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Abstract. In this article, we realize ultragraph Leavitt path algebras as

Steinberg algebras. This realization allows us to use the groupoid approach to

obtain structural results about these algebras. Using skew product groupoid,

we show that ultragraph Leavitt path algebras are graded von Neumann reg-

ular rings. We characterize strongly graded ultragraph Leavitt path algebras

and show that every ultragraph Leavitt path algebra is semiprimitive. More-

over, we characterize irreducible representations of ultragraph Leavitt path

algebras. We also show that ultragraph Leavitt path algebras can be realized

as Cuntz-Pimsner rings.
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1. Introduction

The study of algebras associated to combinatorial objects has attracted a great

deal of attention in the past years. Part of the interest in these algebras arise

from the fact that many properties of the combinatorial object translate into al-

gebraic properties of the associated algebras and their applications to symbolic

dynamics. There have been interesting examples of algebras associated to combi-

natorial objects among which we mention, for example, the following ones: graph

C∗-algebras, Leavitt path algebras, higher rank graph algebras, Kumjian-Pask

algebras, ultragraph C∗-algebras (we refer the reader to [1] and [2] for a more

comprehensive list).

Ultragraphs were defined by Mark Tomforde in [33] as an unifying approach to

Exel-Laca and graph C∗-algebras. They have proved to be a key ingredient in the

study of Morita equivalence of Exel-Laca and graph C∗-algebras [23]. Recently,

Gonçalvas and Royer have established interesting connections between ultragraph

C∗-algebras and the symbolic dynamics of shift spaces over infinite alphabets (see

[14] and [17]).
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The Leavitt path algebra associated to an ultragraph was defined by Imanfar,

Pourabbas and Larki in [21], along with a study of graded ideal structures and a

proof of a Cuntz-Krieger uniqueness type theorem. Furthermore, it was shown in

[21] that these algebras provide examples of algebras that can not be realized as

the Leavitt path algebra of a graph; that is, the class of ultragraph path algebras

is strictly larger than the class of Leavitt path algebras of graphs. This raises the

question of which results about Leavitt path algebras of graphs can be generalized

to ultragraph path algebras, and whether results from the C∗-algebraic setting

can be proved in the algebraic level. Recently a number of interesting results

have been obtained among which we mention, for example, the following ones.

Gonçalvas and Royer [18] extended to ultragraph Leavitt path algebras Chen’s

construction (see [6]) of irreducible representations of graph Leavitt path algebras;

and in [16] they realized ultragraph Leavitt path algebras as partial skew group

rings. Using this realization they characterized artinian ultragraph Leavitt path

algebras and gave simplicity criteria for these algebras. The current article is a

continuation of this direction. Building from ideas in [12], where Leavitt path

algebras are realized as Steinberg algebras, we realize ultragraph Leavitt path

algebras as Steinberg algebras (Theorem 3.3). This is also the algebraic version

of the characterization of ultragraph C∗-algebras as groupoid C∗-algebras given

in [25].

Steinberg algebras were introduced in [31] in the context of discrete inverse

semigroup algebras and independently in [9] as a model for Leavitt path alge-

bras. They can be seen as discrete analogs of groupoid C∗-algebras, which were

introduced earlier (see, e.g., [27, 28]). This class of algebras includes group alge-

bras, inverse semigroup algebras and Leavitt path algebras. In recent years, there

has been a lot of work around Steinberg algebras and in particular regarding their

simplicity (see, e.g., [5, 7, 32]), semiprimitivity (see, e.g, [32]), irreducible rep-

resentations (see, e.g., [31]), and realizing Steinberg algebras as Cuntz-Pimsner

rings (see [10]). Using these results and Theorem 3.3 we prove that every ul-

tragraph Leavitt path algebra is semiprimitive (Theorem 4.2), and characterize

irreducible representations of ultragraph Leavitt path algebras (Theorem 4.7).

We provide a groupoid approach to the sufficient part of [16, Theorem 4.8] (The-

orem 4.13), which gives necessary and sufficient conditions for an ultragraph

Leavitt path algebra to be simple. Moreover, using groupoid skew product, we

show that ultragraph Leavitt path algebras are graded von Neumann regular

rings (Theorems 4.8 and 4.9). Finally, we obtain that ultragraph Leavitt path

algebras can be realized as Cuntz-Pimsner rings (Theorem 4.15).

2. Preliminaries

A groupoid is a small category in which every morphism is invertible. It can

also be viewed as a generalization of a group which has a partial binary operation.

Let G be a groupoid. If x ∈ G, s(x) = x−1x is the source of x and r(x) = xx−1
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is its range. The pair (x, y) is is composable if and only if r(y) = s(x). The set

G(0) := s(G) = r(G) is called the unit space of G. Elements of G(0) are units in

the sense that xs(x) = x and r(x)x = x for all x ∈ G. For U, V ⊆ G, we define

UV = {αβ | α ∈ U, β ∈ V and r(β) = s(α)} and U−1 = {α−1 | α ∈ U}.
A topological groupoid is a groupoid endowed with a topology under which

the inverse map is continuous, and such that the composition is continuous with

respect to the relative topology on G(2) := {(β, γ) ∈ G2 | s(β) = r(γ)} inherited

from G2. An étale groupoid is a topological groupoid G, whose unit space G(0)

is locally compact Hausdorff, and such that the domain map s is a local home-

omorphism. In this case, the range map r and the multiplication map are local

homeomorphisms and G(0) is open in G [29].

An open bisection of G is an open subset U ⊆ G such that s|U and r|U are

homeomorphisms onto an open subset of G(0). Similar to [27, Proposition 2.2.4]

we have that UV and U−1 are compact open bisections for all compact open

bisections U and V of an étale groupoid G. If in addition G is Hausdorff, then

U ∩ V is a compact open bisection (see [30, Lemma 1]). An étale groupoid G is

called ample if G has a base of compact open bisections for its topology.

2.1. Steinberg algebras. Steinberg algebras were introduced in [31] in the con-

text of discrete inverse semigroup algebras and independently in [9] as a model

for Leavitt path algebras. We recall the notion of the Steinberg algebra as a uni-

versal algebra generated by certain compact open subsets of a Hausdorff ample

groupoid. Let G be an ample groupoid, and K a field with the discrete topology.

We denote by KG the set of all functions from G to K. Canonically, KG has the

structure of a K-vector space with operations defined pointwise.

Definition 2.1. Let G be an ample groupoid, and K any field. Let AK(G) be

the K-vector subspace of KG generated by the set

{1U | U is a compact open bisection of G},
where 1U : G −→ K denotes the characteristic function on U . The multiplication

of f, g ∈ AK(G) is given by the convolution

(f ∗ g)(γ) =
∑
γ=αβ

f(α)g(β)

for all γ ∈ G. The K-vector subspace AK(G), with convolution, is called the

Steinberg algebra of G over K.

It is useful to note that 1U ∗ 1V = 1UV for compact open bisections U and V .

In particular, 1U ∗ 1V = 1U∩V whenever U and V are compact open subsets of

G(0) (see [31, Proposition 4.5]).

