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Positivity and stability of mixed fractional-order
systems with unbounded delays: Necessary and

sufficient conditions
H.T. Tuan, H. Trinh and J. Lam

Abstract—This paper provides a comprehensive study on
the quantitative properties of linear mixed fractional-order
systems with multiple time-varying delays. The delays can
be bounded or unbounded. We first obtain a result on the
existence and uniqueness of solutions to these systems. Then,
we prove a necessary and sufficient condition for their positiv-
ity. Finally, we provide a necessary and sufficient criterion to
characterize the asymptotic stability of positive linear mixed
fractional-order systems with multiple time-varying delays.
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I. INTRODUCTION

Fractional differential equations are widely used to describe
memory and hereditary properties of materials and pro-
cesses. For details, we refer the reader to some monographs
[1], [2], [3] and the references therein. On the other hand,
time-delay systems have received considerable attention
due to the fact that many processes include after-effect
phenomena in their inner dynamics, see, e.g., [4], [5], [6].
While positive systems play a key role in understanding
many processes in biological and medical sciences, see e.g.,
[7], [8]. As such, the qualitative theory of positive fractional-
order systems with delays is an important and interesting
research topic, which is the main focus of this paper.

One of the important problems in the dynamical system
theory of time-delay fractional-order systems is stability
analysis. Using the characteristic polynomial, in [9], [10],
the authors obtained conditions depending on the magnitude
of the delay for the asymptotic stability of fractional-order
systems with the linear part comprises a pure delay. Re-
cently, some results on stability of fractional-order systems
with delays by using Lyapunov-candidate-functions were
proposed in [11], [12]. In [13], the author discussed linear
fractional systems with multiple delays in control input.
An analytical approach based on the Laplace transform
and ‘inf-sup’ method for studying the finite-time stability
of singular fractional-order switched systems with delay
was presented in [14]. By using the Lyapunov method

H.T. Tuan is with the Institute of Mathematics, Vietnam Academy of
Science and Technology, 18 Hoang Quoc Viet, 10307 Hanoi, Viet Nam
(e-mail: httuan@math.ac.vn).

H. Trinh is with the School of Engineering, Deakin University, Geelong,
VIC 3217, Australia (e-mail: hieu.trinh@deakin.edu.au).

J. Lam is with the Department of Mechanical Engineering, University
of Hong Kong, Hong Kong (e-mail: james.lam@hku.hk).

combined with the concept of uniformly positive definite
matrix functions and Hamilton–Jacobi–Riccati inequalities,
the robust stability of the almost periodic solution to uncer-
tain impulsive functional differential systems of fractional
order was investigated in [15].

Up to now, in our view, an important contribution to the
study of the asymptotic behavior of solutions to positive
mixed fractional-order systems with delays is the paper by
Shen and Lam [16]. In that paper, the authors reported a
criterion for the positivity of linear mixed fractional-order
systems with a time-varying delay. They also obtained a
result on the asymptotic stability of positive linear mixed
fractional-order system with a bounded time-varying delay.

Let d ∈ N, α̂ = (α1, . . . , αd)
T ∈ (0, 1] × · · · × (0, 1],

r > 0, m ∈ N. Motivated by [16], in this paper, we consider
the following linear mixed fractional-order systems with
multiple unbounded time-varying delays

CDα̂
0+x(t) = Ax(t) +

m∑
1

Bkx(t− hk(t)), t > 0, (1)

with the initial condition x(·) = φ(·) ∈
C([−r, 0];Rd) on [−r, 0], where CDα̂

0+x(t) =
(CDα1

0+x1(t), . . . ,C Dαk
0+xk(t), . . . ,C Dαd

0+xd(t))
T in which

CDαk
0+ is the Caputo derivative operator of the order αk,

A = (aij)1≤i,j≤d, Bk = (bkij)1≤i,j≤d, hk : [0,∞) → R≥0
is continuous and satisfies the growth rate as in [17]. Our
main aim is to study the asymptotic stability of the system
(1) for the case it is positive. It is worth noting that the
approaches as in [9], [10] (based on the eigenvalues of the
characteristic polynomials) and [16] (based on comparing
the trajectory of the time-varying delay system with that
of the constant delay system) cannot be applied for (1)
where the delays hk(·) (1 ≤ k ≤ m) are time-varying and
unbounded.

This paper is organized as follows. In Section II, we
first introduce a result on the existence and uniqueness
of global solutions to linear mixed fractional-order with
multiple time-varying delays. Then, we give a necessary and
sufficient condition to characterize the positivity of these
systems. The main result of the paper is given in Section
III. In particular, in Theorem III.2, we provide a necessary
and sufficient criterion to ensure the asymptotic stability of
positive linear mixed fractional-order systems with bounded
and unbounded time-varying delays.

