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Abstract

The problem of finding shortest θ-gentle paths can be stated as follows: given a triangulated

terrain T , two points p, q ∈ T , and a parameter θ, (0 < θ ≤ π/2), finding shortest θ-gentle

paths joining p and q on T , which are shortest such that the slope of the paths at any point does

not exceed θ. The special case θ = π/2 was considered by M. Sharir and A. Schorr in M. Sharir

and A. Schorr, On shortest paths in polyhedral spaces. SIAM Journal on Computing, 15(1), pp.

193–215 (1986).

In this paper, the method of multiple shooting that consists of three factors is applied for

approximately computing such shortest θ-gentle paths on triangulated terrains. These factors are

terrain partition, straightness condition, and the update of shooting points. We also show that if

the straightness condition is satisfied at all shooting points, then a locally shortest θ-gentle path

is obtained. Otherwise, an approximately shortest θ-gentle path is obtained. Some advantages

of the method of multiple shooting such as it does not rely on graph tools on the entire surface

and the numbers of triangles in sequences of adjacent triangles are not too large (they do not

exceed the number of faces of the terrain), are shown. The algorithm is implemented in C++

using CGAL and Open GL.

Keywords: approximate algorithm; method of multiple shooting; shortest path; shortest gentle path;

straightest geodesic; terrain.

MSC: 52B55; 52B55; 52B05; 68W25; 90C59.

1 Introduction

A variant of the shortest path problem is the shortest θ-gentle path problem (SGP problem for short):

given two points p and q on a triangulated terrain T , a path joining p and q on T is θ-gentle if the
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following slope constraint holds: the slope of the path at any point does not exceed a given positive

number θ (0 < θ ≤ π/2), we need to find shortest θ-gentle paths joining p and q on T . This problem

can be seen as a generalization of traditional problem of finding shortest paths joining two points on

a terrain when θ = π/2, that is a well-studied problem in computational geometry.

Applications of slope-constrained shortest path problems appear in some fields. For example,

when we design mobile robots for traversing on non-planar surfaces or we ski down a mountain and

avoid a too steep path. In such cases, a path which is too steep should be replaced by a “zig-zag

line” satisfying the slope constraint. In train transport, the railroads in Linz, Austria with the slope

of 11.6% and the one in Tram 28 in Lisbon, Portugal which has a 14.5% grade are considered to be

the steepest railroads in the world.

The case θ = π/2 was considered by M. Sharir and A. Schorr [18]. Unfortunately, known star

unfolding technique of Agarwal et al. [2], the modified Chen and Han’s sequence tree [9] and the

sequence of edges that the shortest path goes through [18] do not work for such a SGP problem

(0 < θ ≤ π/2). Some special cases of the SGP problem have been investigated by Ahmed, Lubiw,

and Maheshwari (see [3]). Notice that [4] shows the problem of minimizing the total number of

bends in an SGP being NP-hard. To date, no exact algorithms have been given. There are several

approaches for finding approximately such shortest θ-gentle paths. Most of these algorithms are

based on graph tools. The algorithm of Ahmed, Lubiw, Maheshwari [3] models the problem as a

graph whose nodes are Steiner points added along the edges of the triangulated terrain. Nöllenburg

and Sautter [17] present an (1 + ǫ)-approximation algorithm based on determining a new norm for

finding approximately shortest θ-gentle paths on a sequence of adjacent triangles. The algorithms

have not been implemented, and thus it is not clear how practical it is. Liu and Wong [13] propose

an algorithm to solve approximately SGP problem using triangulated sequence trees. Unlike the

Liu and Wong’s method for computing shortest θ-gentle paths on terrain, which also generate a set

of sequences of adjacent triangles of entire terrain, in this paper we will present a new approach,

namely the method of multiple shooting, for computing shortest θ-gentle paths on sequences of

adjacent triangles of sub-terrains with fewer number of triangles and implemente it on computer and

therefore until now there are only two methods (i.e., Liu and Wong’s method and our method of

multiple shooting) having their implementations on computer. We also answer whether a shortest

θ-gentle paths joining two given points exist or not.

Let us recall some previous works related to the method of multiple shooting. For solving or-

dinary differential equation (ODE) boundary value problems, a numerical method called multiple

shooting method is introduced. A variant of multiple shooting method called the direct multiple

shooting method is proposed by Bock and Plitt [8] to give an approximate solution of optimal control

problems. Based on the idea of the multiple shooting method, multiple shooting approach in compu-

tational geometry has been posed in 2013 (see [6]) by An, Hai, and Hoai for finding approximately

shortest paths joining two points p and q in a simple polygon. They expand the multiple shooting

approach for solving approximately shortest path problem on convex polytopes in 3D without graph

tools on the entire surface (see [11]). The method is also used successfully by An and Trang [7] to

find shortest descending paths joining two points p and q on a triangulated terrain T . It consists of

three following factors:

(f1) Partition of the domain T (polygon, polytope) into subdomains (subpolygons, subpolytopes)

is created by cutting slices between two points p and q. A subdomain is a sequence of adja-

cent triangles, that is deliberately created by two adjacent cutting slices. At each intersection
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between a slice and T we take a point, called a shooting point;

(f2) Consider a path on T joining two points p and q , formed by shooting points. Collinear /

straightness condition is established at shooting points;

(f3) The algorithm enforces (f2) at all shooting points. Otherwise, an update of shooting points

makes the paths joining two points p and q and formed by shooting points better.

In this paper, the factors (f1), (f2) and (f3), respectively are constructed in details in Sect. 4.2,

Sect. 4.3, and Sect. 4.4, respectively. We show that if the straightness condition in (f2) is satisfied

at all shooting points, then a locally shortest θ-gentle path is obtained (Prop. 6). Otherwise, an ap-

proximately shortest θ-gentle path is obtained (Theorem 1). In addition, all previous papers dealing

with SGP problem [3, 13, 17] have not yet stated whether shortest θ-gentle paths joining two given

points exist or not. The question is answered in Prop. 2 in Sect. 3.

The rest of the paper is organized as follows. Sect. 2 recalls preliminary notions. In Sect. 3 we

present some properties of θ-gentle paths and shortest θ-gentle paths joining two points. Then we

use the multiple shooting approach above to solve the SGP problem. (f1)-(f3) are specified and an

algorithm based on (f1)-(f3) is introduced in Sect. 4 (Algorithm 1). The algorithm is implemented

in C++ using CGAL and numerical results are given and visualized in Sect. 5 to describe how our

method works (Examples 1-2). Some advantages of the multiple shooting approach such as it does

not rely on graph tools on the entire surface and the numbers of triangles in sequences of adjacent

triangles are not too large (they do not exceed the number of faces of the terrain), are shown in this

section. Geometrical properties and their poofs for the correctness of the algorithm are arranged in

Appendix 8.

2 Preliminaries

We recall some definitions and properties. For any points p, q in space, we denote [p, q] := {(1 −
λ)p + λq : 0 ≤ λ ≤ 1}, (p, q) := {(1 − λ)p + λq : 0 < λ < 1}. For all x ∈ (p, q), x is called an

interior point of [p, q].
A terrain, denoted by T , is the graph of a continuous function f : U ⊂ R

2 → R that assigns

every point on a horizontal plane to an elevation. A terrain is usually represented by the Triangu-

lar Irregular Network (TIN) model consisting of a number of disjoint triangles (see [10]). Such a

terrain is also called a triangulated terrain. A terrain is thus a polyhedral surface in R
3 in which

every vertical line intersects the surface at most once. Each face is a triangle having three vertices,

connected by three edges. Each vertex is a point in a three-dimensional space. If an edge is located

at the boundary of a triangulated terrain, it is owned by only one triangle.

Definition 1 ([5]). On a triangulated terrain T , a sequence of adjacent triangles, denoted by F , is

defined by a list (f1, f2, . . . , fm) of adjacent triangles f1, f2, . . . , fm of T , where fi and fi+1 share a

common edge ei, for i = 1, 2, . . . ,m− 1.

Let p and q be two points on F . If p is in the first triangle and q is in the final triangle, then F is

called a sequence of adjacent triangles joining p and q.
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Definition 2 ([15]). Let [t0, t1] be a subset of R. A path on the triangulated terrain T is a continuous

map γ : [t0, t1] → T .
If γ(t0) = p, γ(t1) = q (where p, q ∈ T ), then we say that γ joins p and q on T . If γ : [t0, t1] →

F and γ(t0) = p, γ(t1) = q, (where p, q ∈ F), then we say that γ is a path joining p and q along the

sequence of adjacent triangles F

We also call the image γ([t0, t1]) to be the path γ. In this paper, we only consider paths which are

piecewise differentiable functions, i.e. diferentiable except for a finite number of points. The slope

of a segment [a, b] is the angle (in radian) between the line joining a, b and the horizontal plane,

denoted by sl([a, b]). Here, the angle between a line and a plane is defined by the angle between

the line and its projection onto this plane. Consequently, the angle is in [0, π/2]. The slope of a

path γ at the point a ∈ γ is the angle (in radian) between the tangent to γ at p and the horizontal

plane, denoted by slγ(a). We only consider the tangent which lies on triangles containing a. If such

a tangent does not exist, the slope is defined to be the maximum value of the angles between one-

sided tangents at a and the horizontal plane. Because angles between a line and a plane do not exceed

π/2, 0 ≤ slγ(a) ≤ π/2. If γ is a polyline, namely it only includes segments γi, i = 1, 2, . . . , k, then

sl(γ) = max
1≤i≤k

sl(γi).

We assume through out the paper that θ is the slope parameter (0 < θ ≤ π/2) and p, q are two

points on the triangulated terrain T . Let γ be a path joining p and q on T .

Definition 3 ([13]). The path γ is a θ-gentle path joining p and q on T if it satisfies the slope

constraint at all its points (i.e., slγ(a) ≤ θ for any a ∈ γ).

Definition 4 ([13]). The path γ is a shortest θ-gentle path joining p and q on T , denoted by

SGPτ (p, q|θ) or simply SGPτ (p, q), if it is a θ-gentle path joining p and q on T and there is no

other θ-gentle path γ′ joining p and q on T such that l(γ′) < l(γ), where l(.) denotes an arclength

function.

A path joining p and q on T is called a locally shortest θ-gentle path if there exists a neighbor

U ⊂ R
3 of the path such that it is a shortest θ-gentle path joining p and q in U ∩ T .

The SGP problem is defined as follows: given a triangulated terrain T , a source point p, a

destination point q in T , and a slope value θ, finding a shortest θ-gentle path joining p and q on T .

3 Some Geometry Properties of the Shortest Gentle Paths

3.1 Reachability

In this section, we first recall the concept of reachability, which is given in [13] for the existence of

θ-gentle paths. We then show when a vertex of a triangulated terrain is θ-unreachable.

Definition 5 ([13]). Given two distinct points a and a′ on a terrain, a is said to be reachable from a′

if and only if there exists a θ-gentle path from a′ to a.