2.2. Graded rings. Let Γ be a group with identity ε. A ring A (possibly without

unit) is called a Γ-graded ring if A =
⊕

γ∈ΓAγ , where each Aγ is an additive

subgroup of A and AγAδ ⊆ Aγδ for all γ, δ ∈ Γ. By definition, AγAδ is the
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additive subgroup generated by all terms aγaδ, where aγ ∈ Aγ and aδ ∈ Aδ. The

group Aγ is called the γ-homogeneous component of A, and the nonzero elements

of Aγ are called homogeneous of degree γ. If a ∈ A, we write a =
∑

γ∈Γ aγ for

the unique expression of a as a sum of homogeneous terms aγ ∈ Aγ . If A is a

K-algebra over a field K, then A is called a Γ-graded algebra if it is a Γ-graded

ring and each Aγ is a K-subspace of A. A graded homomorphism of Γ-graded

rings is a homomorphism f : A −→ B such that f(Aγ) ⊆ Bγ for all γ ∈ Γ. If a

Γ-graded ring A =
⊕

γ∈ΓAγ has the property that AγAδ = Aγδ for all γ, δ ∈ Γ,

then A is called strongly Γ-graded.

For a Γ-graded ring A (possibly without unit), the smash product ring A#Γ

is defined as the set of all formal sums
∑

γ∈Γ r
(γ)pγ , where r(γ) ∈ A and pγ are

symbols. Addition is defined component-wise and multiplication is defined by

linear extension of the rule (rpα)(spβ) = rsαβ−1pβ, where r, s ∈ A and α, β ∈ Γ.

Here sαβ−1 is the αβ−1-homogeneous component of the element s.

A ring A is called von Neumann regular (or regular for short), if for any x ∈ A,

we have x ∈ xAx. These rings have very rich structures and Goodearl’s book [19]

is devoted to this class of rings. The graded ring A is called graded von Neumann

regular (or graded regular for short), if for any homogeneous element x ∈ A, we

have x ∈ xAx. In §4.3 we will use the fact that for a Γ-graded ring A, A#Γ is

graded von Neumann regular if and only if A is graded von Neumann regular (see

[3, Lemma 2.3]) to obtain structural results on ultragraph Leavitt path algebras.

2.3. Graded groupoids and graded Steinberg algebras. Let Γ be a group

with identity ε and G a topological groupoid. The groupoid G is called Γ-graded

if G can be partitioned by clopen subsets indexed by Γ, i.e, G =
⊔
γ∈Γ Gγ , such

that GγGδ ⊆ Gγδ for all γ, δ ∈ Γ. The set Gγ is called the γ-component of G. We

say a subset X ⊆ G is γ-homogeneous if X ⊆ Gγ . Equivalently, G is Γ-graded

if there is a continuous functor κ : G −→ Γ, where Γ is regarded as a discrete

group. To match the definition of Γ-grading, from the previous paragraph, one

defines Gγ = κ−1(γ). We say that the graded groupoid Γ is strongly Γ-graded if

GγGδ = Gγδ for all γ, δ ∈ Γ.

Let G be a Γ-graded ample groupoid, and K any field. Then by [12, Lemma

3.1], AK(G) is a Γ-graded K-algebra with homogeneous components

AK(G)γ = {1U | U is a γ-homogeneous compact open bisection of G}.

3. Ultragraph groupoids

In this section, based on ultragraph groupoids described in [25], we realize

ultragraph Leavitt path algebras as Steinberg algebras (Theorem 3.3). Conse-

quently, we obtain criteria for an ultragraph Leavitt path algebra to be strongly

graded (Corollary 3.4), and provide a criterion for the unit space of an ultragraph

groupoid to be compact (Corollary 3.5).
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We begin this section by recalling some notions and notes of ultragraph theory

introduced by Tomforde in [33] and [34].

An ultragraph G = (G0,G1, r, s) consists of a countable set of vertices G0, a

countable set of edges G1, and functions s : G1 −→ G0 and r : G1 −→ P(G0)\{∅},
where P(G0) denotes the set of all subsets of G0.

A vertex v ∈ G0 is called a sink if s−1(v) = ∅ and v is called an infinite emitter

if |s−1(v)| = ∞. A singular vertex is a vertex that is either a sink or an infinite

emitter. A vertex v ∈ G0 is called a regular vertex if 0 < |s−1(v)| <∞.

For an ultragraph G = (G0,G1, r, s) we let G0 denote the smallest subset of

P(G0) that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is closed

under finite unions and finite intersections.

A finite path in an ultragraph G is either an element of G0 or a sequence

e1e2 · · · en of edges with s(ei+1) ∈ r(ei) for all 1 ≤ i ≤ n − 1 and we say that

the path α = e1e2 · · · en has length |α| := n. We consider the elements of G0

to be paths of length 0. We denote by G∗ the set of all finite paths in G. The

maps r and s extend naturally to G∗. Note that when A ∈ G0 we define s(A) =

r(A) = A. An infinite path in G is a sequence e1e2 · · · en · · · of edges in G such

that s(ei+1) ∈ r(ei) for all i ≥ 1. The set of all infinite paths in G is denoted by

p∞. For p = e1e2 · · · en · · · ∈ p∞ and n ∈ N, we denote by τ≤n(p) the finite path

e1e2 · · · en, while we denote by τ>n(p) the infinite path en+1en+2 · · · .
If G is an ultragraph, then a cycle based at v in G is a path α = e1e2 · · · e|α| ∈ G∗

with |α| ≥ 1, s(α) = v and v ∈ r(α). An exit for a cycle α is one of the following:

(1) an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(ei) but

e 6= ei+1.

(2) a sink w such that w ∈ r(ei) for some i.

In [33] Mark Tomforde introduced the C∗-algebra of an ultragraph as an uni-

fying approach to Exel-Laca and graph C∗-algebras. Imanfar, Pourabbas and

Larki in [21], introduced the Leavitt path algebra of an ultragraph, along with a

study of ideals and a proof of a Cuntz-Krieger uniqueness type theorem.

Definition 3.1 (cf. [33, Theorem 2.11] and [21, Definition 2.1]). Let G be an

ultragraph and K a field. The Leavitt path algebra LK(G) of G with coefficients

in K is the K-algebra generated by the set {se, s∗e | e ∈ G1} ∪
{
pA | A ∈ G0

}
,

satisfying the following relations for all A,B ∈ G0 and e, f ∈ G1:

(1) p∅ = 0, pApB = pA∩B and pA∪B = pA + pB − pA∩B ;

(2) ps(e)se = se = sepr(e) and pr(e)s
∗
e = s∗e = s∗eps(e);

(3) s∗esf = δe,fpr(e);

(4) pv =
∑

s(e)=v ses
∗
e for any regular vertex v;

where pv denotes p{v} and δ is the Kronecker delta.

We usually denote sA := pA for A ∈ G0 and sα := se1 · · · sen for α = e1 · · · en ∈
G∗. It is easy to see that the mappings given by pA 7−→ pA for A ∈ G0, and

se 7−→ se, s
∗
e 7−→ s∗e for e ∈ G1, produce an involution on the algebra LK(G),
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and for any path α = α1 · · ·αn there exists s∗α := s∗en · · · s
∗
e1 . Also, LK(G) has

the following universal property : if A is a K-algebra generated by a family of

elements {bA, ce, c∗e | A ∈ G0, e ∈ G1} satisfying the relations analogous to (1) -

(4) in Definition 3.1, then there always exists a K-algebra homomorphism ϕ :

LK(G) −→ A given by ϕ(pA) = bA, ϕ(se) = ce and ϕ(s∗e) = c∗e. Moreover, in [21,

Theorem 2.9] the authors showed that LK(G) has a canonical Z-graded structure

with homogeneous components

LK(G)n = SpanK{sαpAs∗β | α, β ∈ G∗, A ∈ G0 and |α| − |β| = n}.
For any n ≥ 1, we define

pn := {(α,A) | α ∈ G∗, |α| = n, A ∈ G0, A ⊆ r(α)}.

