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CHAPTER 11 MODULES OVER ARTINIAN RINGS

In this chapter we consider those rings which are simplest, as measured by the complexity
of the category of modules: the rings of finite representation type or, more generally (?), the
right pure-semisimple rings.

A ring is right pure-semisimple iff every module over it is a direct sum of indecomposable
submodules. These are precisely the rings whose every right module is totally transcendental
(§1). To put this another way: a ring is right pure-semisimple iff the lattice P of pp-types has
the ascending chain condition - so right pure-semisimplicity is the "with quantifiers" version of
the right noetherian condition. The first section contains various equivalents to right pure-
semisimplicity, as well as "local" versions of some results (i.e., applying to arbitrary theories
closed under product, rather than just to 7"*). I also include a proof of the fact that a right
pure-semisimple ring is right artinian and that each of its indecomposable modules is of finite
length.

A ring is of finite representation type if it is right pure-semisimple and if there are, up to
isomorphism, only finitely many indecomposable modules. It is not known whether or not a
right pure-semisimple ring must be of finite representation type. If the ring is an artin
algebra, then the concepts are equivalent (though I don't prove that here): the artin algebras
include the algebras which are finite-dimensional over a base field. We see (§2) that an artin
algebra is of finite representation type if it has only finitely many indecomposable finitely
generated modules (in fact, this is true of any right artinian ring). It is also seen that a
countable ring is of finite representation type iff it has, up to isomorphism, fewer than 2^o
countable modules.

This chapter is concerned with finitely generated modules over right artinian rings. Such
modules need not be pure-injective: yet we wish to use pp-types and the associated techniques,
without having to step beyond the realm of finitely generated modules. In the third section, a
theory of hulls is developed for finitely generated modules over right artinian rings. It is shown
that if a is an element of such a module M, then there is a minimal direct summand of M
containing a\ this summand is unique up to ^-isomorphism and depends only on the pp-type of
a. We are then able to use these finitely generated analogues of hulls, more or less as we used
the hulls of §4.1. Although we do not use the fact, it is nice to know that the two notions of hull
fit together in the sense that the "finitely generated" hull of an element purely embeds in the
hull of the element, and the one module is indecomposable iff the other is.

The main result of the fourth section is that a ring is of finite representation type iff every
module over it has finite Morley rank. This second condition is equivalent to the lattice of pp-
types having finite length. Thus finite representation type may be viewed as the "with
quantifiers" version of the right artinian property. Our proof of the result is self-contained for
artin algebras but, for general right artinian rings, we have to quote a result of Auslander which
says, in effect, that MR is a ring of finite representation type then every irreducible type is
neg-isolated. Indeed, this condition on irreducible types characterises the rings of finite
representation type.

There is a supplementary section on the "pathologies" one encounters if no restriction is
placed on the modules under consideration.

Throughout the chapter, I have made some attempt to distinguish between what is true for
any totally transcendental theory closed under products and what is at least less local than this
(though the correct setting for some of the results eludes me).

11.1 Pure-semisimple rings

The ring R is said to be right pure-semisimple, r t . pss for short, if every right R-
module is a direct sum of indecomposable submodules. For instance, semisimple artinian rings
are right pure-semisimple; for other examples, see below. As is suggested by the terminology,
these generalise semisimple artinian rings, which may be seen as the quantifier-free version of
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Chapter 11: Modules over artinian rings 229

right pure-semisimple rings (the modules over a semisimple artinian ring have complete
elimination of quantifiers, so all em beddings are pure).

It turns out that, over a right pure-semisimple ring, every indecomposable module is
finitely generated. The same class of rings is defined by the requirement that there be a cardinal
K such that every module is a direct sum of submodules each of cardinality no more than K. It is
not enough to require that there be only a set of indecomposable modules, as is shown by any
regular ring which is not actually semisimple artinian.

Proposition 11.1 Let T be a theory of modules, not necessarily complete, which is
closed under products. Suppose that every model of T is a direct sum of
indecomposable submodules. Then T is totally transcendental.

Proof [Pr84; 2.1] Set T, = Th(@{Mj' : T is a complete extension of T and Mj' is any
chosen model of 7"'}). Thus 7"1 is the join, in the sense of §2.6, of the various T' and is itself
a complete extension of T. So, if M is a model of T then M purely embeds in a model of Tv

Thus we reduce to the case where T is complete.
So suppose that T is complete. Recall that a module is totally transcendental iff it is 2 -

pure-injective (3.2). I show that every module is t.t. by establishing first that every pure-
injective module is 2-pure-injective.

So let N be pure-injective. By assumption, one has a decomposition /V=©/y/V<^ where
each A/\ is indecomposable and, being a direct summand of N, is also pure-injective.

Then pi(A/(*°') = pi( © A ^ * ° ) ) = pi( © A © ie GO N\f0
 saY; where for each i<Ew one

has H^i^H^. By assumption, pi(^(**o)) has a representation ©xA76 (say), where again
the M& are indecomposable pure-injectives. Now, by 4.A14 the two decompositions
pi((B AXGO/^/X,£) and © 2 ^ 6 - © X ^ are essentially the same, in the sense that there is a
bijection f:Axoo >T such that N^ i-f^f{\ i) for each *x, i.

Thus:
-(©A^)(^)-©Axi^Ji-©Axi^m,i)-©2^6 = Pi^(^))- That is,
is pure-injective and so N is 2-pure-injective, as desired.

Thus every module purely embeds in a t.t. module (namely its pure-injective hull). Hence
every module is t.t. (3.7); as required, n

Applying this to T*, we obtain the following characterisation of right pure-semisimple
rings (the direction "<=" by 3.14).

Theorem 11.2 The ring R is right pure-semisimple iff every right R-module is a
totally transcendental. •

So we obtain the following list of equivalents.

Corollary 11.3 The following conditions on the ring R are equivalent:
(z) R is right pure-semisimple]
(zz) every module is pure-injective;
(Hi) every direct sum of pure-injective modules is pure-injective;
(iv) every pure-injective module is 2-pure-injective. a

I now go on to derive further equivalent characterisations of and information about such
rings. I should say at this point that I am not going to try to carefully assign credits for these
results, since they evolved over some time around the early/mid 70's and in a number of papers:
see [Pr84] for references. I do, however, take the opportunity to add the following to the list
of references in [Pr84]: [AUS71], [Gri70a], [KS75], [She77].

The next theorem replaces indecomposables by modules of bounded size: but the result is
the same. The injective case is the Faith-Walker theorem [FW67; 1.1].
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Chapter 11: Modules over artinian rings 230

Theroem 11.4 [Gar80; Lemma 4] Suppose that T = T**<> is a theory of modules.

Then the following conditions are equivalent:

(z) T is totally transcendental;

(ii) there is a cardinal K such that every model of T is a direct sum of

submodules each of cardinality no more than K;

(iii) there is a cardinal K such that every model of T purely embeds in a direct

sum of modules each of which may be purely embedded in M and is of

cardinality no more than K.

Proof As in the f i rs t result, we may assume that T is actually complete. Already we have
( i )=> ( i i ) by 3.14 - the existence of K is obvious since each summand may be taken to be the
hull of a single element. Also ( i i )=^ ( i l l ) is t r i v ia l .

( i i i )=> ( i ) Since T is closed under products, i t w i l l be enough to show that T is
superstable (3.3). This w i l l be done by directly verifying the defining condition (3.A and
comment following that). So let A be any subset of the monster model and let N(A) be a copy
of the hull of A. Let us assume, for convenience, that K is infinite.