A point a is said to be θ-reachable if there exists another point a′ of the terrain such that a is

reachable from a′. Otherwise, a is said to be θ-unreachable.
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By Lemma 5 [13], a point on a triangulated terrain T that is θ-unreachable, is a vertex of T .

To deal with the SPG problem, we thus only need to check whether each vertex (instead of all

possible points on T ) is θ-unreachable or not. If the source point p and the destination point q are θ-

reachable, then there is a θ-gentle path joining p and q on T (see Lemma 6 in [13]). This means that

the existence of θ-gentle paths depends on the source point p and the destination point q. Therefore,

if one of them, say p, is θ-unreachable, we deduce that p is a vertex. In this case, an approximate

solution is obtained. We choose a point p′ such that p′ is not a vertex and the distance between p′

and p is at most ε, where ε is a given positive number, then compute the θ-gentle path joining p′ and

q on the terrain.

A θ-unreachable vertex is also known as a sharp vertex defined in [3]. Additionally, in a triangle

f , there are some vertices which are not θ-reachable from any points in f but can be θ-reachable

from any point on another triangle. Such vertices are said to be locally sharp in f (see [3]).

To characterize a θ-unreachable vertex, we first introduce concepts of θ-cone. Take a ∈ R
3, we

construct a θ-cone whose vertex is a is as follows: let ∆ be the line passing through a and being

perpendicular to the horizontal plane. A θ-cone is formed by a set of lines passing through a and

creating with ∆ an angle not being exceed π/2 − θ. Lines which create with ∆ an angle equal to

π/2 − θ are called generating lines of θ-cone. A θ-cone consists of two θ-convex cones, upper and

lower ones are incident to the vertex a (see Fig. 1).

Figure 1: a θ-cone consists of two θ-convex cones

Proposition 1. A vertex a of a triangulated terrain is θ-unreachable iff all its adjacent triangles

completely lie in (i.e., in and not on the generating lines) one of the two θ-convex cones of the θ-cone

whose vertex is a.

The proof of Prop. 1 is given in the appendix (Sect. 8). Prop. 1 indicates that in order to check

θ-unreachability of a vertex, we can construct a θ-cone having the vertex is a and then check whether
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all triangles adjacent to a lie completely in one of the two θ-convex cones of the θ-cone or not (see

Fig. 2).

Figure 2: a) a is θ-unreachable b) b is θ-reachable

3.2 Steep and Flat Regions

We now present the concepts of steep and flat regions given in [3, 13, 17] for the existence of shortest

θ-gentle paths joining two points on a triangle. The existence of shortest θ-gentle paths joining two

points on a sequence of adjacent triangles of a triangulated terrain is then given (see Prop. 2).

Let a be a point of a triangle f on T , and a slope parameter θ. The intersection between the

θ-cone whose vertex is a and f forms a so-called steep region of a on f , denoted by SRf (a). The

steep region SRf (a) can be {a}, a triangle, a polygon or entire triangle f (see Fig. 3).

Figure 3: Steep regions in the triangle f .
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Let a and b be θ-reachable points on the same triangle f of T . If b /∈ SRf (a), then sl([a, b]) ≤ θ
(i.e., [a, b] is not too steep) and SGPf (a, b) is [a, b]. Otherwise, sl([a, b]) > θ (i.e., [a, b] is too steep),

we construct a polyline in SRf (a) starting from b to a such that the slope of segments of the polyline

is equal to θ (see Fig. 4). Such a zig-zag line is called an adjusted path of [a, b], denoted by adj[a, b].

Liu and Wong [13] shows that in such case, SGPf (a, b) is adj[a, b] and its length is
|z(a)− z(b)|

sin θ
,

Figure 4: An adjusted path of [a, b] when [a, b] is too steep

where z(a), z(b) are the z-coordinates of a, b. Hence, in both cases ([a, b] is too steep or not), the

length of SGPf (a, b) is given by:

l (SGPf (a, b)) = max

{

{l([a, b]),
|z(a)− z(b)|

sin θ

}

. (1)

Moreover, Lemma 3 in [17] shows that the following defines a norm on R
3:

‖a‖s = max

{

‖a‖2,
|z(a)|

sin θ

}

, (2)

where a is any point in R
3, ‖.‖2 is the Euclidean norm.

Combining (1) and (2) yields

‖a− b‖s = max

{

‖a− b‖2,
|z(a)− z(b)|

sin θ

}

= max {l([a, b]), l(adj[a, b])} . (3)

In the general case when a, b are two arbitrary points of a triangulated terrain T , if SGPT (a, b)
exists, it is a polyline (see [3, 13]). We also obtain the triangle inequality for shortest θ-gentle

paths: l (SGPT (a, b)) ≤ l (SGPT (a, c)) + l (SGPT (c, b)), where a, b, c ∈ T and suppose that

SGPT (a, b), SGPT (b, c), SGPT (c, a) exist. In the triangle inequality, T can be replaced by a triangle

or a sequence of adjacent triangles.
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Since a zig-zag line starting from b in SRf (a) in which the slope of segments of the zig-zag line

is equal to θ, can be built by several ways, a number of adjusted paths of [a, b] in a triangle whose

the same length should be constructed (see Fig. 4). Hence, a shortest θ-gentle path joining two given

points in a triangle can be determined in different ways. As a consequence, the shortest θ-gentle

path on a triangle, a sequence of adjacent triangles and all the terrain may be not unique if it exists.

We assume ΓF to be the set of all θ-gentle paths joining p and q on a sequence F of adjacent

triangles and ΓF 6= ∅. Let m = inf{l(γ) : γ ∈ ΓF}. The question is whether a shortest θ-gentle path

joining p and q on F exists (i.e., whether or not there is a θ-gentle path γ0 satisfying l(γ0) = m).

The answer is given in Prop. 2 below:

Proposition 2. Given p, q ∈ T , let F be a sequence of adjacent triangles joining p and q on T , such

that all vertices in F are θ-reachable from some point in F . Let ΓF denote the set of all θ-gentle

paths joining p and q along F and ΓF 6= ∅. Then, there exists γ0 in ΓF such that l(γ0) ≤ l(γ), for

all γ ∈ F . The path γ0 is then a shortest θ-gentle path joining p and q along F .

The proof of Prop. 2 is given in the appendix (Sect. 8).

3.3 Pseudo Paths of Shortest θ-gentle Paths

Let F be a sequence of m adjacent triangles joining two points p and q on T and sharing common

edges e1, e2, . . . , em−1. We denote by xi the intersection of SGPF(p, q) and ei, for i = 1, 2, . . . ,m−
1. Then SGPF(p, q) is the union of sub-paths SGPfi(xi, xi+1) in each triangle and these sub-paths are

[xi, xi+1] or the adjusted path of [xi, xi+1], depending on the slope of [xi, xi+1], i = 0, 1 . . . ,m − 1,

where x0 = p, xm = q (see Fig. 5(a)).

Remark 1. Combining (1), (2), and (3) yields

l (SGPF(p, q)) = ‖x0 − x1‖s + ‖x1 − x2‖s + . . .+ ‖xm−1 − xm‖s. (4)

The polyline formed by consecutively connecting x0, x1, . . . , xm is called a pseudo path of

SGPF(p, q), denoted by PSGPF(p, q) (see Fig. 5(b)). i.e.,

PSGPF(p, q) = [x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xm−1, xm].

We denote the right-hand side of Eq. (4) by lp(PSGPF(p, q)), then we can rewrite:

lp (PSGPF(p, q)) = l (SGPF(p, q)) .

A shortest θ-gentle path joining p and q along a sequence of adjacent triangles can be recon-

structed from a pseudo path joining p and q along the sequence of adjacent triangles. We can exactly

find the length of shortest θ-gentle paths by their pseudo paths without constructing the orbits of

these shortest θ-gentle paths. In each triangle, a sub-path of these shortest θ-gentle paths can be

formed as the union of zig-zag lines being shown in Figure 4. We can also use an adjusting algo-

rithm presented in [13] in oder to obtain shortest θ-gentle paths from a pseudo path in a triangle.
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Figure 5: a) SGPF(p, q) b) Pseudo path PSGPF(p, q) of SGPF(p, q)

4 The Method of Multiple Shooting (MMS) for Shortest Gentle

Path Problem on Triangulated Terrains

Let ΓT be the set of all θ-gentle paths joining p and q on T and ΓT 6= ∅ (if necessary, we can add

assumptions as in Proposition 2 in order to get ΓT 6= ∅). A shortest θ-gentle path joining p and q on

T is an element of ΓT , denoted by γ0. Then

l(γ0) = inf
γ∈Γ

{

l(γ)
}

.

Definition 6. Let p, q ∈ T and let {F j} be a set of sequences of adjacent triangles of T joining p
and q, for j > 0. Assume that there exists a sequence of θ-gentle paths joining p to q on T , denoted

by {γj} such that: γj ⊂ F j and l(γj+1) ≤ l(γj). Then a θ-gentle path, denoted by γ, joining p to q
such that

l(γ) = inf
j

{

l(γj)
}

,

is called an approximate shortest θ-gentle path joining p and q on T .

Obviously, locally shortest θ-gentle paths joining p and q on F ⊂ T are approximate shortest
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θ-gentle paths joining p and q on T . To see this, just choose γj = SGPFj(p, q), where F j = F , j =
1, 2, . . .

4.1 Three Factors of MMS

Based on the multiple shooting approach [6, 11], and the Polthier’s straightest geodesic theory [16],

an approximate algorithm to find a shortest θ-gentle path joining p and q on a convex terrain T is

introduced. The multiple shooting approach consists of the following factors:

(f1) Partition of the terrain T into sub-terrains is created by cutting slices between two points a and

b. The surface around a such sub-terrain is a sequence of adjacent triangles, that is deliberately

created by two adjacent cutting slices. At each intersection between a slice and the terrain we

take a point, called a shooting point;

(f2) Consider a path on T joining two points p and q, formed by shooting points. Straightness

Condition is established at each shooting point;

(f3) The algorithm enforces (f2) at all shooting points. Otherwise, the update of shooting points

makes paths joining two points p and q and formed by shooting points better, e.g, in non-

increasing length.

We now describe these factors in details in the next subsections.

4.2 The Factor (f1): Partition

Given a triangulated terrain T with vertices vi. Through vi, we construct a plane P (vi) which

parallels the horizontal plane, denoted by (Oxy). Let ξi = T ∩ P (vi). Then ξi is called a cutting

slice of T . Let p, q ∈ T such that z(p) > z(q) and v1, v2, . . . , vk be vertices of T between p, q
in term of z -coordinate, i.e., z(p) > z(vi) > z(q), i = 1, 2, . . . k. From now on we assume that:

{v1, v2, . . . , vk} is non-empty, v0 := p, vk+1 := q, ξ0 := ξp and ξk+1 := ξq (ξp and ξq are cutting

slices of T through p and q, respectively). In conclusion, we divide T into suitable sub-terrains Ti

by a set of cutting slices ξ0, . . . , ξk+1 satisfying:

ξi ‖ (Oxy), z(ξi) > z(ξi+1), ξi(i = 1, 2, . . . , k) strictly separates p and q,

There is no vertex of T between planes ξi and ξi+1, (5)

Ti is bounded by T , and the cutting slices ξi and ξi+1, i = 0, 1, .., k,

where z(ξi) denotes the height of ξi, i.e., z-coordinate of an arbitrary point of ξi, for i = 0, 1, . . . , k.