Before concluding this section, we introduce some notations
which are used throughout this paper. Let N be the set of
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natural numbers, Z≥0 be the set of non-negative integers, R
(R≥0) be the set of real numbers (nonnegative real numbers,
respectively), and Rd be the d-dimensional Euclidean space
endowed with a norm ‖ · ‖. Without loss of generality, in
this paper we use the symbol ‖ · ‖ to denote the max norm
of Euclidean spaces. For any [a, b] ⊂ R, let C([a, b];Rd) be
the space of continuous functions ξ : [a, b]→ Rd. A matrix
A = (aij)1≤i,j≤d ∈ Rd×d is called Metzler if aij ≥ 0 for
all 1 ≤ i 6= j ≤ d. A matrix A ∈ Rd×d is said to be Hurwitz
if its spectrum σ(A) satisfies

σ(A) ⊂ {λ ∈ C : Re λ < 0}.

Let n,m ∈ N and A = (aij)
1≤j≤m
1≤i≤n , B = (Bij)

1≤j≤m
1≤i≤n ∈

Rn×m. We write A � B (A � B) if aij > bij (aij ≥ bij ,
respectively) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. The matrix
A is said to be nonnegative if aij ≥ 0 for all 1 ≤ i ≤ n,
1 ≤ j ≤ m. For α ∈ (0, 1) and an integrable function
x : [a, b] → R, the Riemann–Liouville integral operator of
x(·) with the order α is defined by

(Iαa+x)(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ, t ∈ (a, b],

where Γ(·) is the Gamma function. The Caputo fractional
derivative CDα

a+x of a function x ∈ AC([a, b];R) is defined
by

(CDα
a+x)(t) := (I1−αa+ Dx)(t), t ∈ (a, b],

where AC([a, b];R) denotes the space of absolutely contin-
uous functions and D is the classical derivative.

II. POSITIVITY OF LINEAR MIXED-ORDER FRACTIONAL
SYSTEMS WITH TIME-VARYING DELAYS

Let α̂ = (α1, . . . , αd)
T ∈ (0, 1]×· · ·×(0, 1] ⊂ Rd, T, r > 0,

m ∈ N. Consider the following system on (0, T ]

CDα̂
0+x(t) = Ax(t) +

m∑
1

Bkx(t− hk(t)) + Uw(t), (2)

and x(·) = φ(·) ∈ C([−r, 0];Rd) on [−r, 0], where
A = (aij)1≤i,j≤d, Bk = (bkij)1≤i,j≤d (1 ≤ k ≤ m),
U = (uij)1≤i,j≤d ∈ Rd×d and w(·) ∈ C([0, T ];Rd).
Assume that hk : [0, T ]→ R≥0 (1 ≤ k ≤ m) is continuous
such that

(F1) hk(0) > 0;
(F2) t− hk(t) ≥ −r for all t ∈ [0, T ];
(F3) hk(0) 6= hl(0) for any 1 ≤ k 6= l ≤ m.

Using the same arguments as in the proof of [18, Lemma
6.2, pp. 86], we see that a vector valued function ϕ(·, φ) ∈
C([−r, T ];Rd) is a solution of (2) with x(·) = φ(·) on
[−r, T ] if and only if it satisfies the time-delay integral
system on (0, T ],

xi(t) = φi(0) +
1

Γ(αi)

∫ t

0

(t− s)αi−1
∑

1≤j≤d

(
aijxj(s)

+

m∑
1

bkijxj(s− hk(s)) + uijwj(s))ds, 1 ≤ i ≤ d,

and x(·) = φ(·) on [−r, 0].

Surprisingly, up to now, there has been no result reported in
the literature on the existence and uniqueness of solutions to
mixed fractional-order systems with multiple time-varying
delays. Hence, we first introduce here a rigorous proof
for the existence and uniqueness of global solutions to the
system in (2).

Lemma II.1 (Existence and uniqueness of linear mixed
fractional-order with time-varying delays). Assume that
hk : [0, T ] → R≥0 (1 ≤ k ≤ m) is continuous such that
condition (F2) holds. Then, for any φ(·) ∈ C([−r, 0];Rd)
and w(·) ∈ C([0, T ];Rd), system (2) with initial condition
x(t) = φ(t), t ∈ [−r, 0] has a unique solution ϕ(·, φ) on
[−r, T ].

Proof. Let

Cφ :=
{
ξ ∈ C([−r, T ];Rd) : ξ(t) = φ(t), t ∈ [−r, 0]

}
and define a functional ‖ · ‖γ on Cφ by

‖ξ‖γ = max
t∈[0,T ]

ξ∗(t)

exp (γt)
,

where γ > 0 is fixed and chosen later and ξ∗(t) =
max−r≤θ≤t ‖ξ(θ)‖. Notice that ‖ · ‖γ is a norm and
(Cφ, ‖ · ‖γ) is a Banach space. On this space, we establish
an operator Tφ : Cφ → Cφ as follows.