By assumption, there is a pure embedding of N(A) into N"= (B j^N^ where, for each
7i€A, one has that N^ is a direct summand of M and I / V ^ I ^ K . Since T is closed under
products i t follows that N" also purely embeds into M. In particular, N(A) has the same pp-
type whether regarded (algebraically) as a pure submodule of HH or as sitting inside M. So we
may as well suppose that we are working inside the monster model.

Each element a€A is contained in a finite sub-sum of Nn. Hence A is contained in a
direct summand, A / ' = © y v ' ^ V of N" with |A ' |< | /? | + * * 0 and hence with | t f ' |<K(|/?| + tt0).

Since A is contained in the pure submodule hi' of M, one has that its pp-type is the
same, whether measured in /V(/?), M or A/'. So the morphism f\N{A) >N', which is the
composition of the pure embedding of H(A) in N with the canonical projection from N" to
/V", preserves the pp-type of A. By 4.14 it follows that f preserves the pp-type of N(A).
In part icular, f is an embedding of N{A) into N'. Hence |/V(/?)|<|/V'|, so N{A) has
cardinality bounded by K|/?|.

We show that T is superstable, by counting types over A. Set M = N{A)®M for some M.
If p is a 1-type over A then take any realisation c = {ao,b)€ N(A)®M of it.

Suppose also that the 1-type q, over A, is realised by c' = {ao,b') € N{A)®M where
tp(Z?) = tp(Z?x). It is shown that q must equal p (so a bound on IS^/?)! w i l l be obtained). Let
ip(i/,5") be pp with a in A. Then the following assertions are equivalent: y${v,a) € p(v);
y(c,a) holds; ip(^?0,5") A ip(Z>,"o") holds (on projecting); \p(ao,a) A ip(i',o") holds (by
assumption); [p{c',a) holds (on adding); \${v,a) 6 q{U). Thus p+ -q+ and so (2.17) p-qt

as desired.
There are at most | A / ( / ? ) N K ( | / ? | + H J choices for a0 and at most |S1(0)|<2l?r l choices

for tp(ft). Hence | S 1 ( / ? ) N K ( | / ? | + H J ^ I ^ I . In particular, i f I ^ I ^ K ^ I ^ I (a constant) then
|S1(/?)|<|/7| - so T is superstable, as required, n

Corollary 11.5 Suppose that T is a complete theory of modules such that there

exists a cardinal K with |A / ( / ? ) | ^K | / ? | for every subset A of the monster model.

Then T is superstable.

Proof This was shown in the last part of the proof of 11.4. n

Corollary 11.6 The following conditions on the ring R are equivalent:

(z) R^is right pure-semi simple;

{ii) there exists a cardinal K such that every module is (or even, purely embeds

in,) a direct sum of modules, each of cardinality bounded by K;
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Chapter 11: Modules over artinian rings 231

(in) every module is totally transcendental;
(iv) T* is totally transcendental;
(v) the lattice ?{R) of pp-1-types has the ascending chain condition.

Proof The equivalence of (iv) and (v) is immediate from 3.1(C); that of ( i i i ) and (iv) is clear
by 3.7. Setting T = T* in 11.4 yields (ii)<=>(iv). The equivalence of (i) and ( i i i ) is 11.2. n

The equivalence of (i) and (v) in 11.6 says that right pure-semisimplicity is the pp-version
of the right noetherian condition. It will turn out that finite representation type is the
corresponding strengthening of the right artinian condition.

Setting T = T* in 11.5 and applying 11.6 yields the next result.

Corollary 11.7 The ring R is right pure-semi simple iff there exists K such
that for every ZI{sMkT*) one has |/V(/?)N K|/?|. D

The corollary above is not "purely algebraic", since it explicitly refers to the pp-type of
/?; but there is the following stronger result.

Corollary 11.8 The ring R is right pure-semi simple iff there is a cardinal K
such that for every module M one has \M\^K\M\.

Proof The direction " => " is clear by what has been shown already. So suppose that the
cardinality restriction is satisfied: we verify that the corresponding condition of 11.7 also
holds. Given a subset /? of the monster model of 7"*, there exists a pure submodule, B, of M
which contains /? and has cardinality no more than |/?|.|7"| (add in witnesses for every pp
formula with parameters in // = /?0; this gives /?-,; repeat; ... and set 5=Uw/?j) . Then
k M ) | < | B 1 < K|7"|.|/?| - so 11.7 does apply, a

One knows ([Sab70a; Cor2]) that, in any case, \M\< \M\(\R\+ * O ) . If R is regular one
has complete elimination of quantifiers for 7"* (16.16) and so, using 16.B, a special case of
11.7 is the following.

Corollary 11.9 Suppose that R is regular and non-artinian. Then for every
cardinal K there exists a module M such that \E{M)\>K\M\. U

The condition of right pure-semisimplicity is very strong. The next result details some of
its consequences.

Theorem 11.10 Suppose that R is right pure-semi simple. Then:
{a) R is right artinian;
(b) there are, up to isomorphism, at most \R\ + ^0 indecomposable modules;
(c) every indecomposable module is finitely generated.

Proof (c) Let N be indecomposable and choose a non-zero element a of N. Let p be its pp-
type in /V and let ip be a pp formula which generates p modulo 7"* (ip exists since 7"* is
t.t.). Then (cf. 8.4) there is some finitely generated submodule, M, of N in which a lies and
in which the pp-type of a is p.

Since M is, by 11.6, pure-injective it has, as a direct summand, some copy bl' of the hull
of a. Since M is finitely generated, so is its direct summand hl\ But N' is isomorphic to
M: hence /V is finitely generated (it follows easily that, in fact, N-M).

(b) This is immediate from (c) (or use that every indecomposable pure-injective is the
hull of a pp-1-type and, since 7"* is t.t., there are at most |£| + H 0 of these).

(a) The original proof is [Ch60; 4.4]. I give one slightly closer to that in [Fai76],
Notice first that R is right noetherian: the lattice of right ideals embeds in the lattice of

pp-1-types which, by 11.6, has ace.
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Chapter 11: Modules over artinian rings 232

Let H be the nilradical of R (the sum of all the nilpotent ideals). Then the module
E(R/H) is finitely generated. For, by assumption, E(R/N)=tBjEi for suitable
indecomposable injectives f^. Since R/N is finitely generated it is contained in some finite
sub-sum which, by (c), is itself finitely generated. So E{R/M) is also finitely generated,
being a direct summand of this last injective module.

Now let E' be the injective hull of R/M as an £/^-module. Since £' , as an ^-module,
is an essential extension of R/N it follows (see §1.1) that R/N < E' < E(R/H) (as £-
modules). Therefore, since E' is a submodule of a finitely generated ^-module and since R is
right noetherian, £' is itself finitely generated as an ^-module (hence as an £//V-module).

Now, by Goldie's Theorem (see [St75; §2.2]), £ ' has the structure of a semisimple
artinian ring of fractions of R/N. Let c€R/N be a regular element. Then, inside E', there
is an inverse c~1 for c and one has R/N < c'HR/M) =̂  c~2(R/M) < ... (note
\ = c"[.c € c'^iR/N)). Since E' has ace on submodules, there is some integer 77 and some
btR/N such that c-(77 + 1) = c"77i. Hence c'^b^R/f/: that is, c already is invertible in
R/H.

Thus, every regular element of R/N has an inverse in R/N. Hence R/H is its own ring
of fractions. So, by Goldie's Theorem, R/H is a semisimple artinian ring.