Clearly, ∪k
i=0Ti ⊂ T , int Ti ∩ int Tj = ∅, ξi ∩ ξj = ∅, for i 6= j.

The following assumption will be needed throughout the paper. The terrain considered has the

property that each of the cutting slices ξi obtained by partition (f1) is simply connected. Obviously,

if the terrain is convex, then that condition is completely satisfied.

The surface of Ti which does not include the relative interior of ξi and ξi+1 (i.e., Ti\(riξi∪riξi+1))
is a sequence of adjacent triangles which does not contain any vertex of T , where riξi, riξi+1 is the

relative interior of ξi, ξi+1, respectively.
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Take a set of initial shooting points ui ∈ bdξi, (i = 1, 2, . . . , k), u0 = p, uk+1 = q. By Propo-

sition A.5 [11], there are not more than two proper ordered sequences of adjacent triangles around

Ti, containing ui and ui+1, where ui+1 ∈ bdξi+1, ui belongs to the first triangle of the sequence,

ui+1 belongs to the final triangle of the sequence. We denote such a proper ordered sequence by

Fi. According the Proposition 5 [13], all θ-unreachable points are vertices of a triangulated ter-

rain. Thus we only need to check whether each vertex (instead of all possible points on T or Fi) is

θ-unreachable or not.

Proposition 3. Every vertex in Fi of T is θ-reachable from some points in Fi.

The proof of Prop. 3 is given in the appendix (Sect. 8). We know that there are maybe more

than one shortest θ-gentle path joining two given points in Fi, by Lemma 4 [3], there exists at least

one shortest θ-gentle path that crosses the relative interior of each triangle of Fi at most once. By

Prop. 3, we obtain a stronger result in such case.

Proposition 4. For any shortest θ-gentle path γ joining ui and ui+1 along the sequence of adjacent

triangles Fi, if γ crosses any triangle of Fi more than once, we can always find another shortest

θ-gentle path joining ui and ui+1 along Fi, such that it crosses each triangle of Fi at most once and

has the same length as γ.

The proof of Prop. 4 is given in the appendix (Sect. 8).

4.3 The Factor (f2): Straightness Condition

As previously mentioned, p, q are two points on T such that z(p) > z(q) and (5) holds. Throughout

the paper, we use superscript indices for objects in jth-iterative step such as uj
i ,F

j
i , . . ..

With j = 0, u0
i are initial shooting points (i = 1, 2, . . . , k). At a jth-iterative step, we assume

that there is a set of shooting points uj
i ∈ bdξi, for i = 1, 2, . . . , k, (uj

0 ≡ p, uj
k+1 ≡ q). Partic-

ularly, uj
i is a shooting point on the cutting polygon ξi and uj

i−1, u
j
i+1 are shooting points on the

polygons ξi−1, ξi+1, respectively. With each Ti, we take a sequence of adjacent triangles Fi and find

SGPFi
(uj

i , u
j
i+1). We consider χj = ∪k

i=0PSGPFi
(uj

i , u
j
i+1), where PSGPFi

(uj
i , u

j
i+1) is the pseudo

path of SGPFi
(uj

i , u
j
i+1), for i = 0, 1, . . . , k. There are two following cases at the point uj

i :

Case 1 (Common edge case for the shooting point uj
i ): χj passes two triangles of Fi−1,Fi,

which have a common edge ei ⊂ bdξi and uj
i ∈ ei (see Fig. 6(a)).

Case 2 (Non-common edge case for the shooting point uj
i ): χ

j passes two triangles of Fi−1,Fi,

which share the vertex uj
i and these triangles have not any common edges (see Fig. 6(b)).

Proposition 5. We assume that χj = ∪k
i=0PSGPFi

(uj
i , u

j
i+1), where PSGPFi

(uj
i , u

j
i+1) is the pseudo

path of SGPFi
(uj

i , u
j
i+1), for i = 0, 1, . . . , k. Let x ∈ χj , there exists at least one SGPFi

(uj
i , u

j
i+1)

with some index i such that x belongs to this path.

The proof of Prop. 5 is given in the appendix (Sect. 8).

We take xj
i such that:

xj
i ∈ PSGPFi

(uj
i , u

j
i+1), x

j
i 6= uj

i , x
j
i 6= uj

i+1, i = 0, 1, . . . k. (6)

We need to construct a sequence of adjacent triangles Si joining xj
i−1 and xj

i , for i = 1, 2 . . . k as

follows:

11



Figure 6: (a) χj goes through a interior point uj
i of edge ei, (b) χj goes through the vertex uj

i of the

polygon ξi.

(A1) If Common Edge Case for the shooting point uj
i happens, Si is the sequence of minimum

number of triangles in Fi−1,Fi such that Si contains χ’s sub-path joining xj
i−1 and xj

i , where

xj
i−1 is in the first triangle, and xj

i is in the final triangle of Si.

(A2) If Non-common Edge Case for the shooting point uj
i happens, we construct two adjacent

sequences of adjacent triangles as follows:

They are sequences of minimum number of triangles in Fi−1 and Fi such that the sequences of

adjacent triangles contain χ’s sub-path joining xj
i−1 and xj

i , where xj
i−1 is in the first triangle,

and xj
i is in the final triangle of Si. Since χj goes through the vertex uj

i of the polygon ξi,
several triangles sharing the vertex uj

i in sub-terrain Ti−1 and Ti are added to the sequences of

adjacent triangles. This adding ensures the adjacency of triangles in a sequence of adjacent

triangles. Such two sequences of adjacent triangles are denoted by S∗
i and S∗∗

i .

We now state the factor (f2): Straightness Condition

At each shooting point uj
i , at j-step, with xj

i−1, x
j
i determined by (6) we check the follow con-

dition (called the Straightness Condition) to decide whether the algorithm stops or continues. The

Straightness Condition of the factor (f2) is defined as follows:

(B1) If Common Edge Case for the shooting point uj
i happens, then with Si defined by (A1), the

Straightness Condition is

lp
(

PSGPSi
(xj

i−1, x
j
i )
)

= lp
(

PSGPFi
(xj

i−1, u
j
i )
)

+ lp
(

PSGPFi
(uj

i , x
j
i )
)

.

(B2) If Non-common Edge Case for the shooting point uj
i happens, then with S∗

i ,S
∗∗
i defined by

(A2), the Straightness Condition is

lp
(

PSGPS∗

i
(xj

i−1, x
j
i )
)

= lp
(

PSGPS∗∗

i
(xj

i−1, x
j
i )
)

= lp
(

PSGPFi
(xj

i−1, u
j
i )
)

+ lp
(

PSGPFi
(uj

i , x
j
i )
)

.

12



(By Remark 2, a SGP(p, q) may pass through a vertex of the polytope. Hence (B2) is included in the

Straightness Condition).

The following proposition shows that if the straightness condition is satisfied at all shooting

points, then a locally shortest θ-gentle path is obtained.

Proposition 6. Let p, q be two points on T and (5) hold. Let τ be a path formed by shooting points

ui, i = 0, 1, . . . k + 1, where u0 ≡ p, uk+1 ≡ q. Denote the sub-path joining ui and ui+1 of τ by

τ(ui, ui+1) and a proper ordered sequence of adjacent triangles around Ti, containing ui and ui+1

by Fi, where ui belongs to the first triangle of the sequence, ui+1 belongs to the final triangle of

the sequence, i = 0, 1, . . . , k. Suppose that τ(ui, ui+1) is a shortest θ-gentle path joining ui and

ui+1 along Fi, τ(ui, ui+1) and the traditional shortest path joining ui and ui+1 along Fi does not

coincide and the Straightness Condition (B1) - (B2) is satisfied at ui, for all i = 1, 2, . . . k. Then τ is

a shortest θ-gentle path joining p and q on the sequence of adjacent triangles
⋃k

i=0 Fi. Furthermore,

if all intersections of τ and edges of
⋃k

i=0 Fi are interior points, then τ is a locally shortest θ-gentle

path.

The proof of Prop. 6 is given in the appendix (Sect. 8).

4.4 The Factor (f3): Update of Shooting Points

Suppose that at j-iterative step, we have a set of shooting points uj
i , i = 0, 1, . . . , k + 1, where the

source point uj
0 ≡ p and the destination point uj

k+1 ≡ q.

We assume that the triple (uj
i−1, u

j
i , u

j
i+1) ∈ bd ξi−1×bd ξi×bd ξi+1 does not satisfy the Straight-

ness Condition (B1) - (B2) in Sect. 4.3. We update shooting points uj
i ∈ bd ξi to uj+1

i ∈ bd ξi,
i = 1, 2 . . . k and uj+1

0 = uj
0 = p, uj+1

k+1 = uj
k+1 ≡ q, such that the length of the paths formed by

shooting points is descending, i.e.,

l
(

∪k
i=0SGP

F
j+1

i
(uj+1

i , uj+1
i+1 )

)

< l
(

∪k
i=0SGP

F
j
i
(uj

i , u
j
i+1)
)

.

The update depends on uj
i and two triangles that the pseudo path χj = ∪k

i=0PSGP
F

j
i
(uj

i , u
j
i+1)

passes through (Common Edge Case and Non-common Edge Case of Sect. 4.3).

Take xj
i−1, x

j
i in the pseudo path χj satisfying (6), we construct the sequence of adjacent triangles

Sj
i joining xj

i−1 and xj
i according to (A1) and (A2) in Sect. 4.3. If the Straightness Condition in

Sect. 4.3 is satisfied at all shooting points uj
i , for all i = 1, 2, . . . , k, the algorithm stops. Otherwise,

there exists a shooting point uj
i such that it does not satisfy the Straightness Condition (B1) - (B2).

Then we update shooting points uj
i to uj+1

i as follows:

(C1) If Common Edge Case for the shooting point uj
i happens and uj

i does not satisfy the Straight-

ness Condition (B1), we then set uj+1
i as the intersection of PSGP

S
j
i
(xj

i−1, x
j
i ) with eji , where

eji is the common edge of two triangles which is passed by χj (see Fig. 7(a)).

(C2) If Non-common Edge Case for the shooting point uj
i happens and uj

i does not satisfy the

Straightness Condition (B2), we then set uj+1
i as the intersection of PSGP

S
j
i
(xj

i−1, x
j
i ) with eji

13



or e′ji (see Fig. 7(b)), where there are two edges of ξi parallel to the horizontal plane and they

have the common vertex uj
i (these edges are denoted by ei, e

′
i) and Sj

i ∈ {S∗j
i ,S∗∗j

i } such that

lp
(

PSGP
S
j
i
(xj

i−1, x
j
i )
)

= min{lp
(

PSGP
S
∗j
i
(xj

i−1, x
j
i )
)

, lp
(

PSGP
S
∗∗j
i

(xj
i−1, x

j
i )
)

}.

