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ABSTRACT. This paper is devoted to study of time-fractional elliptic equations
driven by a multiplicative noise. By combining the eigenfunction expansion
method for symmetry elliptic operators, the variation of constant formula for
strong solutions to scalar stochastic fractional differential equations, Ito’s for-
mula and establishing a new weighted norm associated with a Lyapunov—Perron
operator defined from this representation of solutions, we show the asymptotic
behaviour of solutions to these systems in the mean square sense. As a conse-
quence, we also prove existence, uniqueness and the convergence rate of their
solutions.

1. Introduction. Calculus (derivative and integral) is an ideal tool to describe
evolutionary processes. Typically, each evolutionary process is represented by a
system of differential equations. By studying (qualitative or quantitative) solutions
of equations, one can know the current state as well as predict the past or future
posture of the process. However, common phenomena in life are history dependent.
For these phenomena, extrapolating its posture at a future time from the past
depends on both local observation and the whole past. Moreover, dependence in
general is not the same at all times. Fractional calculus (fractional derivative and
fractional integral) is one of the theories that come up to meet those requirements.

Fractional differential equations (equations contains fractional derivatives) are of
great interest in the last four decades due to its application in describing real-world
problems, such as in signal processing, in financial mathematics, in biotechnol-
ogy, in image processing, in control theory, and in mathematical psychology where
fractional-order systems may be used to model the behaviour of human beings,
specifically, the way in which a person reacts to external influences depends on the
experience he or she has made in the past.

The time-fractional diffusion equations have been introduced in Physics by Nig-
matullin [17] to describe super slow diffusion process in a porous medium with
the structure type of fractal geometry (for example the Koch’s tree). From the
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probabilistic point of view, Metzler and Klafter [15] have pointed out that a time-
fractional diffusion equation generates a non-Markovian diffusion process with a long
memory. Roman and Alemany [19] have considered continuous-time random walks
on fractals and observed that the average probability density of random walks on
fractals obeys a diffusion equation with a fractional time derivative asymptotically.
Moreover, a time-fractional diffusion equation also is used to model a relaxation
phenomena in complex viscoelastic materials, see, e.g., [10].

The existence of solutions to time-fractional partial differential equations has
been studied by many authors. In [8], using Fourier transform, the authors have
built a fundamental solution for elliptic equations with smooth coefficient. By
Galerkin method and the Yoshida approximation sequence, in [21] Zacher has pro-
posed a way to prove existence of certain weak solutions to abstract evolutionary
integro-differential equations in Hilbert spaces. Using the operator theory in func-
tional analysis and the eigenfunction expansion method for symmetry elliptic oper-
ators, in [20] Sakamoto and Yamamoto have proved the existence and uniqueness
of the weak solution for a fractional diffusion-wave equation. Recently, using a
De Giorgi-Nash type estimation, in [1] and [22], the authors established the ex-
istence and Holder continuity of weak solutions for fractional parabolic equations.
By proposing a definition of the Caputo derivative on a finite interval in fractional
Sobolev spaces, Gorenflo, Luchko and Yamamoto [12] have investigated solutions
(in the distribution sense) to time-fractional diffusion equations from the operator
theoretic viewpoint.

In contrast to existence theory of solutions to deterministic fractional partial
differential equations, there are very few researches on stochastic fractional par-
tial differential equations. Using the integration by parts, Ito’s formula and the
Parseval’s identity, an Lo-theory for stochastic time-fractional partial differential
equations is presented in [5] by Chen and co-authors. By a choosing a framework
for infinite dimensional stochastic integration, in [3] Baeumer, Geissert and Kovacs
have showed the unique mild solution to a class of semi-linear Volterra stochastic
evolution equations is mean-p Holder continuous. In [4], Chen, Hu and Nualart
have studied nonlinear stochastic time-fractional slow and fast diffusion equations.
They have proven the non-negativity of the fundamental solution, existence and
uniqueness of solutions together with the moment bounds of these solutions. In
some cases, they have obtained the sample path regularity of the solutions. Based
on monotonicity techniques, in [16] the authors have developed a method to solve
(stochastic) evolution equations on Gelfand triples with time-fractional derivative.