Furthermore, since R is right noetherian there is an integer k with /V* = 0. Each factor
Ni///i + i (an R/N-mo6u]e) is finitely generated as an ^-module, hence as an £//V-module.
Therefore R is a finitely generated right £//V-module. Since the latter is artinian, it follows
that R is right artinian. n

The property of being semisimple artinian is a two-sided one: but the corresponding
question for pure-semisimplicity is open.
Open question 1 If £ is right pure-semisimple is R left pure-semisimple?

A positive answer to this would have further consequences; for right and left pure-
semisimplicity together imply finite representation type (see §2). A weaker (possibly - see
[Sim77a]) question, suggested by 11.10(a) is the following one.
Open question 2 If £ is right pure-semisimple, is R necessarily left artinian?

Of course a positive answer to the first question entails an affirmative answer to the second.
At least for hereditary rings ([Sim8i]), a positive answer to the second question would imply a
positive answer for the first: indeed, Simson reduces the question for hereditary rings to that

for rings of the form I ^ I where F and 6 are division rings and M is a bimodule.

Furthermore, Simson showed ([Sim77a]) that if every right pure-semisimple and left
artinian ring is also left pure-semisimple, then every right pure-semisimple ring is left
artinian (this follows by 8.A).

Note the model-theoretic reformulation of the first open question.
Open question T If every right ^-module is totally transcendental, does it follow that every
left ^-module is totally transcendental?

In connection with the result of Simson mentioned above, one may show the following
(perhaps it can be established more easily, but the proof does illustrate how one might use the
results of §8.3). If one could show the result below with the cardinality restriction replaced by
one on the dimensions, then it would, by [S1m81; 3.3], imply that every right pure-semsimple
hereditary ring is of finite representation type (the proof could hardly be described as delicate,
but any extension of it would seem to need consideration of the geometry involved).

Cambridge Books Online © Cambridge University Press, 2010terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511600562.015
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Nov 2019 at 17:08:48, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511600562.015
https://www.cambridge.org/core


Chapter 11: Modules over artinian rings 233

Proposition 11.11 [Pr83; 1.18] Let R be the matrix ring [ Q G \ where F and

G are infinite division rings and M is an (F,G)-bimodule. Suppose that \F\ < \G\.
Then R is not right pure-semisimple.

Proof It will be enough to produce a sequence of pp formulas, with ...ip^ -> ipn_1 ->... -> Lp1 -> ip0

(in every module) and none of the implications reversible. By the results of §8.3, it is

equivalent to produce a sequence of matrices /?„ = c such

that, for no matrices E,H is E ./f^ + i = AVH and where /?„ + -] is formed from /?n by
VO )

adding columns.

Therefore, the kind of equation that we want to avoid is f „ ^ I . L ^ = " .//,
V° D ) \Sn + \) {SnJ

which ra-^onoBS to

Let us assume inductively that A^ has coefficients from M: so c and D may be assumed
to have entries from F, and H to have entries from G. Also assume, inductively, that Sn is
diagonal with non-zero entries on the diagonal: so if X is a matrix with entries in G then

fOM\ fS-n 0 S
Sr7X = 0 implies y = 0. Choose any non-zero element a of I I and set Sn + 1 = l L

Let X be the set of those matrices H with entries in G such that there exists a solution
D to 05^ + 1 = SJJH. Note that, for HtX, the map Ht-*D is 1-1 (by assumption on Sn and
choice of a). So, since D has entries in F, it follows that |X|<|F|.

Now, we wish to choose f n + p ( f n , x ) such that the equation (*) has no solution. That is,
given H, choose f^ + i not equal to -cS^ + i + ^ W . There are only |F| possibilites for H
and, for each of these, no more than |F| possibilities for c so, since |£|>|F|^>*o, a suitable
choice of r^^.^ may be made, as required. •

11.2 Pure-semisimple rings and rings of finite representation type

The ring R is said to be of finite representation type, FRT, if it is right pure-
semisimple and if there are, up to isomorphism, only finitely many indecomposable modules.
Thus, every ^-module has the form ^ ^ U . - . e ^ ^ t ) , where MV...,N£ represent the
finitely many isomorphism types of indecomposables and K1;...,K^ are cardinals.

It is known that a ring is both right and left pure-semisimple iff it is of finite
representation type (see §8.4). In particular, finite representation type is a two-sided
property. The following question is, however, open and is, by the result just quoted, equivalent
to the Open Question 1 of §1.
Open question 1 If R is right pure-semisimple is R necessarily of finite representation
type?

The answer is known to be affirmative for certain types of ring, and this will be discussed
below.
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Chapter 11: Modules over artinian rings 234

Example 1
(a) Any semisimple artinian ring is of finite representation type.
(b) One kind of semisimple artinian ring is the group ring, K[G] , of a finite group G over a

field K, where the characteristic of the field does not divide the order of the group. Even
if the characteristic, p, of the field does divide the order of the group, it may be that
K[Gl is of finite representation type. Specifically, K[G] is of finite representation type
iff each Sylow p-subgroup (maximal p-subgroup) is cyclic (see [CR62; 64.1]). Thus,
for example, F2 (Z2xZ2) is not of finite representation type but F2(S3) is, where F2

denotes the field with two elements and S3 is the symmetric group on three symbols
(exercise: exhibit infinitely many finitely generated indecomposables over the f irst [See
[CR62; 64.3] ]) .

Example 2 The ring 2 4 is of finite representation type. Indeed, every Z4-module has the
form Z 2 W e Z 4 ( ^ ) for suitable K, V

Example 3 The ring I ,, I of upper-triangular 2x2 matrices over the field K is of finite

representation type: it is just the path algebra of the Dynkin quiver A2 (see §13.2). I justify

this statement by describing all the modules.

Let £>11; £>12, e22 be the usual matrix units in R. Let M be any ^-module. Then, as a K-

vectorspace, M decomposes as MA = Me^@ Me22. Consider the annihilator, /?, in Meu of

the element * 1 2 - so rf={m€M : m = me^ and me^2 = 0}. It is t r iv ial to check that A is a

submoduleof M. It is not much more difficult to see that /? is injective and is a direct sum of

copies of the unique indecomposable (indeed simple) injective module S=l J/f

Thus every ^-module decomposes as a direct sum of copies of S and a module, M' say, in
which the ^-l inear map -xe^2\M'e^—>M'e22 is monic with image M'e^2 = M'e1^e:2. Such
a module M' may usefully be thought of as a pair (// = M'e22, U- M'eu) of/s-vectorspaces
together with a specified embedding U—>L/ (and every such pair arises in this way from an
^-module).

It is easy to show that direct-sum decompositions of ^-modules without injective direct
summands are equivalent to direct-sum decompositions (in the obvious sense) of the
corresponding pairs of vectorspaces (cf. §3.A). And it is not difficult to see that every pair
(U,U) is a direct sum of copies of just two indecomposable pairs: (K,0) and (K,K).

The indecomposable (K,0) corresponds to the simple projective module

and (K,K) corresponds to the indecomposable projective

p
2 = U o

(exercise).
Thus, every ^-module has the form s ( K ) e P 1 ^ ' e P 2 ^ ' for suitable cardinals K, \,

In particular, R is of finite representation type.
( K K K \

Exercise 1 Show that the ring 0 tf 0 is of finite representation type,
VO 0 K )
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Chapter 11: Modules over artinian rings 235

but that

K K K K K ^
0 K 0 0 0
0 0 K 0 0 is not. [Hint: c.f. Ex13.2/1, 17.5.]
0 0 0 K 0

V 0 0 0 0 K J

Exercise 2 [Bau75; Thm3] (R countable) Show that every ^-module is >t0-categorical i f f
R is a f inite r ing of finite representation type (cf. §4.C).

