribution u ∈ S ′ is denoted by û.
If f and u are two functions defined on Rn, the Fourier multiplier f(D)u is
defined in term of Fourier transforms, i.e.

f̂(D)u(ξ) = f(ξ)û(ξ).

9) If A,B are two operators, [A,B] = AB −BA denotes their commutator.
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10) For ξ ∈ Rn we denote: 〈ξ〉 =
√

1 + |ξ|2 and define the operator Λs as a

Fourier multiplier with the symbol 〈ξ〉s/2 with s ∈ R.
11) The notation uj is the jth component of the vector u.

2. Known results on one-dimensional solitary waves

We now turn to the existence results for solitary waves. Except the aforemen-
tioned explicit cases aforementioned, most of the results concern the Hamiltonian
case b = d.

When
b = d > 0, a < 0, c < 0,

the existence of solitary waves with small propagation speeds is obtained in [28]
by using the concentration-compactness method to minimize in H1(R)×H1(R) the
functional (where µ > 0 is fixed)

Eµ(η, u) =
1

2

∫
R

(−εcu2x − εaη2x + η2 + u2)dx− µ
∫
R

(ηu+ εbηxux)dx

under the constraint

P (η, u) =
1

2

∫
R
ηu2dx = p

Assuming moreover that

(2.1) ac > b2,

the solitary waves are shown in [27] to be orbitally stable. Note that (2.1) implies
that a+ b+ c+ d < 0, that is τ > 1

3 , corresponding to strong surface tension.
We now consider the case

a < 0, c < 0, b = d = 0.

Oliveira [49] has proven in this case the existence of a family of non-negative,
radially decreasing, exponentially decaying, solitary waves with small velocity and
having a uniform (in velocity) L2 bound.

2.1. Boussinesq and Euler-Korteweg. Of special interest is the case a = b =
d = 0, c < 0 since it appears to be a particular case of Euler-Korteweg systems that
write

(2.2)

{
∂tρ+∇ · (ρu) = 0
∂tu + (u · ∇)u +∇(g(ρ)) = ∇

(
K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
,

where K(ρ) > 0 is the capillarity coefficient. See Benzoni-Danchin-Descombes
[9] for the LWP of the Cauchy problem for ”general” g(ρ) and K(ρ) and also [10]
where a long time existence result is obtained for Euler-Korteweg systems in a
Boussinesq scaling.

Setting K(ρ) = K > 0, g(ρ) = ρ, ρ = 1 + η,u = ∇ψ, one gets

(2.3)

{
∂tη +∇ · u +∇ · (ηu) = 0
∂tu + 1

2∇|u|
2 +∇η = K∇∆η,

which is the (0, 0,−K, 0) Boussinesq system.
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To recover exactly an (abcd) Boussinesq system involving the small parameter
ε, one has to consider for (2.2) the Boussinesq regime (see [10], that is

η(x, y, t) = εη̃(
√
εx,
√
εy,
√
εt), u(x, y, t) = εũ(

√
εx,
√
εy,
√
εt).

When applied to (2.3) this yields theb (0,0,0-K) Boussinesq for (η̃, ũ) in the
variables (X,Y, T ) = (

√
εx,
√
εy,
√
εt).

One -dimensional solitary waves for (2.2) have been studied in [5, 6, 8, 3, 50].
When applied to the Bousinesq system (2.3), they yield the existence of solitary
waves of velocity |ω| < 1. The existence of solitary waves follows from a phase
portrait analysis of the governing ODEs. They can also be viewed as critical points
of the Hamiltonian

H(η, u) =
1

2

∫
R

(Kη2x + η2 + u2 + u2η)dx

under the constraint

Q(η, u) =

∫
R
ηudx = const,

see[6].
The stability of solitary waves of speed ω is governed by the convexity of the

Boussinesq momentum of instability

m(ω) = Hε(η, u)− ωQ(η, u)

More precisely, the solitary wave (ηω, uω) is orbitally stable when

∂2m

∂ω2
(ω) > 0

and linearly unstable when

∂2m

∂ω2
(ω) < 0.

The transverse stability of one-dimensional solitary waves of (2.2) is studied in
[52, 50]. Again we restrict those results to the particular case (2.3). The linear
instability sf solitary waves with velocity |ω| < 1 is proved in [6, 52]. The nonlinear
instability (for localized perturbations in (x, y)) is established in [50].

2.2. Further studies. Other studies concern the weaker notion of spectral sta-
bility. Numerical investigations of the spectral stability (both for one-dimensional
and transverse perturbations) are displayed in [29] for the cases

a = −1

9
, b =

1

3
, c = −1

9
, d =

2

9
and

a = −8

9
, c = −8

9
, b =

10

9
, d = 1,

for which the solitary waves are explicit ([19, 20].
Rigorous spectral stability results are proven in [37] for the explicit solitary waves

known to exist in the cases
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a = c = −b, b = d > 0

and

a = c < 0, b = d > 0.

On the other hand, localized solitary waves have been proved to exist for the
Bona-Smith class of Boussinesq systems. The original Bona-Smith system derived
in [15] corresponds to a = 0, b = d = 1

3 , c = − 1
3 . The existence of solitary waves in

this case is due to Toland [58].

A general class of Bona-Smith systems corresponds to a = 0, b = d = 3θ2−1
6 , c =

2−3θ2
3 , 23 ≤ θ2 ≤ 1 where θ parametrizes the height of the fluid layer where the

horizontal velocity is taken, see [15]. Then, the techniques of Toland ([59]) can
be used to prove the existence of solitary waves of arbitrary velocity c > 1 (see
[33, 32]). The uniqueness of such solitary waves is considered in [60].

Remark 2.1. The Boussinesq systems of the Bona-Smith class are among the
few for which one can get the global existence of solutions to the Cauchy prob-
lem. Actually (see [15, 13]), such a result is obtained for initial data satisfying the
non cavitation condition 1 + εη0 > 0 and having a sufficiently small Hamiltonian
H(η0, u0).

Remark 2.2. The Boussinesq system corresponding to a = c = b = 0, d > 0 has a
particular importance since it is the BBM version of the natural (ill-posed) system
obtained by expanding the Dirichlet-Neumann operator with respect to ε in the full
water wave system (see[44]).

By considering it as a dispersive perturbation of the hyperbolic Saint-Venant
system, Schonbek and Amick ([57, 2] have proved that the global existence of the
Cauchy problem for the one-dimensional a = c = d = 0, b > 0 system has global
solutions for arbitrary large initial data. On the other hand this system is not
Hamiltonian and to our knowledge no (positive or negative) existence result for
solitary waves is known.

The case a = c = d = 0, b > 0 is also particular. It is linearly ill-posed
but in the one-dimensional case this ill-posed system is also known as the Kaup-
Kupperschmidt system and it is completely integrable ([39, 41]).

3. Long time existence

We show here how to extend the long time existence results in [55, 56] to the
systems obtained by perturbing a line soliton by a localized two-dimensional per-
turbation.

Remark 3.1. Since it does not rely on dispersive techniques but rather on ”hy-
perbolic” symmetrization arguments, the method used in [55, 56] works as well for
periodic perturbations in y, that is for the problem posed on R × T. It works also
for the purely periodic Cauchy problem posed on T2 which is the right framework to
investigate the transverse stability of cnöıdal waves which we do not address here.

Since there are many cases where there exists the one dimensional solitary waves,
we will focus on the following values of (a, b, c, d).
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(3.1) a < 0, c < 0, b > 0, d > 0,

(that is the generic case in the terminology of [55] and in fact it contains also the
Hamiltonian case b = d.),
or

(3.2) a = 0, c < 0, b = d > 0

(That corresponds to the Bona-Smith class),
or the case of Euler-Korteweg systems

(3.3) a = b = d = 0, c < 0

we will from now on assume that (3.1),(3.2) or (3.3) holds.

Let Ũω = (η̃ω, ũω) a one dimensional solitary wave of velocity ω. As aforemen-

tioned, studying the transverse stability of Ũω with respect to periodic transverse
perturbations in y would necessitate to solve the Cauchy problem for (1.1) in a
Hs(R × T) setting and this can be done as in [55, 56] for the Hs(R2) case. We

consider now localized perturbations of Ũω. They satisfy the system

(3.4)

{
ηt +∇ · u + ε[∇ · ((ηu) + η̃ωu + ηũω) + a∇ ·∆u− b∆ηt] = 0
ut +∇η + ε[∇(u · ũω) + 1

2∇|u|
2 + c∇∆η − d∆ut] = 0,

with initial condition (η0,u0). Note that, ũω = (ũω, 0).
The solitary waves of the (a, b, c, d) Boussinesq system have either explicit form

or implicit form. The explicit solitary waves have “Sech” profile and the implicit
solitary wave is in H1, so we need different treatment for each case.

3.1. H1- solitary waves. In this section we study the case: b = d > 0, a < 0, c <
0 for which in [28], we know the existence of solitary waves in H1(R)×H1(R).

For the completeness, we follow the general lines in [64] to prove the Cauchy
problem of (3.4).

We begin with following lemma (see [65])

Lemma 3.1. (Grisvard) Let s1, s2, s3 ∈ R such that s1 ≥ s3, s2 ≥ s3, s1 + s2 ≥
0, s1 + s2 − s3 > n/2. Then, (f, g) 7→ fg is bilinear continuous from Hs1(Rn) ×
Hs2(Rn) into Hs3(Rn). The result is also valid for a bounded domain Ω ⊂ Rn with
Lipschitz boundary.

Theorem 3.1. Assume b = d > 0, a < 0, c < 0. Let (η0,u0) ∈ H2(R2)3. Then,
there exist T > 0 and a unique solution

(η,u) ∈ C([0, T ];H1(R2))3

of (3.4) with initial condition (η0,u0). The existence time scale is of order O(1).

Proof. With the condition of (a, b, c, d) we rewrite (3.4) as
(3.5)

ηt + (I − bε∆)−1 [∇ · u + ε∇ · (ηu) + ε∇(η̃ωu) + ε∇ · (ηũω) + aε∇ ·∆u] = 0

ut + (I − dε∆)−1
[
∇η + ε∇(u · ũω) +

1

2
ε∇∆η

]
= 0.



BOUSSINESQ SYSTEMS 9

then take its Fourier transform

d

dt

 η̂
û1
û2

+i|ξ|A(ξ)

 η̂
û1
û2

+i


ε

1+bε|ξ|2

(
ξ1η̂u1 + ξ2η̂u2 + ξ1̂̃ηωu1 + ξ2̂̃ηωu2

)
ε

1+dε|ξ|2

(
ξ1û1ũω + 1

2ξ1 |̂u|2
)

ε
1+dε|ξ|2

1
2ξ2 |̂u|2

 = 0.