(Tφξ)i(t) = φi(0) +
1

Γ(αi)

∫ t

0

(t− s)αi−1

( ∑
1≤j≤d

aijξj(s) +

m∑
1

bkijξj(s− hk(s)) + uijwj(s)
)
dτ,

for t ∈ (0, T ], 1 ≤ i ≤ d, and (Tφξ)(t) = φ(t) on [−r, 0].
To complete the proof of this lemma, we only have to show
that Tφ is contractive. For that, for any ξ(·), ξ̂(·) ∈ Cφ,
t ∈ [0, T ], 1 ≤ i ≤ d, we have

I(t) = |(Tφξ)i(t)− (Tφξ̂)i(t)|

≤ 1

Γ(αi)

∫ t

0

(t− s)αi−1
∑

1≤j≤d

(
|aij ||ξj(s)− ξ̂j(s)|

+
∑

1≤k≤m

|bkij ||ξj(s− hk(s))− ξ̂j(s− hk(s))|
)
ds

≤
maxdi=1

(∑d
j=1(|aij |+

∑m
k=1 |bkij |)

)
exp (γt)

Γ(αi)

×
∫ t

0

(t− s)αi−1 exp (−γ(t− s)) (ξ − ξ̂)∗(s)
exp (γs)

ds.
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Hence,

I(t) ≤
maxdi=1

(∑d
j=1(|aij |+

∑m
k=1 |bkij |)

)
exp (γt)

Γ(αi)

×
∫ t

0

vαi−1 exp (−γv)dv‖ξ − ξ̂‖γ

≤
maxdi=1

(∑d
j=1(|aij |+

∑m
k=1 |bkij |)

)
exp (γt)

Γ(αi)λαi

×
∫ γt

0

uαi−1 exp (−u)du‖ξ − ξ̂‖γ ,

which implies

|(Tφξ)i(t)− (Tφξ̂)i(t)|
exp (γt)

≤ max
1≤i≤d

∑d
j=1(|aij |+

∑m
k=1 |bkij |)

γαi
‖ξ − ξ̂‖γ , (3)

where we used the fact that∫ ∞
0

uαi−1 exp (−u)du = Γ(αi)

and the estimates

‖ξ(s)− ξ̂(s)‖, ‖ξ(s−hk(s))− ξ̂(s−hk(s))‖ ≤ (ξ− ξ̂)∗(s)

for s ∈ [0, T ], 1 ≤ k ≤ m. From (3), we obtain

(Tφξ − Tφξ̂)∗(t)
exp (γt)

≤ d
max
l=1

maxdi=1

∑d
j=1(|aij |+

∑m
k=1 |bkij |)

γαl
‖ξ − ξ̂‖γ

for all t ∈ [0, T ]. Thus,

‖Tφξ − Tφξ̂‖γ ≤ ‖ξ − ξ̂‖γ×

max
1≤l≤d

max1≤i≤d
∑

1≤j≤d(|aij |+
∑

1≤k≤m |bkij |)
γαl

.

By choosing γ > 0 such that

max
1≤l≤d

maxdi=1

∑d
j=1(|aij |+

∑m
k=1 |bkij |)

γαl
< 1,

then Tφ is contractive. Banach fixed point theorem implies
that this operator has a fixed point in (Cφ, ‖ · ‖γ) which is
also the unique solution to initial value problem (2) with
initial condition x(t) = φ(t), t ∈ [−r, 0]. The proof is
complete.

Our main aim in this section is to introduce a criterion to
characterize the positivity of linear mixed-order fractional
systems with time-varying delays.

Definition II.2. System (2) is positive if for any φ(t) � 0 on
[−r, 0] and w(t) � 0 on [0, T ], its solution ϕ(·, φ) satisfies
ϕ(t, φ) � 0 on [0, T ].

The main result in this section is the following proposition.

Proposition II.3 (A necessary and sufficient condition for
the positivity of linear mixed fractional-order systems with

time-varying delays). Let hk : [0, T ] → R≥0 (1 ≤ k ≤ m)
be continuous such that conditions (F1), (F2) and (F3) hold.
Then, system (2) is positive if and only if A is Metzler, Bk
(1 ≤ k ≤ m) and U are nonnegative.