In order for a right artinian ring to be of f inite representation type, it is enough that there
be, up to isomorphism, only f ini tely many indecomposable f ini tely generated modules ([Tac73;
§9]). This is false for arb i t rary rings (cf. Ex 16.2/3)). I include a proof of this fact for the
(important) special case of Art in algebras, after giving some related results (all from
[ P r 8 4 ] ) .

Proposition 11.12 [Pr84; 2.5] Suppose that there is a totally transcendental
module C such that every finitely generated module purely embeds in C. Then R is
right pure-semisimple.

Proof Let M be any non-zero module and take a non-zero element a of M. Let p be the pp-
type of a in M. Set /?0 to be the submodule generated by a and let p0 be the pp-type of a
in /?0 (so VQ^V)-

Choose, i f possible, a sequence /?0</?1< ... <M of f initely generated submodules of M such
that, i f pi is the pp-type of a in /?£, then pQcp^c ...cp.

By hypothesis there is, for each i , a pure embedding f j : / ? j — > C ; by pur i ty
pp^(/>j^7j) = p j . Since C is t.t., eventually pi = pi + <\ -contradiction.

So there is some f ini tely generated submodule, /?, of M with pp^(^) = pp^(^ ) (since R
is not assumed to be noetherian, 8.4 cannot be applied to conclude that p is f initely generated).
Since /? purely embeds in C, it is t.t. (but p being f initely generated in /? need not imply
that p is f ini tely generated in M, so we continue...). In particular /? is pure-injective. So
there is a copy N{a) of the hull of a, which is a direct summand of /?.

It is claimed that N(a) is actually a direct summand of M; but this is immediate from
4.14, since pp^^)(^?) = pp^ (^ ) . Now we use an argument already seen in 3.14. Let ^ be a
family (M^i of f ini tely generated direct summands of M, such that the sum of the family is
direct and pure in M, and which is maximal such (clearly Zorn's Lemma applies to give
existence). Since ©j/V^ can be embedded in some power of C - st i l l a t.t. module - this direct
sum is itself t.t. so, in particular, is pure-injective. Therefore M = {®iUi)eUy say. If Ny

were non-zero then what was shown f i rs t would give a non-zero f initely generated direct
summand of bl' - contradicting maximality of ^ .

Thus every module is a direct sum of f ini tely generated submodules. So by 11.6 (with
K = | £ | + > * 0 ) one concludes that R is indeed right pure-semisimple. •

Corollary 11.13 [Pr84; 2.6] The ring R is right pure-semisimple iff every
direct sum of finitely generated modules is totally transcendental.

Proof =* This is by 11.6.

«= This is by 11.12. •

Corollary 11.14 [Pr84; 2.7] Suppose that every finitely generated R-module is
totally transcendental and that there are only finitely many indecomposable finitely
generated modules. Then R is of finite representation type.
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Proof Let C1 be the direct sum of one copy of each of the finitely many indecomposable
finitely generated modules. Since the sum is finite, the hypothesis implies (3.5) that C1 is
itself totally transcendental. Hence C = C^^ is t.t. (3.4).

But every finitely generated module, being t.t., is a direct sum of indecomposable
submodules (3.14) and so is isomorphic to a direct summand of C. Therefore the result follows
by 11.12 and the definition of finite representation type, n

A ring is said to be an Artin algebra if its centre is an artinian ring and if the ring is
finitely generated as a module (on the right, equally on the left) over its centre. The main
examples are finite-dimensional algebras over fields. Observe that an Artin algebra must be
both right and left artinian.

Lemma 11.15 Suppose that R is an Artin algebra. Then every finitely generated R-
module is totally transcendental of finite Morley rank {so is in particular pure-
injective) with pp-rank bounded by its length as a module over the centre C{R) of
R.

Proof Let MR be finitely generated. Since R is finitely generated over C{R), MQ(R) is
finitely generated. This implies, since C{R) is of finite length, that MQ(R) is of finite length.
By 2.1, every pp-definable subgroup of MR is a C(£)-module. Hence the length of M as a
C(£)-module is a (finite) bound on the maximum length of a chain of pp-definable subgroups of
MR. a

Lemma 11.16 Suppose that R is a finite-dimensional algebra over the algebraically
closed field K and let M be an indecomposable finite-dimensional R-module. Then
the pp-rank {and hence the Morley rank) of M is equal to the K-vectorspace
dimension of M.

Proof By 4.53, if [p{M)>\\){M) is a minimal pair of pp-definable subgroups of M then the
quotient \p{M)/\p{M) is a 1-dimensional vectorspace over EndM/JEndM. Since M is finite-
dimensional over K, this division ring is a finite extension of K so, since K is algebraically
closed, it equals K and so ip(A7)/\p(A7) is a 1-dimensional vectorspace over K. Thus the result
follows (the pp-rank equals the Morley rank since K is infinite!). •

Example 4 If K is not algebraically closed, then the conclusion of 11.16 may fail. Take K to
be the real field and consider the simple module K[X] / (Y2 + 1). This is two-dimensional over
K but is 1-dimensional over its endomorphism ring (the field of complex numbers). Therefore
it has no proper non-trivial pp-definable subgroups, so it has pp-rank 1 but ^-dimension 2.

Corollary 11.17 Let R be an Artin algebra. Suppose that there are, up to
isomorphism, only finitely many indecomposable finitely generated R-modules. Then
R is of finite representation type.

P r o o f T h i s i s i m m e d i a t e f r o m 11.14 and 11.15. n

In fact, it is enough to assume just that R is right artinian, rather than an Artin algebra,
in order to obtain the conclusion of 11.17, but the proof for this general case is rather different
[Tac73; §9].

Exercise 3 [War78; 1.2] Show that a commutative noetherian ring over which every
countably generated module is a direct sum of indecomposables is an artinian principal ideal
domain - these are just the commutative rings of finite representation type.

The countable rings of finite representation type may be characterised in terms of the
number of countable modules.
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Theorem 11.18 [BM82] Suppose that R is a countable ring. Then the following
conditions are equivalent:
(i) R is of finite representation type;
iii) there are only countably many countable modules up to isomorphism;
(iii) there are fewer than 2^o countable modules up to isomorphism;
{ii)0-(iii)°: as (ii)-(zii), but for left modules.

Proof Since R is not assumed to be right art inian, an appeal to 11.17 would be unjustified: so
there really is something to prove.

As stated above, ( i ) is a r ight/ lef t-symmetr ic condition (see 8.24); (i)=» ( i i ) is clear;
t r i v ia l l y ( i i ) ^ ( i i i ) . So the implication ( i i i )=>( i ) remains.

First, it w i l l be shown that every f initely generated module is totally transcendental.
Assuming that this is not the case, consider some non-t.t. module /? generated by o^...ia1)

(say). Since /? has an infinite descending chain of pp-definable subgroups (by 3.1), it must be
that the number of 1-types modulo Th(/?) over A is 2^*° (compare proof of
3 . i ( c ) ( i )=>( i i i ) ' ) . Since every element of /? may be expressed as a term, using only av...,an

as parameters, one has S^(/i) = S1(av...)aT1). So there are 2**° 1-types over {av...,aT1}. It
follows (exercise) that there are 2^*° (77+ i)-types modulo Th(/?) over 0. But every (77 + 1)-
type over 0 may be realised in a countable model of Th(/?). So there must be 2^0 countable
models to hold all these realisations - contrary to hypothesis.