Where the dispersive matrix A(ξ) given by

A(ξ) =


0 ξ1

|ξ|

(
1−aε|ξ|2
1+bε|ξ|2

)
ξ2
|ξ|

(
1−aε|ξ|2
1+bε|ξ|2

)
ξ1
|ξ|

(
1−cε|ξ|2
1+dε|ξ|2

)
0 0

ξ2
|ξ|2

(
1−cε|ξ|2
1+dε|ξ|2

)
0 0


The eigenvalues of A(ξ) are {0,±σ(ξ)} where

σ(ξ) =

(
(1− aε|ξ|2)(1− cε|ξ|2)

(1 + bε|ξ|2)(1 + dε|ξ|2)

)1/2

.

Diagonalize the above system:

P−1(ξ)A(ξ)P (ξ) =

 0 0 0
0 σ(ξ) 0
0 0 −σ(ξ),


with

P (ξ) =

 0 α(ξ) −α(ξ)

− ξ2
|ξ|

ξ1
|ξ|

ξ1
|ξ|

ξ1
|ξ|

ξ2
|ξ|

ξ2
|ξ|

 , P−1(ξ) =
1

2α(ξ)

 0 −2α(ξ) ξ2|ξ| 2α(ξ) ξ1|ξ|
1 α(ξ) ξ1|ξ| α(ξ) ξ2|ξ|
−1 α(ξ) ξ1|ξ| α(ξ) ξ2|ξ| ,

 ,

where

α(ξ) =

(
(1 + dε|ξ|2)(1− aε|ξ|2)

(1− cε|ξ|2)(1 + bε|ξ|2)

)1/2

.

Performing the change of variables(
µ̂
ŵ

)
= P−1

(
η̂
û

)
,

where w = (w1, w2), we have

d

dt

 µ̂
ŵ1

ŵ2

+i|ξ|

 0 0 0
0 σ(ξ) 0
0 0 −σ(ξ)

 µ̂
ŵ1

ŵ2



= −iP−1(ξ)


ε

1+bε|ξ|2

(
ξ1η̂u1 + ξ2η̂u2 + ξ1̂̃ηωu1 + ξ2̂̃ηωu2

)
ε

1+dε|ξ|2

(
ξ1û1ũω + 1

2ξ1 |̂u|2
)

ε
1+dε|ξ|2

1
2ξ2 |̂u|2

 .

(3.6)
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We have

µ̂(ξ) = − ξ2
|ξ|
û1(ξ) +

ξ1
|ξ|
û2(ξ)

ŵ1(ξ) =
1

2α(ξ)
η̂(ξ) +

1

2

ξ1
|ξ|
û1(ξ) +

1

2

ξ2
|ξ|
û2(ξ)

ŵ2(ξ) = − 1

2α(ξ)
η̂(ξ) +

1

2

ξ1
|ξ|
û1(ξ) +

1

2

ξ2
|ξ|
û2(ξ).

Thus,

(η, u1, u2) ∈ (H1(R2))3 ⇒ (µ,w1, w2) ∈ (H1(R2))3.

From (3.6)

(3.7)
d

dt

 µ
w1

w2

+ B

 µ
w1

w2

 = N

 µ
w1

w2

 ,

where B is the skew-adjoint matrix operator with symbol

i|ξ|

 0 0 0
0 σ(ξ) 0
0 0 −σ(ξ)

 .

The nonlinear term’s Fourier transform is

−iP−1(ξ)


ε

1+bε|ξ|2

(
ξ1η̂u1 + ξ2η̂u2 + ξ1̂̃ηωu1 + ξ2̂̃ηωu2

)
ε

1+dε|ξ|2

(
ξ1û1ũω + 1

2ξ1 |̂u|2
)

ε
1+dε|ξ|2

1
2ξ2 |̂u|2

 .

Denoting by S(t) the group generated by B then S(t) is a unitary group on
(H1(R2))3. Let W = (µ,w1, w2)T and W0 be related to the initial data (η0,u0).
By Duhamel’s formula, (3.7) with initial data W0 has integral form as follows

(3.8) W (t) = S(t)W0 +

∫ t

0

S(t− s)N (W ) ds.

We only estimate the new terms given by the line solitary wave which correspond

to the nonlinear parts: ̂̃ηωu1, ̂̃ηωu2, û1ũω.
Note that, α(ξ) is of order 0, all the pseudo-differential operators involved are of

order 0, so is P−1(ξ). Then, the nonlinear term correspond to û1ũω takes the form
(in Fourier space)

p(ξ)
ε

1 + dε|ξ|2
ξ1û1ũω,
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where p(ξ) is a symbol of order 0. We need to estimate∣∣∣∣∫ t

0

ei|ξ|σ(ξ)(t−s) 〈ξ〉 p(ξ) ε

1 + dε|ξ|2
ξ1û1ũω

∣∣∣∣
L2(R2)

≤ t3/2
∣∣∣∣〈ξ〉 p(ξ) ε

1 + dε|ξ|2
ξ1û1ũω

∣∣∣∣
L∞([0,t],L2(R2))

≤ t3/2C
∣∣∣〈ξ〉 û1ũω∣∣∣

L∞([0,t],L2(R2))

≤ t3/2C
∣∣∣(〈ξ1〉+ 〈ξ2〉)û1ũω

∣∣∣
L∞([0,t],L2(R2))

≤ Ct3/2 |ũω|L∞([0,t],H1(R)) |u1|L∞([0,t],H1(R2)) .

Here C is a general constant independent of ε and we used Lemma (3.1) for s1 =
s2 = 1, s3 = 0 and n = 0, 1. Estimates for other terms are similar.
It is also clear that the existence time scale given by using this method is of order
O(1).

�

3.2. Solitary waves with Sech profile. Before stating the main result of this
section we need to introduce the space (see [55]) :

Definition 3.1. For any s ∈ R, k ∈ N, ε ∈ (0, 1), the Banach space Xs
εk(Rn) is

defined as Hs+k(Rn) equipped with the norm:

(3.9) |u|2Xs

εk
= |u|2Hs + εk|u|2Hs+k .

The solutions (η,u) of system (3.4) will belong to some spaceXs
εk(R2)×(Xs

εk′
(R2))2

with k and k′ determined by a, b, c, d as follows :

Definition 3.2. For any a, b, c, d satisfying (3.1), (3.2), (3.3) we define a pair
of numbers (k, k′) = (k(a, b, c, d), k′(a, b, c, d)) according to the admissible sets of
(a, b, c, d)′s as follows:

• (k, k′) = (3, 3) for b 6= d, b, d > 0, a, c < 0 ;
• (k, k′) = (3, 4) for b = 0, d > 0, a, c < 0;
• (k, k′) = (1, 1) for b = d = 0, a, c < 0;

Theorem 3.2. Let t0 > 1, s ≥ t0 + 2 if b 6= d or b = d > 0, s ≥ t0 + 4 if b = d = 0.
Assume that η0 ∈ Xs

εk(R2),u0 ∈ Xs
εk′

(R2) satisfy the (non-cavitation) condition

(3.10) 1− εη0 ≥ H > 0, H ∈ (0, 1),

where (k, k′) is defined in Definition 3.2. Then there exists a constant ε0 = ε0(H)
such that for any ε ≤ ε0, there exists T > 0 , such that (3.4) has a unique solution
(η,u)T with η ∈ C([0, T ];Xs

εk(R2)) and u ∈ C([0, T ]; (Xs
εk′

(R2))2). Moreover,

(3.11) max
t∈[0,T ]

(|η|Xs

εk
+ |u|Xs

εk
′ ) ≤ c̃(|η0|Xs

εk
+ |u0|Xs

εk
′ ),

here c̃ = C(H−1) is nondecreasing functions of their argument.
More precisely, the existence time scale, T = O(1/

√
ε) if b 6= d, b, d > 0, a, c < 0.

And T = O(1/ε) if b = d > 0, a = 0, c < 0.
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3.3. Linearization of (3.4). We will follow the idea in [55]. Setting

U = (η,u)T , V = (ζ,v)T = εU,

we rewrite (1.2) as

(3.12)


(1− bε∆)∂tζ +∇ · v +∇ · (ζv) + aε∇ ·∆v = 0,

(1− dε)∂tv +∇ζ +
1

2
∇(|v|2) + cε∇∆ζ = 0.

If b > 0, d ≥ 0 or b = d = 0, let g(D) = (1 − bε∆)(1 − dε∆)−1, then (3.12) is
equivalent after applying g(D) to the second equation to the condensed system

(3.13) (1− bε∆)∂tV +M(V, D)V = 0,

where

(3.14) M(V, D) =

 v · ∇ (1 + ζ + aε∆)∂x1
(1 + ζ + aε∆)∂x2

g(D)(1 + cε∆)∂x1
g(D)(v1∂x1

) g(D)(v2∂x1
)

g(D)(1 + cε∆)∂x2
g(D)(v1∂x2

) g(D)(v2∂x2
)


We denote Ṽω = (ζ̃ω, ṽω)T = (εη̃ω, εũω)T = εŨω the one dimensional solitary wave
of (1.7) , then (3.4) is equivalent to the following perturbation of (3.13) replacing

V by V + Ṽω

(1− bε∆)∂t(V + Ṽω) +M(V + Ṽω, D)(V + Ṽω) = 0,

or

(3.15) (1− bε∆)∂tV +M(V + Ṽω, D)V = −(M(V + Ṽω, D)−M(Ṽω, D))Ṽω.

In order to solve (3.4), we consider the following linearized equation

(3.16) (1− bε∆)∂tV +M(V + Ṽω, D)V = −(M(V + Ṽω, D)−M(Ṽω, D))Ṽω,

or

(3.17) (1− bε∆)∂tV +M(V + Ṽω, D)V = F

where M(V + Ṽω, D) and M(Ṽ, D) are defined in (3.14), and note that the nota-
tion V is considered as a known function.

The idea is to treat the equation (3.17) as a symmetrizable hyperbolic system

under some smallness assumption on V and Ṽω. It is known in [55] that there exists
a symmetrizer SV(D) of M(V, D) such that the principal part of iSV(ξ)M(V, ξ)
is self-adjoint, and that of SV(ξ) is positive and self-adjoint under a smallness
assumption on V. Fortunately, it is also true for the symmetrizer SV+Ṽω

(D) of

M(V + Ṽω, D), so that we can apply that method for solving (3.17) with some
modifications.
We have

(i) If b = d, g(D) = 1, SV(D) is

(3.18)

1 + cε∆ v1 v2
v1 1 + ζ + aε∆ 0
v2 0 1 + ζ + aε∆

 ;

then

(3.19) SV+Ṽω
(D) = SV(D) + S1,
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where

S1 =

 0 ṽ1ω ṽ2ω
ṽ1ω ζ̃ω 0

ṽ2ω 0 ζ̃ω

 .