By updating (C1)-(C2), we obtain:

lp
(

PSGP
S
j
i
(xj

i−1, x
j
i )
)

< lp
(

PSGP
F

j
i
(xj

i−1, u
j
i )
)

+ lp
(

PSGP
F

j
i
(uj

i , x
j
i )
)

. (7)

Indeed, if Common Edge Case for the shooting point uj
i happens, from the triangle inequality

for shortest θ-gentle paths, lp(PSGP
S
j
i
(xj

i−1, x
j
i ) is the length of shortest θ-gentle paths joining xj

i−1

and xj
i along Sj

i , then lp(PSGP
S
j
i
(xj

i−1, x
j
i ) is less than or equal to the sum of the length of θ-gentle

paths joining xj
i−1 and uj

i and the length of θ-gentle paths joining uj
i and xj

i along F j
i . On the other

hand, if uj
i does not satisfy the Straightness Condition (B1), the equal sign cannot occur. Therefore,

we get (7).

Likewise, suppose that Non-common Edge Case for the shooting point uj
i happens and uj

i does

not satisfy the Straightness Condition (B2). We obtain:

min{lp
(

PSGP
S
∗j
i
(xj

i−1, x
j
i )
)

, lp
(

PSGP
S
∗∗j
i

(xj
i−1, x

j
i )
)

}

< lp
(

PSGP
F

j
i
(xj

i−1, u
j
i )
)

+ lp
(

PSGP
F

j
i
(uj

i , x
j
i )
)

.

Hence, we also get (7).

Figure 7: Updating shooting points uj
i to uj+1

i , where (a) illustrates Common Edge Case for uj
i

happens and (b) illustrates Non-common Edge Case for uj
i happens. After updating from χj =

⋃k

i=1 PSGP
F

j
i
(uj

i , u
j
i+1), we get χj+1 =

⋃k

i=1 PSGP
F

j+1

i
(uj+1

i , uj+1
i+1 )

14



Proposition 7. We assume τ0 to be a shortest θ-gentle path joining p and q on T . Let ui = τ0∩bdξi,
i = 1, 2 . . . k, where ξi is determined by (5) in Sect. 4.3. Then the Straightness Condition (B1) - (B2)

is satisfied at all ui.

The proof of Prop. 7 is given in the appendix (Sect. 8).

4.5 Construction of Sequence of Adjacent Triangles

We assume F j
i to be a sequence of adjacent triangles joining uj

i and uj
i+1 on the sub-terrain Ti at

j-step. After updating shooting points, at (j + 1)-step, we need to construct a sequence of adjacent

triangles F j+1
i joining uj+1

i and uj+1
i+1 on Ti, where uj+1

i is in the first triangle and uj+1
i+1 is in the final

triangle of F j+1
i .

We will construct F j+1
i at (j+1)-step such that F j+1

i includes minimum triangles number which

contains PSGP
F

j
i
(uj

i , u
j
i+1) and

a. If uj
i and uj

i+1 satisfy the Straightness Condition, we then chose F j+1
i ≡ F j

i .

b. Otherwise, suppose that uj
i (or uj

i+1 or both) is not satisfied the Straightness Condition, ac-

cording to Sect. 4.4, uj
i is updated to uj+1

i at the next step. We need to add minimum triangles

number in sub-terrain Ti. The adding must ensure the adjacency of triangles in F j+1
i and

containing uj+1
i , uj+1

i+1 .

4.6 Algorithm

For each iteration, we need to update shooting points to get a better path. Proposition 8 shows that

the decreasing of length of χj is still satisfied as j → +∞. Then Procedure STRAIGHTNESS CON-

DITION AND UPDATE (χj, χj+1, f lagi) of Algorithm 1 performs checking Straightness Condition

and updating the shooting points uj
i to uj+1

i .

Proposition 8. Procedure STRAIGHTNESS CONDITION AND UPDATE (χj, χj+1, f lagi) gives

l

(

k
⋃

i=0

SGP
F

j+1

i
(uj+1

i , uj+1
i+1 )

)

≤ l

(

k
⋃

i=0

SGP
F

j
i
(uj

i , u
j
i+1)

)

.

If the Straightness Condition (B1) - (B2) is not satisfied at some shooting point uj
i , then the inequality

above is strict.

The proof of Prop. 8 is given in Sect. 8.
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1: procedure STRAIGHTNESS CONDITION AND UPDATE(χj, χj+1, f lagi)
Require: flagi = 0, (i = 1, 2, . . . , k), χj = ∪k

i=0PSGP
F

j
i
(uj

i , u
j
i+1) ⊲ flagi = 1 then Straightness

Condition (B1)-(B2) holds

Ensure: Determined if flagi = 0 or flagi = 1, (i = 1, 2, . . . , k) and χj+1 =
∪k

i=0PSGP
F

j+1

i
(uj+1

i , uj+1
i+1 ) such that

l
(

∪k
i=0SGP

F
j+1

i
(uj+1

i , uj+1
i+1 )

)

≤ l
(

∪k
i=0SGP

F
j
i
(uj

i , u
j
i+1)
)

.

2: for i = 1, 2, . . . , k do

3: Take xj
i on PSGP

F
j
i
(uj

i , u
j
i+1) such that xj

i does not coincide with uj
i , u

j
i+1

4: if Common Edge Case for uj
i happens then

5: Construct the sequence of adjacent triangles Sj
i due to (A1) in Sect. 4.3

6: Find PSGP
S
j
i
(xj

i−1, x
j
i )

7: if lp(PSGP
S
j
i
(xj

i−1, x
j
i )) = lp(PSGP

F
j
i
(xj

i−1, u
j
i )) + lp(PSGP

F
j
i
(uj

i , x
j
i )) then

8: ⊲ check the Straightness Condition (B1)

9: Set uj+1
i = uj

i , flagi = 1.

10: else Set uj+1
i to be the intersection of PSGP

S
j
i
(xj

i−1, x
j
i ) and eji ⊲ due to (C1)

11: end if

12: else Construct two sequences of adjacent triangles S∗j
i and S∗∗j

i due to (A2) in Sect. 4.3

13: if lp(PSGP
S
∗j
i
(xj

i−1, x
j
i )) = lp(PSGP

S
∗∗j
i

(xj
i−1, x

j
i )) =

lp(PSGP
F

j
i
(xj

i−1, u
j
i )) + lp(PSGP

F
j
i
(uj

i , x
j
i )) then ⊲ check the Straightness Condition (B2)

14: Set uj+1
i = uj

i and flagi = 1
15: else Find Sj

i ∈ {S∗j
i ,S∗∗j

i } such that

lp(PSGP
S
j
i
(xj

i−1, x
j
i )) = min{lp(PSGP

S
∗j
i
(xj

i−1, x
j
i )), lp(PSGP

S
∗∗j
i

(xj
i−1, x

j
i ))}

16: Set uj+1
i to be the intersection of PSGP

S
j
i
(xj

i−1, x
j
i ) and eji or e

′j
i ⊲ due to (C2)

17: end if

18: end if

19: end for

20: end procedure
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Algorithm 1 FINDING AN APPROXIMATELY SHORTEST θ-GENTLE PATH JOINING TWO GIVEN

POINTS ON A TRIANGULATED TERRAIN

Require: A triangulated terrain T , a number 0 < θ ≤ π/2, and p, q ∈ T .

Ensure: An approximate shortest θ-gentle path joining p and q on T .

1: Divide T into Ti satisfying (5) by cutting slices ξ1, . . . , ξk, (i = 1, . . . , k). ⊲ partition

2: Initialize u0i ∈ ξi, (i = 1, . . . , k), construct F0
i , then find PSGPF0

i
(u0i , u

0
i+1).

3: j := 0, χj := ∪k
i=0PSGP

F
j
i

(uji , u
j
i+1).

4: loop

5: Call Procedure 1

6: if flagi = 1, i = 1, . . . , k then ⊲ the Straightness Condition holds

7: stop and return χj := ∪k
i=0PSGP

F
j
i

(uji , u
j
i+1).

8: else Construct sequence of adjacent triangles F j+1
i , (i = 0, . . . , k). ⊲ it is shown in 4.4

9: Find PSGP
F

j+1

i

(uj+1
i , uj+1

i+1 ) on Ti, i = 1, . . . , k.

10: χj+1 := ∪k
i=0PSGP

F
j+1

i

(uj+1
i , uj+1

i+1 ).

11: end if

12: j := j + 1.

13: end loop

14: Adjust the pseudo path χj to get the θ-gentle path τ j := ∪k
i=0SGP

F
j
i

(uji , u
j
i+1). ⊲ τ j satisfies slope

requirement and its length is computed by (4)

Theorem 1. The path given by Algorithm 1 is an approximate shortest θ-gentle path joining p and

q on T .

The proof of Theorem 1 is given in the appendix (Sect. 8).

It is easily seen that if the Straightness Condition is satisfied at all shooting points, then by

Theorem 1, an approximate shortest θ-gentle path is obtained. Otherwise, we update shooting points,

then check if the Straightness Condition is satisfied at all shooting points or not. If the Straightness

Condition is never satisfied, we get a sequence of θ-gentle paths joining two given points whose

lengths are strictly decreasing. According to Theorem 1, an approximate shortest θ-gentle path is

obtained, too.

5 Numerical Results

We implement Algorithm 1 in C++ code using CGAL, then compile and run the code on Ubuntu

Linux platform Intel Core i5-7200U, CPU 568 2.50GHz. The numerical results are visualized by

OpenGL.

Example 1. Consider triangulated terrains T which are polyhedral surfaces with 8 vertices and p, q
as given in Table 1 and a slope parameter θ = π/12.

In Sect. 8.3 of the Appendix, the brute-force search gives the exact shortest θ-gentle path τ0
joining two points p = 1 and q = 5 in triangulated terrain T with l(τ0) = 38.63046 after solving 28
convex optimization problems corresponding to 28 sequences of adjacent triangles.
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Figure 8: Finding the optimal solution of Example 1: the brute-force search gives a graph displaying

all sequences of adjacent triangles joining the vertices p = 1 and q = 5, where each node in the

tree of sequences is a triangled face (a, b, c) with three vertices a, b, c of the terrain. There are 28

sequences of adjacent triangles joining 1 and 5 (coloured in yellow) and the others are self-cutting

sequences.

.
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Table 1: Coordinates of vertices of T , p and q
Vertex index x-coordinate y-coordinate z-coordinate

1 ≡ p 20 20 8

2 20 35 6

3 35 12 4

4 6 1 2

5 ≡ q 50 40 0

6 20 60 0

7 40 0 0

8 0 0 0

Sect. 8.3 of the Appendix gives approximate shortest θ-gentle paths τ corresponding to the

tolerances ǫ. Algorithm 1 gives approximate shortest θ-gentle paths with their length l(τ) after a

number of iterations (Table 2).

Table 2: Comparison between algorithms for solving Example 1.