Thus every f initely generated module is totally transcendental. Were there infinitely many
non-isomorphic indecomposable f initely generated modules, {Ni : i € w ) say, then one would
have 2^0 countable modules: the © { A ^ : i € / } , for /EGO, provide 2^0 non-isomorphic
(by 4.A14) countable modules -contradiction.

The conclusion now follows by 11.14. n

11.3 Finite hulls ouer artinian rings

It has been seen that if the ring R is right pure-semisimple or if it is an Artin algebra,
then every finitely generated module is pure-injective. Therefore, when dealing only with
finitely generated modules over such rings, we have the full machinery of hulls available.
However, a finitely generated module over a right artinian ring need not be pure-injective (see
EX14.2/1).

One may ask over what rings the finitely generated modules are pure-injective (and hence,
if R is countable, totally transcendental)? In the two cases above where one has this property
one also has existence of almost split sequences (see §13.1) on one side: is there a connection
between finitely generated modules being pure-injective and existence of almost split
sequences? (and, therefore, a connection with whether right pure-semisimple implies finite
representation type).

What, then, are we to use in the general artinian case, since hulls are not available if one
restricts to finitely generated modules? Is there still a connection between irreducible types
and indecomposable modules? The material of §8.2 relates to this but, to get the best results
(and the relativisation goes through almost completely), one must restrict to modules of finite
length. No doubt, at least some of this section could be carried over to finitely presented modules
over left perfect rings (cf. [Sab71b]).

Therefore I show first that if R is right artinian then, within the context of finitely
generated modules, there are finitely generated analogues of hulls.
Throughout this section, R is assumed to be right artinian.

I begin with two useful, well-known, results about modules of finite length.

Proposition 11.19 (Fitting's Lemma) If M is a module of finite length and if f is
an endomorphism of M, then M= \rr\fk e kerf* for some
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Proof (outline) Use the (obvious) fact that f is monic iff it is epi iff it is an automorphism.
We have imf* = imf* + 1 = ... and kerf* = kerf* + 1 = ..., where k is the length of M. So, if
atM, then fka = f2kb for some beM: thus a = fkb + {a-fkb) € imf* + kerf*. Also, f* is
epi on imf* (since the latter equals imf 2 * ) ; so imf* n kerf* = 0. n

Proposition 11.20 (Harada-Sai Lemma) [HaSa7i] Suppose that the modules
A70,...,Mn_1 are indecomposable and all of length bounded by i€w. For each
i = 0,...,n-2, let fi'.Mi >Mi + <\ be a non-isomorphism. Suppose that the
composition f-n-2 — ^^o is non-zero. Then n<2^.

Proof (outline) The following statement is proved by induction on k:
Z(imf 2k-2---^i^o' ^ b-k, where "Z" denotes the length of a module. For K<1 this is clear,
(since f0 is a non-isomorphism, and l(M0)^b).

Suppose that the statement is true for the particular value k. Set f = f2k-2---f/o an^
h - />2k+i-2---^2k- If either of these has image of length strictly less than b-k then Z(imf2k+
i-2---^o) = ^(im/?/>2k-i/>) ^ -̂(Ar + 1), as required. So suppose otherwise and set # = f 2 k - i .
Then suppose, for a contradiction, that Z(im hgf) - b-k.

By the induction hypothesis applied to f, we see that imf n kerhg = 0 (*). Byadditivity
of length, we have that l(\mf) = b-k, Z(kerh^) = Z(A^2k-i)-Mim^^) and l{\mhg) = b-k.
Combining these equations, we see from (*) that A 2̂k-1 is the direct sum of imf and kerhg.
But this module is indecomposable, so kerhg must be zero, and g is monic.

Similarly, one shows that g is epi. But that contradicts g being a non-isomorphism, n

Let pt?^ be a finitely generated pp-n-type. There is (8.4) a finitely generated module
M containing a realisation a of p. Since R is right artinian, M has finite length; so there
is a direct summand, H(a), of M which contains a and which is minimal such. I show that
H(a) is unique up to ^"-isomorphism: in fact, H{a) is determined by p (as is ^(p)).

So suppose that T> in the finitely presented (so finite length) module M' realises p.
Choose H(b) in M' in the same way that H{a) was chosen. Since H(-) is a direct summand,
one has pp^^)(5") = p = pp^(^)(i"). Therefore, by 8.5, there are morphisms
f:H(a) >H(b) and g:H(b) >H(a) with fa-b and gb-o. In particular, gf fixes a.

By Fitting's Lemma (11.19) there is Ar€oo such that H{a) = im{gf)k e ker{gf)k. Since a
is in im(^f)* and since this module is a direct summand of H(a), so of /^, minimality of
W(5") gives H(a)-\m(gf)k. Therefore g must be epi: also ker(#f)* = O - so f must be
monic. Then, by the symmetry of the situation, one concludes that f and g are mutually
inverse. This establishes the following result.

Proposition 11.21 [Pr83; §1] (R right artinian) Let p be a finitely generated
pp-n-type, and suppose that "a in M and b in M' are realisations of p in
finitely generated modules. Let H{a) be a minimal direct summand of M containing
a and let H(b) be a minimal direct summand of M' containing b. Then there is an
isomorphism between H{a) and H(b) taking a to b. a

The module H(a) may be called the finite hull or, if no confusion should arise, simply
the hull of a. If p = ppw(^(a) then H(p) = H(a) is the (finite) hull of p.

Another question which arises is that of the relationship between H{p) and N(p). It
should be fairly clear that p is irreducible iff H(p) is indecomposable (use 8.7); so N(p)
is indecomposable iff H(p) is indecomposable. Nevertherless, this does not immediately
relate the two modules H(p) and A/(p) (although, for our purposes, 8.7 is all that is needed).
An obvious question is: "What is the pure-injective hull of H(p)? Is it Slip)?". Equivalently:
"Is the pure-injective hull of H(p) indecomposable?". The next result answers this question
(affirmatively).
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Proposition 11.22 [Pr83; 2.12] (R right artinian) Let p be any finitely
generated n-type. Then the pure-injective hull of H(p) is f/(p).

Proof Let a realise p: it will be enough, by 4.6, to show that if 1 is in H(a) then
ppC5"/2T) is a maximal pp-type over a (where the over-theory may be taken to be that of
H ( o ) ) .

Notice that pp(b/a) is finitely generated. For, by 8.4, pp^(^)(&~0) is finitely
generated - say by the pp formula ip(v,w). Then the formula \p{U,a) generates ppfF/ZT). So
if pp(&/#) were not maximal there would be a finitely generated pp-type over a strictly
containing it. Then there would be a finitely generated module, M, containing a in such a way
that pp (̂Z7") = p, and containing a tuple ~c in M with pp(j:/a)=>pp(b/a).

By 8.5 there would be morphisms f:H(a) >M a n d g : M >H(a), the f irst taking
a"l> to a^'c, the second fixing a. Consider the endomorphism gf of H{o). This morphism
fixes a but is strictly pp-type increasing on ~b. From the fact that a is fixed, we deduce
quickly that gf is an isomorphism (an application of Fitting's Lemma, just as before 11.21) and
so cannot strictly increase the pp-type of 1> - contradiction.

Thus the pp-type of H{a) over Q is maximal. So, by 4.6 and 4.14, H{a) is purely
embedded into N{a)t as required, n

Corollary 11.23 {R right artinian) Let p be any finitely generated (pp-)type. If
f:H(a) > M is such that pp(fa) = p then f is a pure embedding.

Proof This follows by 11.22 and 4.14. n

Exercise 1 One may give a more algebraic proof of the fact that if H(p) is indecomposable
then so is its pure-injective hull.