(ii) If b 6= d, SV(D) is
(3.20) (1 + cε∆)2g(D) g(D)(v1(1 + cε∆)) g(D)(v2(1 + cε∆))

g(D)(v1(1 + cε∆)) (1 + ζ + aε∆)(1 + cε∆) 0
g(D)(v2(1 + cε∆)) 0 (1 + ζ + aε∆)(1 + cε∆)


+

0 0 0
0 v1v1 v1v2
0 v1v2 v2v2

 (g(D)− 1).

Then, we decompose

(3.21) SV+Ṽω
(D) = SV + S1 + S2,

where

S1 =

 0 g(D)(ṽ1ω(1 + cε∆)) g(D)(ṽ2ω(1 + cε∆))

g(D)(ṽ1ω(1 + cε∆)) ζ̃ω(1 + cε∆) 0

g(D)(ṽ2ω(1 + cε∆)) 0 ζ̃ω(1 + cε∆)


+

0 0 0
0 ṽ21ω ṽ1ω ṽ2ω
0 ṽ1ω ṽ2ω ṽ22ω

 (g(D)− 1),

and

S2 =

0 0 0
0 2v1ṽ1ω v1ṽ2ω + v2ṽ1ω
0 v1ṽ2ω + v2ṽ1ω 2v2ṽ2ω

 (g(D)− 1).

The key of this decomposition is to separate the terms independent, dependent
only and dependent partially on the 1D solitary wave. We also need the following
expression

(3.22) M(V + Ṽω, D) = M(Ṽω, D) + M̃1,

where

M̃1 =

v · ∇ ζ∂x1 ζ∂x2

0 g(D)(v1∂x1) g(D)(v2∂x1)
0 g(D)(v1∂x2

) g(D)(v2∂x2
)

 .

And

(3.23) M(V + Ṽω, D) = M(V, D) +M1,

where

M1 =

ṽω · ∇ ζ̃ω∂x1 ζ̃ω∂x2

0 g(D)(ṽ1ω∂x1
) g(D)(ṽ2ω∂x1

)
0 g(D)(ṽ1ω∂x2

) g(D)(ṽ2ω∂x2
)

 .

Remark 3.1. i) Because the solitary wave has the “sech” profile and using
the expression (3.22), we see that the term F on the right hand side of
(3.17) is in Xs

ε (R2) if V ∈ Xs
εk(R2) for s, k > 0, s ∈ N.
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ii) The above remark is not true if our solitary wave is in H1(R) only. Fur-
thermore, we need s ∈ N because we use sometimes the Leibnitz rule instead
of usual commutator estimates.

Next we define the energy functional associated to (3.17) as

(3.24) Es(V) =
(

(1− bε∆)ΛsV, SV+Ṽω
(D)ΛsV

)
2
.

We shall show that Es(V) defined in (3.24) is equivalent to some Xs
εk(R2) norm.

Remark 3.2. If b = 0, d > 0, (3.12) is equivalent after applying (1− dε∆) to the
first equation to the condensed system

(1− dε∆)∂tV +M(V, D)V = 0,

with M(V, D) defined by(1− dε∆)(v · ∇) (1− dε∆)((1 + ζ + aε∆)∂x1
) (1− dε∆)((1 + ζ + aε∆)∂x2

)
(1 + cε∆)∂x1

v1∂x1
v2∂x1

(1 + cε∆)∂x2
v1∂x2

v2∂x2

 .

Then the equation (3.4) is equivalent to

(1− dε∆)∂tV +M(V + Ṽω, D)V = −
(
M(V + Ṽω, D)−M(Ṽω, D)

)
Ṽω.

The symmetrizer SV(D)of M(V, D) is defined by (1 + cε∆)2 v1(1 + cε∆) v2(1 + cε∆)
v1(1 + cε∆) (1 + cε∆)[(1 + ζ + aε∆)(1− dε∆)] 0
v2(1 + cε∆) 0 (1 + cε∆)[(1 + ζ + aε∆)(1− dε∆)]


+

0 0 0
0 dεv1v1∆ dεv1v2∆
0 dεv1v2∆ dεv2v2∆

 .

Therefore, the symmetrizer SV+Ṽω
(D) of M(V + Ṽω, D) is defined by

SV+Ṽω
(D) = SV(D) + S1 + S2,

where

S1 =

 0 ṽ1ω(1 + cε∆) ṽ2ω(1 + cε∆)

ṽ1ω(1 + cε∆) (1 + cε∆)[ζ̃ω(1− dε∆)] 0

ṽ2ω(1 + cε∆) 0 (1 + cε∆)[ζ̃ω(1− dε∆)]


+

0 0 0
0 dεṽ1ω ṽ1ω∆ dεṽ1ω ṽ2ω∆
0 dεṽ1ω ṽ2ω∆ dεṽ2ω ṽ2ω

 ,

and

S2 =

0 0 0
0 2dεv1ṽ1ω∆ dε(v1ṽ2ω + v2ṽ1ω)∆
0 dε(v1ṽ2ω + v2ṽ1ω)∆ 2dεv2ṽ2ω∆

 .

Before going to the main results of this section, we recall the following definitions
and Lemma which can be found in [55].

Lemma 3.2. If t0 >
n
2 (n = 1, 2) and s ≥ 0, one has

(3.25) |fg|Hs ≤ C
(
|f |Ht0 |g|Hs + 〈|f |Hs |g|Ht0 〉s>t0

)
, ∀f, g ∈ Hs ∩Ht0(Rn).
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Lemma 3.3. Let φ ∈ Hs(Rx1
) for every s ≥ 1, t0 > 1 and f ∈ Hs ∩ Ht0(R2).

Then

(3.26) |φf |Hs ≤ C
(
|φ|

H
t0
x1
|f |Hs +

〈
|φ|Hs

x1
.|f |Ht0

〉
s>t0

)
Definition 3.3. We say that a Fourier multiplier σ(D) is of order s (s ∈ R) and
write σ ∈ Ss if ξ ∈ Rd 7→ σ(ξ) ∈ C is smooth and satisfies

∀ξ ∈ Rd, ∀β ∈ Nd, sup
ξ∈Rd

〈ξ〉|β|−s |∂βσ(ξ)| <∞.

Lemma 3.4. Let t0 > d/2, s ≥ 0 and σ ∈ Ss. If f ∈ Hs(Rd) ∩Ht0+1(Rd) then,
for all g ∈ Hs−1(Rd) ∩Ht0(Rd) then

(3.27) |[σ(D), f ]g|L2 ≤ C(σ) (|∇f |L∞ |g|Hs−1 + |∇f |Hs−1 |g|L∞) ,

where C(σ) depends only on σ.

Lemma 3.5. Let b, d > 0 and b 6= d, s ∈ R, θ ≥ 0, then

(i) for all f ∈ Hs(Rn), there hold

(3.28) min

{
1,

(
b

d

)θ}
|f |Hs ≤

∣∣g(D)θf
∣∣
Hs ≤ max

{
1,

(
b

d

)θ}
|f |Hs ,

(3.29) |(g(D)− 1)f |Hs ≤
|b− d|
d
|f |Hs .

(ii) Let t0 >
n
2 , −t0 < r ≤ t0 + 1, for all f ∈ Ht0+1(Rn) and u ∈ Hr−1(Rn),

there holds

(3.30)
∣∣[g(D)θ, f

]
u
∣∣
Hr ≤ C|f |Ht0+1 |u|Hr−1 ,

where C is a constant independent of ε.

3.4. Sovability of linearized equation.

3.4.1. The case: b 6= d, b, d > 0, a, c < 0.

Proposition 3.1. Let t0 > 1, s ≥ t0 + 1, s ∈ N, T ′ > 0. Assume that F ∈
C
(
[0, T ′];Xs

ε (R2)
)

and V ∈ C1
(
[0, T ′];Xs−1

ε3 (R2)
)
∩C

(
[0, T ′];Xs

ε3(R2)
)

satisfy that

(3.31) 1+ζ+ ζ̃ω ≥ H > 0, |V|∞+
∣∣∣Ṽω

∣∣∣
∞
≤ κH , |V|Hs +

∣∣∣Ṽω

∣∣∣
Hs
≤ 1, ∀t ∈ [0, T ′],

with κH ensures the equivalence of Es(V) and |V|2Xs
ε3

(see the Appendix 4.1)

(3.32)
1

c
|V|2Xs

ε3
≤ Es(V) ≤ C|V|2Xs

ε3
.

Then for any V0 ∈ Xs
ε3(R2), (3.17) has a unique solution

V ∈ C1([0, T ′];Xs−1
ε3 (R2)) ∩ C([0, T ′];Xs

ε3(R2)),

and one has for any t ∈ (0, T ′).

(3.33)

d

dt
Es(V) ≤c̃

((
1 + |∂tV|Xs−1

ε3
+ |U|Xs

ε3
+ |V|Xs

ε3

)
|F |Xs

ε3
Es(V)1/2

+ ε1/2
(

1 + |∂tV|Xs−1

ε3
+ |U|Xs

ε3
+ |V|Xs

ε3

)
Es(V)

)
,
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(3.34)

|V(t)|2Xs
ε3
≤c̃ |V0|2Xs

ε3
+ c̃

∫ t

0

((
1 + |∂tV|Xs−1

ε3
+ |U|Xs

ε3
+ |V|Xs

ε3

)
|F |Xs

ε3
|V|Xs

ε3

+ ε1/2
(

1 + |∂tV|Xs−1

ε3
+ |U|Xs

ε3
+ |V|Xs

ε3

)
|V|2Xs

ε3

)
,

(3.35) |∂tV|Xs−1

ε3
≤ C

(
|F |Hs + |V|Xs

ε3

)
.

Remark 3.3. Since we defined V = εU and Ṽω = εŨω, the assumption (3.31) is
a smallness condition which holds if ε is small enough.

Proof. We derive a priori estimate on (3.17). First, we have that
(3.36)

d

dt
Es(V) =

(
ΛsF,

(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

−
(

Λs
(
M(V + Ṽω, D)V

)
,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

− bε
([
SV+Ṽω

(D)∗,∆
]

ΛsV, Λs∂tV
)
2

+
(

(1− bε∆)ΛsV,
(
∂tSV+Ṽω

(D)
)

ΛsV
)
2

= I + II + III + IV,

where SV+Ṽω
(D)∗ is the adjoint operator of SV+Ṽω

(D).