Proof. Necessity: Let system (2) be positive. We first show
that U = (uij)1≤i,j≤d is nonnegative. To do this, assume
that there is an element ui0j0 < 0. By choosing φ(t) = 0 on
[−r, 0] and w(t) = ej0 on [0, T ], we have the representation
of the i0-component of ϕ(·, φ) as

ϕi0(t, φ) =
1

Γ(αi0)

∫ t

0

(t− s)i0−1
∑

1≤j≤d

ai0jϕj(s, φ)ds+

1

Γ(αi0)

∫ t

0

(t− s)i0−1
∑

1≤k≤m

∑
1≤j≤d

bki0jϕj(s− hk(s), φ)ds

+
1

Γ(αi0)

∫ t

0

(t− s)i0−1ui0j0ds, t ∈ [0, T ],

where ej0 = (0, . . . , 1, . . . , 0)T denotes the unit vector in
Rd with the j0-coordinate equals to 1. Hence, for t0 > 0
small enough, for example, for all t ∈ [0, t0],

t−hk(t) < − max
1≤k≤m

hk(0)/2,
∑

1≤j≤d

ai0jϕj(s, φ) < |ui0j0 |,

then

ϕi0(t0, φ) =
1

Γ(αi0)

∫ t0

0

(t0 − s)i0−1
∑

1≤j≤d

ai0jϕj(s, φ)ds

+
1

Γ(αi0)

∫ t0

0

(t0 − s)i0−1ui0j0ds

< 0,

a contradiction. Next, assume, ad absurdum, A =
(aij)1≤i,j≤d is not Metzler, that is, there exist indexes 1 ≤
i0 6= j0 ≤ d such that ai0j0 < 0. Let φ(·) ∈ C([−r, 0];Rd)
be a vector valued function with

φ(t) =

{
ej0 , if t = 0,

0, if t ∈ [−r,−max1≤k≤m hk(0)/2],

and w(t) = 0 on [0, T ]. Due to the continuity of so-
lutions and the delay hk(·) and that hk(0) > 0 (1 ≤
k ≤ m), we can find t0 > 0 (small enough) such that
t − hk(t) ≤ −max1≤k≤m hk(0)/2, ϕj0(t, φ) > 1/2, and∑

1≤j≤d,j 6=j0 ai0jϕj(t, φ) <
|ai0j0

|
2 for all t ∈ [0, t0]. Then,

the i0-component of ϕ(t0, φ) satisfies

ϕi0(t0, φ) =
1

Γ(αi0)

∫ t0

0

(t0 − s)i0−1ai0j0ϕj0(s, φ)ds

+
1

Γ(αi0)

∫ t0

0

(t0 − s)i0−1
∑

1≤j≤d,j 6=j0

ai0jϕj(s, φ)ds

< 0,

a contradiction. We now prove that Bk is nonnegative
for any 1 ≤ k ≤ m. From (F1) and (F3), without loss
of generality, let 0 < h1(0) < · · · < hm(0). First,
we show that B1 is nonnegative. Suppose, ad absurdum,
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B1 = (b1ij)1≤i,j≤d is not nonnegative. That is, there is
b1i0j0 < 0. Choose φ(·) ∈ C([−r, 0];Rd) such that

φ(t) =


0, if t = 0,

ej0 , if t ∈ [−2h1(0)−h2(0)
3 , −h1(0)

2 ],

0, if t ∈ [−r, −2h2(0)−h1(0)
3 ],

and w(t) = 0 on [0, T ]. Then, for t0 > 0 small enough so
that on the interval [0, t0]:

•
−2h1(0)−h2(0)

3 ≤ t− h1(t) ≤ −h1(0)
2 ;

• −r ≤ t− hk(t) ≤ −2h2(0)−h1(0)
3 , 2 ≤ k ≤ m;

•
∑

1≤j≤d ai0jϕj(t, φ) < |b1i0j0 |.

Then, the i0-component of the solution ϕ(·, φ) at t = t0
verifies

ϕi0(t0, φ) =
1

Γ(αi0)

∫ t0

0

(t0 − s)i0−1b1i0j0ds

+
1

Γ(αi0)

∫ t0

0

(t0 − s)i0−1
∑

1≤j≤d

ai0jϕj(s, φ)ds

< 0,

which implies a contradiction. By similar arguments, we
also see Bk, 2 ≤ k ≤ m, is nonnegative. Thus, Bk (1 ≤
k ≤ m) are nonnegative.

Sufficiency: Let A = (aij)1≤i,j≤d be Metzler and Bk =
(bkij)1≤i,j≤d, U = (uij)1≤i,j≤d be nonnegative. We first
show that if φ(t) � 0 on [−r, 0] and w(t) � 0 on [0, T ],
then ϕ(t, φ) � 0 on [0, T ]. Indeed, due to the fact that A is
Metzler, there exists a positive constant ρ > 0 such that

A = −ρId + (ρId +A),

where ρId+A is nonnegative. Then, system (2) is rewritten
as

CDα̂
0+x(t) = ρIdx(t) + (ρId +A)x(t)

+
∑

1≤k≤m

Bkx(t− hk(t)) + Uw(t), t ∈ (0, T ].