Suppose that R is right noetherian such that every finitely generated module is a direct
sum of indecomposable submodules, each with local endomorphism ring (e.g., suppose that R is
right artinian or a principal ideal domain; also see [Bra79; 9.2]). Let MR be finitely
generated and indecomposable; then M is indecomposable.
[Let M be generated by lb and suppose that M has a non-trivial decomposition as M^eN2.
Choose non-zero elements ai^Ni and pp formulas ipj linking a^ to lb ( i = i,2). Then there
is M' = M^@M2 say, a finitely generated submodule of M with a^Mi and with AT containing
lb together with witnesses for the quantifiers in the ipj(^j,"5"). Clearly M is pure in M' (it is
even pure in M) and so, since M'/M is finitely presented, M is a direct summand of AT
(Exercise 2.3/1). By locality of endomorphism rings, one has the exchange property (see, e.g.,
[Fai 76; 18.17]): so (decompose then recompose), M' -M ®M" e M2 say. On projecting
ip2(^72,I) to M2 one obtains a contradiction to n ip2(^2^ ' -^
Exercise 2 Give yet another proof of 11.22 using 8.4 and 8.7.

Corollary 11.24 [Pr83; 2.13] Suppose that R is right artinian and let M be
finitely generated.
(a) M is indecomposable iff M is indecomposable.
(b) M is a direct sum of n indecomposable modules iff the same is true of M. •

Corollary 11.25 {R right artinian) Let p be a finitely generated pp-type.
Suppose that H(p) is a direct sum of k indecomposable submodules. Then the
algebraic weight of p is k (cf. §6.4). •

Corollary 11.26 [Pr83; 2.14] If R is right artinian then every finitely generated
pp-type over 0 has finite weight, n
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One does need the type to be over 0 in 11.26 (see after 6.27); and some condition on the
ring is necessary - consider R-M-1, where the pp-type of the element 1^ has weight Ko.
The next result shows that if R is a right artinian ring then the correspondence A / H ^ F
between indecomposable finitely generated modules and their pure-injective hulls, is 1-1
(modulo isomorphism).

Proposition 11.27 Suppose that R is right artinian and that hi and hi' are
indecomposable finitely generated R-modules. If U^W7 then hl^hl'.

Proof Take non-zero elements a, a' in hi,hi' respectively. Suppose that their pp-types are
respectively generated (modulo 7"*) by the pp formulas ip, ip'. We may consider hi and hi'
as both purely embedded in the same copy Jf-W7 of the pure-injective hull. By H.24(a), ¥
is indecomposable so, by 4.11, there is a pp formula \\>(v,w) such that
hi N \p(a, a') A i i | j ( t f ,u ) .

Since hi is pure in hi, it satisfies 3w{\\)(a,w) Aip'iw)): say b€N w i tnesses"^" .
Since hi, so hi, satisfies i\\)(a,o), b is non-zero. Also, since b satisifes ip'(ic) and since
this formula generates the pp-type of a', there is (8.5) a morphism f\hl—> hi' taking a'
to b.

If f is an isomorphism, then we finish. Otherwise, repeat the argument with a' and b in
place of a and a'. Since N and hi' are of f inite length, eventually we find that they are
isomorphic or we reach a contradiction. •

The next lemma, which is immediate if R is an Art in algebra, w i l l be useful later.

Lemma 11.28 Suppose that R is right artinian. Let M be indecomposable and
finitely generated. Then the sub-poset {pdP^ : H(p)^M] of P n ' , consisting of
those pp-n-types realised in M, has the ace - even has finite length.

Proof Any strict chain in this subset of Pn^ induces, by 8.5, a sequence of non-
isomorphisms from M to itself. But if the length of M is k then (11.20) any such chain has
length bounded by 2k, as required, n

One should beware that 11.28 does not say that M has the dec on pp-definable subgroups
(for then M would be t.t. - in contradiction with EX14.2/1): not every pp-definable subgroup of
M need have the form Sa where S = EndM and a€M.

Exercise 3 (cf. Exercise 2.3/3) Let M be a finitely presented module (over any ring) and let
S be its endomorphism ring.
(i) If a€M and if ip is a pp formula equivalent to the pp-type of a in M, then ip(M) = Sa.
(i i) Every finitely generated S-submodule of M is a pp-definable subgroup of MR.
( i i i ) If $M is noetherian then the S-submodules of M are precisely the pp-definable

subgroups of MR.
(iv) If MR is weakly saturated and if every S-submodule of M is pp-definable, then $M is

noetherian.
Exercise 4 [Pr83; 3.13] Prove the following slight strengthening of the Harada-Sai Lemma
(11.20). Let fi'.Mi >Mj + i ( i = O,...,77-2) be a sequence of non-isomorphisms and let a0

be in Mo such that, if we set a^ = foaQ, o2-f{ov ..., then Afj is the finite hull of o-v If each
Mi has length no more than b then 77 < 2^.

"What makes a module indecomposable": this is a well known question of Auslander. On the
basis of the results of this section, we can give one answer to this: a module (finitely generated
over an artinian ring) is indecomposable iff, for every two non-zero elements a, b of it, there
is a system of linear equations and a solution vector of the form {a b x) but no solution vector
of the form (a 0 y).
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11.4 Finite Morley rank and finite representation type

It is shown in this section that the ring R has f inite representation type iff every R-
module has f inite Morley rank. Essentially this is done by showing that both conditions are
equivalent to the requirement that all irreducible types be isolated. In the important case of
Art in algebras the proof given here is self-contained: for the general artinian case we need to
quote a result of Auslander for one direction.

Actually, that every module having finite Morley rank implies that the ring is of f inite
representation type (11.29) already follows from 7.23 (or [Zg84; 8.12]) 5.13 and 5.18.

Theorem 11.29 / / the Morley rank of the largest theory, T*, of R-modules is
finite, equal to n say, {that is, if the length of the lattice P:{R) is n) then R
has no more than n indecomposable modules up to isomorphism. In particular, R
is of finite representation type. •

Another result, from which 11.29 follows, is 9.4.
The converse to 11.29 is easy if R is an Art in algebra.

Theorem 11.30 Suppose that the ring R is such that every finitely generated
module has its lattice of pp-definable subgroups of finite length. If R is of finite
representation type then the Morley rank of T*, and hence of every module, is
finite.

Proof Let A^, . . . , /^ be the f ini tely generated indecomposable modules. The assumption on R
implies that the Morley rank of (/V., e ... e ^ ) ( K ) is f inite for every cardinal K. But every
module is (since R is right pure-semisimple) a direct summand of such a sum of copies of
A/-, e ... e N %• Hence the result follows, n

Corollary 11.31 [Pr84; 3.9] Let R be an Artin algebra. Then the following
conditions are equivalent:
(i) R is of finite representation type;
(ii) ?^(R) has finite length;
(iii) every module has finite Morley rank (and there is a uniform bound);
(iv) MR(7*) is finite.

Proof Clearly ( i i i ) and ( iv ) are equivalent by 5.21; the equivalence of ( i i ) and ( iv) is by 5.13
and 5.18. Then, by 11.15, 11.30 applies to give ( i )=»( iv ) . Finally 11.29 gives us ( iv )=>( i ) . •

Example 1 Let R be the path algebra of the quiver A2 (see Ex 11.2/3). There are three
indecomposables; two with pp-rank 1 and one with pp-rank 2. It is left as an exercise to show
that the Morley rank of 7"* is 4 (see 11.39 below).
Exercise 1 Let R be the ring of nxn matrices over some division ring. What is MR( f * )?