Estimate on I. By using integral by parts, we have(
ΛsF, SV+Ṽω

(D)ΛsV
)
2

=
(
ΛsF1, (1 + cε∆)2g(D)Λsζ

)
2

+ (ΛsF1, g(D)((v + ṽω)(1 + cε∆)Λsv))2

+

2∑
i=1

{
(ΛsFi+1, g(D)((vi + ṽiω)(1 + cε∆)Λsζ))2

+
(

ΛsFi+1, (1 + ζ + ζ̃)(1 + cε∆)Λsvi

)
2
− aε (∇ΛsFi+1, ∇(1 + cε∆)Λsvi)2

+ (ΛsFi+1, (vi + ṽiω)(v + ṽω) · (g(D)− 1)Λsv)2
}
,

which together with (3.31), (3.28) and (3.29) implies that∣∣∣(ΛsF, SV+Ṽω
(D)ΛsV

)
2

∣∣∣
.
(
|F |Hs + ε1/2 |F |Hs+1

)(
|V|Hs + ε |V|Hs+2 + ε3/2 |V|Hs+3

)
.

Similarly we have∣∣∣(ΛsF, SV+Ṽω
(D)∗ΛsV

)
2

∣∣∣
.
(
|V|Hs + ε1/2|V|Hs+1

)(
|F |Hs + ε|F |Hs+2 + ε3/2|F |Hs+3

)
,

Therefore,

(3.37) |I| . |F |Xs
ε3
|V|Xs

ε3
.
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Estimate on II. We have

II = −
([

Λs,M(V + Ṽω, D)
]

V,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

−
(
M(V + Ṽω, D)ΛsV,

(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

= II1 + II2.

Using (3.23) and (3.21), we can rewrite

II1 = −
(

[Λs,M(V, D)]V,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

−
(

[Λs,M1]V,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

= II11 + II12.

Estimate on II11. Since Ṽω is sufficiently smooth and bounded, we can use the
same argument as in [55] to get

(3.38) |II11| . |V|Xs
ε3
|V|2Xs

ε3
.

Estimate on II12. M1 depends only in Ṽω then there will be a problem if we apply
the commutator estimate (3.27) directly to Λs. We use the expression Λs = Λs1+Λs2
and estimate II12 separately as follows

First, we have(
[Λs1,M1]V, SV+Ṽω

(D)ΛsV
)
2

. |g(D)([Λs1,M1]V)|2 (|V|∞ +
∣∣∣Ṽω

∣∣∣
∞

) |(1 + cε∆)ΛsV|2
+ |[Λs1,M1]V|2 (|(1 + cε∆)g(D)ΛsV|2 + |(g(D)− 1)ΛsV|2)

− cε (∇([Λs1,M1]V)1, ∇(1 + cε∆)g(D)ΛsV)2

− aε (∇([Λs1,M1]V)2, ∇(1 + cε∆)Λsv1)2

− aε (∇([Λs1,M1]V)3, ∇(1 + cε∆)Λsv2)2 .

(where (·)j is the notation of jth component of the vector)
Using the expression of M1 we have that

|[Λs1,M1]V|2 .
∣∣∣[Λs1, Ṽω]V

∣∣∣
2

=

∣∣∣∣∣∣∣[Λs1, Ṽω]V
∣∣∣
L2

x1

∣∣∣∣
L2

x2

and

|∇([Λs1,M1]V)j |2 .
∣∣∣([Λs1,∇Ṽω]V)j

∣∣∣
2
.

∣∣∣∣∣∣∣[Λs1,∇Ṽω]V
∣∣∣
L2

x1

∣∣∣∣
L2

x2

.

Then, using (3.27) with d = 1, σ(D) = Λs1 we obtain∣∣∣[Λs1, Ṽω]V
∣∣∣
L2

x1

.
∣∣∣∇Ṽω

∣∣∣
L∞x1

|V|Hs−1
x1

+
∣∣∣∇Ṽω

∣∣∣
Hs−1

x1

|V|L∞x1
. ε|Λs1V|L2

x1
,

and, with Leibnitz rule ∣∣∣[Λs1,∇Ṽω]V
∣∣∣
L2

x1

. ε|Λs+1
1 V|L2

x1
.

Remark: The coefficients on these above estimates depend on
∣∣∣Ṽω

∣∣∣
W 2,∞

and do not

depend on ε since M1 is independent of ε.
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Therefore, by combining the above estimates and (3.28)-(3.29), we have

(3.39)

(
[Λs1,M1]V, SV+Ṽω

(D)ΛsV
)
2

. ε |Λs1V|2 (|V|Hs + ε|V |Hs+2) + |Λs1V|2 (|V|Hs + ε|V|Hs+2)

+ ε3/2|Λs+1
1 V|2

(
ε1/2|V|Hs+1 + ε3/2|V|Hs+3

)
. ε

(
|V|Hs + ε1/2|V|Hs+1 + ε|V|Hs+2 + ε3/2|V|Hs+3

)2
. ε |V|2Xs

ε3
.

The estimate for
(

[Λs1,M1]V, SV+Ṽω
(D)∗ΛsV

)
2

follows similarly as (3.39).

The estimate for
(

[Λs2,M1]V,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

is easier since

Ṽω does not depend on x2. Therefore we have

(3.40)
(

[Λs,M1]V,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2
. ε |V|2Xs

ε3
.

Estimate on II1: Thanks to (3.38) and (3.40) we get

(3.41) II1 . ε |V|Xs
ε3
|V|2Xs

ε3
.

Estimate on II2: In order to estimate II2, we first calculate

SV+Ṽω
(D)M(V + Ṽω, D) := A(V + Ṽω, D) = (aij)
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as follows:

a11 = (1 + cε∆)2g(D)((v + ṽω) · ∇) + g(D)
(
(v + ṽω) · ∇(1 + cε∆)2g(D)

)
,

a12 = (1 + cε∆)2g(D)
(

(1 + ζ + ζ̃ω + aε∆)∂x1

)
+ g(D) ((v + ṽω) · (1 + cε∆)g(D)((v1 + ṽ1ω)∇)) ,

a13 = (1 + cε∆)2g(D)
(

(1 + ζ + ζ̃ω + aε∆)∂x2

)
+ g(D) ((v + ṽω) · (1 + cε∆)g(D)((v2 + ṽ2ω)∇)) ,

a21 = g(D) ((v1 + ṽ1ω)(1 + cε∆)((v + ṽω) · ∇))

+ (v1 + ṽ1ω)(v + ṽω) · ∇(1 + cε∆)g(D)(g(D)− 1)

+ (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)2g(D)∂x1
,

a22 = g(D)
(

(v1 + ṽ1ω)(1 + cε∆)[(1 + ζ + ζ̃ω + aε∆)∂x1
]
)

+ (v1 + ṽ1ω)(v + ṽω) · g(D)(g(D)− 1)((v1 + ṽ1ω)∇)

+ (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v1 + ṽ1ω)∂x1
),

a23 = g(D)
(

(v1 + ṽ1ω)(1 + cε∆)[(1 + ζ + ζ̃ω + aε∆)∂x2
]
)

+ (v1 + ṽ1ω)(v + ṽω) · g(D)(g(D)− 1)((v2 + ṽ2ω)∇)

+ (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v2 + ṽ2ω)∂x1),

a31 = g(D) ((v2 + ṽ2ω)(1 + cε∆)((v + ṽω) · ∇))

+ (v2 + ṽ2ω)(v + ṽω) · ∇(1 + cε∆)g(D)(g(D)− 1)

+ (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)2g(D)∂x2 ,

a32 = g(D)
(

(v2 + ṽ2ω)(1 + cε∆)[(1 + ζ + ζ̃ω + aε∆)∂x1
]
)

+ (v2 + ṽ2ω)(v + ṽω) · g(D)(g(D)− 1)((v1 + ṽ1ω)∇)

+ (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v1 + ṽ1ω)∂x2),

a33 = g(D)
(

(v2 + ṽ2ω)(1 + cε∆)[(1 + ζ + ζ̃ω + aε∆)∂x2 ]
)

+ (v2 + ṽ2ω)(v + ṽω) · g(D)(g(D)− 1)((v2 + ṽ2ω)∇)

+ (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v2 + ṽ2ω)∂x2
),

For a11,

(a11Λsζ, Λsζ)2

=
(
(1 + cε∆)2g(D)(v · ∇Λsζ) + g(D)(v · ∇(1 + cε∆)2g(D)Λsζ), Λsζ

)
2

+
(
(1 + cε∆)2g(D)(ṽω · ∇Λsζ) + g(D)(ṽω · ∇(1 + cε∆)2g(D)Λsζ), Λsζ

)
2

:= B11 +B12.

(3.42)

From [55] we have

(3.43) B11 . |v|Xs
ε3
|ζ|2Xs

ε3
,

with B12, we can not use the commutator estimate for g(D) and ṽω. In order to
get the relevant norm we will use that ṽω = εũω. First, using integrating by part,
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we have

(3.44)

B12 = ((1 + cε∆)(ṽω · ∇Λsζ), (1 + cε∆)g(D)Λsζ)2

−
(
(1 + cε∆)2g(D)Λsζ, ∇ · (ṽωg(D)Λsζ)

)
2

= ε ((1 + cε∆)(ũω · ∇Λsζ), (1 + cε∆)g(D)Λsζ)2

− ε ((1 + cε∆)g(D)Λsζ, (1 + cε∆)∇ · (ũωg(D)Λsζ))2 .

By using Leibniz rule, it is not hard to see that

(3.45) B12 . (ε1/2 + ε2) |ũω|W 2,∞ |ζ|2Xs
ε3

Combining (3.45) and (3.43), we obtain

(a11Λsζ, Λsζ)2 . ((ε1/2 + ε2) |ũω|W 2,∞ + |v|Xs
ε3

) |ζ|2Xs
ε3

. ε1/2(1 + ε1/2 |U|Xs
ε3

) |V|2Xs
ε3
.