Liu and Wong’s algorithm Algorithm 1 (method of multiple shooting)

ǫ Removed Num. of Max. num. l(τ) Num. of Num. of Max. num. l(τ)
vertices sub-prob. of variables iterations sub-prob. of variables

0.025 3 17 6 39.5958 14 7 3 39.5977
0.02412 2 13 5 39.5622 15 7 3 39.3924
0.00356 − 28 7 38.6304 22 7 3 38.7679

As can be seen in Table 2, if we choose a small enough tolerance, Liu and Wong’s algorithm

gives a shorter path. However, the number of variables in convex optimization problems occurring

in their algorithm increases. In addition, if the tolerance is too small, the algorithm cannot find

any vertex to be removed such that the distance requirement is satisfied. It then uses the brute-force

search mentioned above to give the exact shortest θ-gentle path τ0 with l(τ0) = 38.6304 after solving

28 sub-problems (i.e., convex optimization problems) corresponding to 28 sequences of adjacent

triangles. By contrast, our Algorithm 1 establishes iterations. For each iterating step, the number of

sub-problems is 7 and the maximum number of variables is small.

Example 2. Consider the terrains with 25 vertices, 50 vertices and 100 vertices (see Fig. 9), where

θ = π/6 and p, q are randomly selected on the terrains for each test (Table 3).

PSGPF0
i
(u0

i , u
0
i+1) is calculated by Agarwal et al.s algorithm [1]. At each shooting point u0

i , we

check the Straightness Condition (B1)-(B2) to decide whether the algorithm stops or continues by

using the procedure Check the Straightness Condition (B1)-(B2) and Update Shooting Points (χ0) in

Sect. 4.6, where χ0 = ∪k
i=0PSGPF0

i
(uj

i , u
0
i+1). The algorithm stops when either Straightness Condi-

tion B1-B2 holds at all shooting points or

∣

∣

∣
lp
(

PSGP
F

j−1

i
(uj−1

i , uj−1
i+1 )

)

− lp
(

PSGP
F

j
i
(uj

i , u
j
i+1)
)∣

∣

∣
<

δ, since
{

lp
(

PSGP
F

j
i
(uj

i , u
j
i+1)
)}

is convergent, where δ > 0 is an accuracy constant.
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Figure 9: A visualization of the algorithm on terrains which are polyhedral surfaces with 25 vertices

(left), 50 vertices (center), and 100 vertices (right).

Table 3: The lengths of paths joining p to q and the number of iterations of the convergence of

Algorithm 1 for terrains with θ = π/6
Number of p = (x(p), y(p), z(p)) Number of Number of Length of Length of

vertices of T q = (x(q), y(q), z(q)) slices iterations initial path final path

25 p = (55.7376, 1.4176, 77.8723) 9 17 125.728 100.19

q = (85.3552, 11.6324,−0.78132)

25 p = (35.5585,−37.9061, 73.2294) 8 36 200.003 108.28

q = (63.7484,−43.3758, 0.954288)

25 p = (50.6517,−13.3067, 74.5624) 14 193 323.407 173.246

q = (−3.36289,−85.3131,−35.9806)

50 p = (−69.07, 46.1851, 3.25405) 10 196 162.297 106.799

q = (4.01055, 80.7934,−46.3964)

50 p = (11.2359, 52.67, 75.4174) 12 93 150.218 125.661

q = (94.3164, 1.24132, 21.458)

50 p = (−9.36114, 77.8444, 46.6735) 23 189 436.962 140.081

q = (5.60548, 74.6719,−60.5558)

100 p = (27.8305, 21.2531, 83.8312) 28 78 294.23 151.773

q = (63.4817,−69.2619, 5.09992)

100 p = (29.1146,−4.98809, 88.0256) 27 120 246.457 129.403

q = (42.4595,−86.3349, 17.7956)

100 p = (9.90211,−15.9185, 94.678) 28 299 261.3 134.819

q = (−9.8933,−91.5309, 14.4459)

6 Concluding Remarks

In this paper, an approximate algorithm for computing an shortest θ-gentle path joining two points

on the terrain based on the multiple shooting approach is already introduced. Ideas of the method

of multiple shooting may be used for finding energy-minimizing paths on terrains [19]. It is also

suitable for the problem of finding shortest paths on terrains where its face is weighted polygon.
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8 Appendix

8.1 Some Remarks

Remark 2. We known that there is no shortest path joining two given points on a polyhedron passing

through a convex vertex v of the polyhedron unless v is the source or destination of the shortest path.

Unlike, shortest θ-gentle paths joining two given points on a polyhedron (a terrain) can pass through

vertices of the polyhedron (the terrain) as shown below.

Example 3. Consider a triangulated terrain T with 9 vertices a(0.5, 0.5, 1), b(0, 4, 0), c(1, 0, 0),
e(0,−1, 0), f(−1, 0, 0), d(2, 0,−5), g(0, 10,−5), h(0,−2,−5), i(−2, 0, 5). Take θ = π/3, p ≡
a, q(1,−1,−5).

We will show that there is a shortest θ-gentle path joining p and q on T passing through the (con-

vex) vertex c. Indeed, along the sequence of adjacent triangles △pce,△ecd,△edh, a pseudo path of

a shortest θ-gentle path joining p and q is the polyline joining p, c and q. The length of this shortest θ-

gentle path is ≈ 6.998248. Along the sequence of adjacent triangles △pcb,△bcg,△gcd,△dch, the

length of shortest θ-gentle paths joining p and q is ≈ 6.998248. Similarly, for remaining sequences

of adjacent triangles joining p and q on T , we see that the lengths of shortest θ-gentle paths joining

p and q along these sequences of adjacent triangles are greater than ≈ 6.998248. Hence, there is a

shortest θ-gentle path joining p and q on T passing through the (convex) vertex c.
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Figure 10: A shortest θ-gentle path joining p and q on T passing through the (convex) vertex c is the

polyline joining p, c and q.

8.2 The Proofs of some Results

The proof of Proposition 1:

Proof. Suppose that the vertex a is θ-unreachable, we will show that all triangles adjacent to a lie

completely in one of two θ-convex cones (see Fig. 2). On the contrary, indeed, if there is some

triangle f adjacent to a that does not lie completely in one of two θ-convex cones, then f has an

edge e adjacent to a that does not lie completely in one of two θ-convex cones. This mean that the

angle between e and the horizontal plane does not exceed θ, e is then not too steep. Therefore, a
is θ-reachable from any point in e. This conflicts with a is θ-unreachable. Now, we assume that

all triangles adjacent to a lie completely in one of two θ-convex cones, we will prove that a is the

θ-unreachable. On the contrary, indeed, if a is θ-reachable, then there is a θ-gentle path γ joining

a and some point in some triangle f adjacent to a. Then the angle of the tangent of γ at a and the

horizontal plane is greater than or equal to the slope of edges of f . Since all triangles adjacent to a lie

completely in one of two θ-convex cones, the slope of edges of f is greater than θ. Thus, slγ(a) > θ.

This conflicts with the fact that γ is a θ-gentle path. It completes the proof.

The proof of Proposition 2:

Proof. Suppose that F has k+1 adjacent triangles. We denote E = R
3, E := e1×e2×. . .×ek ∈ E

k,

where ei is the common edge of adjacent triangles. The set E is closed and bounded in E
k with

product topology. Then E is compact. Let xi ∈ ei, i = 1, 2, . . . , k, x0 ≡ p, xk+1 ≡ q. Consider

the function Φ : Ek −→ R,Φ(x1, x2, . . . , xk) =
∑k

i=0 ‖xi − xi+1‖s, where ‖.‖s determines in the

formula (2):

‖a‖s = max

{

‖a‖2,
|z(a)|

sin θ

}
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We will show that Φ is continuous by proving that for all sequences (x
(n)
1 , x

(n)
2 , . . . , x

(n)
k ) converging

to (x1, x2, . . . , xk) in E
k, we have that Φ(x

(n)
1 , x

(n)
2 , . . . , x

(n)
k ) converges to Φ(x1, x2, . . . , xk) in R or

|Φ(x
(n)
1 , x

(n)
2 , . . . , x

(n)
k )− Φ(x1, x2, . . . , xk)| → 0 as n → ∞.

Φ(x
(n)
1 , x

(n)
2 , . . . , x

(n)
k ) =

k
∑

i=0

‖x
(n)
i − x

(n)
i+1‖s

≤
k
∑

i=0

(‖x
(n)
i − xi‖s + ‖xi − xi+1‖s + ‖xi+1 − x

(n)
i+1‖s)

where x
(n)
0 ≡ p, x

(n)
k+1 ≡ q. Moreover, Φ(x1, x2, . . . , xk) =

∑k

i=0 ‖xi − xi+1‖s, we conclude that:

|Φ(x
(n)
1 , x

(n)
2 , . . . , x

(n)
k )− Φ(x1, x2, . . . , xk)| ≤

k
∑

i=0

(‖x
(n)
i − xi‖s + ‖xi+1 − x

(n)
i+1‖s) (*)

Because (x
(n)
1 , x

(n)
2 , . . . , x

(n)
k ) converges to (x1, x2, . . . , xk) in E

k, x
(n)
1 → x1, x

(n)
2 → x2, . . . ,

x
(n)
k → xk in R

3 as n → ∞. Hence,
∑k

i=0 ‖x
(n)
i − xi‖2 → 0 and

∑k

i=0 ‖xi+1 − x
(n)
i+1‖2 → 0 as

n → ∞, where ‖.‖2 is the Euclidean norm in R
3. Two norms in a finite dimensional space are

equivalent, then ‖.‖2 and ‖.‖s are equivalent in R
3. Accordingly, the sequence {x

(n)
i } converges

with the norm ‖.‖2 iff {x
(n)
i } converges with the norm ‖.‖s, for all {x

(n)
i } ⊂ R

3. Consequently,
∑k

i=0 ‖x
(n)
i − xi‖s → 0 and

∑k

i=0 ‖xi+1 − x
(n)
i+1‖s → 0 as n → ∞. From (*), it follows that:

0 ≤ |Φ(x
(n)
1 , x

(n)
2 , . . . , x

(n)
k )−Φ(x1, x2, . . . , xk)| → 0 as n → ∞. This implies that Φ is continuous.

Consequently, Φ is continuous and E is compact, there exists (x∗
1, x

∗
2, . . . , x

∗
k) ∈ E such that

Φ(x∗
1, x

∗
2, . . . , x

∗
k) = min{Φ(x1, x2, . . . , xk) : (x1, x2, . . . , xk) ∈ E}. We connect the points x0, x

∗
1, x

∗
2,

. . . , x∗
k, xk+1 by the polyline that includes the segments [x0, x

∗
1], [x

∗
1, x

∗
2], . . . , [x

∗
k, xk+1]. Since all

vertices in F are θ-reachable from some point in F , all points in F are θ-reachable from some point

in F . Therefore, we can adjust the polyline if necessary to get the θ-gentle path σ and its length is

l(σ) = ‖x0 − x∗
1‖s + ‖x∗

1 − x∗
2‖s + . . .+ ‖x∗

k − xk+1‖s = Φ(x∗
1, x

∗
2, . . . , x

∗
k). We are now in position

to prove that σ is a shortest θ-gentle path in ΓF joining p and q along F .