In fact 11.31 does not need the assumption that R is an Art in algebra: R being right
artinian w i l l do (note that all the conditions of 11.31 imply right pure-semisimplicity, so imply
right art inian). But the general case involves more work and brings to light the importance of
the property of irreducible (pp-)types being isolated. This property links up with elementary
cogeneration (as has been seen in §9.4), with finite presentation of certain functors (§12.2) and
hence ([Aus74a; 2.7]) with existence of almost split sequences.

The next result was proved f i rs t for totally transcendental theories [Pr84; 3.6]. Then the
global case (i.e., R r t . pss) was generalised to the case where every f initely generated module is
totally transcendental [Pr83] . Using the machinery of §3 one can now give a proof for
arb i t rary right artinian rings.
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Proposition 11.32 Suppose that R is right artinian and let p be a finitely
generated irreducible type. Then the following conditions are equivalent:
(i) p is isolated (as a pp-type, equivalently as a type);
Hi) if (M'xl'x is a set °f indecomposable finitely generated modules and if Hip)

purely embeds in J]-\M^ ^en H(p)^M^ for some 'X;
(z2£) if {M-xH is a set °f indecomposable finitely generated modules and if H(p)

purely embeds in T\ ^M^ then, for some 'X, the morphism H{p) >A7̂
induced by the projection Tt^TT^Mjj ^^\> is an isomorphism.

Proof ( i ) = ^ ( i i i ) Let a in H(a) = H(p) realise p. Inside the product M = J]M^ one has
a = (ay)'\ for suitable a^ in M^; set p^ to be the pp-type of a^ in M^. Since H(a)
purely embeds in M, one obtains p^O^p^. Since p is irreducible and isolated in pf (8.7)
it must be that p-P\ for some V Therefore, the projection rt^ preserves the pp-type of a,
hence (by 11.23) is a pure embedding of H(a) into M^. Since M^/H(a) is f ini tely
presented, it follows (Exercise 2.3/1) that H(a) is a direct summand of M^ But M^ is
indecomposable; so n^:H{a) >M^ is an isomorphism, as required.

( i i i ) => ( i i ) This is immediate.
( i i ) = ^ ( i ) Suppose, for a contradiction, that p is not isolated but that, nevertheless ( i i )

holds. Then there is a representation p = P\{p^: 'xe A], where the p^ may be taken to be
irreducible, f ini tely generated and with p<\>p for all \ (exercise: use the fact that i f q>p
then there is a f ini tely generated pp-type p' with q^p'yp, and p' is a finite intersection of
irreducible f ini tely generated pp-types).

Set H^ = H(a^) where a^ is some realisation of p^. Then, i f a = {a^)^^J] H^ = H
(say), one has that the pp-type of a in H is P l ^ p ^ p . So, by 8.5, there is a morphism from
H(a) into H which, since it preserves the pp-type of a, is a pure embedding (by 11.23).
Then from ( i i ) i t follows that one has H{a)^H{a^) for some \.

If p<x were not itself isolated then one could repeat the above argument with p^ replacing
p: and so on. Noting that p<p<\ and that H{p) = H{p^), we see that 11.28 guarantees the
termination of this process after a f inite number of steps. Therefore there is a f initely
generated pp-type q with H(q) = H{p) and with q isolated. Let "5" in H{a) realise q.

By ( i )=> ( i i i ) applied to q and H, some projection n^ preserves the pp-type of "F.
Hence (11.23) rt^ must preserve the pp-type of a. That is, p-p^ - contradiction (for p^
is isolated), as required, n

Corollary 11.33 Suppose that R is right artinian. Let p and q be finitely
generated irreducible pp-types with H{p)^H{q). Then p is isolated {with respect
to a given T) iff q is isolated {with respect to T).

Proof This follows from 11.32 since condition ( i i ) holds equally for p and q. Of course, if
H(p) is a t.t. module (e.g., i f R is an Art in algebra) then this is immediate from the fact that
the prime model realises exactly the isolated types.

Alternatively the result follows easily by 9.26 and 9.24 (say), n

Next, I give the totally transcendental version of 11.32 which overlaps wi th, but also
diverges from that result.

Proposition 11.34 [Pr84; 3.6] Suppose that T is totally transcendental. Then the
following conditions are equivalent for any irreducible type p over 0:
(i) p is isolated;
(ii) if (N'\}'\ is any set of indecomposable pure-injectives and if M(p) is a

direct summand of the product TT-x '̂x, then M(p)^U(p^) for some 'X;
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(zzz) if (A^}^ is any set of indecomposable pure-injectives and if N(p) is a
direct summand of the product TT'x '̂X ^en, for some 7v, the canonical
projection Tt^.-TT^/V^—»Ny induces an isomorphism U(p)^U^.

Proof First note that none of the conditions ( i) , ( i i ) , ( i i i ) is changed by assuming that
7" = 7"*o (by 4.39 and (say) 9.26).

(i)=»(ii i) and (i i i)=>(i i) are just as in the proof of 11.32. A proof of (i i)=»(i), very
much like that in 11.32, may be given using the t.t. condition in place of 11.23.

Alternatively; let Mo= © - x ^ * * ) , with the N^ being the hulls of all the isolated
irreducible 1-types, be the prime model of T (4.62). By 9.33, Mo is an elementary
cogenerator: so there is K with N{p) purely embedding into M0

K. Since
M0

K=(®<xM<x(
K'\hK is pure in T T * ^ K * X K , one has the failure of ( i i ) if p is

non-isolated (for then N(p) cannot be isomorphic to any Ny). u

The next result, needed for the converse of 11.29, is due to Auslander.

Theorem 11.35 [Aus76; 2.4] Suppose that the ring R is of finite representation
type. If (A^)'x is a set of indecomposable modules and if f/ is an indecomposable
which purely embeds in the product TT /̂V^ then, for some 7v, one has H -/V\. n

Corollary 11.36 / / R is a ring of finite representation type then every irreducible
type (in finitely many free variables) is isolated.

Proof Since f inite representation type implies right pure semisimplicity, hence every pp-
type f ini tely generated, this follows by 11.35 and 11.32. n

Of course, even i f R has f inite representation type one cannot expect all types in f initely
many free variables to be isolated - for then 7"* would be >*0-categorical (assuming \R\< H O ) .

Example 2 Take R to be the r ing (Q of rationals; so 7"* = Th((Q). Since 7"* is not >*0-
categorical (for (Q = (Qe(Q) there must be non-isolated types (necessarily of weight ^ 2 ) . Since
there are only two 1-types (the type of the zero element, and that of any non-zero element), or
by 11.36, we must look to 2-types for non-isolation. In (Q$(Q let a be the element (1,0) and
let b be (0,1) - so b is not a multiple of a. Then the type of the pair (a,b) is non-isolated
(exercise).

The converse of 11.29 is then provided by 6.28.

Corollary 11.37 / / the ring R is of finite representation type then T* has finite
Morley rank.

Proof Otherwise, 6.28 would imply that there was a non-isolated irreducible 1-type over 0,
contradicting 11.36. n

Summarising, we have the following.

Theorem 11.38 [Pr84; 3.9] The following conditions on the ring R are equivalent:
(z) R is of finite representation type;
(ii) T* has finite Morley rank;
(iii) every R-module (equivalently every left R-module) has finite Morley rank;
(iv) P,(R) has finite length;
(v) every irreducible type (in finitely many free variables) is isolated.
If R is right artinian} then a further equivalent is:
(vi) X(T*) is finite.