To our knowledge, until now, almost no research on the asymptotic behavior of
solutions to stochastic fractional partial differential equations has been published.
Motivated by this fact, this paper is devoted to study the stability in the mean
square sense for time-fractional elliptic equations driven by a multiplicative white
noise. The paper is organised as follows. In Section 2, we recall a framework
of stochastic fractional differential equations. In Section 3, we first introduce a
definition of mild solution. Then we prove a theorem on existence and uniqueness
and the main result of the paper on the asymptotic behavior of solution (Theorem
3.4).

2. Fractional calculus and stochastic fractional differential equations. We
briefly recall an abstract framework of fractional calculus and stochastic fractional
differential equations.
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Let o € (0,1], [0,b] C R and z : [0,b] — R be a measurable function such that
fob |z(7)| dr < 00. The Riemann—Liouville integral operator of order « is defined by

1 ! a—1
m/o (t—7)* " a(r) dr,

where T'(-) is the Gamma function. The Riemann—Liouville fractional derivative
RLDg x of x on [0,b] is defined by

(I, 2)(t) =

RLD3+m(t) = (DI&;O‘x)(t), for almost ¢ € [0, b],

where D = % is the usual derivative. The Caputo fractional derivative of x on [0, b]

is defined by
“Dg, x(t) ="F D, (x(t) — x(0)) for almost t € [0, ).
The Caputo fractional derivative of a d-dimensional vector function
z(t) = (1 (1), ..., zq(t)T
is defined component-wise as
(“Dgya)(t) := (“Dgya1(1), - ... Dgyxa(t))”

Let A € R™4 and f : [0,00) — R? is a continuous vector-valued function. As
showed in [18, p. 140], the equation with the fractional order « € (0, 1)

“Dg x(t) = Ax(t) + f(t), t>0,
xz(0) =z € R,

has a unique solution z on [0, 00) which has the presentation
t
z(t) = Eq(t*A)xo + / (t —7)*  Ey o((t — T)*A) f(1)dr, t>0,
0

where E, g : R4 — R?¥4 is the Mittag-Leffler function defined by

o Ak
Fes )= 2 Fak v )

and
E,(A) :=E,1(A).
For more details on Mittag-Leffler functions, we refer the reader to the monographs
[18, 11].
Next, we discuss a fractional stochastic differential equation of order a € (%, 1)
in the following form

aw,

DY X(t) = AX(t) +b(t, X (t)) + o(t,X(t))Wt, t>0, (1)
where W; is a standard scalar Brownian motion on an underlying complete filtered
probability space (Q, F,F := {F;}+ej0,00), P) and b0 : [0,00) x R — R? are mea-
surable functions satisfying the following conditions.

(H1) There exists L > 0 such that for all z,y € R, ¢ € [0, 00)
bt z) = b(t, y)l| + llo(t, ) — o(t,y)l| < Lllz — yl|.
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(H2) o(-,0) is essentially bounded, i.e.,
[[7(-0)lloo = ess Sup-efo,o)llo (7, )| < 00

almost sure and b(-,0) is L2-locally integrable, i.e., for any T' > 0

T
/ Ib(r, 0)||2 dr < oo.
0

For each t € [0, 00), let X; := L2(£2, F;,P) be the space of all mean square integrable
functions f : Q — RY with || f||ms := /E|/f]|2. A process ¢ : [0,00) — L%(Q, F,P)
is said to be F-adapted if £(t) € X; for all ¢ > 0. We now restate the notion of
classical solution to (1), see e.g., [2, p. 209] and [7].

Definition 2.1 (Classical solution of stochastic time-fractional differential equa-
tion). For each n € Xy, an F-adapted process X is called a solution of (1) with the
initial condition X (0) = n if for every ¢ € [0, 00) it satisfies

X(t)=n+ ﬁ /0 (t —7)* Y AX(7) + b(r, X (1)))dT+

1 ‘ a—1
m/o (t—71)""o(r, X (1))dW,. (2)

It was proved in [7] that for any n € Xg, there exists a unique solution ¢(t,7n) of
(2). The following result gives a special presentation of ¢(t,7).

Theorem 2.2 (A variation of constant formula for stochastic time-fractional dif-
ferential equation). Let n € Xy arbitrary. Then the classical solution ¢(t,n) to (1)
with the initial condition ¢(0,n) = n has the form

t

o(t,n) = Ea(t*A)n + /(t = 7)* " Baa((t = 7)*A)b(, 6(7, 7)) dr
0

+ /(t — 1) By o ((t = T)*A)o(p(1,m)) dW,, t>0.
0

Proof. See [2, Theorem 2.3]. O

As an application of the preceding theorem, we obtain an explicit representation
of the solution to stochastic linear inhomogeneous fractional differential equations.