By virtue of the variation of constants formula
(see, e.g., [19, Lemma 3.1]), the solution
ϕ(·, φ) = (ϕ1(·, φ), . . . , ϕd(·, φ))T of (2) with
ϕ(·, φ) = φ(·) on [−r, 0] has the following form:

ϕi(t, φ) = Eαi
(−ρtαi)φi(0)

+

∫ t

0

(t−s)αi−1Eαi,αi
(−ρ(t−s)αi)

∑
1≤j≤d

(
(aij+ρδij)ϕj(s, φ)

+
∑

1≤k≤m

bkijϕj(s− hk(s), φ) + uijwj(s)
)
ds (4)

for t ∈ [0, T ], 1 ≤ i ≤ d, where

δij =

{
1, if i = j,

0, if i 6= j,

and

Eαi(z) :=

∞∑
k=0

zk

Γ(kαi + 1)
, Eαi,αi(z) :=

∞∑
k=0

zk

Γ(kαi + αi)

are Mittag-Leffler functions. Suppose that there exists t0 >
0 so that ϕ(t0, φ) � 0. From this, we can find an index
i0 ∈ {1, . . . , d} satisfying ϕi0(t0, φ) = 0. Take

t∗ = inf{t ∈ [0, T ] : ϕi0(t, φ) = 0}.

Then t∗ > 0, ϕi0(t∗, φ) = 0 and ϕi0(t, φ) > 0 for all
t ∈ [0, t∗). However, from (4),

ϕi0(t∗, φ) = Eαi0
(−ρt∗αi0 )φi0(0)

+

∫ t∗

0

(t∗ − s)αi0−1Eαi0 ,αi0
(−ρ(t∗ − s)αi0 )

×
∑

1≤j≤d

(
(ai0j + ρδi0j)ϕj(s, φ) +

∑
1≤k≤m

bki0jϕj(s− hk(s), φ)

+ ui0jwj(s)
)
ds

≥ Eαi0
(−ρt∗αi0 )φi0(0) > 0,

a contradiction. Thus, ϕ(t, φ) � 0 on [0, T ]. We now
consider the case where the inputs φ(t) � 0 on [−r, 0]
and w(t) � 0 on [0, T ]. Using the arguments as in
[20, Proposition 1], we get the initial conditions φn(·) =
φ(·) + 1

n1 on [−r, 0] with n ∈ N and 1 = (1, . . . , 1)T.
It is obvious to see that {ϕ(·, φn)}∞n=1 is a decreasing
sequence of continuous positive functions on [−r, T ]. Define
ϕ∗(t) := limn→∞ ϕ(t, φn) for each t ∈ [−r, T ]. By
Dini’s theorem (see, e.g., [21, Theorem 7.13, pp. 150]), the
sequence {ϕ(·, φn)}∞n=1 converges uniformly to ϕ∗(·) and
this function is also continuous and nonnegative on [−r, T ].
Notice that for each n ∈ N, ϕ(·, φn) verifies

ϕi(t, φ
n) =Eαi(−ρtαi)(φn(0))i

+

∫ t

0

(t− s)αi−1Eαi,αi(−ρ(t− s)αi)

×
∑

1≤j≤d

(
(aij + ρδij)ϕj(s, φ

n)

+
∑

1≤k≤m

bkijϕj(s− hk(s), φn) + uijwj(s)
)
ds,

for 1 ≤ i ≤ d, t ∈ [0, T ] and ϕ(t, φn) = φn(t) on [−r, 0].
Let n→∞, we obtain

ϕ∗i (t) = Eαi
(−ρtαi)φi(0)

+

∫ t

0

(t− s)αi−1Eαi,αi
(−ρ(t− s)αi)

×
∑

1≤j≤d

(
(aij + ρδij)ϕ

∗
j (s)

+
∑

1≤k≤m

bkijϕ
∗
j (s− hk(s)) + uijwj(s)

)
ds,

for 1 ≤ i ≤ d, t ∈ [0, T ] and ϕ∗(t) = φ(t) on [−r, 0]. Since
the original system has a unique solution (see Lemma II.1)
and it has the form as in (4), ϕ∗(·) is the unique solution of
this system. On the other hand, as shown above, ϕ∗(t) � 0
on [−r, T ], which implies that ϕ(·, φ) is nonnegative on the
existence interval [0, T ]. The proof is complete.
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Remark II.4. In the classical case, to prove the positivity of
the time-delay system{

dx(t)
dt = Ax(t) +

∑
1≤k≤mBkx(t− hk), t ≥ 0,

x(t) = φ(t) ∈ Rd, t ∈ [−r, 0],

one usually adopts the following representation for its
solution on [0,∞)

x(t) = exp (tA)φ(0)

+

∫ t

0

exp ((t− s)A)

m∑
1

Bkx(s− hk))ds,

see, e.g., [23, Proposition 3.1]. In our opinion, this approach
is also true for time-delay systems with a non-integer
derivative. However, it does not work for mixed fractional-
order systems because there is not a similar variation of
constants formula for the solution to these systems.