Suppose that γ is an arbitrary element in ΓF . It follows that γ is the θ-gentle path joining p, q
along F . Let the intersections between γ and the edges e1, e2, . . . , ek alternately be x1, x2, . . . , xk.

Because xi and xi+1 are in the same triangles, the length of θ-sub gentle path joining xi and xi+1 is

greater than or equal to the length of SGPfi+1
(xi, xi+1) that indeed is ‖xi − xi+1‖s. Thus, l(γ) ≥

∑k

i=0 ‖xi − xi+1‖s ≥ Φ(x∗
1, x

∗
2, . . . , x

∗
k) = l(σ) for all γ ∈ ΓF , where x0 ≡ p, xk+1 ≡ q. Therefore,

σ is a shortest θ-gentle path in ΓF joining p and q along F .

The proof of Proposition 3:

Proof. For each the vertex v ∈ Fi, there are two edges e, e′ share the vertex v and they are edges of

polygon ξi. As e (resp. e′) is adjacent to only one triangle in Fi, we call this triangle f (resp. f ′).

According to the construction sequence of adjacent triangles Fi, f or f ′ belongs to Fi. Because e
and e′ are parallel to the horizontal plane, they are not steep. The vertex v is θ-reachable from some

point in the relative interior of e or e′. Hence, v is θ-reachable from some point in Fi.
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The proof of Proposition 4:

Proof. Suppose that γ crosses a triangle f of Fi more than once, it suffices to show that we can

replace the sub-path between the first and the last visit point in f by a shortcut which is not too

steep, remains in triangle f , and its length does not exceed the original.

Figure 11: Illustration for the proof in Prop. 4

Let a and b be the first and last intersection points between γ and f via Fi, respectively. Since γ
is a shortest θ-gentle path joining ui and ui+1 along Fi, the sub-path of γ joining a and b must be a

shortest θ-gentle path joining a and b, too.

If a and b are θ-reachable from all of points in f , we can replace the sub-path joining a and b
by [a, b] if this segment is not too steep or adj([a, b]) in the opposite, without changing the length.

Hence, we get a path which passes through f only once and has the same length as γ.

If a is θ-unreachable from all points in f , a is then the vertex of sequence of adjacent triangles

Fi (as all θ-unreachable points are vertices of the terrain). By Prop. 3, a is θ-reachable from some

triangle f ′ in Fi (f ′ 6= f ). Because b is the last intersection point between γ and f , γ has to come

back f ′ again (see Fig. 11). The path γ cuts f ′ at another point a′ 6= a.

If a′ is θ-reachable from some point in f ′ (see Fig. 11a), we can replace the sub-path joining a
and a′ by [a, a′] or adj[a, a′] without changing the length. We then get a path which passes through

f only once and has the same length as γ.

If a′ is θ-unreachable from f ′, a′ is a vertex of f ′. According to Prop. 3, a′ is θ-reachable from

some point in Fi. We deduce that a′ is θ-reachable from points in the triangle f
′′

which is adjacent

to aa′ (f
′′

6= f ′, see Fig. 11b). We can replace the sub-path joining a and a′ by the adjusted path

adj[a, a′] without changing the length of the path, where adj([a, a′]) includes two parts: the one

starting from a and lying on f ′ and the other lying on f
′′

.

Summarizing, we get the θ-gentle path, which passes through f only once and has the same

length as γ.

The proof of Proposition 5:

Proof. If x is the intersection of χj and some edge of a triangle in Fi (i = 0, 1, . . . , k), then x clearly

belongs to shortest θ-gentle paths whose pseudo is χj .

Otherwise, x is an interior point of some line segment [a, b] such that a, b are both the intersec-

tions between χj and the edges of a triangle f in Fi (i = 0, 1, . . . , k). We consider two cases:
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a) If b /∈ SRf (a) (where SRf (a) is the steep region of a in f ), then [a, b] belongs to shortest

θ-gentle paths whose pseudo is χj . The point x then belongs to these shortest θ-gentle paths.

b) If b ∈ SRf (a), then [a, b] is steep. We construct the adjusted paths adj[a, x], adj[x, b] and then

adj[a, x] ∪ adj[x, b] is θ-gentle and lies completely in f .

l(adj[a, x] ∪ adj[x, b]) =
|z(x)− z(a)|

sin θ
+

|z(b)− z(x)|

sin θ
=

|z(b)− z(a)|

sin θ
= l(adj[a, b]).

Consequently, adj[a, x] ∪ adj[x, b] is also a shortest θ-gentle path joining a and b in f . We

construct a shortest θ-gentle path along Fi such that when it passes through f , its orbit is adj[a, x] ∪
adj[x, b]. Indeed, x belongs to it.

Therefore, the proof is completed.

The proof of Propositon 6:

Proof. Suppose that χ is the pseudo path of τ , χ is then a polyline in which endpoints of its line

segments lie on edges of the terrain or of bdξi. Let
k
⋃

i=0

Fi be the sequence of adjacent triangles

with edges e1, e2, . . . , em, where ei is the common edge of adjacent triangles. We denote E :=
e1 × e2 × . . .× em ∈ E

m, where E = R
3.

Firstly, if all intersections of τ and edges of
⋃k

i=0 Fi are interior points, we show that τ is a locally

shortest θ-gentle path. We only need to prove the following claim at ui, where ui is a shooting point

in an edge of bdξi.

Claim 1: “ If τ(p, ui) and τ(ui, q) respectively, are shortest θ-gentle paths joining p and ui, ui and

q respectively, along corresponding sequences of adjacent triangles and the Straightness Condition

(B1) is satisfied at ui, then τ is a locally shortest θ-gentle”.

Before presenting Lemma 1 to prove Claim 1, we need following notations: Let B(a, δ) be a

close sphere with the center a, radius δ and e is an edge with a direction vector −→e . Two intersections

of the boundary of B(a, δ) and the line containing e are a± δ
−→e

‖e‖
, denoted by a± δ.

Lemma 1. In R
3, let f be a triangle with edges e, g, h and a (resp. u) be an interior point of g (resp.

e). Suppose int SRf (a) 6= ∅. Then for all x in (a, u), there exist positive numbers ǫ and δ such that:

for all b in (a− δ, a+ δ), for all b′ in (u− ǫ, u+ ǫ), we have:

lp([b, b′]) = lp([b, x]) + lp([x, b′]). (8)

The proof of Lemma 1:

Proof. Since definition of steep regions, SRf (b) is a polygon having edges parallel or coincident

with edges of SRf (a). For each x in (a, u), we construct lines through x and parallel to two edges

through a of SRf (a). Let intersections of these lines and the line containing e (resp. g) be r and

r′ (resp. s and s′). Take ǫ > 0 such that [u − ǫ, u + ǫ] ⊂ [r, r′] ∩ SRf (a). There exists δ > 0
such that [a − δ, a + δ] ⊂ [s, s′] ∩ g. Then for all b in (a − δ, a + δ), x ∈ SRf (a) ∩ SRf (b) and

[u− ǫ, u+ ǫ] ⊂ SRf (a)∩ SRf (b). Since any steep region is convex, SRf (a) and SRf (b) are convex.

Therefore, SRf (a) ∩ SRf (b) is convex. Then the triangle given by three points x, u− ǫ, u + ǫ, is in

SRf (a)∩SRf (b). Thus, for all b′ in (u−ǫ, u+ǫ), x, b′ ∈ SRf (b). By constructing adj[b, b′] in SRf (b)
such that adj[b, b′] is through x, we have lp[b, b′] = lp[b, x] + lp[x, b′]. The proof is completed.
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Figure 12: Illustration of the proof of Lemma 1

When a, u are not interior points, the neighbor at u (resp. a) has one of the following forms:

[u− δ, u] or [u, u+ δ] (resp. [a− δ, a] or [a, a+ δ]). The state similar to Lemma 1 also holds in these

cases.

Proof of Claim 1. Return to the problem, in order to prove τ is a locally shortest θ-gentle path, we

need to show that there exists a neighbor U of χ, (U ⊂ E) such that the length of all θ-gentle paths

on U joining p and q are longer than or equal to the length of τ .

Let f and f ′ be two triangles sharing the edge ej (f ∈ Ti−1, f
′ ∈ Ti). Then ej−1, ej+1 are the

edges of f and f ′, respectively. Let a (resp. a′) be intersection of τ(p, ui) and ej−1 (resp. τ(ui, q)
and ej+1). There are two cases happening at ui as follows:

Case 1: ui ∈ SRf (a) ∩ SRf ′(a′).
Let x, x′ be two points in [a, ui] and [ui, a

′], respectively. According to Lemma 1, there exist

positive numbers ǫ1, ǫ2, δ, δ
′ satisfying the conclusion of the Lemma. Let ǫ := min{ǫ1, ǫ2} and

U := e1 × e2 × . . .× (a− δ, a+ δ)× (ui − ǫ, ui + ǫ)× (a′ − δ′, a′ + δ′)× . . .× em.

Let τ ∗ be a θ- gentle path joining p and q in U . We will show that l(τ ∗) ≥ l(τ). We denote

u∗
i = τ ∗ ∩ ei, b = τ ∗(p, u∗

i ) ∩ ei−1, b
′ = τ ∗(u∗

i , q) ∩ ei+1. Then u∗
i ∈ (ui − ǫ, ui + ǫ), b ∈ (a− δ, a+

δ), b′ ∈ (a′ − δ′, a′ + δ′). We “add” x and x′ to the orbit of τ ∗ similarly to (8) as follows:

l(τ ∗) = l(τ ∗(p, b)) + lp([b, x]) + lp([x, u∗
i ]) + lp([u∗

i , x
′]) + lp([x′, b′]) + l(τ ∗(b′, q)) (9)

Since Straightness Condition (B1) is satisfied at ui, we conclude that

lp([x, u∗
i ]) + lp([u∗

i , x
′]) ≥ lp([x, ui]) + lp([ui, x

′]) (10)

Combining (9) and (10) yields

l(τ ∗) ≥ l(τ ∗(p, b)) + lp([b, x]) + lp([x, ui]) + lp([ui, x
′]) + lp([x′, b′]) + l(τ ∗(b′, q)). (11)
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Because τ ∗(p, b) ∪ adj([b, x]) ∪ adj([x, ui]) is a θ-gentle path joining p and ui, we have

l(τ ∗(p, b)) + lp([b, x]) + lp([x, ui]) ≥ l(τ(p, ui)). (12)

Similarly, adj([ui, x
′]) ∪ adj([x′, b′]) ∪ τ ∗(b′, q) is a θ-gentle path joining ui and q, we have

lp([ui, x
′]) + lp([x′, b′]) + l(τ ∗(b′, q)) ≥ l(τ(ui, q)). (13)

Combining (11), (12) and (13) yields l(τ ∗) ≥ l(τ).