Corollary 1. Consider the system (1) with the initial data X(0) = n. Assume
that the coefficient functions b and o only depend on the time variable t. Then the
explicit solution to the problem

AW,

“Dg X (t) = AX(t) + b(t) + o(t) 7

X(0) =n,

t>0,
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as

o(t,n) = B, (t*A n+/ ) By o((t — 7)*A)D(T) dr
0

t
+ /(t — 1) By ot —7)*A)o(r) dW,, t>0.
0
Remark 1. In this paper, we consider stochastic fractional differential equations
driven by a scalar Brownian motion. The solution of these equations is defined as

square integrable processes. Thus, from the Ito’s formula, we see that it makes
sense when the fractional order of these equations belongs to the interval (3,1).

3. Asymptotic behavior in the mean square sense of solutions to time-
fractional stochastic elliptic equations driven by a multiplicative white
noise. Let U be a bounded domain in R? with the boundary 90U € C'. We consider
the time-fractional stochastic elliptic equation of the order o € (1/2,1)

o u(t,
gtax Z Or, (i ()0, ult, ) + c(z)u(t, )
1,j=1

AW,

(3)

where

(al) B, are arbitrary coefficients, u(t,z) € R witht € Ry, z € U;

(a2) a;; € CH(U), a;; = aj; for all 1 <4, j < d and there exists § > 0 such that
Sy aij(@)&E; > 0)|€|? for all z € U, € € RY

(a3) c € C(U), ¢(z) <0 for all z € U;

(a4) (Wi)ie[o0,00) is a standard scalar Brownian motion on an underlying complete
filtered probability space (Q2, F,F := {F;}1c[0,00), P)-

Assume that the initial condition

u(0,-) = f € L*(U) (4)
is Fp-measurable and the Dirichlet condition
u(t,x) =0, t>0, ze€dU. (5)

Let {e;}52, be an orthonormal basis of L*(U) which are eigenvectors of the elliptic
operator E defined by

d
Lu=— Z Oz, (a0, u) + c(x)u

2,j=1

with respect to eigenvalues 0 < A\ < Ay <--- <\, < ..., A\, — 00 asn — oo (see,
e.g., [9, p. 335]). Suppose that {u(t,-)}:;>0 is a solution to the system (3), (4) and
(5) and denote y; := (u,e;) 2y, 1 < j < oo. Then y; satisfies the equation

“Dgyi(t) = (=N + B)y;(8) + vy ()dWe, >0
with the initial condition y;(0) = (f,e;)r2(vy. By virtue of Corollary 1, we have

yi(t) = Ea(=(A; = B)t°) f; +7/0 (t=5)""" Eaa(= (X = B)(t —5)")y;(s)dws, t > 0.
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This suggests us to establish a definition of solution as below. On the L?(U), we
introduce two families of operators {S(t)}:>0 and {R(t)}+>0 defined by

St =Y Ea((=X; + Bt (v, ) 12wne;, >0, ve LA(U), (6)
j=1
and
R(t)v = t* 'Eqo((=X; + B)t") (v, ) 120ne,  t>0, ve LA(U).  (7)
j=1

Definition 3.1 (Mild solution of fractional stochastic elliptic equation). Let T" > 0
be arbitrary. A L*(U)-valued process {u(t)}iepo,7] is called a mild solution of the
problem (3), (4), (5) on the interval [0, T if

t
u(t) = S(OF +7 [ Rt ()., te0.7)
0
where the integral fot R(t — s)u(s)dWj is defined by
t t
R(t— dw, = [ (Rt - 2 20y AW,
</O (t — s)u(s) x>L2(U) /O (R(t — s)u(s), z) 120
for all z € L2(U), t > 0.

This definition is a stochastic version of the deterministic case motivated by the
variation of constant formula (see, e.g., [13, Definition 2.1]).

Now denote by Hy the space of all L?(U)-valued processes {u(t)}eo,r) which
are predictable and satisfy

sup E||u(t)||2L2(U) < o0.
te[0,T)

It is obvious that Hr is a Banach space with the norm

s, = \/ sup_El[u(t)]2. -
t€[0,T)

s

We collect some properties of families of operators {S(¢)}+>0 and {R(t)}¢>0 in the
lemma below.