III. ASYMPTOTIC STABILITY OF POSITIVE LINEAR
MIXED-ORDER FRACTIONAL SYSTEMS WITH

TIME-VARYING DELAYS

Let α̂ = (α1, . . . , αd)
T ∈ (0, 1]×· · ·×(0, 1] ⊂ Rd×· · ·×Rd,

r > 0, m ∈ N. In this section, we consider the following
linear mixed-order fractional system on (0,∞)

CDα̂
0+x(t) = Ax(t) +

∑
1≤k≤m

Bkx(t− hk(t)) (5)

with x(·) = φ(·) ∈ C([−r, 0];Rd) on [−r, 0], where
A,Bk ∈ Rd×d, hk : [0,∞) → R+ (1 ≤ k ≤ m) is
continuous and satisfies the following conditions

(G1) hk(0) > 0;
(G2) t− hk(t) ≥ −r for all t ∈ [0,∞);
(G3) hk(0) 6= hl(0) for any 1 ≤ k 6= l ≤ m
(G4) limt→∞ t− hk(t) =∞ (1 ≤ k ≤ m).

For linear systems, the asymptotic stability in the Lyapunov
sense and the attractivity are equivalent, see e.g., [24,
Theorem 6]. Hence, in this paper, we use the following
definition for the asymptotic stability of system (5).

Definition III.1. System (5) is said to be asymptotically
stable if for any φ(·) ∈ C([−r, 0];Rd), its solution ϕ(·, φ)
converges to the origin as t→∞.

Based on Proposition II.3 about the positivity of time-delay
linear fractional-order systems, we obtain a necessary and
sufficient condition for the asymptotic stability of positive
linear mixed-order fractional systems with unbounded time-
varying delays in the following theorem.

Theorem III.2 (A characterization of the asymptotic sta-
bility of linear mixed fractional-order systems with un-
bounded time-varying delays). Assume that system (5) is
positive. Then, it is asymptotically stable if and only if
A+

∑
1≤k≤mBk is Hurwitz.

Proof. Necessity: Let the positive system (5) be asymptoti-
cally stable. Suppose, ad absurdum, A+

∑
1≤k≤mBk is not

Hurwitz. Notice that A is Metzler and Bk (1 ≤ k ≤ m) is
nonnegative and thus A+

∑
1≤k≤mBk is also Metzler. From

[25, Theorem 2.5.3, p. 114], we have (A+
∑

1≤k≤mBk)λ �
0 for any λ � 0. Choose and fix such a positive vector
λ ∈ Rd, and put e0(t) := ϕ(t, λ) − λ for all t ∈ [−r,∞).
Then, e0(·) is the unique solution to the system

CDα̂
0+x(t) = Ax(t) +

∑
1≤k≤m

Bkx(t− hk(t))

+ (A+
∑

1≤k≤m

Bk)λ, t > 0, (6)

x(·) = 0 on [−r, 0].

On the other hand, by virtue Proposition II.3, system (6)
is positive. Hence, e0(t) � 0 on [0,∞). This implies that
ϕ(t, λ) � λ � 0, ∀t ∈ [0,∞). It is a contradiction because
from the original assumption, limt→∞ ϕ(t, λ) = 0.

Sufficiency: Let A +
∑

1≤k≤mBk be Hurwitz. By virtue
[25, Theorem 2.5.3, p. 114], we can find a vector λ � 0
such that

(A+
∑

1≤k≤m

Bk)λ ≺ 0. (7)

First step: In this step, we will prove that there exists t1 > 0
and ν ∈ (0, 1) such that

ϕ(t, λ) ≺ νλ, ∀t ≥ t1. (8)

For that, at first, let u0(t) = λ − ϕ(t, λ), t ≥ −r. Then,
u0(·) is the unique solution of the system

CDα̂
0+u0(t) = Au0(t) +

∑
1≤k≤m

Bku0(t− hk(t))−

(A+
∑

1≤k≤m

Bk)λ, t > 0,

u0(t) = 0, t ∈ [−r, 0].