(3.46)

For a12 and a21, using integration by part, we get:

(3.47)

(a12Λsv1, Λsζ)2 + (a21Λsζ, Λsv1)2

= −
(

(1 + cε∆)(∂x1
(ζ + ζ̃

ω
)Λsv1), g(D)(1 + cε∆)Λsζ

)
2

+

{
(g(D)((v + ṽω) · (1 + cε∆)g(D)((v1 + ṽ1ω)∇Λsv1), Λsζ)2

+ (g(D)((v1 + ṽ1ω)(1 + cε∆)((v + ṽω) · ∇Λsζ), Λsv1)2

+ ((v1 + ṽ1ω)(v + ṽω) · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2

}
= B21 +B22,

where B21 contains only the terms which depends only on V and

(3.48)

B22 = −
(

(1 + cε∆)(∂x1
ζ̃ωΛsv1), g(D)(1 + cε∆)Λsζ

)
2

+ ((1 + cε∆)g(D)(ṽ1ω∇Λsv1), v(g(D)Λsζ))2

+ ((1 + cε∆)g(D)(ṽ1ω∇Λsv1), ṽω(g(D)Λsζ))2

+ ((1 + cε∆)g(D)(v1∇Λsv1), ṽω(g(D)Λsζ))2

+ ((1 + cε∆)(ṽω · ∇Λsζ), v1g(D)Λsv1)2

+ ((1 + cε∆)(ṽω · ∇Λsζ), ṽ1ωg(D)Λsv1)2

+ ((1 + cε∆)(v · ∇Λsζ), ṽ1ωg(D)Λsv1)2

+ (v1ṽω · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2

+ (ṽ1ωv · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2

+ (ṽ1ωṽω · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2

By using Leibnitz rule, Hölder inequality and (3.28) we have(
(1 + cε∆)((∂x1 ζ̃ω)Λsv1), g(D)(1 + cε∆)Λsζ

)
2
.
∣∣∣ζ̃ω∣∣∣

W 3,∞
|V|2Xs

ε3
,

((1 + cε∆)g(D)(ṽ1ω∇Λsv1), v(g(D)Λsζ))2 . (ε1/2+ε3/2) |ũ1ω|W 2,∞ |V|Xs
ε3
|V|2Xs

ε3
,
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((1 + cε∆)g(D)(ṽ1ω∇Λsv1), ṽω(g(D)Λsζ))2 . (ε1/2+ε3/2) |ũ1ω|W 2,∞ |ṽω|∞ |V|
2
Xs

ε3
,

((1 + cε∆)g(D)(v1∇Λsv1), ṽω(g(D)Λsζ))2

= (g(D)(v1∇Λsv1), (1 + cε∆)(ṽω(g(D)Λsζ)))2

. (ε1/2 + ε3/2) |ũω|W 2,∞ |V|Xs
ε3
|V|2Xs

ε3
,

((1 + cε∆)(ṽω · ∇Λsζ), v1g(D)Λsv1)2 . (ε1/2 + ε3/2) |ũω|W 2,∞ |V|Xs
ε3
|V|2Xs

ε3
,

((1 + cε∆)(ṽω · ∇Λsζ), ṽ1ωg(D)Λsv1)2 . (ε1/2 + ε3/2) |ũω|W 2,∞ |ṽ1ω|∞ |V|
2
Xs

ε3
,

((1 + cε∆)(v · ∇Λsζ), ṽ1ωg(D)Λsv1)2

= (v · ∇Λsζ, (1 + cε∆)(ṽ1ωg(D)Λsv1))2

. (ε1/2 + ε3/2) |ũ1ω|W 2,∞ |V|Xs
ε3
|V|2Xs

ε3
,

(v1ṽω · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2 . (ε1/2+ε3/2) |ũω|∞ |V|Xs
ε3
|V|2Xs

ε3
,

(ṽ1ωv · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2 . (ε1/2+ε3/2) |ũ1ω|∞ |V|Xs
ε3
|V|2Xs

ε3
,

(ṽ1ωṽω · ∇(1 + cε∆)g(D)(g(D)− 1)Λsζ, Λsv1)2

. (ε1/2 + ε3/2) |ũ1ω|∞
∣∣∣Ṽω

∣∣∣
Xs

ε3

|V|2Xs
ε3
.

Therefore,

(3.49) B22 . (ε1/2 + ε3/2) |ũω|W 3,∞ (ε1/2 + |V|Xs
ε3

) |V|2Xs
ε3
.

From [55] we also have

(3.50) B21 . |V|Xs
ε3
|V|2Xs

ε3
.

Combining (3.49)-(3.50), it follows

(3.51) (a12Λsv1, Λsζ)2 + (a21Λsζ, Λsv1)2 . |V|Xs
ε3
|V|2Xs

ε3
.

�

The same estimate holds for (a13Λsv1, Λsζ)2 + (a31Λsζ, Λsv2)2.
For a22,

(a22Λsv1, Λsv1)2

=
(

(v1 + ṽ1ω)(1 + cε∆)(1 + ζ + ζ̃ω + aε∆)∂x1
Λsv1, g(D)Λsv1

)
2

+
(

(1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v1 + ṽ1ω)∂x1
Λsv1), Λsv1

)
2

+ ((v1 + ṽ1ω)(v + ṽω) · g(D)(g(D)− 1)((v1 + ṽ1ω)∇Λsv1), Λsv1)2
:= B31 +B32.

(3.52)
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Where B31 contains only the terms which depends only on V and

(3.53)

B32 =
(
v1(1 + cε∆)(ζ̃ω∂x1

Λsv1), g(D)Λsv1

)
2

+
(
ṽ1ω(1 + cε∆)(1 + ζ + ζ̃

ω
+ aε∆)(∂x1

Λsv1), g(D)Λsv1

)
2

+
(
ζ̃ω(1 + cε∆)g(D)((v1 + ṽ1ω)∂x1

Λsv1), Λsv1

)
2

+
(
(1 + ζ + aε∆)(1 + cε∆)g(D)(ṽ1ω∂x1

Λsv1), Λsv1
)
2

+ (ṽ1ω(v + ṽω) · g(D)(g(D)− 1)((v1 + ṽ1ω)∇Λsv1), Λsv1)2

+ (v1ṽω · g(D)(g(D)− 1)((v1 + ṽ1ω)∇Λsv1), Λsv1)2

+ (v1v · g(D)(g(D)− 1)(ṽ1ω∇Λsv1), Λsv1)2 .

Similarly as (3.50) we get

(3.54) B32 . ε
1/2 |ũω|W 2,∞ (1 + |V|2Xs

ε3
+
∣∣∣Ṽω

∣∣∣2
∞

) |V|2Xs
ε3
.

From [55] we have

(3.55) B31 . |V|Xs
ε3
|V|2Xs

ε3
,

it follows

(3.56) (a22Λsv1, Λsv1)2 . ε
1/2(1 + ε1/2 |U|Xs

ε3
+ |V |2Xs

ε3
) |V|2Xs

ε3
.

The same estimate holds for (a33Λsv2, Λsv2)2.
For a23 and a32, we have

(3.57)

(a23Λsv2, Λsv1)2 + (a32Λsv1, Λsv2)2

=
(
g(D)((v1 + ṽ1ω)(1 + cε∆)(1 + ζ + ζ̃

ω
+ aε∆)∂x2

Λsv2), Λsv1

)
2

+ ((v1 + ṽ1ω)(v + ṽω) · g(D)(g(D)− 1)((v2 + ṽ2ω)∇Λsv2), Λsv1)2

+
(

(1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v2 + ṽ2ω)∂x1
Λsv2), Λsv1

)
2

+
(
g(D)((v2 + ṽ2ω)(1 + cε∆)(1 + ζ + ζ̃ω + aε∆)∂x1

Λsv1), Λsv2

)
2

+ ((v2 + ṽ2ω)(v + ṽω) · g(D)(g(D)− 1)((v1 + ṽ1ω)∇Λsv1), Λsv2)2

+
(

(1 + ζ + ζ̃ω + aε∆)(1 + cε∆)g(D)((v1 + ṽ1ω)∂x2
Λsv1), Λsv2

)
2

= B41 +B42,
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where B41 contains only the terms which depends only on V and

(3.58)

B42 =
(
g(D)(ṽ1ω(1 + cε∆)(1 + ζ + ζ̃ω + aε∆)∂x2

Λsv2), Λsv1

)
2

+
(
g(D)(v1(1 + cε∆)(ζ̃

ω
∂x2

Λsv2)), Λsv1

)
2

+ (ṽ1ω(v + ṽω) · g(D)(g(D)− 1)((v2 + ṽ2ω)∇Λsv2), Λsv1)2

+ (v1ṽω · g(D)(g(D)− 1)((v2 + ṽ2ω)∇Λsv2), Λsv1)2

+ (v1v · g(D)(g(D)− 1)(ṽ2ω∇Λsv2), Λsv1)2

+
(
ζ̃ω(1 + cε∆)g(D)((v2 + ṽ2ω)∂x1

Λsv2), Λsv1

)
2

+
(
(1 + ζ + aε∆)(1 + cε∆)g(D)(ṽ2ω∂x1Λsv2), Λsv1

)
2

+
(
g(D)(ṽ2ω(1 + cε∆)(1 + ζ + ζ̃ω + aε∆)∂x1

Λsv1), Λsv2

)
2

+
(
g(D)(v2(1 + cε∆)(ζ̃ω∂x1Λsv1)), Λsv2

)
2

+ (ṽ2ω(v + ṽω) · g(D)(g(D)− 1)((v1 + ṽ1ω)∇Λsv1), Λsv2)2

+ (v2ṽω · g(D)(g(D)− 1)((v1 + ṽ1ω)∇Λsv1), Λsv2)2

+ (v2v · g(D)(g(D)− 1)(ṽ1ω∇Λsv1), Λsv2)2

+
(
ζ̃ω(1 + cε∆)g(D)((v1 + ṽ1ω)∂x2

Λsv1), Λsv2

)
2

+
(
(1 + ζ + aε∆)(1 + cε∆)g(D)(ṽ1ω∂x2

Λsv1), Λsv2
)
2
.

Similarly as (3.50) a v nd (3.54) we have

(3.59) B42 . ε
1/2 |ũω|W 2,∞ (1 + |V|Xs

ε3
+
∣∣∣Ṽ ω∣∣∣∞) |V|2Xs

ε3
,

from [55] we also have

(3.60) B41 . |V|Xs
ε3
|V|2Xs

ε3
.

Therefore,
(3.61)

(a23Λsv2, Λsv1)2 + (a32Λsv1, Λsv2)2 . ε
1/2(1 + ε1/2 |U|Xs

ε3
+ |V|Xs

ε3
) |V|2Xs

ε3
.

Thanks to (3.46), (3.51), (3.56) and (3.61), we obtain∣∣∣(SV+Ṽω
(D)M(V + Ṽω, D)ΛsV, ΛsV

)
2

∣∣∣ . ε1/2(1+ε1/2 |U|Xs
ε3

+ |V|2Xs
ε3

) |V|2Xs
ε3
.

The same estimate holds for the term
(
M(V + Ṽω, D)ΛsV, SV+Ṽω

(D)ΛsV
)
2
,

then

(3.62) |II2| . ε1/2(1 + ε1/2 |U|Xs
ε3

+ |V|2Xs
ε3

) |V|2Xs
ε3
.

Due to (3.41) and (3.62), we have

(3.63) |II| . ε1/2(1 + ε1/2 |U|Xs
ε3

+ |V|2Xs
ε3

) |V|2Xs
ε3
.
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Estimate on III. Using (3.21) and the expression of (S1 + S2)∗ we only need
to estimate

− bε ([(S1 + S2)∗,∆]ΛsV, Λs∂tV)2

. ε |[ṽω,∆]g(D)ΛsV|2 |(1 + cε∆)Λs∂tV|2

+ ε

2∑
i,j=1

∣∣[viṽjω + ṽiωvj + ṽiω ṽjω,∆]ΛsV
∣∣
2
|(g(D)− 1)Λs∂tV|2 .