Lemma 3.2. Let {S(t)}i>0 and {R(t)}i>0 are families of operators defined as in
(6) and (7), respectively. Suppose that § < A\1. Then, the following statements hold.
(i) For any v € L*(U) and T > 0, we have S(-)v € C([0,T); L3(U)). Further-

more,

IS®VIIZ2 0 < Sup Ea((=A1 + B vl ), V= 0.

(i) For any T >0 and let u € Hy. We have [ R(- — s)u(s)dW, € C([0,T]; Hr).
On the other hand,

2

o0
< / S92 B, (<A + B)s®)2ds sup [Ju(t)[2.,
L2(U) 0

t
E ’ / R(t — s)u(s)dWs
0 te[0,T]

for any t € [0,T).
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Proof. (i) For v € L?(U), it is obvious that

IS@)0lI720ry = D _(S(E)v,€5) 720
j=1
:ZEa =X+ B (v, e) T2 )
j=1

< sup Eq (=X + B)t*)? ||U||2L2(U)
>0

Moreover, the series Z;’;l E.((—A; + ﬁ)ta)z(v,ej)%zw) is uniformly convergent
n [0,7]. Thus, the series Z;’il Eo((=Xj + B)t*)(v,e5) 2vye; is also uniformly

convergent on this interval which together with the fact that the function E, ((—\;+

B)t*) is continuous implies that S(-)v € C([0,T]; L3(U)).

(ii) For any T > 0 and u € Hy, we see that

‘ :Z</ (t—s) (s)de,ejfLQw)

W) 5=
Z(/ = 9 Enal(Ay 4 )t = 5)°) uls) e5) 2y W,

2

/Ot R(t — s)u(s)dWy

2

Hence,
2

E / "Rit— s)u(s)dW,

L2(U)

o

E(/O (t =) Baal(=X; + B)(t = 5)*){u(s), ) L2y dWs)?

1

.
Il

M

/0 (t = 5222 B0 (=) + B)(t — 9)*)2E(u(s), ;)32 (1 ds

=

(t = 9)** 2 Ea,a((=M1 + B)(t = 5)*) El[u(s) |72 1y ds
(o)

5% Ega((=M1 + B)s%)*ds sup El[u(t)|Z: )
0 t€[0,T7]
for all ¢ € [0, 7], which implies that [, R(- — s)u(s)dWj is bounded in Hyp. By the
same arguments as in the proof of (i), we have [ R(- — s)u(s)dW, € C([0,T]; Hr).
The proof is complete. 0

<

IA
S— S

The following theorem shows a result on existence and uniqueness of mild solution
to the problem (3) with conditions (4), (5).

Theorem 3.3 (Existence and uniqueness of mild solution to time-fractional sto-
chastic elliptic equation). Suppose that 8 < A1. The system (3), (4), (5) has a
unique mild solution in Hry.

Proof. On the space Hy we establish an operator 7; by

Tru(t) = f+’y/Rt—s u(s)dWs, te(0,7],
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and Tyu(0) = f. First, we prove that this operator is well-defined. Indeed, by
Lemma 3.2, we obtain for every ¢ > 0

IS 122wy < sup Eo((=A1 + B)t*If 122 w): (8)

/Rt—s s)dW

which together with (8) implies that

2

g/ 7 Baa((-M+5)s%)ds sup Elju(t)lzew),
L) 0 te[0,T

[Trulle, = sup E[Tru()||72 < oo
te[0,T)

Note that for any p > 0, the norm | - ||, and the norm | - ||m, w defined by
[ulliy,w = \/supsepo, 1) exp (—pt)El[u(t )||L2(U are equivalent. Next, we show that
the operator 7 is contractive on Hy with respect to the norm || - ||m, . For any

u,v € Hr, t € [0, T], we obtain the estimates
exp (—pt)E[| Tru(t) — Trv(®)|Z2w)
<y /Ot exp (—p(t = 5))(t = 5)** " Ba,a((=A1 + B)(t — 5)*)?
exp (—ps)El|u(s) — v(s)l|72 () ds
< A2 ig}g Eoo((=A1 + B)t™)? /Ot exp (—ps)s**2ds

sup_exp (—pt)El[u(t) — v(t)l[72w,

te[0,T]
Y2 supysg Ea,a (=M1 + 8)t*)°T (20 — 1)
— p2a71
sup _exp (—pt)Efu(t) = v(t)[| 72
t€[0,T]
. v? SuP;>o Eoo((=M1 + B)t*)*T(2a — 1) 2 9
- p2a,1 ||u_v||HT,w' ( )