We specify that (α,A) = (β,B) if and only if α = β and A = B. We set p0 = G0

and we let p = tn≥0p
n. We define the length of a pair (α,A), denoted |(α,A)|,

to be the length of α. We call p the ultragraph space associated with G and

the elements of p are called ultrapaths. We may extend the range map r and

the source map s to p by the setting r((α,A)) = A and s((α,A)) = s(α). Each

A ∈ G0 is regarded as an ultrapath of length zero and we define r(A) = s(A) = A.

It will be convenient to embed G∗ in p by sending α to (α, r(α)), if |α| ≥ 1, and

by sending A to A for all A ∈ G0.

We treat p like a small category and say that a product x · y is defined only

when r(x)∩ s(y) 6= ∅. Namely, if x = (α,A) and y = (β,B), then x · y is defined

if and only if s(β) ∈ A, and in this case x · y := (αβ,B). Also we specify that

x · y =


x ∩ y if x, y ∈ G0 and x ∩ y 6= ∅,
y if x ∈ G0, |y| ≥ 1, and x ∩ s(y) 6= ∅
(α,A ∩ y) if y ∈ G0, |x| = |(α,A)| ≥ 1, and r(x) ∩ y 6= ∅.

We extend the source map s to p∞, by defining s(γ) = s(e1), where γ =

e1e2 · · · We may concatenate pairs in p, with infinite paths in p∞ as follows. If

y = (α,A) ∈ p, and if γ = e1e2 · · · ∈ p∞ are such that s(γ) ∈ r(y) = A, then

the expression y · γ is defined to be αγ = αe1e2 · · · ∈ p∞. If y = A ∈ G0, we

define y · γ = A · γ = γ whenever s(γ) ∈ A. Of course y · γ is not defined if

s(γ) /∈ r(y) = A.

We note that G0 is an idempotent inverse semigroup in its own under interse-

tion. A filter in G0 is a subsemigroup E of G0 with the property that ∅ /∈ E and

if A ∈ X, and A ⊆ B, then B ∈ X. Each element A ∈ G0 determines a principal

filter, denoted Ã, which is the set given by: Ã = {B ∈ G0 | A ⊆ B}. An ultrafilter

is a filter which is not properly contained in any filter. We denote by U(G0) the

collection of all sets in G0 whose principal filter in G0 is also an ultrafilter over

G0. We note that U(G0) contains every singleton set determined by the vertices

in G0. We shall call the elements in U(G0) ultrasets.
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Following [25, Definition 17], for each subset A of G0, let ε(A) be the set

{e ∈ G1 | s(e) ∈ A}. We shall say that a set A in G0 is an infinite emitter if ε(A)

is infinite.

We now describe the ultragraph groupoid associated to an ultragraph. Let

G = (G0,G1, r, s) be an ultragraph without sinks. Define

Y∞ := {y ∈ p | r(y) is an ultraset emitting infinitely many edges}.
Let

XG := Y∞ ∪ p∞

and

GG := {(x · µ, |x| − |y|, y · µ) | x, y ∈ p, µ ∈ XG , r(x) = r(y), x · µ, y · µ ∈ XG}.

We view each (x·µ, |x|−|y|, y·µ) ∈ GG as a morphism with range x·µ and source

y ·µ. The formulas (x ·µ, |x|−|y|, y ·µ)(y ·µ, |y|−|y′|, y′ ·µ) = (x ·µ, |x|+ |y′|, y′ ·µ)

and (x ·µ, |x| − |y|, y ·µ)−1 = (y ·µ, |y| − |x|, x ·µ) define composition and inverse

maps on GG making it a groupoid with G(0)
G = {(µ, 0, µ) | µ ∈ XG} which

we identify with the set XG by the map (µ, 0, µ) 7−→ µ. We note that rGG
and sGG : GG −→ G(0)

G are the range and source maps defined respectively by:

rGG (x ·µ, |x|−|y|, y ·µ) = (x ·µ, 0, x ·µ) and sGG (x ·µ, |x|−|y|, y ·µ) = (y ·µ, 0, y ·µ)

for all (x · µ, |x| − |y|, y · µ) ∈ GG .

We next describe a topology on GG . For x ∈ p, a finite subset K of edges

emitted by r(x), and a finite subset Q of G0 such that no set in Q contains r(x),

we define

A(x, x) = {(x · µ, 0, x · µ) | µ ∈ XG , x · µ ∈ XG}
and

A(x, x,K,Q) = A(x, x) \ (
⋃
e∈K
A(x · e, x · e) ∪

⋃
C∈Q
A(xC, xC)).

For x, y ∈ p with r(x) = r(y), a finite subset K of edges emitted by r(x), and

a finite subset Q of G0 such that no set in Q contains r(x), we define

A(x, y) = {(x · µ, |x| − |y|, y · µ) | µ ∈ XG , x · µ, y · µ ∈ XG}
and

A(x, y,K,Q) = A(x, y) \ (
⋃
e∈K
A(x · e, y · e) ∪

⋃
C∈Q
A(xC, yC)).

The sets A(x, x,K,Q) constitute a basis of compact open sets for a locally com-

pact Hausdorff topology on G(0)
G , and the sets A(x, y,K,Q) constitute a basis

of compact open bijections for a topology under which GG is a Hausdorff am-

ple groupoid (refer to [25, Theorem 15]). Moreover, GG comes with a canonical

Z-grading given by the functor κ : GG −→ Z defined by κ(x, k, x′) = k, k ∈ Z.
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The following result provides us with a criterion for an ultragraph groupoid to

be strongly graded.

Proposition 3.2. For any ultragraph G without sinks, the ultragraph groupoid

GG is strongly Z-graded if and only if the following conditions hold:

(1) G has no infinite emitters;

(2) For every k ∈ N and every infinite path p ∈ p∞, there exists an initial

subpath x of p and a finite path y ∈ G∗ such that r(x) = r(y) and |y| − |x| = k.

Proof. (=⇒) Firstly, assume that G has an infinite emitter. Then there ex-

ists a finite path x ∈ XG . The element (x, 0, x) ∈ G(0)
G cannot be factored

in the form (x, |x| + 1, µ)(µ,−(|x| + 1), x), where µ ∈ XG , and so (x, 0, x) /∈
(GG )|x|+1(GG )−(|x|+1). Therefore, GG is not strongly Z-graded. Secondly, sup-

pose G has no infinite emitters, but fails to satisfy item (2). This means there

is some k ∈ N, and some infinite path p ∈ p∞, such that for every initial sub-

path x of p, there does not exist a finite path y ∈ G∗ having r(y) = r(x) and

|y| − |x| = k. Therefore, (p, 0, p) ∈ G(0)
G does not admit a factoring of the form

(p, 0, p) = (x ·p′,−k, y ·p′)(y ·p′, k, x ·p′). This shows that (p, 0, p) /∈ (GG )−k(GG )k,

so GG is not strongly Z-graded.