In order to use the commutator estimate (3.27), we use the same argument in the
estimate for II11. It follows

(3.64)

− bε ([(S1 + S2)∗,∆]ΛsV, Λs∂tV)2

. ε2 |V|Hs+1 (|∂tV|Hs + ε |∂tV|Hs+2) + ε2(|V|+ 1) |V|Hs+1 |∂tV|Hs

. ε3/2(|V|Xs
ε3

+ 1) |V|Xs
ε3
|∂tV|Xs−1

ε3

From [55] we know that

(3.65) − bε
(
[SV(D)∗,∆]ΛsV, Λs∂tV

)
2
. |V|Xs

ε3
|V|Xs

ε3
|∂tV|Xs−1

ε3
,

Therefore,

(3.66) III . (ε3/2 + ε3/2 |V|Xs
ε3

+ |V|Xs
ε3

) |V|Xs
ε3
|∂tV|Xs−1

ε3
.

Estimate on IV. Plugging the expression of SV+Ṽω
(D) into IV we get that

(3.67) IV = IV1 + IV2,

where IV1 =
(
(1− bε∆)ΛsV, (∂tSV(D))ΛsV

)
2
, and from [55] we know that

(3.68) IV1 . |∂tV|Hs−1 |V|2Xs
ε3
.

And

IV2

= ((1− bε∆)Λsζ, g(D)((∂tṽ1ω)(1 + cε∆)Λsv1))2

+ ((1− bε∆)Λsζ, g(D)(∂t(ṽ2ω)(1 + cε∆)Λsv2))2

+ ((1− bε∆)Λsv1, g(D)(∂t(ṽ1ω)(1 + cε∆)Λsζ))2

+
(

(1− bε∆)Λsv1, (∂tζ̃ω)(1 + cε∆)Λsv1 + (∂t(2v1ṽ1ω + ṽ21ω))(g(D)− 1)Λsv1

)
2

+ ((1− bε∆)Λsv1, (∂t(ṽ1ω ṽ2ω + v1ṽ2ω + v2ṽ1ω))(g(D)− 1)Λsv2)2

+ ((1− bε∆)Λsv2, g(D)((∂tṽ2ω)(1 + cε∆)Λsζ))2

+ ((1− bε∆)Λsv2, (∂t(ṽ1ω ṽ2ω + v1ṽ2ω + v2ṽ1ω))(g(D)− 1)Λsv1)2

+
(

(1− bε∆)Λsv2, (∂tζ̃ω)(1 + cε∆)Λsv2 + (∂t(ṽ
2
2ω + 2v2ṽ2ω))(g(D)− 1)Λsv2

)
2
.

(3.69)

Therefore,

(3.70) IV2 . ε(1 + |∂tV|Hs−1) |V|2Xs
ε3
.

By combining (3.68) and (3.70) we have

(3.71) IV . ε(1 + |∂tV|Hs−1) |V|2Xs
ε3
.
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Combining (3.37), (3.63), (3.66) and (3.71) we obtain
(3.72)
d

dt
Es(V) . |F |Xs

ε3
|V|Xs

ε3
+ ε1/2(1 + ε1/2 |∂tV|Hs−1 + ε1/2 |U|Xs

ε3
+ |V|2Xs

ε3
) |V|2Xs

ε3

+ ε(1 + ε1/2 |V|Xs
ε3

+ |U|Xs
ε3

) |∂tV |Xs−1

ε3
|V |Xs

ε3
.

We are going to estimate |∂tV|Xs−1

ε3
, (3.17) follows that

∂tV = (1− bε∆)−1(F −M(V + Ṽω, D)V) := (1− bε∆)−1G.

Since the solitary wave has the “sech” profile and using in addtional the estimate
(3.26) we have the same estimate as in [55] as follows,

(3.73) |∂tV|Xs−1

ε3
. |F |Hs + |V|Xs

ε3
.

This is the estimate (3.35). Plugging (3.35) into (3.72), using (3.32), we obtain
(3.33) and (3.34).

The existence and uniqueness of the solution of (3.17) are obtained similarly as
in [55].

3.4.2. The case b = d > 0, a = 0, c < 0.

Proposition 3.2. Let t0 > 1, s ≥ t0 + 2, T ′ > 0. Assume that

F ∈ C([0, T ′];Xs
ε (R2))

and

V = (ζ,v) ∈ C1
(
[0, T ′]; (Xs−1

ε3 (R2))3
)
∩ C([0, T ′];Xs

ε2(R2)× (Xs
ε (R2))2)

satisfies

(3.74) 1+ζ+ ζ̃ω ≥ H > 0, |V|∞+
∣∣∣Ṽω

∣∣∣
∞
≤ κH , |V|Hs +

∣∣∣Ṽω

∣∣∣
Hs
≤ 1, ∀t ∈ [0, T ′],

with κH ensures the equivalence of Es(V) and |ζ|2Xs
ε2

+ |v|2Xs
ε
. (see appendix 4.2)

Then for any V0 ∈ Xs
ε2(R2)× (Xs

ε (R2))2), (3.17) has a unique solution

V ∈ C([0, T ′];Xs
ε2(R2)× (Xs

ε (R2))2),

and one has for any t ∈ (0, T ′)

(3.75)

d

dt
Es(V) .

(
ε+ |v|Xs

ε
+
∣∣ζ∣∣

Xs
ε2

+ |∂tV|Xs−1

ε2

)
Es(V)2

+

(
ε+ |v|Xs

ε
+
∣∣ζ∣∣

Xs
ε2

)
|∂tV|Xs−1

ε2
Es(V)

+ |F |Hs Es(V).
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|v(t)|2Xs
ε

+ |ζ(t)|2Xs
ε2

≤ c̃
(
|v(0)|2Xs

ε
+ |ζ(0)|2Xs

ε2

)
+ c̃

∫ t

0

(
|F |Hs (|v(t′)|Xs

ε
+ |ζ(t′)|Xs

ε2
)

+ (ε+ |v|Xs
ε

+
∣∣ζ∣∣

Xs
ε2

)(|v(t′)|Xs
ε

+ |ζ(t′)|Xs
ε2

) |∂tV|Xs−1

ε2

+ (ε+ |v|Xs
ε

+
∣∣ζ∣∣

Xs
ε2

+ |∂tV|Xs−1

ε2
)(|v(t′)|Xs

ε
+ |ζ(t′)|Xs

ε2
)

)2

dt′.

(3.76)

(3.77) |∂tV|Xs−1

ε2
. |F |Hs + |ζ|Xs

ε2
+ |v|Hs .

Proof. We start with the expression (3.36),

d

dt
Es(V) =

(
ΛsF,

(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

−
(

Λs
(
M(V + Ṽω, D)V

)
,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

− bε
([
SV+Ṽω

(D)∗,∆
]

ΛsV, Λs∂tV
)
2

+
(

(1− bε∆)ΛsV,
(
∂tSV+Ṽω

(D)
)

ΛsV
)
2

= I + II + III + IV,

�

Estimate on I. By using integral by part and the expression (3.18) of SV+Ṽω
(D)

, we obtain

(3.78)

(
ΛsF, SV+Ṽω

(D)ΛsV
)
2

= (ΛsF1, (1 + cε∆)Λsζ + (v1 + ṽ1ω)Λsv1 + (v2 + ṽ2ω)Λsv2)2

+
(

ΛsF2, (v1 + ṽ1ω)Λsζ + (1 + ζ + ζ̃ω)Λsv1

)
2

+
(

ΛsF3, (v2 + ṽ2ω)Λsζ + (1 + ζ + ζ̃ω)Λsv2

)
2
,

with assumption (3.74), it is not hard to get that

(3.79)
(

ΛsF, SV+Ṽω
(D)ΛsV

)
2
. |F |Hs (|ζ|Xs

ε2
+ |v|Hs).

The same estimate holds for
(

ΛsF, SV+Ṽω
(D)∗ΛsV

)
2
, then we have

(3.80) |I| . |F |Hs (|ζ|Xs
ε2

+ |v|Hs).

Estimate on II. First we rewrite,

(3.81)

II = −
(

[Λs,M(V + Ṽω, D)]V,
(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

−
(
M(V + Ṽω, D)ΛsV,

(
SV+Ṽω

(D) + SV+Ṽω
(D)∗

)
ΛsV

)
2

:= II1 + II2.
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Estimate on II1. Using the expression of M(V + Ṽω, D) and SV+Ṽω
(D), we

can rewrite(
[Λs,M(V + Ṽω, D)]V, SV+Ṽω

(D)ΛsV
)
2

=
(
[Λs,v + ṽω] · ∇ζ + [Λs, ζ + ζ̃ω]∂x1

v1 + [Λs, ζ + ζ̃ω]∂x2
v2, (1 + cε∆)Λsζ

+ (v1 + ṽ1ω)Λsv1 + (v2 + ṽ2ω)Λsv2
)
2

+
(

[Λs, v1 + ṽ1ω]∂x1
v1 + [Λs, v2 + ṽ2ω]∂x1

v2, (v1 + ṽ1ω)Λsζ + (1 + ζ + ζ̃ω)Λsv1

)
2

+
(

[Λs, v1 + ṽ1ω]∂x2
v1 + [Λs, v2 + ṽ2ω]∂x2

v2, (v2 + ṽ2ω)Λsζ + (1 + ζ + ζ̃ω)Λsv2

)
2
.

By using the commutator estimate (3.27) with the trick of represent Λs = Λs1 +
Λs2, where Λsj = F−1(1 + |ξj |s), similarly as in the previous case, we can prove that(

[Λs,M(V + Ṽω, D)]V, SV+Ṽω
(D)ΛsV

)
2

.

(
ε+

∣∣ζ∣∣
Xs

ε2

+ |v|Xs
ε

)(
|v|Xs

ε
+ |ζ|Xs

ε2

)
.

The same estimate holds for
(

[Λs,M(V + Ṽω, D)]V, SV+Ṽω
(D)∗ΛsV

)
2
, then

(3.82) |II1| .
(
ε+

∣∣ζ∣∣
Xs

ε2

+ |v|Xs
ε

)(
|v|Xs

ε
+ |ζ|Xs

ε2

)
.