Figure 13: Illustration to the proof of Case 1

Case 2: ui /∈ SRf (a) ∩ SRf ′(a′).
Since for all i = 0, 1, . . . , k, τ(ui, ui+1) and the traditional shortest path joining ui and ui+1

along Fi does not coincide, there exists at least one segment of χ(p, ui) and one of χ(ui, q) such

that the segments are steep. Let [a, t] (resp. [t′, a′]) be a such segment of χ(p, ui) (resp. χ(ui, q)). It

may happen either [a, t] ∈ f or [t′, a′] ∈ f ′. Let ev (ew, respectively) be the edge containing a (a′,
respectively). Then t ∈ ev+1 and t′ ∈ ew−1.

Let ǫ > 0, x, x′ be two points in [a, t] and [t′, a′], respectively. According to Lemma 1, there exist

δ > 0, δ′ > 0 satisfying the conclusion of the Lemma.

U := e1× e2× . . .× (a− δ, a+ δ)× (t− ǫ, t+ ǫ)× . . .× (t′− ǫ, t′+ ǫ)× (a′− δ′, a′+ δ′)× . . .× em.

Let τ ∗ be a θ- gentle path joining p and q in U . We will show that l(τ ∗) ≥ l(τ). We denote

u∗ = τ ∗ ∩ ei, b = τ ∗(p, u∗
i ) ∩ ev, n = τ ∗(p, u∗

i ) ∩ ev+1, b
′ = τ ∗(u∗

i , q) ∩ ew, n
′ = τ ∗(u∗

i , q) ∩ ew−1.

Then n ∈ (t − ǫ, t + ǫ), n′ ∈ (t′ − ǫ, t′ + ǫ), b ∈ (a − δ, a + δ), b′ ∈ (a′ − δ′, a′ + δ′). We “add” x
and x′ to the orbit of τ ∗ similarly to (8) as follows:

l(τ ∗) = l(τ ∗(p, b)) + lp([b, x])+lp([x, n]) + l(τ ∗(n, u∗
i ))

+ l(τ ∗(u∗
i , n

′) + lp([n′, x′]) + lp([x′, b′]) + l(τ ∗(b′, q)). (14)

Since Straightness Condition (B1) is satisfied at ui, we have

lp([x, n]) + l(τ ∗(n, u∗
i )) + l(τ ∗(u∗

i , n
′) + lp([n′, x′]) ≥ l(τ(x, ui)) + l(τ(ui, x

′)). (15)
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Combining (14) and (15) yields

l(τ ∗) ≥ l(τ ∗(p, b)) + lp([b, x]) + l(τ(x, ui)) + l(τ(ui, x
′)) + lp([x′, b′]) + l(τ ∗(b′, q)). (16)

Since τ ∗(p, b) ∪ adj([b, x]) ∪ τ(x, ui) is a θ-gentle path joining p and ui, we have

l(τ ∗(p, b)) + lp([b, x]) + l(τ(x, ui)) ≥ l(τ(p, ui)). (17)

Likewise, τ(ui, x
′) ∪ adj([x′, b′]) ∪ τ ∗(b′, q) is a θ-gentle path joining ui and q, we have

l(τ(ui, x
′)) + lp([x′, b′]) + l(τ ∗(b′, q)) ≥ l(τ(ui, q)). (18)

Combining (16), (17) and (18) yields l(τ ∗) ≥ l(τ).

Figure 14: Illustration of the proof of Case 2

Summarily, τ is a locally shortest θ-gentle path and Claim 1 is proven.

We see that Claim 1 is true in the case ui is interior point of ei. However, when all intersections of

τ and edges of
⋃k

i=0 Fi are arbitrary points (not interior points), a similar claim holds with the same

proof. Therefore, the length of all shortest θ-gentle paths on
⋃k

i=0 Fi ∩ U (where U is a neighbor

of T ) joining p and q are more than or equal to the length of τ . Accordingly, τ is a locally shortest

θ-gentle path in
⋃k

i=0 Fi.

Assume that τ ′ is a θ-gentle path joining p and q on
⋃k

i=0 Fi. Let xi be the intersection of τ ′ and

ei, for i = 1, 2, . . . ,m. Then we can write xi = λici + (1 − λi)di, where λi ∈ [0, 1] and ci, di are

endpoints of the edge ei. Then l(τ ′) = ‖p− x1‖s + ‖x1 − x2‖s + . . .+ ‖xm−1 − xm‖s + ‖xm − q‖s,
where ‖xi − xi+1‖s is the length of adj[xi, xi+1], calculated as follows:

max{
√

((xi)x − (xi+1)x)2 + ((xi)y − (xi+1)y)2 + ((xi)z − (xi+1)z)2,
|(xi)z − (xi+1)z|

sin θ
}.

The problem of finding a shortest θ-gentle path on the sequence of adjacent triangles
⋃k

i=0 Fi

becomes the problem of finding τ ′ such that l(τ ′) is minimum. This is the problem of minimizing

the sum of ‖.‖s norms as follows:

minimizeλi,i=1,2,...,m f(λ1, λ2, . . . , λm) (P1)

subject to λi ∈ [0, 1], i = 1, 2, . . . ,m
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Since f is a convex function on [0, 1]m, (P1) is a convex optimal problem. We know that every

locally solution of a convex optimal problem is global solution. Therefore, τ is also shortest θ-gentle

path in
⋃k

i=0 Fi, because τ is a locally shortest θ-gentle path in
⋃k

i=0 Fi.

Summarizing, τ is a shortest θ-gentle path joining p and q on the sequence of adjacent triangles
⋃k

i=0 Fi. Furthermore, if all intersections of τ and edges of
⋃k

i=0 Fi are interior points, then τ is a

locally shortest θ-gentle path. This completes the proof.

The proof of Proposition 7:

Proof. Let u0 ≡ p, uk+1 ≡ q. We can write τ0 = ∪k
i=0SGPFi

(ui, ui+1), where SGPFi
(ui, ui+1) is a

shortest θ-gentle path joining ui and ui+1 on Fi and Fi is a sequence of adjacent triangles joining ui

and ui+1 such that F =
⋃k

i=0 Fi is a sequence of adjacent triangles along τ0. Denote the pseudo path

of SGPFi
(ui, ui+1) by PSGPFi

(ui, ui+1). For i = 0, 1, . . . , k, take xi on PSGPFi
(ui, ui+1) such that

xi does not coincide with ui and ui+1. According to Prop. 5, there exists at least a shortest θ-gentle

path SGPFj
(ui, ui+1) of PSGPFj

(ui, ui+1) such that xi belongs to SGPFj
(ui, ui+1).

It’s easy to prove that any sub-path of a shortest θ-gentle path is also a shortest θ-gentle path. For

i = 1, 2, . . . , k, denote the sub-path joining xi−1 and xi of τ0 by τ0(xi−1, xi). Since τ0 is a shortest

θ-gentle path joining p and q on T , τ0(xi−1, xi) is a shortest θ-gentle path joining xi−1 and xi on T .

If Common Edge Case for ui happens, τ0(xi−1, xi) is a shortest θ-gentle path along the sequence of

adjacent triangles Fi−1 ∪ Fi. Therefore, (B1) of the Straightness Condition must happen at ui.

If Non-common Edge Case for ui happens, then according to the construction of sequences of

adjacent triangles S∗
i and S∗∗

i , τ0(xi−1, xi) is the θ-gentle path joining xi−1 and xi along S∗
i and

S∗∗
i . We will show that τ0(xi−1, xi) is a shortest θ-gentle path joining xi−1 and xi along S∗

i and S∗∗
i .

Since τ0 is a shortest θ-gentle path joining p and q on entire T , τ0(xi−1, xi) is a shortest θ-gentle

path joining xi−1 and xi on entire T . Suppose that there exists a θ-gentle path, denoted by γ, joining

xi−1 and xi along S∗
i or S∗∗

i such that l(γ) < l(τ0(xi−1, xi)). We can construct a θ-gentle path

joining p and q on entire T from τ0, denoted by τ1, by only replacing τ0(xi−1, xi) by γ. Therefore,

l(τ1) < l(τ0). This contradicts the fact that τ0 is a shortest θ-gentle path joining p and q on entire T .

Hence, τ0(xi−1, xi) is a shortest θ-gentle path joining xi−1 and xi along S∗
i and S∗∗

i . Therefore, (B2)

of the Straightness Condition must happen at ui. This completes the proof.

Remark 3. With the constructions sequences of adjacent triangles F j
i , F j+1

i and Sj
i in Sect. 4.5, and

note that uj+1
i = u∗j

i , we deduce that:

l
(

SGP
S
j
i
(xj

i−1, x
j
i )
)

≤ l
(

SGP
F

j
i−1

(xj
i−1, u

j+1
i )

)

+ l
(

SGP
F

j
i
(uj

i , x
j+1
i+1 )

)

;

l
(

SGP
F

j+1

i
(uj+1

i , uj+1
i+1 )

)

≤ l
(

SGP
S
j
i−1

(uj+1
i , xj+1

i )
)

+ l
(

SGP
S
j
i
(xj+1

i , uj+1
i+1 )

)

.

The proof of Proposition 8:

Proof. Assume that Straightness Condition (B1) - (B2) is not satisfied at some shooting point uj
i ,

τ j = ∪k
i=0SGP

F
j
i
(uj

i , u
j
i+1). According to Prop. 5 and xj

i ∈ PSGP
F

j
i
(uj

i , u
j
i+1), xj

i belongs to

SGP
F

j
i
(uj

i , u
j
i+1), for j = 0, 1, . . . , k (see Fig. 15). Hence, instead of proving the results on the

length of shortest θ-gentle paths, we can move to proving the corresponding results about the sum

of ‖.‖s norms of their pseudo paths.
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On the sub-terrain Ti−1, we have:

lp
(

PSGP
F

j
i−1

(uj
i−1, u

j
i )
)

= lp
(

PSGP
F

j
i−1

(uj
i−1, x

j
i−1)
)

+ lp
(

PSGP
F

j
i−1

(xj
i−1, u

j
i )
)

. (19)

On the sub-terrain Ti, we get:

lp
(

PSGP
F

j
i
(uj

i , u
j
i+1)
)

= lp
(

PSGP
F

j
i
(uj

i , x
j
i )
)

+ lp
(

PSGP
F

j
i
(xj

i , u
j
i+1)
)

. (20)

Combining Remark 3, with formulas (19) and (20), yields:

l

(

k
⋃

i=0

SGP
F

j
i
(uj

i , u
j
i+1)

)

=
k
∑

i=0

l
(

SGP
F

j
i
(uj

i , u
j
i+1)
)

=
k
∑

i=0

lp
(

PSGP
F

j
i
(uj

i , u
j
i+1)
)

= lp
(

PSGP
F

j
0

(uj
0, x

j
0)
)

+
k−1
∑

i=1

lp
(

PSGP
F

j
i−1

(xj
i , u

j
i ) ∪ PSGP

F
j
i
(uj

i , x
j
i+1)
)