(⇐=) Suppose G satisfies items (1) and (2). By [25, Proposition 25], XG = p∞,

and so G(0)
G = {(p, 0, p) | p ∈ p∞}. Let p ∈ p∞ be arbitrary. For n ≥ 0, we have

(p, n, τ>n(p)) ∈ (GG )n. For n < 0, item (2) implies that there exists an initial

subpath x of p and a finite path y ∈ G∗ such that r(x) = r(y) and |y| − |x| = −n.

We then have (p, n, y · τ>|x|(p)) ∈ (GG )n. Therefore, (p, 0, p) ∈ rGG ((GG )n) for all

n ∈ Z. By [11, Lemma 3.1], GG is strongly Z-graded, thus finishing the proof. �

We are now in position to provide the main result of this section.

Theorem 3.3. Let K be a field and G an ultragraph without sinks. Then the map

πG : LK(G) −→ AK(GG ), defined by πG(pA) = 1A(A,A), πG(se) = 1A((e,r(e)),r(e))

and πG(s∗e) = 1A(r(e),(e,r(e))), for all A ∈ G0 and e ∈ G1, extends to a graded

isomorphism.

Proof. We define the elements {qA | A ∈ G0} and {te, t∗e | e ∈ G1} of AK(GG ) by

setting:

qA := 1A(A,A), te := 1A((e,r(e)),r(e)) and t∗e := 1A(r(e),(e,r(e))).

By repeating verbatim the corresponding argument in the proof of [25, Proposi-

tion 20], we obtain that {qA, te, t∗e | A ∈ G0, e ∈ G1} satisfies the relations anal-

ogous to (1) - (4) in Definition 3.1. Then, by the universal property of LK(G),

there exists a K-algebra homomorphism πG : LK(G) −→ AK(GG ), which maps

pA 7−→ qA, se 7−→ te and s∗e 7−→ t∗e. Since qA has degree 0, te has degree 1 and t∗e
has degree −1 for all A ∈ G0 and e ∈ G1, πG is thus a Z-graded homomorphism.

Note that we always have
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(1) πG(sαpAs
∗
β) = 1A(x,y), where x = (α, r(α) ∩ r(β) ∩ A) and y = (β, r(α) ∩

r(β) ∩A), for all A ∈ G0 and α, β ∈ G∗ \ G0;

(2) πG(sαpA) = 1A(x,r(x)), where x = (α, r(α) ∩ A), for all A ∈ G0 and

α ∈ G∗ \ G0.

This implies that πG is surjective. We next show that πG is injective. Indeed,

assume that πG is not injective, that means, there exists a nonzero element x ∈
ker(πG). By the Reduction Theorem [15, Theorem 3.2], there exist elements a, b ∈
LK(G) such that either axb = pA 6= 0 for some A ∈ G0, or axb =

∑n
i=1 kis

i
c 6= 0,

where c is a cycle in G without exits.

In the first case, since axb ∈ kerπG , this would imply that qA = πG(pA) = 0.

On the other hand, since G has no sinks, A(A,A) 6= ∅, so qA = 1A(A,A) 6= 0, a

contradiction.

So we are in the second case: there exists a cycle c in G without exits such

that axb =
∑n

i=1 kis
i
c 6= 0, where ki ∈ K. We then have

∑n
i=1 kis

i
c ∈ ker(πG).

Since πG is a Z-graded homomorphism, ker(πG) is a graded ideal of LK(G), and so

kis
i
c ∈ ker(πG) for all i. Let j ∈ {1, . . . , n} with kj 6= 0. We have pr(c) = k−1

j (sjc)∗ ·
kjs

j
c ∈ ker(πG), so qr(c) = πG(pr(e)) = 0. Then, we produce a contradiction by

repeating the argument described in the first case.

In any case, we receive a contradiction, so πG is injective. Thus, πG is a graded

isomorphism, finishing the proof. �

In [21, Theorem 2.6], by constructing a representation for LK(G), is was shown

that the elements pA, A ∈ G0, are not zero. By constructing the convolution alge-

bra model for these algebras in Theorem 3.3, it is immediate that all monomials

of the form sαpAs
∗
β, where r(α) ∩ r(β) ∩A 6= ∅, are not zero.

Realizing ultragraph Leavitt path algebras as groupoid algebras in Theorem 3.3

allows us to use the results developed on the setting of Steinberg algebras to derive

results on ultragraph Leavitt path algebras.

Firstly, we obtain the following criterion for an ultragraph Leavitt path algebra

to be strongly graded.

Corollary 3.4. For any field K and any ultragraph G without sinks, the ultra-

graph Leavitt path algebra LK(G) is strongly Z-graded if and only if the following

conditions hold:

(1) G has no infinite emitters;

(2) For every k ∈ N and every infinite path p ∈ p∞, there exists an initial

subpath x of p and a finite path y ∈ G∗ such that r(x) = r(y) and |y| − |x| = k.

Proof. It follows from Proposition 3.2, Theorem 3.3 and [11, Theorem 3.11]. �

It is well-known that for any directed graph E, the unit space of the graph

groupoid associated to E is compact if and only if E has finitely many vertices.

The following fact provides us with a criterion for the unit space of an ultragraph

groupoid to be compact.
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Corollary 3.5. For any ultragraph G without sinks, the unit space G(0)
G is compact

if and only if G0 ∈ G0.

Proof. Let K be an arbitrary field. By [31, Theorem 4.11], the unit space G(0)
G

is compact if and only if the Steinberg algebra AK(GG ) is unital. We note that

AK(GG ) ∼= LK(G) by Theorem 3.3. Moreover, by [21, Lemma 2.12], LK(G) is

unital if and only if G0 ∈ G0. From these observations, we immediately obtain

the statement of the theorem. �

4. Applications

In this section, we use Theorem 3.3 to investigate semiprimitivity (Theo-

rem 4.2), simplicity (Theorem 4.13) and irreducible representations of ultragraph

Leavitt path algebras (Theorem 4.7). Using groupoid skew product, we show that

ultragraph Leavitt path algebras are graded von Neumann regular rings (Theo-

rems 4.8 and 4.9). Also, we show that ultragraph Leavitt path algebras can be

realized as Cuntz-Pimsner rings (Theorem 4.15).

4.1. Semiprimitivity. Recall that a ring is semiprimitive if it has a faithful

semisimple module (cf. [24]). We investigate semiprimitivity of ultragraph Leav-

itt path algebras. Before doing so, we need to recall some notions. Let G be a

groupoid and u, v ∈ G(0). Define an equivalence relation on G(0) by setting u ∼ v
if there is an arrow g ∈ G such that s(g) = u and r(g) = v. An equivalence class

will be called an orbit. The group Gu = {γ ∈ G | u = r(γ) = s(γ)} is called the

isotropy group of G at u. It is easy to verify that up to conjugation in G (and

hence isomorphism) the isotropy group of u depends only on the orbit of u. The

isotropy of G is Iso(G) := ∪u∈G(0)Gu.

The following lemma provides us with a complete description of isotropy groups

in ultragraph groupoids.

Lemma 4.1. Let G be an ultragraph without sinks and µ ∈ XG. Then the isotropy

group (GG )x of x := (µ, 0, µ) is trivial unless µ = pσσ · · · where p is a finite path

in G∗ and σ is a cycle, in which case (GG )x ∼= Z.