Estimate on II2. We need to calculate SV+Ṽω
(D)M(V + Ṽω, D) := (aij) as

follows

a11 = (1 + cε∆)((v + ṽω) · ∇) + (v1 + ṽ1ω)(1 + cε∆)∂x1
+ (v2 + ṽ2ω)(1 + cε∆)∂x2

,

a12 = (1 + cε∆)((1 + ζ + ζ̃ω)∂x1
) + (v1 + ṽ1ω)2∂x1

+ (v2 + ṽ2ω)(v1 + ṽ1ω)∂x2
,

a13 = (1 + cε∆)((1 + ζ + ζ̃ω)∂x2
) + (v1 + ζ̃

1ω
)(v2 + ṽ2ω)∂x1

+ (v2 + ṽ2ω)2∂x2
,

a21 = (v1 + ṽ1ω)((v + ṽω) · ∇) + (1 + ζ + ζ̃ω)(1 + cε∆)∂x1
,

a22 = 2(1 + ζ + ζ̃ω)(v1 + ṽ1ω)∂x1
,

a23 = (v1 + ṽ1ω)(1 + ζ + ζ̃ω)∂x2 + (1 + ζ + ζ̃ω)(v2 + ṽ2ω)∂x1 ,

a31 = (v2 + ṽ2ω)(v + ṽω) · ∇+ (1 + ζ + ζ̃ω)(1 + cε∆)∂x2
,

a32 = (v2 + ṽ2ω)(1 + ζ + ζ̃ω)∂x1 + (1 + ζ + ζ̃ω)(v1 + ṽ1ω)∂x2 ,

a33 = 2(v2 + ṽ2ω)(1 + ζ + ζ̃ω)∂x2
+ (1 + ζ.

Remark: This case is much simpler than the previous case, since there is no
appearance of g(D). We will only treat here the terms that gave the order of ε1/2

in the previous case.
For a11, we have

(a11Λsζ, Λsζ)2 = ((1 + cε∆)((v + ṽω) · ∇Λsζ), Λsζ)2

+ ((v1 + ṽ1ω)(1 + cε∆)∂x1Λsζ, Λsζ)2

+ ((v2 + ṽ2ω)(1 + cε∆)∂x2
Λsζ, Λsζ)2

:= C11 + C12 + C13.

(3.83)
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Using the commutator estimate (3.27), integration by part, Sobolev embedding
(s > 3) and Hölder inequality we get

(3.84)

((1 + cε∆)(v · ∇Λsζ), Λsζ)2

= (v · ∇Λsζ, Λsζ)2 + cε ([∆,v] · ∇Λsζ, Λsζ)2 + cε (v ·∆∇Λsζ, Λsζ)2

= −1

2
((∇ · v)Λsζ, Λsζ)2 + cε ([∆,v] · ∇Λsζ, Λsζ)2

+ cε

Λsζ,

2∑
j=1

(∇vj · ∇∂xj
Λsζ)


2

− 1

2
cε (∆Λsζ, (∇ · v)Λsζ)2

− 3

2
cε (Λsζ, ∆v · ∇Λsζ)2

. |v|Hs |ζ|2Xs
ε2
.

By using (3.27) with d = 1 and the σ(D) = ∂2xj
, j = 1, 2 and similar argument as

above, we get

((1 + cε∆)(ṽω · ∇Λsζ), Λsζ)2 . |ṽω|W 2,∞ |ζ|Xs
ε2
.

Therefore,

(3.85) |C11| . (|v|Hs + |ṽω|W 2,∞) |ζ|2Xs
ε2
.

For C12,
(3.86)

C12 = −1

2
(Λsζ, (∂x1

(v1 + ṽ1ω))Λsζ)2 −
1

2
cε (∆Λsζ, (∂x1

(v1 + ṽ1ω))Λsζ)2

− 1

2
cε (Λsζ, (∆(v1 + ṽ1ω))∂x1

Λsζ)2 −
1

2
cε (Λsζ, ∇(v1 + ṽ1ω) · ∇∂x1

Λsζ)2

. (|v1|Hs + |ṽ1ω|W 2,∞) |ζ|2Xs
ε2
.

The same estimate holds for C13, as long side with (3.85) and (3.86), it follows

(3.87) (a11Λsζ, Λsζ)2 . (|v|Hs + |ṽω|W 2,∞) |ζ|2Xs
ε2
.

The same estimate holds for (a22Λsv1, Λsv1)2 and (a33Λsv2, Λsv2)2.

For a23 and a32,

(3.88)

(a23Λsv2, Λsv1)2 + (a32Λsv1, Λsv2)2

= −
(

Λsv2, ∂x2((v1 + ṽ1ω)(1 + ζ + ζ̃ω)Λsv1)
)
2

−
(

Λsv2, ∂x1((v2 + ṽ2ω)(1 + ζ + ζ̃ω)Λsv2)
)
2

. (|v|Hs + |ṽω|W 1,∞) |v|2Xs
ε
.

By doing similarly as previous case for remaining terms, it is not hard to get
that

(3.89) |II| . (ε+ |v|Xs
ε

+
∣∣ζ∣∣

Xs
ε2

)(|v|2Xs
ε

+ |ζ|2Xs
ε2

),
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Estimate on III. By using the expression of SV+Ṽω
(D)∗ and similar argument

as before, we get

III = −bε ([v1 + ṽ1ω,∆]Λsv1 + [v2 + ṽ2ω,∆]Λsv2, Λs∂tζ)2

− bε
(

[ζ + ζ̃ω,∆]Λsv1 + [v1 + ṽ1ω,∆]Λsζ, Λs∂tv1

)
2

− bε
(

[v2 + ṽ2ω,∆]Λsζ + [ζ + ζ̃ω,∆]Λsv2, Λs∂tv2

)
2
,

then,

(3.90) |III| . (ε+
∣∣ζ∣∣

Xs
ε2

+ |v|Xs
ε
)(|ζ|Xs

ε2
+ |v|Xs

ε
)(|∂tζ|Hs + |∂tv|Hs).

Estimate on IV. Similarly as (3.69), (3.70) and (3.71), we have

IV = ((1− bε∆)Λsζ, (∂tv1 + ∂tṽ1ω)Λsv1 + (∂tv2 + ∂tṽ2ω)Λsv2)2

+
(

(1− bε∆)Λsv1, (∂tv1 + ∂tṽ1ω)Λsζ + (∂tζ + ∂tζ̃ω)Λsv1

)
2

+
(

(1− bε∆)Λsv2, (∂tv2 + ∂tṽ2ω)Λsζ + (∂tζ + ∂tζ̃ω)Λsv2

)
2
.

Then,

(3.91) |IV | . (ε+
∣∣∂tζ∣∣Hs + |∂tv|Hs)(|ζ|2Xs

ε2
+ |v|2Xs

ε
).

Thanks to (3.80), (3.89), (3.90) and (3.91), we obtain

(3.92)

d

dt
Es(V) . (ε+ |v|Xs

ε
+
∣∣ζ∣∣

Xs
ε2

+ |∂tV|Xs−1

ε2
)(|ζ|2Xs

ε2
+ |v|2Xs

ε
)

+ |F |Hs (|ζ|Xs
ε2

+ |v|Xs
ε
)

+ (ε+ |v|Xs
ε

+
∣∣ζ∣∣

Xs
ε2

)(|ζ|Xs
ε2

+ |v|Xs
ε
) |∂tV|Xs−1

ε2
.

That is (3.75) and then (3.76).

Returning to (3.17) we set G = F −M(V+Ṽω, D)V then ∂tV = (1− bε∆)−1G.

By using the expression of M(V + Ṽω, D) in this case we have that

(3.93) |G|Hs−1 . |F |Hs−1 + |ζ|Xs
ε2

+ |v|Hs .

Beside that we also have

|∂tV|Xs−1

ε2
. |(1− bε∆)∂tV|Hs−1

=
∣∣(1− bε∆)(1− bε∆)−1G

∣∣
Hs−1

= |G|Hs−1 .

Therefore, we obtain (3.77).
The existence and uniqueness of the solution of (3.17) are obtained similarly as

in [55].

3.5. Proof of Theorem (3.2). Using the compactness method, the proof of The-
orem (3.2) follows exactly 4 standard steps of the proof of Theorem 1.1 in [55], the
crucial part is the linear solvability which we obtained previously. Therefore, we
will only precise here the existence time scale for each case of (a, b, c, d).

Since the existence time is obtained by using the Gronwall’s inequality, we need
to precise the order of ε in the estimates (3.33) and (3.75)
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If b 6= d, b, d > 0, a, c < 0.
Note that

F =
(
M(V + Ṽω, D)−M(Ṽω, D)

)
Ṽω

= −

 v ζ∂x1
v∂x2

0 g(D)(v1∂x1
) g(D)(v2∂x1

)
0 g(D)(v1∂x2) g(D)(v2∂x2)

 Ṽω,

then the order of ε in F is 2. So the order of ε in :(
1 + |∂tV|Xs−1

ε3
+ |U|Xs

ε3
+ |V|Xs

ε3

)
|F |Xs

ε3
is 2,

ε1/2
(

1 + |∂tV|Xs−1

ε3
+ |U|Xs

ε3
+ |V|Xs

ε3

)
is 1/2.

Therefore the existence time scale in this case is of order O(ε−1/2).
If b = d > 0, a = 0, c < 0.

The order of ε in :

ε+ |v|Xs
ε

+
∣∣ζ∣∣

Xs
ε2

+ |∂tV|Xs−1

ε2
is 1,

(
ε+ |v|Xs

ε
+
∣∣ζ∣∣

Xs
ε2

)
|∂tV|Xs−1

ε2
is 2,

|F |Hs is 2.

Therefore, the existence time scale in this case is of order O(1/ε).

3.6. The case a = b = d = 0, c < 0. We recall that this case corresponds to a
particular version of Euler-Korteweg systems (2.2), that is re-intoducing the small
parameter ε and taking without loss of generality c = −1

(3.94)

{
ηt +∇ · u + ε[∇ · (ηu)] = 0
ut +∇η + ε[ 12∇|u|

2 −∇∆η] = 0.

Well-posedness on time scales of order O(1/ε) has been established in [56, 10] (ac-
tually [10] considers long time existence issues for a general class of Euler-Korteweg
systems).

We now consider the system system satisfied by a localized perturbation on a
line solitary wave Ũω = (η̃, ũ) of velocity ω

that is

(3.95)

{
ηt +∇ · u + ε[∇ · ((ηu) + η̃ωu + ũωη)+] = 0
ut +∇η + ε[∇(u · ũω) + 1

2∇|u|
2 −∇∆η] = 0.

The proof of longtime existence will follow that of [56] and it differs somewhat
of the corresponding proof for the other cases.
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4. Appendix

4.1. Appendix 1. (The case b 6= d, b, d > 0, a, c < 0.)
We are going to prove there exists a constant κH such that (3.32) holds under

the assumption (3.31), plugging SV+Ṽω
(D) into (3.24) we have

(A.1)

Es(V) =
(
(1− bε∆)Λsζ, (1 + cε∆)2g(D)Λsζ

)
2

+ ((1− bε∆)Λsζ, g(D)[(v + ṽω)(1 + cε∆)Λsv])2

+ ((1− bε∆)Λsv, g(D)[(v + ṽω)(1 + cε∆)Λsζ])2

+
(

(1− bε∆)Λsv, (1 + ζ + ζ̃ω + aε∆)(1 + cε∆)Λsv
)
2

+

2∑
i,j=1

(
(1− bε∆)Λsvi, (vi + ṽiω)(vj + ṽjω)(g(D)− 1)Λsvj

)
2

= A1 +A2 +A3 +A4 +A5.