+ lp
(

PSGP
F

j

k+1

(xj
k, u

j
k+1)

)

Since the construction the sequence of adjacent triangles Sj
i from F j

i by adding triangles to

ensure the adjacency of triangles in Sj
i , we see that:

lp
(

PSGP
F

j
i−1

(xj
i , u

j
i ) ∪ PSGP

F
j
i
(uj

i , x
j
i+1)
)

≥ lp
(

PSGP
S
j
i
(xj

i , x
j
i+1)
)

. (21)

Updating shooting points u∗j
i yields:

lp
(

PSGP
S
j
i
(xj

i , x
j
i+1)
)

= lp
(

PSGP
S
j
i
(xj

i , u
∗j
i ) ∪ PSGP

S
j
i
(u∗j

i , xj
i+1)
)

. (22)

Combining (21) with (22) gives:

l

(

k
⋃

i=0

SGP
F

j
i
(uj

i , u
j
i+1)

)

≥ lp
(

PSGP
F

j
0

(uj
0, x

j
0)
)

+
k−1
∑

i=1

lp
(

PSGP
S
j
i
(xj

i , u
∗j
i ) + PSGP

S
j
i
(u∗j

i , xj
i+1)
)

+ lp
(

PSGP
F

j

k+1

(xj
k, u

j
k+1)

)

= lp
(

PSGP
F

j
0

(uj+1
0 , xj

0)
)

+
k−1
∑

i=1

lp
(

PSGP
S
j
i
(xj

i , u
j+1
i ) + PSGP

S
j
i
(uj+1

i , xj
i+1)
)

+ lp
(

PSGP
F

j

k+1

(xj
k, u

j+1
k+1)

)

= lp
(

PSGP
F

j
0

(uj+1
0 , xj

0)
)

+ lp
(

PSGP
S
j
0

(xj
0, u

j+1
1 )

)

+ lp
(

PSGP
S
j
0

(uj+1
1 , xj

1)
)

+ lp
(

PSGP
S
j
1

(xj
1, u

j+1
2 )

)

+ . . .+ lp
(

PSGP
S
j

k
(uj+1

k , xj
k)
)

+ lp
(

PSGP
F

j

k+1

(xj
k, u

j+1
k+1)

)

.
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For i = 0, 1, . . . , k, lp
(

PSGP
S
j
i
(uj+1

i , xj
i )
)

+lp
(

PSGP
S
j
i+1

(xj
i , u

j+1
i+1 )

)

≥ lp
(

SGP
F

j
i
(uj

i , u
j
i+1)
)

,

we obtain:

l

(

k
⋃

i=0

SGP
F

j
i
(uj

i , u
j
i+1)

)

≥ lp
(

PSGP
F

j+1

0

(uj+1
0 , uj+1

1 )
)

+ lp
(

PSGP
F

j+1

1

(uj+1
1 , uj+1

2 )
)

+ . . .+ lp
(

PSGP
F

j+1

k
(uj+1

k , uj+1
k+1)

)

= l

(

k
⋃

i=0

SGP
F

j+1

i
(uj+1

i , uj+1
i+1 )

)

.

Figure 15: Update shooting points

If the Straightness Condition (B1) - (B2) does not hold at some shooting point uj
i then the in-

equality in the formula (21) is strict. This completes the proof.

The proof of Theorem 1:

Proof. At j-step, the algorithm 1 defines a family of paths τ j =
⋃k

i=0 SGP
F

j
i
(uj

i , u
j
i+1). For i =

0, 1, . . . , k, take xj
i on PSGP

F
j
i
(uj

i , u
j
i+1) such that xj

i does not coincide with uj
i and uj

i+1. There is a

set of points xj
i , i = 0, 1, . . . , k on the pseudo path χj = ∪k

i=0PSGPFi
(uj

i , u
j
i+1).

Firstly, suppose that the Straightness Condition (B1) - (B2) in Sect. 4.3 does not hold at some

shooting point uj
i .

Case 1. If uj
i does not satisfy (B1), then

lp
(

PSGP
S
j
i
(xj

i−1, x
j
i )
)

< lp
(

PSGP
F

j
i−1

(xj
i−1, u

j
i )
)

+ lp
(

PSGP
F

j
i
(uj

i , x
j
i+1)
)
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where Sj
i is defined by (A1) in Sect. 4.3. Call the intersection of PSGP

S
j
i
(xj

i−1, x
j
i ) with eji is u∗j

i . In

such case, uj
i is updated to uj+1

i ≡ u∗j
i .

Case 2. If uj
i does not satisfy (B2), then

min{lp
(

PSGP
S
∗j
i
(xj

i−1, x
j
i )
)

, lp
(

PSGP
S
∗∗j
i

(xj
i−1, x

j
i )
)

} < lp
(

PSGP
F

j
i−1

(xj
i−1, u

j
i )
)

+lp
(

PSGP
F

j
i
(uj

i , x
j
i+1)
)

where S∗j
i ,S∗∗j

i is defined in (A2) by Sect. 4.3. Let Sj
i ∈ {S∗j

i ,S∗∗j
i } such that

lp
(

PSGP
S
j
i
(xj

i−1, x
j
i )
)

= min{lp
(

PSGP
S
∗j
i
(xj

i−1, x
j
i )
)

, lp
(

PSGP
S
∗∗j
i

(xj
i−1, x

j
i )
)

}.

Call the intersection of PSGP
S
j
i
(xj

i−1, x
j
i ) with eji or e′ji is u∗j

i . In such case, uj
i is updated to uj+1

i =

u∗j
i .

Hence, using the procedure finding the pseudo path PSGP
F

j+1

i
(uj+1

i , uj+1
i+1 ) of SGP

F
j+1

i
(uj+1

i , uj+1
i+1 )

constructed by Sect. 4.5, the length with ‖.‖s norm of the pseudo path χj+1 :=
⋃k

i=0 PSGP
F

j+1

i
(uj+1

i , uj+1
i+1 )

joining p and q along the sequence of adjacent triangles ∪k
i=0F

j+1
i is equal to the length of τ j+1 :=

⋃k

i=0 SGP
F

j+1

i
(uj+1

i , uj+1
i+1 ).

We thus obtain a family of θ-gentle paths τ j joining p and q along the sequence of adjacent

triangles ∪k
i=0F

j+1
i . Applying Prop. 8 gives l(τ j+1) < l(τ j). Therefore, the sequence of length

of the family of paths τ j is strictly reduced. The sequence {l(τ j)} is then a convergent sequence.

Denote σ = inf{l(τ j), j ∈ N}. Two norms ‖.‖2 and ‖.‖s are equivalent in R
3. Therefore, analysis

similar to that in the proof of Proposition 1.4.11 in [15] shows that the sequence of corresponding

pseudo paths χj has a subsequence χjn that converges uniformly to some path χ. Denote τ is the

θ-gentle path that gets by adjusting χ. Since lp(χjn) = l(τ jn), we get limn→∞ l(τ jn) = l(τ).
Combining {τ jn} ⊂ {τ j, j ∈ N} with the formula defining σ, we have σ ≤ limn→∞ l(τ jn) = l(τ),
i.e. σ ≤ l(τ). Since χjn ⇒ χ, we get lp(χ) ≤ lim infn→∞ lp(χjn). Otherwise, lp(χjn) = l(τ jn),
lp(χ) = l(τ). Then l(τ) ≤ σ. In conclusion, l(τ) = σ. According to Definition 2, τ is an

approximate shortest θ-gentle path. Secondly, suppose that at nth
0 -step, the Straightness Condition

(B1) - (B2) in Sect. 4.3 holds at all shooting points. We receive a sequence of paths {(τ j), j ∈ N},

where τ j =
⋃k

i=0 SGP
F

j
i
(uj

i , u
j
i+1), for j = 1, 2, . . . , n0 and from n0 onwards, all τ j coincide with

τn0 . As the sequence of length of the family of paths τ j is not increasing, we get limj→∞ l(τ j) =
l(τn0). According to Definition 2, τn0 is an approximate shortest θ-gentle path. This completes the

proof.

8.3 Solving Example 1

a) Finding the optimal solution of the problem given in Example 1:

We use the brute-force search to find all possible candidates for the solution and checking

whether each candidate satisfies problem’s statement. The method executes as follows: starting

from vertex 1, we find all sequences of adjacent triangles (not self-cutting) joining the vertices 1
and 5. A tree of the sequences as seen in Fig 8 is constructed by 28 such sequences of adjacent

triangles in which a shortest θ-gentle τ0 joining p and q in the triangulated terrain T has the length

l(τ0) = 38.63046.
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We now solve the sub-problem for finding shortest θ-gentle paths on each sequence of adjacent

triangles. Assume that τ is a θ-gentle path joining p and q on F , where F is a sequence of adjacent

triangles with common edges of adjacent triangles are consecutively e1, e2, . . . , em. Let xi be the

intersection of τ and ei, for i = 1, 2, . . . ,m. Then we can write xi = λici + (1 − λi)di, where

λi ∈ [0, 1] and ci, di are endpoints of the edge ei. Then l(τ) = ‖p − x1‖s + ‖x1 − x2‖s + . . . +
‖xm−1 − xm‖s + ‖xm − q‖s, where ‖xi − xi+1‖s is the length of adj[xi, xi+1], calculated as follows:

max{
√

((xi)x − (xi+1)x)2 + ((xi)y − (xi+1)y)2 + ((xi)z − (xi+1)z)2,
|(xi)z − (xi+1)z|

sin θ
}.

To find a shortest θ-gentle path on the sequence of adjacent triangles F , we find τ such that l(τ)
is minimum. This becomes the convex optimization problem (P1). Since the object function of (P1)

is non-smooth, the difficultly of solving this problem increases when the number of variables rise.

b) Using Liu and Wong’s algorithm for finding an approximate solution of the problem

given in Example 1:

Firstly, Liu and Wong [13] present an algorithm called Surface Simplification to simplify surface

T to surface T̃ such that any mapped path found by their algorithm “Path Mapping” satisfies the

distance requirement ∆(T , T̃ ) < 1 + ǫ and the slope requirement. They check whether a vertex of

T is removed or not using the condition ∆(T , T̃ ) < 1+ ǫ. Table 2 indicates that number of vertices

to be removed depends on the tolerance ǫ.
Then, a simpler terrain T̃ is generated. Next, they construct a tree of sequences of adjacent

triangles connecting p and q and find all shortest θ-gentle paths joining two points p and q along

these sequences of adjacent triangles. In such a case, they have to solve a number of sub-problems

in oder to gain a shortest θ-gentle paths τ̃ joining two corresponding points p̃ and q̃ on T̃ . Next, a

path on T having the same shadow as τ̃ is constructed. After adjusting this path to satisfying the

slope requirement, they obtain an approximation θ-gentle path joining two points p and q, say τ .

Table 2 indicates such paths τ corresponding to tolerances ǫ. If ǫ is too small, no vertex of T is

removed and therefore there is no T̃ . Then the brute-force search mentioned in a) is used to find the

optimal solution.
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