Due to the estimate (9), we obtain

'72 SUP¢>o Eoz’a((_Al + B)ta)QF(Qa -1)
pgafl ||u - VHHT,w'

I1Tpa = Tyl o <

Thus, for p > 0 large enough, for example,

72 Sup>o Eqo((=M1 + B)ta)ZF@a -1)
p2a—1

then 7y is contractive in Hy. The proof is complete. O

<1,

Remark 2. The proof of Theorem 3.3 is true with any 7" > 0 arbitrarily. Thus,
the problem (3), (4), (5) has the unique global mild solution on the [0, o).

By combining the eigenfunction expansion method for symmetric elliptic opera-
tors and stability of solutions to stochastic fractional differential equations, we show
the asymptotic behavior in the mean square sense of solutions to the time-fractional
stochastic elliptic equation (3) with the data (4) and (5) in the following result.
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Theorem 3.4 (Asymptotic behavior in the mean square sense of the mild solution
to time-fractional stochastic elliptic equation). Consider the system (3), (4) and

(5):

o%u(t,x)

d
e > 0n,(aij ()05, ult, x)) + c(z)u(t, z)

ij=1
dw,
+ Bu(tv l’) + 7u(t> x)ja
U(O, ) = f € LQ(U)7
u(t,z) =0, t>0, x € 9U.

Assume that B < M. Then, it has a unique global mild solution u on [0,00).
Moreover, the following statements hold.

(i) For
)2 /0 TR0, (A - B)s®)ds < 1 (10)
and any § € (0,1), we have
iggtéEHu(t)HQLQ(U) < 0. (11)
(ii) For
7? /OOO 57 Eqa(—(A1 — B)s*)%ds > 1, (12)

there exists f such that the solution u with the initial condition u(0) = f
satisfies

. 2
Jim Efju(t) 32, — 0.

Remark 3. The equation (3) can be thought as a stochastic perturbed model of
the time-fractional elliptic equation

0%u(t,r)

d
e ‘Z B, (i ()0, u(t, 2)) + c(x)ult,z), t>0.

4,j=1

Theorem 3.4(i) shows that under small perturbations, for example f < A; and ~v
satisfies (10), the asymptotic stability (in the mean square sense) of (3) is guaran-
teed. However, if the noise is large (e.g., the condition (12) is satisfied), its stability
will be broken.

Remark 4. For o € (,1), A <0, from [6, Lemma 3] or [4, Lemma 5.1 (a)], there
has a positive constant C' which only depends on «, A such that

vt > 1.

£ o (M) < s, VE>

On the other hand, from the increasing monotonicity of the function E, ,(-) on
(—00,0] (see, e.g., [11, Lemma 4.25, p. 86]), we see that

Eo.o( M) <1, ¥t > 0.
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Thus,

o 1 oo
/ s2 2B, o(\s™)?ds :/ 5272 Ey o (AsY)?ds +/ s2 2B, o (\s™)?ds
0 0 1

1 00
1
200—2 2
S/O §22ds + C /1 Bzt

ot C?
T 2a—-1 2a+41°

Proof of Theorem 3.4. From Remark 2, we see that the problem (3), (4) and (5)
has a unique mild solution on [0,00). Denote this solution by {u(t)};>o and
Yy = (W, e5) 2y, 1 < j < oo.

(i) Let H be the space of all L?(U)-valued processes {£(t)}ie[0,00) Which are pre-
dictable and satisfy

sup  E[|€(t)]| 721y < 00
te[0,00)

This is a Banach space with the norm

sup \JEIED) 2o,
te[0,00)

We establish a functional on H as below. For any £ € H, we define
1€l == e Va®)[IEE) [[ms,
€10,00

where

(07

4
® {T . telo,T),

4, t>T,

T is a positive constant and chosen later. We denote H,, := {{ € H : |||, < o0}.
It is obvious that (H, | - ||.) is also a Banach space. Under the assumption (10), by
the same arguments as in the proof of Theorem 3.3, we see that the mild solution u
of the system (3)—(5) is bounded on [0, c0) in the mean square sense. To complete
the proof of this part, we will show that the mild solution u € H,,.