This system is positive, hence, u0(t) � 0 on [0,∞), which
implies that ϕ(t, λ) � λ for all t ≥ 0. Next, let y(·) is the
unique solution of the system{

CDα̂
0+y(t) = Ay(t) +

∑
1≤k≤mBkλ, t > 0,

y(0) = λ.
(9)

Using the same arguments as above, we see that 0 ≺ y(t) �
λ for all t ≥ 0. Moreover,

0 � ϕ(t, λ) � y(t), t ≥ 0. (10)

Now, for any c > 0, define u1(t) = y(t)− y(t+ c), t ≥ 0.
This vector valued function satisfies the system{

CDα̂
0+u1(t) = Au1(t), t > 0,

u1(0) � 0.
(11)

Due to the fact that system (11) is positive, u1(t) � 0 for
all t ≥ 0, that is, y(t) � y(t+c), for all t ≥ 0. In particular,

(S1) 0 ≺ y(t) � λ for all t ≥ 0;
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(S2) y(·) is decreasing on [0,∞).

From (S1) and (S2), the limit limt→∞ y(t) exists. Put y∗ =
limt→∞ y(t) and denote by L the Laplace transform. In
light of the Final value theorem (see, e.g., [18, Theorem
D13]), we obtain

lim
s→+0

sL{CDα̂
0+y(·)} = lim

t→∞
CDα̂

0+y(t)

= lim
t→∞

(Ay(t) +
∑

1≤k≤m

Bkλ)

= Ay∗ +
∑

1≤k≤m

Bkλ.

Furthermore,

lim
s→+0

sL{CDα̂
0+y(·)}

= lim
s→+0

s[sα1L{y1(·)}(s)− sα1−1λ1,

. . . , sαdL{yd(·)}(s)− sαd−1λd]

= lim
s→+0

[sα1(sL{y1(·)}(s)− λ1),

. . . , sαd(sL{yd(·)}(s)− λd)]
= 0

due to the fact that, for all 1 ≤ j ≤ d,

lim
s→+0

sL{yj(·)}(s) = lim
t→∞

yj(t) = y∗j .

This leads to that y∗ = limt→∞ y(t) =
−A−1

∑
1≤k≤mBkλ. Note that A is Metzler and

Hurwitz. From [25, Theorem 2.5.3, p. 114], −A−1 � 0
which together with (7) implies that

lim
t→∞

y(t) = −A−1
∑

1≤k≤m

Bkλ ≺ λ. (12)

By combining (10) and (12), we can find t1 > 0 and ν ∈
(0, 1) such that the estimate (8) holds.

Second step: In this step, we will show that there ex-
ists an increasing sequence {Tn}∞n=0 with T0 = 0 and
limn→∞ Tn =∞ such that for any n ∈ Z≥0,

ϕ(t, λ) � νnλ, ∀t ∈ [Tn, Tn+1]. (13)

To do this, we use a proof by induction. From (G4), there
exists t̂1 > t1 such that t − hk(t) ≥ t1 for all t ≥ t̂1,
1 ≤ k ≤ m. Put T1 := t̂1. Then, (13) holds for n = 0 and
ϕ(t, λ) � νλ for all t ≥ T1.

Next, define y1(t) = ϕ(t+T1, λ), t ≥ 0. Then, y1(·) satisfies
the system{

CDα̂
0+y1(t) = Ay1(t) +

∑m
1 Bkfk(t), t > 0,

y1(0) = ϕ(T1, λ),
(14)

where fk(t) = ϕ(t + T1 − hk(t + T1), λ), t ≥ 0. Thus,
0 � fk(t) � νλ for all t ≥ 0. Now, consider the system{

CDα̂
0+z1(t) = Az1(t) +

∑m
1 Bkνλ, t > 0,

z1(0) = νλ.
(15)

By the comparison principle for solutions of (14) and (15)
and the similar arguments as shown above, we obtain

• 0 � y1(t) � z1(t) � νλ for all t ≥ 0;
• limt→∞ z1(t) = −A−1

∑
1≤k≤mBkνλ.

Hence, there exists t2 > 0 such that ϕ(t+T1, λ) = y1(t) �
ν2λ for all t ≥ t2. Take t̂2 = T1 + t2, then ϕ(t, λ) � ν2λ
for all t ≥ t̂2. Using (G4) again, we have T2 > t̂2 so that
t− hk(t) ≥ t̂2 for all t ≥ T2, 1 ≤ k ≤ m. Thus, (13) holds
for n = 1 and ϕ(t, λ) � ν2λ for all t ≥ T2. By a similar
procedure, we also see that (13) holds for n = 2, 3, . . . , and
thus the proof of Second step is complete.

Third step: From (13), we see that limt→∞ ϕ(t, λ) = 0.
Let φ(·) ∈ C([−r, 0];Rd+) be arbitrary. There is a positive
constant γ such that

φ(t) � γλ, t ∈ [−r, 0].