Proof. An isotropy group element is of the form g = (µ, k, µ) where µ = αν = βν

with k = |α| − |β|. Moreover, g is a unit unless k 6= 0. If k 6= 0, replacing g by

g−1 we may assume that |α| > |β|. Then α = βγ and ν = γν = γγ · · · . We thus

deduce that µ = pσσ · · · with p is a finite path and σ is a cycle. Moreover, if

m,n ≥ 0, then µ = pσmσσ · · · = pσnσσ · · · shows that (µ, |σ|(m−n), µ) ∈ (GG )x.

This implies (GG )x = {(µ, |σ|(m − n), µ) | m,n ≥ 0}, and so (GG )x ∼= Z by the

map: (µ, |σ|(m− n), µ) 7−→ m− n, finishing the proof. �

As a corollary of Theorem 3.3, we have the following.

Theorem 4.2. Let K be a field and G an ultragraph. Then the ultragraph Leavitt

path algebra LK(G) is semiprimitive.
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Proof. We first establish the result for ultragraphs G without sinks. Let x ∈ G(0)
G

be an arbitrary element. By Lemma 4.1, the isotropy group (GG )x is either trivial

or isomorphic to Z, and so the group algebra K(GG )x is either isomorphic to K or

isomorphic to K[t, t−1], the Laurent polynomial ring in one-variable over K. This

implies that K(GG )x is semiprimitive. Then, by [32, Theorem 4.4], the Steinberg

algebra AK(GG ) is semiprimitive, and so LK(G) is semiprimitive by Theorem 3.3.

The result for arbitrary ultragraphs G then follows from the result of the previ-

ous paragraph, the Morita equivalence established in [13, Theorem 10.5] between

LK(G) and LK(F) for an ultragraph F without sinks, and the preservation of

semiprimitivity under Morita equivalence given in [4, Proposition 3.2], thus fin-

ishing the proof. �

4.2. Irreducible representations. In [18] Gonçalves and Royer extended to

ultragraph Leavitt path algebras Chen’s construction [6] of irreducible repre-

sentations of Leavitt path algebras. We use a groupoid approach to construct

irreducible representations of ultragraph Leavitt path algebras.

Let K be a filed and G a groupoid, and u ∈ G(0). Define Lu := s−1(u). The

isotropy group Gu acts on the right of Lu. Consider the K-vector space KLu
with basis Lu. The right action of Gu on Lu induces a free right KGu-module

structure on KLu (see [31, Proposition 7.7]). Moreover, by [31, Proposition 7.8],

KLu is a left AK(G)-module with the scalar multiplication defined by:

f · x =
∑
y∈Lu

f(yx−1)y

for all f ∈ AK(G) and x ∈ Lu. It is useful to note (see [31, Proposition 7.8]) that

1U · x =

{
yx if there is a y ∈ U such that s(y) = r(x),

0 otherwise.

For a left KGu-module V , we define the corresponding induced left AK(G)-module

to be

Indu(V ) = KLu ⊗KGu V.

In [31, Propositions 7.19 and 7.20] B. Steinberg obtained the following interesting

facts.

Theorem 4.3. Let K be a field, G an ample groupoid, and u, v ∈ G(0). Then the

following statements hold:

(1) ([31, Proposition 7.19]) If V is a simple left KGu-module, then Indu(V )

is a simple left AK(G)-module. Moreover, if V and W are non-isomorphic left

KGu-modules, then Indu(V ) � Indu(W ).

(2) ([31, Proposition 7.20]) If u and v are elements in distinct orbits, then

Indu(V ) and Indv(V ) are not isomorphic.
11



Let K be an arbitrary field and G an ultragraph without sinks. Let x ∈ Y∞,

i.e., x is an element in p such that r(x) is an ultraset emitting infinitely many

edges. We then have

L(x,0,x) := s−1
GG

((x, 0, x)) = {(y, |y| − |x|, x) ∈ GG | y ∈ p, r(y) = r(x)}.

Consider the K-vector space KL(x,0,x) with basis L(x,0,x). Then KL(x,0,x) is a left

AK(GG )-module with the scalar multiplication satisfying the following:

1A(A,A) · (y, |y| − |x|, x) =

{
(y, |y| − |x|, x) if s(y) ∈ A,
0 otherwise

1A((e,r(e)),r(e)) · (y, |y| − |x|, x) =

{
(ey, |y| − |x|+ 1, x) if s(y) ∈ r(e),
0 otherwise

1A(r(e),(e,r(e))) · (r(x), 0, r(x)) = 0

1A(r(e),(e,r(e))) · (y, |y| − |x|, x) =

{
(y′, |y| − |x| − 1, x) if y = ey′,

0 otherwise

for all A ∈ G0, e ∈ G1 and (y, |y| − |x|, x) ∈ L(x,0,x).

We also have that the isotropy group (GG )(x,0,x) is trivial by Lemma 4.1, so

K(GG )(x,0,x)
∼= K and K is only a simple module over K(GG )(x,0,x). We then

have

Ind(x,0,x)(K) = KL(x,0,x) ⊗K(GG )(x,0,x) K = KL(x,0,x) ⊗K K ∼= KL(x,0,x)

as AK(GG )-modules. This module and the isomorphism πG defined in Theo-

rem 3.3 induce a simple left LK(G)-module associated to the element x ∈ Y∞ as

follows. Denote by Vx the vector space over K with basis given by all the elements

y in p with r(y) = r(x). We note that Vx ∼= KL(x,0,x), as K-vector spaces, by the

map: y 7−→ (y, |y| − |x|, x). For any A ∈ G0, e ∈ G1, and y = (e1 · · · en, r(x)) ∈ p,

define

pA · y =

{
y if s(y) ∈ A,
0 otherwise

se · y =

{
(ee1 · · · en, r(x)) if s(y) ∈ r(e),
0 otherwise

s∗e · y =

{
(e2 · · · en, r(x)) if e = e1,

0 otherwise,
and s∗e · r(x) = 0.

Then by the isomorphism πG defined in Theorem 3.3, the K-linear extension to

all of Vx of this action endows Vx with the structure of a left LK(G)-module.
12



Lemma 4.4. Let K be a field, G an ultragraph without sinks, and x, y ∈ Y∞.

Then the following holds:

(1) Vx is a simple left LK(G)-module;

(2) Vx ∼= Vy as left LK(G)-modules if and only if r(x) = r(y), which happens

precisely when Vx = Vy. Consequently, Vx = Vr(x);

(3) EndLK(G)(Vx) ∼= K.

Proof. (1) By Theorem 4.3 (1), Ind(x,0,x)(K) ∼= KL(x,0,x) is a simple left AK(GG )-

module, and so Vx is a simple left LK(G)-module by Theorem 3.3.

(2) Assume that Vx ∼= Vy as left LK(G)-modules. We then have Ind(x,0,x)(K) ∼=
Ind(y,0,y)(K). By Theorem 4.3 (2), (x, 0, x) and (y, 0, y) are elements in the same

orbit, that means, there exists an element g ∈ GG such that (x, 0, x) = s(g) and

(y, 0, y) = r(g). This implies r(x) = r(y). Conversely, if r(x) = r(y), then it is

obvious that Vx = Vy.