For any ¢ € H,,, we establish

t

TE(t) == S(t)f+ ; R(t — s)é(s)dWs, t € (0,T].

This operator is contractive with respect to the norm | - ||,,. Indeed, for any ¢, €
H,,, we have

ms

17560 - T = | [ R seoram.

< / (t— )2 2By a(at — 5)°)2I|E(s) — £(5)[[2ueds, Ve >0,
0
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where a = —A; + 8. We first consider ¢t € [0,7T]. In this case,
At ITFEE) = TrE@) I, < T /Ot(t = 1) o alalt = 7)) [E(T) = £(7) I 7nsdT
< [ (4= 7P Bualalt = 1 alE(r) — €
<o [t e Pasle - €12 (13)
Next, for ¢t > T, then
)| TFE() = TrE() s < 197 /Ot(t =) 2o alalt = 7)%)?[E() = ()l 7msdT
<932 [ (4= Bl - 7)o Pirl ~ €12, (11
Note that on the interval [0, /2],
t/2
0 /0 (t = 7222 B a(alt — 7)) dr
<t /t/2 LT_édT
o

t— 7-)2—0—204

Cté t/2 s
A _
> (t/2)2a+2/(; T dr

C22a+5+1

P —
= (= g)2ett
C22a+t5+1

= @ orze 19)

on the interval [t/2,¢t — M],

t—M
i / (t— T)QO‘_QEa’a(a(t - T)O‘)QT_‘SCZT
t/2

L /t_MC d
=20 )y =2

20
<7 1
= (2a + 1)M2a+1’ (16)

and on [t — M, 1],

¢
10 / (t —7)2 2B, o(alt — T)Q)QT_édT
t—M

S m /t M(t — T)2 2Ea7a(a(t — T) )2d7'
¢ °°
S m/o SQQ_QEQ’Q(GSQ)2dS. (17)
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From (15), (16), (17) and (10), we choose M > 0 and T > 2M such that for any
t>T

2(920+6+1 C~290 246 o0
7 i v s272E, o(as®)?ds < 1.
(1 —08)T2tl  (2a0+ 1) M2t (t— M) J, ’

This combines with (13) and (14) showing that 7; is contractive on the space
(Hy, || - [|w)- On the other hand, it is easy to see that 7y is bounded in this space.
Hence, by Banach fixed point theorem, there exists a unique fixed point £* in
(Huy, || - ]) which is also a mild solution to the origin system. Due to the fact that
the system has a unique mild solution in H, it implies the solution u = ¢* € H,,
and the estimate (11) is proved.

(ii) Without loss of generality, choose the initial data f such that y;(0) = (f,e;) 2 €
Xo \ {0}. To complete the proof of this part, we will prove that

Hyj(t)Hms -0 (18)
as t — oo. Indeed, suppose that (18) is not true, that is,
. . 2 _
Jim Ey;(8)” = 0.
Put h(t) = Ey;(t)%, t > 0. It is worth noting that h(t) > 0 for all ¢ > 0. By this

fact there exists an increasing monotone consequence {t;}%2, with 0 < ¢; < t3 <
... < tp — oo and

0 < h(ty) = SéI[loiItlk] h(s), k=1,2,...

Thus, for any k = 1,2, ..., we have
h(te) = Ea((=A; + B)t7)*Ey;(0)?
+7 /Otk (tr = 8)** " Ba,a((=Xj + B)(tk — 8)*)*h(s)ds
> Eo((=X; + B)t7)*Ey;(0)?

+ »yz/o k(tk — )27 2B, o (=) + B) (tx — 8)%)%ds h(ty,)

tr
> Ea((=Xj + B)t7)*Ey;(0)* + 72/0 572 Ba,a((=Xj + B)s%)?ds h(ty)

tr
> 72/ SQQ*QEOW((*/\]' + B)s%)%ds h(ty).
0
This together with (12) that
tr
72/ 8204_2Ea}a((—>\j + B)s%)%ds > 1
0

for k large enough leads to
h(tx) > h(tx),

a contradiction. The proof is complete. O
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