Proof The equivalence of (i) and (i i) is 11.29 and 11.37. That ( i i ) , ( i i i ) and (iv) are
equivalent follows as in 11.6. By 11.36, (i) implies (v).
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Suppose that (v) holds. It follows by 6.28 that 7"* has finite Morley rank - that is, ( i i)
holds. The last statement follows by [Tac73; §9] (cf. 11.17 above), n

Example 3 If £ is not assumed to be right artinian, then Z(T*) being finite does not imply
that R isof finite representation type. Consider EX16.2/3.

Given a ring of finite representation type, the Morley rank of 7"* is easily calculated if one
knows the indecomposables. It is just the pp-rank of the module M which is a direct sum of one
copy of each indecomposable (so, by 11.16, If £ is a K-algebra with K algebraically closed, it
is just the /^-dimension of M). This follows from the next result which, in turn, is an
immediate consequence of 9.3.

Lemma 11.39 Let M and N be modules of finite Morley rank. Then
n

Thus, for example, if R is the path algebra of the quiver E6 then MR(7"*) = 156.

Exercise 3 It's not difficult to classify the rings of finite representation type such that the
Morley rank of T* is very small.
(i) Show that if MR(7*)^2 then R is semisimple artinian.
(i i) Show that if MR(7"*) = 3 then either R is semisimple artinian or else R/J^J is a

division ring (e.g. £ = Z4) .
( i i i ) Show that if MR(f*) = 4 then the only essentially new possibility is that R is of the

( D' D \
form I £ I where D and D' are division rings and D has a (D',D)-bimodule
structure (e.g. the path algebra of A2). [Hint: show that J 2 = 0 - this is a useful first
step in all three parts (and in the first two, pretty well the last step).]

Fix an integer d and consider the class ^ ( / O of all ^/-dimensional algebras of finite
representation type over the base field K. Any ^-dimensional K-algebra can be described by
d3 structure constants, which tell how the elements of a chosen K-basis multiply together. In
particular, any ^-dimensional K-algebra with a chosen K-basis determines a point of affine
K^ 3-space. Different bases of the same algebra are related by invertible dxd matrices over
K - that is, by elements of GLjiK). The action of GljiK) on K** induces an action on the
points of K^3 which stabilises the set, X̂ y, of points corresponding to members of ^-jiK).
Under this action, the orbits are precisely the isomorphism classes of ^-dimensional K-
algebras of finite representation type. The question of whether there are, for each d and K,
only finitely many algebras of finite representation type (up to isomorphism), was open.

Gabriel [Gab75a] showed that if K is algebraically closed then the set Y j is an open
subset of the set Y j of all members of K^3 which correspond to algebras: there exist
polynomials f 1 ) . . . ) f n 6 / ( [ ^ : K U f l ' 3 ] such that a point ~k of Vj corresponds to an algebra
of finite representation type iff not all of f<t(k),....tfT1(k) are zero. Gabriel left open the
question of whether there are such polynomials over the prime subfield.

Herrmann, Jensen and Lenzing in [HJL81] and [JL82] (also [JL80]) went some way
towards answering this, by showing that the class ^y(K) for any field K is finitely
axiomatisable so, using theelimination of quantifiers in the case that K is algebraically closed,
they deduced that, for K algebraically closed, the set Xj is constructible over the prime
subfield (that is, Y<y is defined by a certain finite set of equations and inequations over the
prime subfield). These papers contain a number of results on axiomatisability, effectivity,
bounds on the dumber of indecomposables and the effect of extending the base field.
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On the question of the finiteness of ^ / (K) , the further development of covering theory (see
[BG82]), together with the fact that there is a bound, in terms of the dimension of the algebra,
on the number of indecomposables (see [JL82: 3.6] and also [HJL81: 5.1]; alternatively, see
[Bon82; §5] plus [BaBr81; §4]) shows that, outside of characteristic two (where there the
map from an algebra to its Auslander-Reiten quiver need not be 1-1), there are indeed only
finitely many d-dimensional /^-algebras of finite representation type (there are, no doubt, a
number of routes to this fact).

In any case, the multiplicative basis theorem [BGRS85] supercedes all this, at least for
algebraically closed fields. The theorem says that, if R is a algebra of finite representation
type over an algebraically closed field K then there is a/("-basis of R in which the product of
any two basis elements is either zero or a basis element. In particular, over such K, there are
only finitely many orbits in ^ ( / O . For a discussion of the situation over non-algebraically
closed fields, see [Gus85].

11.P "Pathologies"

The area that I touch on here is really rather large. So what I do is to direct the reader to
some review papers and just mention some results which directly impinge on what is discussed
elsewhere in the text. For a more balanced presentation, the reader should consult the review
works that I mention.

In [Cor63], Corner showed that every countable reduced torsionfree ring is the
endomorphism ring of some countable reduced torsionfree abelian group. He then gave examples
of various pathologies which can arise in abelian groups (cf. Kaplansky's "Test Problems"
[Kap54; p 12]).

Corner's results were extended in the work of Brenner and Butler and Corner [BB65],
[Bre67], [Cor69]. Brenner and Butler showed that every associative algebra over a field K
can be realised as the algebra of those endomorphisms of a K- vector space which leave invariant
a specified set of subspaces. Brenner improved this by showing that the number of subspaces
may be taken to be five, provided the algebra is countably generated over K. Set theory began to
make its appearance when Corner showed that it is enough to suppose that the number of
generators of the algebra is less than the first strongly inaccessible cardinal. (In fact, Corner
had already noted that a "proof" of Fuchs that there are arbitrarily large indecomposable
torsionfree abelian groups failed at certain large cardinals.)

Since then, these results have been extended in many directions. One direction is, of course,
to wild representation type (see Chpt. 13). In another direction, one is concerned with realising
algebras as endomorphism rings of members of various classes of modules. So this enterprise
includes finding large indecomposable modules, finding large modules with no indecomposable
direct summands, and so on. Set-theoretical techniques have turned out to be essential, and set-
theoretical axioms beyond ZFC have to be invoked for some results.

The other source of related material is Shelah's solution to the Whitehead Problem
( [ S h e 7 4 ] , see [ E k 7 6 ] ) .

The following are some survey papers: [CG85]; [G6b83]; [Gdb84]; also see the
introduction to [DuG6'82].

The following sort of result, this one taken from [DuGb'82] (also see [CG85]), is
particularly striking. First note that a complete discrete rank 1 valuation domain does not have
arbitrarily large indecomposable modules.

Theorem Let R be a Dedekind domain, not a field. Let K be an infinite cardinal.
Then the following are equivalent:
(i) R is not a complete discrete valuation domain;
(ii) there exists an indecomposable R-module of
(Hi) there exists an indecomposable R-module of
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iiv) there exists an R-module (not pure-injective\) of rank^K with no
indecomposable summand;

(v) there exist R-modules of rank^K which do not satisfy Kaplansky's Test
Problems;

(vi) if A is any cotorsion-free R-algebra then there exists an R-module with
endomorphism algebra isomorphic to /?. •

There have been recent extensions of these results to arbitrary rings.
The above result can be used to answer in the negative a question of Kucera [Kuc87]. For it

follows that there are arbitrarily large abelian groups with local endomorjohism ring: since
such a group M may be as large as one desires, the weight of M in Th(A7̂ <>) need not be %.

It is shown in [Du'Go85] (also see references in $15.1) that the class of all torsion theories
of abelian groups (cf. $15.1) is a proper class- this contrasts with hereditary torsion theories, of
which there can be at most 2* where \ - ^ \ . Also see [DFS87].

[Hu83] contains related results on reflexive modules.
There are examples of the sort of pathology one obtains, even over tame rings, by working

with arbitrary ("large") modules in [BrRi76].
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