(3) Let f : Vx −→ Vx be a nonzero LK(G)-homomorphism. Since Vx is simple,

Vx = LK(G)r(x). Write f(r(x)) =
∑n

i=1 kiyi 6= 0, where ki ∈ K \{0} and yi’s are

distinct elements in p with r(yi) = r(x). By renumbering if necessary, we may

assume without loss of generality that |y1| ≤ |y2| ≤ · · · ≤ |yn|. If |yn| ≥ 1, then we

have 0 = f(s∗yn ·r(x)) = s∗ynf(r(x)) =
∑n

i=1 kis
∗
ynyi = knr(x) 6= 0, a contradiction,

and so |yn| = 0, that is, yn = r(x). Moreover, since yi’s are distinct elements, we

must have n = 1, and f(r(x)) = k1r(x). Since Vx = LK(G)r(x), f(z) = k1z for

all z ∈ Vx. This shows that EndLK(G)(Vx) ∼= K, finishing the proof. �

If p and q are infinite paths in G, then we say that p and q are equivalent

(written p ∼ q) in case there exist non-negative integers m,n such that τ>m(p) =

τ>n(q). Clearly ∼ is an equivalence on p∞, and we let [p] denote the ∼ equivalence

class of the infinite path p. Let c be a cycle in G. Then the path ccc · · · is an

infinite path in G, which we denote by c∞. An infinite path p is called a rational

path if p ∼ c∞ for some a cycle c. An infinite path p is called an irrational path

if p is not rational. We denote by p∞rat and p∞irr the sets of rational and irrational

paths, respectively.

Let K be an arbitrary field and G an ultragraph without sinks. Let p be an

infinite path in G. We then have

L(p,0,p) := s−1
GG

(p, 0, p) = {(q, k, p) ∈ GG | q ∈ [p], k ∈ Z}.

Consider the K-vector space KL(p,0,p) with basis L(p,0,p). Then KL(p,0,p) is a left

AK(GG )-module with the multiplication satisfying the following:

1A(A,A) · (q, k, p) =

{
(q, k, p) if s(q) ∈ A,
0 otherwise

1A((e,r(e)),r(e)) · (q, 0, p) =

{
(eq, k + 1, p) if s(q) ∈ r(e),
0 otherwise
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1A(r(e),(e,r(e))) · (q, k, p) =

{
(τ>1(q), k − 1, p) if q = eτ>1(q),

0 otherwise

for all A ∈ G0, e ∈ G1 and (q, k, p) ∈ L(p,0,p).

Suppose p is an irrational path. We have that the isotropy group (GG )(p,0,p) is

trivial by Lemma 4.1, so K(GG )(p,0,p)
∼= K and K is only a simple module over

K(GG )(p,0,p). We then have

Ind(p,0,p)(K) = KL(p,0,p) ⊗K(GG )(p,0,p) K = KL(p,0,p) ⊗K K ∼= KL(p,0,p)

as AK(GG )-modules. This module and the isomorphism πG defined in Theo-

rem 3.3 induce a simple LK(G)-module associated to the irrational path p as

follows. Denote by V[p] the vector space over K with basis given by all infinite

paths q in G with q ∼ p. We note that KL(p,0,p)
∼= V[p] as K-vector spaces by the

map: (q, k, p) 7−→ q. For any A ∈ G0, e ∈ G1, and q ∈ [p], define

pA · q =

{
q if s(q) ∈ A,
0 otherwise

se · q =

{
eq if s(q) ∈ r(e),
0 otherwise

s∗e · q =

{
τ>1(q) if e = e1,

0 otherwise.

Then, since KL(p,0,p) is a left AK(G)-module and by the isomorphism πG defined

in Theorem 3.3, the K-linear extension to all of V[p] of this action endows V[p]

with the structure of a left LK(G)-module.

Lemma 4.5. Let K be a field, G an ultragraph without sinks, and p, q irrational

paths in G. Then the following holds:

(1) V[p] is a simple left LK(G)-module;

(2) V[p]
∼= V[q] as left LK(G)-modules if and only if [p] = [q], which happens

precisely when V[p] = V[q];

(3) EndLK(G)(V[p]) ∼= K.

Proof. (1) By Theorem 4.3 (1), Ind(p,0,p)(K) ∼= KL(p,0,p) is a simple left AK(GG )-

module, and so V[p] is a simple left LK(G)-module by Theorem 3.3.

(2) Assume that V[p]
∼= V[q] as left LK(G)-modules. We then have Ind(p,0,p)(K) ∼=

Ind(q,0,q)(K). By Theorem 4.3 (2), (p, 0, p) and (q, 0, q) are elements in the same

orbit, that means, there exists an element g ∈ GG such that (p, 0, p) = s(g) and

(q, 0, q) = r(g), showing that p ∼ q, i.e., [p] = [q]. Conversely, if [p] = [q], then it

is obvious that Vp = Vq.

(3) Let f : V[p] −→ V[p] be a nonzero LK(G)-homomorphism. Since V[p] is

simple, V[p] = LK(G)p. Write f(p) =
∑n

i=1 kiqi 6= 0, where ki ∈ K \ {0} and qi’s

are distinct infinite paths in G with qi ∼ p. We claim that n = 1 and q1 = p.

Otherwise, we may assume that q1 6= p. Take m large enough such that all

the τ≤m(qi)’s are pairwise distinct and that τ≤m(q1) 6= τ≤m(p). We than have

0 = f(0) = f(τ≤m(q1) · p) = τ≤m(q1)f(p) =
∑n

i=1 kiτ≤m(q1)qi = k1τ>m(q1) 6= 0,
14



a contradiction, and so f(p) = k1p. Since V[p] = LK(G)p, f(z) = k1z for all

z ∈ V[p]. This shows that EndLK(G)(V[p]) ∼= K, finishing the proof. �

Suppose p is a rational path, that means, p ∼ c∞ for some cycle c in G. We

then have Vp = Vc∞ as left LK(G)-modules, and so we may assume that p = c∞.

By Lemma 4.1, the isotropy group (GG )(c∞,0,c∞) = {(c∞, k|c|, c∞) | k ∈ Z} ∼= Z
by the map (c∞, k|c|, c∞) 7−→ k, and so K(GG )(c∞,0,c∞)

∼= K[t, t−1] by the setting:

(c∞, k|c|, c∞) 7−→ tk. We note that every simple K[t, t−1]-module is of the form

K[t, t−1]/(f(t)), where (f(t)) is the ideal of K[t, t−1] generated by an irreducible

polynomial f(t).

Let f be an irreducible polynomial in K[t, t−1]. We then have

Ind(c∞,0,c∞)(K[t, t−1]/(f)) = KL(c∞,0,c∞) ⊗K[t,t−1] K[t, t−1]/(f)

is a left simple AK(GG )-module (see Theorem 4.3). This induces a simple left

LK(G)-module V f
[c∞] as follows:

V f
[c∞] = V[c∞] ⊗K[t,t−1] K[t, t−1]/(f).

Lemma 4.6. Let K be a field, G an ultragraph without sinks, and p, q irrational

paths in G. Let f and g be irreducible polynomials in K[t, t−1]. Then the following

holds:

(1) V f
[p] is a simple left LK(G)-module;

(2) V f
[p]
∼= V f

[q] as left LK(G)-modules if and only if [p] = [q], which happens

precisely when V f
[p] = V f

[q];

(3) V f
[p]
∼= V g

[p] as left LK(G)-modules if and only if f = hg for some unit

h ∈ K[t, t−1];

(4) EndLK(G)(V
f

[p])
∼= K[t, t−1]/(f).