For A1 we have the following result from [55]

A1 ≥ min

{
1,
b

d

}(
|Λsζ|22 +c2ε2 |∆Λsζ|22 + (b− 2c)ε |∇Λsζ|22

+ bc2ε3 |∆∇Λsζ|22 + (−2bc)ε2 |∇∇Λsζ|22

)
,

(A.2)

A1 ≤ max

{
1,
b

d

}(
|Λsζ|22 +c2ε2 |∆Λsζ|22 + (b− 2c)ε |∇Λsζ|22

+ bc2ε3 |∆∇Λsζ|22 + (−2bc)ε2 |∇∇Λsζ|22

)
.

(A.3)

For A2 and A3, using (3.28), we have

|A2|+ |A3| ≤ (|v|∞ + |ṽω|∞) |(1− bε∆)g(D)Λsζ|2 |(1 + cε∆)Λsv|2
+ (|v|∞ + |ṽω|∞) |(1− bε∆)g(D)Λsv|2 |(1 + cε∆)Λsζ|2

≤ max

{
1,
b

d

}
(|v|∞ + |ṽω|∞)

(
2(|Λsζ|22 + |Λsv|22)

+ (b2 + c2)ε2(|∆Λsζ|22 + |∆Λsv|22)

)
.

(A.4)

For A4, we have

A4 =
(

Λsv, (1 + ζ + ζ̃ω)Λsv
)
2

+ abcε3 |∇∆Λsv|22 + acε2 |∆Λsv|22

+ bε2
(

∆Λsv, −[a+ c(1 + ζ + ζ̃ω)]∆Λsv
)
2

+ ε
(

Λsv, [a+ (c− b)(1 + ζ + ζ̃ω)]∆Λsv
)
2
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which along with the assumption 1 + ζ + ζ̃ω ≥ H > 0 implies that

(A.5)

A4 ≥ H |Λsv|22 + abcε3 |∇∆Λsv|22 + (ac− b(a+ cH))ε2 |∆Λsv|22
+ (−a− c+ b)ε |∇Λsv|22 + (c− b)ε

(
|ζ|∞ +

∣∣∣ζ̃ω∣∣∣
∞

)
|Λsv|2 |∆Λsv|2

≥ H

2
|Λsv|22 + abcε3 |∇∆Λsv|22 + (−a− c+ b)ε |∇Λsv|22

+

ac− b(a+ cH)−
(c− b)2(

∣∣ζ∣∣∞ +
∣∣∣ζ̃ω∣∣∣

∞
)2

2H

 ε2 |∆Λsv|22 .

(A.6)

A4 ≤
(

1 +
∣∣ζ∣∣∞ +

∣∣∣ζ̃ω∣∣∣
∞

)
|Λsv|22 + abcε3 |∇∆Λsv|22

+
(
ac− ab− bc

(
1 +

∣∣ζ∣∣∞ +
∣∣∣ζ̃ω∣∣∣

∞

))
ε2 |∆Λsv|22

+
(
−a+ (−c+ b)

(
1 +

∣∣ζ∣∣∞ +
∣∣∣ζ̃ω∣∣∣

∞

))
ε |Λsv|2 |∆Λsv|2 .

For A5, using (3.29) we have

(A.7)

|A5| ≤ 2 (|v|∞ + |ṽω|∞)
2 |(1− bε∆)Λsv|2 |(g(D)− 1)Λsv|

≤ 2|b− d|
d

(|v|∞ + |ṽω|∞)
2

(
2 |Λsv|22 +

b2

4
ε2 |∆Λsv|22

)
.

Combining (A.1), (A.2), (A.3), (A.4), (A.5), (A.6) and (A.7) we obtain that

Es(V)

≥
(

min

{
1,
b

d

}
− 2 max

{
1,
b

d

}
(|v|∞ + |ṽω|∞)

)
|Λsζ|22

+ min

{
1,
b

d

}
bc2ε3 |∆∇Λsζ|22

+

(
min

{
1,
b

d

}
(c2 − 2bc)−max

{
1,
b

d

}
(|v|∞ + |ṽω|∞) (b2 + c2)

)
ε2 |∆Λsζ|22

+ min

{
1,
b

d

}
(b− 2c)ε |∇Λsζ|22

+

(
−2 max

{
1,
b

d

}
(|v|∞ + |ṽω|∞) +

H

2
− 4|b− d|

d
(|v|∞ + |ṽω|∞)

2

)
|Λsv|22

+

(
−max

{
1,
b

d

}
(|v|∞ + |ṽω|∞) (b2 + c2) + ac− b(a+ cH)

−
(c− b)2

(∣∣ζ∣∣∞ +
∣∣∣ζ̃ω∣∣∣

∞

)2
2H

− b2|b− d|
2d

(|v|∞ + |ṽω|∞)
2

)
ε2 |∆Λsv|22 ,

which along with a suitable lower-bound of |v|∞+ |ṽω|∞ implies the left-hand side
inequality of (3.32). Similarly, we get the right hand side inequality of (3.32) and
therefore we can choose a suitable constant κH .

4.2. Appendix 2. (The case b = d > 0, a = 0, c < 0).
We are going to prove the existence of κH which ensures the equivalence of Es(V)

and |ζ|2Xs
ε2

+ |v|2Xs
ε

in the assumption of Proposition (3.2). By doing similarly as
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previous case, we get

Es(V) = ((1− bε∆)Λsζ, (1 + cε∆)Λsζ + (v1 + ṽ1ω)Λsv1 + (v2 + ṽ2ω)Λsv2)2

+
(

(1− bε∆)Λsv1, (v1 + ṽ1ω)Λsζ + (1 + ζ + ζ̃ω)Λsv1

)
2

+
(

(1− bε∆)Λsv2, (v2 + ṽ2ω)Λsζ + (1 + ζ + ζ̃ω)Λsv2

)
2

= ((1− bε∆)Λsζ, (1 + cε∆)Λsζ)2

+ ((1− bε∆)Λsζ, (v + ṽω)Λsv)2

+
(

(1− bε∆)Λsv, (1 + ζ + ζ̃ω)Λsv
)
2

+ ((1− bε∆)Λsv, (v + ṽω)Λsζ)2
= B1 +B2 +B3 +B4.

For B1, we have

(B.1) B1 = |Λsζ|22 + (b− c)ε |∇Λsζ|22 − bcε
2 |∆Λsζ|22

For B2 , we have

(B.2) |B2| ≤ (|v|∞ + |ṽω|∞) |Λsv|2 (|Λsζ|2 + bε |∆Λsζ|2).

Then,

B2 ≥ −4(|v|W 2,∞ + |ṽω|W 2,∞) |Λsv|22 −
1

4
(|v|W 2,∞ + |ṽω|W 2,∞) |Λsζ|22

− 4b(|v|W 2,∞ + |ṽω|W 2,∞) |Λv|22 −
b

4
ε2 |∆Λsζ|22 .

(B.2.1)

And

B2 ≥ 4(|v|W 2,∞ + |ṽω|W 2,∞) |Λsv|22 +
1

4
(|v|W 2,∞ + |ṽω|W 2,∞) |Λsζ|22

+ 4b(|v|W 2,∞ + |ṽω|W 2,∞) |Λv|22 +
b

4
ε2 |∆Λsζ|22 .

(B.2.2)

For B3, by integrating by parts, we have

(B.3)

B3 =
(

Λsv, (1 + ζ + ζ̃ω)Λsv
)
2
− bε

2∑
j=1

(
∆Λsvj , (1 + ζ + ζ̃ω)Λsvj

)
2

=
(

Λsv, (1 + ζ + ζ̃ω)Λsv
)
2

+ bε

2∑
j=1

[(
∇Λsvj , (1 + ζ + ζ̃ω)∇Λsvj

)
2

− 1

2

2∑
k=1

(
Λsvj , (∂2xk

ζ + ∂2xk
ζ̃ω)Λsvj

)
2

]
.

Which alongside with (3.2) give that

(B.3.1)

B3 ≥
(
H − bε

2
(|v|W 2,∞ + |ṽω|W 2,∞)

)
|Λsv|22

+ bε

2∑
j=1

H |∇Λsvj |22 ,
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and

(B.3.2)

B3 ≤
(

1 + (1 +
bε

2
)(
∣∣ζ∣∣

W 2,∞ +
∣∣∣ζ̃ω∣∣∣

W 2,∞
)

)
|Λsv|22

+ bε(1 +
∣∣ζ∣∣∞ +

∣∣∣ζ̃ω∣∣∣
∞

)

2∑
j=1

|∇Λsvj |22 .

For B4, we have

B4 = (Λsv, (v + ṽω)Λsζ)2 − bε
2∑
j=1

[ (
Λsvj , (vj + ṽjω)∆Λsζ

)
2

+
(
Λsvj , (∆vj + ∆ṽjω)Λsζ

)
2

+ 2
(
Λsvj , ∇(vj + ṽjω) · ∇Λsζ

)
2

]
.

Then

(B.4)
|B4| ≤ (1 + bε)(|v|W 2,∞ + |ṽω|W 2,∞) |Λsv|2 |Λ

sζ|2
+ 2bε(|v|W 2,∞ + |ṽω|W 2,∞) |Λsv|2 |∇Λsζ|2 .

That follows

(B.4.1)
B4 ≥ −(1 + bε)(|v|W 2,∞ + |ṽω|W 2,∞)(4 |Λsv|22 +

1

4
|Λsζ|22)

− 2b(|v|W 2,∞ + |ṽω|W 2,∞)(4 |Λsv|22 +
ε2

4
|∇Λsζ|22),

and

(B.4.2)
B4 ≤ (1 + bε)(|v|W 2,∞ + |ṽω|W 2,∞)(4 |Λsv|22 +

1

4
|Λsζ|22)

+ 2b(|v|W 2,∞ + |ṽω|W 2,∞)(4 |Λsv|22 +
ε2

4
|∇Λsζ|22).

Thanks to (B.1), (B.2.1), (B.3.1) and (B.4.1), we get

Es(V) ≥ 1

2
|Λsζ|22 + (

b

2
− c)ε |∇Λsζ|22 − bε(c+

|v|W 2,∞ + |ṽω|W 2,∞

4
) |∆Λsζ|22

+ (H − (|v|W 2,∞ + |ṽω|W 2,∞))(8 + 12b+
9

2
bε) |Λsv|22 .

Note that in this case we have b > 0 and c < 0, so similarly as the case in the
appendix 4.1 we can choose a suitable constant κH .
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