Due to the positivity, the linearity and the existence and
uniqueness of solutions of system (5), we have

ϕ(t, φ) � ϕ(t, γλ) = γϕ(t, λ), t ≥ 0.

Thus,

0 � lim
t→∞

ϕ(t, φ) � γ lim
t→∞

ϕ(t, λ) = 0.

This shows that system (5) is asymptotically stable.

Remark III.3. In [16, Theorem 2], the authors studied the
asymptotic stability of linear mixed fractional-order with a
bounded time-varying delay{

CDα̂
0+x(t) = Ax(t) +Bx(t− τ(t)), t ≥ 0,

x(t) = ϕ(t) ∈ Rd, t ∈ [−r, 0],
(16)

where 0 ≤ τ(t) ≤ r for all t ≥ 0. Assume that λ � 0
satisfying (A+B)λ ≺ 0. Their approach is to compare the
solution ϕ(·, λ) of the system (16) with the solution of the
following system{

CDα̂
0+x(t) = Ax(t) +Bx(t− r), t ≥ 0,

x(t) = λ, t ∈ [−r, 0].

It is easy to see that this approach cannot be applied for the
case where the delay τ(·) is not bounded which is the main
objective in our research.

Finally, we give an example to illustrate the effectiveness
of the proposed result.
Example III.4. Let α̂ = (α1, α2, α3)T ∈ (0, 1] × (0, 1] ×
(0, 1], and continuous function h : [0,∞) → R≥0 be
defined by h(t) = t sin2 t

2 + 1 for all t ≥ 0. Consider the
following positive linear mixed-order fractional system with
an unbounded time-varying delay

CDα̂
0+x(t) = Ax(t) +Bx(t− h(t)), t ≥ 0, (17)

where

A =

−5 1 0
0.5 −4 0.5
1 0 −6

 , B =

1 0 1
0 1 0
0 1 1

 .

We see that the delay h(t) satisfies assumptions (G1), (G2)
and (G4), A is Metzler, B is nonnegative and A + B is
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Fig. 1. Trajectories of the solution ϕ(·, φ) to system (17) when α1 = 0.5,
α2 = 0.7, α3 = 0.8.

Hurwitz. Thus, by Theorem III.2, system (17) is asymp-
totically stable, that is, for any φ(·) ∈ C([−1, 0];R3), the
solution ϕ(t, φ) → 0 as t → ∞. In Figure 1, we simulate
the trajectories of the solution ϕ(·, φ) to system (17) when
α1 = 0.5, α2 = 0.7, α3 = 0.8 and the initial condition as
φ(t) = (0.3, 0.5, 0.4)T on the interval [−1, 0].

IV. CONCLUSION

In this paper, by using a new weighted type norm which
is adaptive with time-delay systems, we have obtained a
result on the existence and uniqueness of solutions to linear
mixed fractional-order systems with time-varying delays.
Then, by using the integral representation of solutions,
we have derived a necessary and sufficient condition for
the positivity of these systems. Finally, by comparing the
trajectories of solutions of the time-delay system with that
of inhomogeneous systems having the inhomogeneous parts
constant and decreasing on time and the inductive principle,
we have established a necessary and sufficient criterion to
guarantee the asymptotic stability of positive linear mixed
fractional-order systems with both multiple bounded and
unbounded time-varying delays.
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[2] I. Petráš, Ed., Handbook of Fractional Calculus with Applications
(Applications in Control, vol. 6). Berlin, Germany: De Gruyter, 2019.

[3] V.E. Tarasov, Ed., Handbook of Fractional Calculus with Applications
(Applications in Physics-Part B, vol. 5). Berlin, Germany: De Gruyter,
2019.

[4] J.K. Hale, L. Verduyn, and M. Sjoerd, Introduction to Functional-
Differential Equations, ser. Applied Mathematical Sciences, vol. 99.
New York, NY, USA: Springer-Verlag, 1993.

[5] Y. Kuang, Delay Differential Equations with Applications in Popula-
tion Dynamics, ser. Mathematics in Science and Engineering, vol. 191.
Boston, MA, USA: Academic Press, 1993.

[6] W. Michiels, and S. Niculescu, Stability and Stabilization of Time-
Delay Systems, ser. Advances in Design and Control, vol. 12. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics
(SIAM), 2007.

[7] P. Lorenzo, R. Sergio, Positive Linear Systems: Theory and Applica-
tions. New York, NY, USA: Wiley, 2000.

[8] W.M. Haddad, V. Chellaboina, and Q. Hui, Nonnegative and Compart-
mental Dynamical Systems. Princeton, NJ, USA: Princeton University
Press, 2010.
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