Proof. (1) It follows from that Ind(c∞,0,c∞)(K[t, t−1]/(f)) is a left simple AK(GG )-

module.

(2) It is done similarly to item (2) of Lemma 4.5.

(3) We note that K[t, t−1]/(f) ∼= K[t, t−1]/(g) as K[t, t−1]-modules if and only

if f = hg for some unit h ∈ K[t, t−1]. Using this note and Theorem 4.3 (1), we

immediately obtain the statement.

(4) Let ϕ : V f
[p] −→ V f

[p] be a non-zero LK(G)-homomorphism. Since V f
[p] is

simple, V f
[p] = LK(G)(p ⊗ 1), where 1 is the identity of the field K[t, t−1]/(f).

Write ϕ(p ⊗ 1) =
∑n

i=1 qi ⊗ fi 6= 0, where qi’s are distinct infinite paths with

qi ∼ p and fi’s are elements in K[t, t−1]/(f). Similar to what as done the proof of

Lemma 4.5 (3), we obtain that ϕ(p⊗ 1) = p⊗ f1 = (p⊗ 1)f1, and so ϕ(z) = zf1

for all z ∈ V f
[p], showing that EndLK(G)(V

f
[p])
∼= K[t, t−1]/(f), thus finishing the

proof. �
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We should note that for each rational path p, we have V t−1
[p] = V[p] ⊗K[t,t−1]

K[t, t−1]/(t − 1) ∼= V[p] as left LK(G)-modules. Moreover, V[q] (q is an irrational

path) and V t−1
[p] (q is a rational path) are non-isomorphic, since (p, 0, p) and

(q, 0, q) ∈ (GG )(0) are elements in distinct orbits and by Theorem 4.3 (2). They

were also constructed in [18]. Denote by Irr(K[t, t−1]) the set of all irreducible

polynomials in K[t, t−1]. We define an equivalent relation ≡ on K[t, t−1] as

follows. For all f, g ∈ K[t, t−1], f ≡ g if and only if f = ug for some unit

u ∈ K[t, t−1]. We let [f ] denote the ≡ equivalent class of f .

To summarize, we list all the simple modules over the ultragraph Leavitt path

algebra, that are constructed in this subsection.

Theorem 4.7. Let K be a field and G an ultragraph without sinks. Then the

following set

{Vr(x) | x ∈ Y∞} ∪ {V[p] | p ∈ p∞irr} ∪ {V
f

[p] | p ∈ p∞rat, [f ] ∈ Irr(K[t, t−1])/ ≡}

consists of pairwise non-isomorphic simple left LK(G)-modules.

Proof. It follows from Theorem 4.3 and Lemmas 4.4, 4.5 and 4.6. �

We should note that the first two module types, Vr(x) for x ∈ Y∞ and V[p] for

p ∈ p∞irr, of Theorem 4.7 are also graded simple modules by [3, Theorem 7.5].

4.3. Leavitt path algebra of skew product ultragraphs. In [25, §3], in order

to show that ultragraph groupoids are amenable, Marrero and Muhly realize the

crossed product C∗(G) by the gauge action, C∗(G)oT, as C∗(G×1Z), which is an

AF algebra. Here G ×1 Z is the skew product ultragraph. In this section, thanks

to Theorem 3.3, we are able to give the algebraic version of this result, realizing

LK(G×1Z) as the smash product of ultragraph Leavitt path algebra LK(G) with

the group Z. This in return allows us to show that LK(G) is a graded regular

ring. Several structural results for the algebra LK(G) follows (see Theorem 4.9).

We recall the notion of skew product of ultragraphs from [25]. Let G =

(G,G1, r, s) be an ultragraph. Denote by G ×1 Z the ultragraph as follows:

vertices of G ×1 Z =
{
vn | v ∈ G0 and n ∈ Z

}
,

edges of G ×1 Z =
{
en | e ∈ G1 and n ∈ Z

}
,

s(en) = s(e)n, and r(en) = r(e)n−1.

It was shown in [25] that the groupoid GG×Z associated to the ultragraph G×1Z
is isomorphic to the skew product groupoid GG × Z. We combine this with [3,

Theorem 3.4] which realizes the Steinberg algebra of a skew product group as

a smash product algebra (see §2.2 for the notion of smash products) to get the

following result. We note that our definition of ultragraph G ×1 Z slightly differs

from the one give in [25, §3]. Here we decrease the indices (r(en) = r(e)n−1),

whereas in [25] the indices increase (r(en) = r(e)n+1). The reason is the way we

defined the skew-product groupoid in [3], which is isomorphic to the one given
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in [25], however was more obviously compatible with the multiplication in the

smash product.

Theorem 4.8. Let K be a field and G an ultragraph without sinks. Then there

is a graded isomorphism LK(G ×1 Z) ∼= LK(G)#Z.

Proof. We have

LK(G ×1 Z) ∼= AK(GG×Z) ∼= AK(GG × Z) ∼= AK(GG )#Z ∼= LK(G)#Z,

where the first and the last isomorphisms come from Theorem 3.3, the second

isomorphism induces from GG×Z
∼= GG × Z and the third isomorphism follows

from [3, Theorem 3.4]. �

For a graded ring A, we denote by Jgr(A) the graded Jacobson radical of A

and by J(A) the usual Jacobson radical. Recall that a (graded) ring is called

a (graded) semi-prime if for any (graded) ideal I in A, In ⊆ A, n ∈ N, implies

I ⊆ A.

Theorem 4.9. Let K be a field and G an ultragraph without sinks. Then LK(G)

is graded regular ring. In particular

(1) Any finitely generated right (left) graded ideal of LK(G) is generated by one

homogeneous idempotent;

(2) Any graded right (left) ideal of LK(G) is idempotent;

(3) Any graded ideal of LK(G) is graded semi-prime;

(4) Any graded right (left) LK(G)-module is flat;

(5) J(LK(G)) = Jgr(LK(G)) = 0.

Proof. By [3, Lemma 2.3], LK(G) is graded regular if and only if LK(G)#Z is

graded regular (see also §2.2). By Theorem 4.8, LK(G)#Z ∼=gr LK(G ×1 Z). The

graph G×1Z is acyclic and thus LK(G×1Z) is an ultramatricial algebra (see, e.g.,

[26, Theorem 2.7] or [25, Lemma 27]). Since the direct limit of regular rings are

regular and matrix rings over fields are regular ([19, Theorem 1.7]), ultramatricial

algebras are regular and thus are graded regular. Therefore LK(G)#Z is graded

regular and consequently, LK(G) is graded regular. Now the statements (1) to

(5) are the properties of a graded regular ring (see [20, §1.1.9]). �

4.4. Simplicity. In [16, Theorems 4.7 and 4.8] Gonçalves and Royer gave sim-

plicity criteria for ultragraph Leavitt path algebras via the theory of partial skew

group rings. Based on Theorem 3.3 and simplicity criteria for Steinberg algebras

as described in literature (see [5], [7] and [32]), we provide with a groupoid ap-

proach the sufficient part of [16, Theorem 4.8]. Before doing so, we need to recall

some notions and useful facts.

Let G be a Hausdorff ample groupoid. A subset D of G(0) is called invariant if

s(γ) ∈ D implies r(γ) ∈ D for all γ ∈ G. Equivalently, D = {r(γ) | s(γ) ∈ D} =

{s(γ) | r(γ) ∈ D}. Also, D is invariant if and only if its complement is invariant.
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We say that G is minimal if G(0) has no nontrivial open invariant subsets. We

say that G is effective if the interior of Iso(G) \ G(0) is empty. We say that G is

topologically principal if {u ∈ G(0) | Gu = {u}} is dense in G(0). We note that any

Hausdorff ample groupoid being topologically principal is in fact effective, while

the converse holds if the groupoid is second-countable (see [5, Lemma 3.1]).

Let U be a closed invariant subset of G(0). We write GU := s−1(U), and then

GU coincides with the restriction

G|U := {g ∈ G | s(g), r(g) ∈ U}

of G to U . This GU is a Hausdorff ample groupoid with the relative topology, and

its unit space is U . Following [8, Defintion 2.1], a Hausdorff ample groupoid G
is strongly effective if for every nonempty closed invariant subset U of G(0), the

groupoid GU is effective. By the above note, if GU is topologically principal for

all nonempty closed invariant subset U of G(0), then G is strongly effective.

The following theorem provides us with a criterion for a Hausdorff ample

groupoid to be strongly effective.

Theorem 4.10 ([8, Theorem 3.1]). Let K be a field and G a Hausdorff ample

groupoid. Then G is strongly effective if and only if

U 7−→ IU := {f ∈ AK(G) | supp(f) ⊆ GU}
is a lattice isomorphism from the open invariant subsets of G(0) onto the ideals

of AK(G).

The following lemma provides us with a sufficient condition for the ultragraph

groupoid of an ultragraph without sinks to be strong effective. Before doing so,

we recall some useful notions introduced in [22]. Let G be an ultragraph and v

a vertex. A first-return path based at v in G is a cycle c = e1 · · · en such that

s(c) = v and s(ei) 6= v for all i ≥ 2. An ultragraph G satisfies Condition (K) if

every vertex in G is either the base of no first-return path or it is the base of at

least two first-return paths.

Lemma 4.11. For any ultragraph G without sinks, the ultragraph groupoid GG
is strongly effective if G satisfies Condition (K).

Proof. Assume that G satisfies Condition (K). Then, by [25, Theorem 31] we have

that (GG )U is topologically principal for all nonempty closed invariant subset U

of G(0)
G , and so GG is strongly effective, thus finishing the proof. �

Using Theorems 3.3 and 4.10, and Lemma 4.11, we immediately obtain the

following.

Corollary 4.12. Let K be a field and G an ultragraph without sinks. Then the

ultragraph Leavitt path algebra LK(G) is simple if the following holds:

(1) The ultragraph groupoid GG is minimal;

(2) G satisfies Condition (K).
18



Following [34], if G is an ultragraph and v, w ∈ G0, we write w ≥ v to mean

that there exits a path α ∈ G∗ with s(α) = w and v ∈ r(α). We say that a vertex

v connects to an infinite path α = e1 · · · en · · · if there exists an i ∈ N such that

v ≥ s(ei).
We are now in position to provide the main result of this subsection, being an

algebraic version of [25, Theorem 34], giving a groupoid approach to the sufficient

part of [16, Theorem 4.8], which gives necessary and sufficient conditions for an

ultragraph Leavitt path algebra to be simple.

Theorem 4.13. Let K be a field and G an ultragraph without sinks. Then the

ultragraph Leavitt path algebra LK(G) is simple if the following holds:

(1) G satisfies Condition (K);

(2) Every vertex connects to every infinite path;

(3) If A ∈ G0 is an infinite emitter, then for every v ∈ G0 there exists a finite

path α ∈ G∗ such that s(α) = v and A ⊆ r(α).

Proof. Assume that G satisfies the three conditions (1), (2) and (3). By Corol-

lary 4.12 we just need to show that the ultragraph groupoid GG is minimal. So

the proof given in [25, Theorem 3.4] applies, thus finishing the proof. �

4.5. Realizing ultragraph Leavitt path algebras as Cuntz-Pimsner rings.

In [10, Corollary 4.6] the authors gave conditions under which the Steinberg al-

gebra AK(G) associated to a Z-graded groupoid G =
⊔
n∈Z Gn can be realised as

the Cuntz-Pimsner ring of an AK(G)0-system. Using this result and Theorem 3.3

we show that ultragraph Leavitt path algebras can be realized as Cuntz-Pimsner

rings. Before doing so, we need to recall some notions. A Z-graded groupoid

G =
⊔
n∈Z Gn is called unperforated if for any n > 0 and g ∈ Gn, there exist

g1, . . . , gn ∈ G1 such that g = g1 · · · gn.

Corollary 4.6 in [10] states that if G is unperforated, then there is a graded

algebra isomorphism from AK(G) to the Cuntz–Pimsner ring of the AK(G)0-

system (AK(G)−1, AK(G)1, ψ), where ψ : AK(G)−1⊗AK(G)1 → AK(G)0, induced

by the usual multiplication.

The following shows that the ultragraph groupoid associated to an ultragraph

is always unperforated.

Lemma 4.14. For any ultragraph G without sinks, the ultragraph groupoid GG
is unperforated.

Proof. Let n > 0 and g ∈ (GG )n. We claim that there exist g1, · · · , gn ∈ (GG )1

such that g = g1 · · · gn. Indeed, since g ∈ (GG )n, g can be written in the form

g = (x · µ, n, y · µ), where x, y ∈ p with r(x) = r(y), |x| − |y| = n, µ ∈ XG ,

and x · µ, y · µ ∈ XG . Write x = (e1e2 · · · en+k, A) and y = (f1 · · · fk, B), where

A ⊆ r(en+k), B ⊆ r(fk) and A = B. For each 1 ≤ i ≤ n − 1, let µi :=

(ei+1 · · · en+k, A) ·µ. We have µi ∈ XG for all i. We next construct gi’s as follows:
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for each 1 ≤ i ≤ n− 1, let

gi = ((ei, r(ei) · µi, 1, r(ei) · µi)

and

gn = ((en · · · en+k, A) · µ, 1, (f1 · · · fk, B) · µ).

We then have gi ∈ (GG )1 for all 1 ≤ i ≤ n, and g = g1 · · · gn, and so the ultragraph

groupoid GG is unperforated, thus finishing the proof. �

Consequently we obtain the following result which shows that ultragraph Leav-

itt path algebras can be realized as Cuntz-Pimsner rings.

Theorem 4.15. For a field K and an ultragraph G without sinks, the ultragraph

Leavitt path algebra LK(G) can be realized as a Cuntz-Pimsner ring.

Proof. By Lemma 4.14 and [10, Corollary 4.6] the Steinberg algebra AK(GG ) can

be realized as a Cuntz-Pimsner ring. Using this observation and Theorem 3.3 we

immediately receive the statement, finishing the proof. �

The system we gave for the realization of ultragraph Leavitt path algebra

LK(G) comes from the groupoid presentation of these algebras. We note that

one could be able to give another R-system (J, I, ψ) by setting R := span{pA :

A ∈ G0}, I := span{sepA : e ∈ G1, A ∈ G0}, and J := span{pAs∗e : e ∈ E1, A ∈
G0} similar to Leavitt path algebras (see [10, Example 3.6]) and ultragraph C∗-

algebras [34, §6]).
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