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Abstract. This paper solves a question raised in the paper of Huong, Yao,

and Yen [1] about optimal economic growth problems with production functions

and utility functions being all in the form of AK functions. By using a solution

existence theorem from the paper of Huong [2] and a maximum principle from the

book of Vinter [3], we prove that the problem in question has a unique solution

and give a comprehensive synthesis of the optimal processes. Our results show

that if the value of total factor productivity is enough high and the planning

time is short, then expanding the production facility does not lead to a higher

total consumption satisfaction of the society. Meanwhile, if the value of total

factor productivity is enough high and the planning time is relatively long, then

the highest total consumption satisfaction of the society is attained only if the

largest expansion of the production facility is made until a special time.

Keywords: optimal economic growth, optimal control, maximum principle, fi-

nite horizon, total factor productivity

2010 Mathematics Subject Classification: 91B62, 49J15, 37N40, 46N10,
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1 Introduction

Models of economic growth have played an essential role in economic and mathematical

studies since the 30s of the twentieth century. Namely, they allow ones to analyze, plan,

and predict relations between global factors, which include capital, labor force, production

∗Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi

10307, Vietnam; email: vthuong@math.ac.vn; huong263@gmail.com.

1

Page 1 of 20

URL: http://mc.manuscriptcentral.com/gapa

Applicable Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

2

technology, and national product, of a particular economy in a given planning interval of

time. Ramsey [4], Harrod [5], Domar [6], Solow [7], Swan [8], and other authors have studied

principal models and their basic properties. We refer to Barro and Sala-i-Martin [9] and

Acemoglu [10] for details about the development of the economic growth theory. If one

wants to define the consumption/saving curve to maximize a certain target of consumption

satisfaction, then one has deal with the optimal economic growth problem. The problem was

considered firstly by Ramsey [4] and extended by Cass [11] and Koopmans [12] afterwards.

In the recent paper Huong [2], we have studied the solution existence of finite horizon

optimal economic growth problems of an aggregative economy (see, e.g., Takayama [13, Sec-

tions C and D in Chapter 5]). The results therein on the solution existence were obtained

under some mild conditions on the utility function and the per capita production function,

which are two major inputs of the model in question. In addition, the results for general

problems were specified for typical ones with the utility function and the production function

being either the AK function or the Cobb–Douglas one (see, e.g., Barro and Sala-i-Martin [9]

and Takayama [13]). The just mentioned typical problems were classified into four classes.

The question of finding optimal processes for these classes of problems is raised in Huong, Yao

and Yen [1] where, under an additional assumption, the problems with production functions

and utility functions being all in the form of AK functions have been solved. Namely, using

a maximum principle in Vinter [3], Huong, Yao and Yen [1] have proved that the problem

has a unique local solution, which is also a global one, provided that the data triple (A, σ, λ)

playing as three (among six) parameters of the problem satisfies the strict linear inequality

A < σ + λ. The meanings of the parameters are as follows: A expresses the total factor

productivity (which is a measure of economic efficiency appearing in the description of the

production function and depends on some intangible factors such as technological change,

education, research and development, etc.), σ is the rate of labor force (closely related to the

population growth), and λ is the real interest rate (which indicates the rate of the decrease

along time of the satisfaction level of the society w.r.t. the same amount of consumption).

From the obtained results it follows that if the value of total factor productivity is relatively

small, then an expansion of the production facility does not lead to a higher total consumption

satisfaction of the society.

As a continuation of Huong, Yao and Yen [1], the present paper aims at answering the

question “What happens if A > σ + λ?”, which was raised in [1]. The last inequality means

that the total factor productivity A is relatively large. It was conjectured in [1, Sect. 4] that

the optimal strategy requires to make the maximum saving until a special time t̄ ∈ (t0, T ),

which depends on the data tube (A, σ, λ), then switch the saving to minimum. Our main

result (see Theorem 2.2 in next section) shows that the conjecture is just partly true, since

the optimal strategy depends not only on the data triple (A, σ, λ), but also on the length of
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the planning interval. Namely, the following rules are valid:

(a) If the total factor productivity A is enough high but the planning time is short, then an

expansion of the production facility does not lead to a higher total consumption satisfaction of

the society. (This strategy is a must if A < σ+λ; see Huong, Yao and Yen [1, Remark 4.13].)

(b) If the total factor productivity A is enough high and the planning time is relatively

long, then the highest total consumption satisfaction of the society is attained only if the

largest expansion of the production facility is made until a special time.

It is worthy to note that the approach adopted herein has the origin in the preceding

papers of Huong, Yao and Yen [1, 14, 15]. This means that we will combine a result on the

solution existence and an intensive treatment of the system of necessary optimality conditions

given by the maximum principle with some specific properties of the problem to obtain a

comprehensive synthesis of optimal processes. In comparison with Huong, Yao and Yen [1],

where the same problem was solved under the assumption A < σ+λ, to deal with the reserve

inequality, herein we have to use more sophisticated techniques to determine the minimizer

among several candidates for minimizers obtained from the maximum principle.

The organization of the paper is as follows. In Section 2, we recall the model of finite

horizon optimal economic growth considered in Huong, Yao and Yen [1, Section 2], and

formulate our main result. We also give a remark on economic interpretations of the latter.

Section 3 contains three subsections. The first one is devoted to a maximum principle from

Vinter [3], which is our main tool. Subsection 3.2 presents our preliminary analysis of the

application of the maximum principle to the optimal economic growth problem in question.

The main result is proved in Subsection 3.3.

2 Problem Formulation and the Result

By IR (resp., IR+) we denote the set of real numbers (resp., the set of nonnegative real

numbers). The Euclidean norm in the n-dimensional space IRn is denoted by ‖.‖. The

Sobolev space W 1,1([t0, T ], IRn) (see, e.g., Ioffe and Tihomirov [16, p. 21]) is the linear space

of the absolutely continuous functions x : [t0, T ]→ IRn equipped with the norm

‖x‖W 1,1 = ‖x(t0)‖+

∫ T

t0

‖ẋ(t)‖dt.

For systematical expositions of optimal economic growth models, the interested reader

is referred to Takayama [13, Chapter 5], Pierre [17, Chapters 5, 7, 10, and 11], Chiang

and Wainwright [18, Chapter 20], and Acemoglu [10, Chapters 7 and 8]. The problem of

optimal growth of an aggregative economy with all the related economic concepts was briefly
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presented in Huong [2, Subsection 2.1] and recalled in Huong, Yao and Yen [1, Section 2]. It

is as follows:

Maximize I(k, s) :=

∫ T

t0

ω[(1− s(t))φ(k(t))]e−λtdt (2.1)

over k ∈ W 1,1([t0, T ], IR) and measurable functions s : [t0, T ]→ IR satisfying
k̇(t) = s(t)φ(k(t))− σk(t), a.e. t ∈ [t0, T ]

s(t) ∈ [0, 1], a.e. t ∈ [t0, T ]

k(t0) = k0

k(t) ≥ 0, ∀t ∈ [t0, T ],

(2.2)

where φ : IR+ → IR+ and ω : IR+ → IR are given functions, σ > 0, λ ≥ 0, k0 > 0, and

T > t0 ≥ 0 are given as five parameters. The problem (2.1)–(2.2) is denoted by (GP ).

Recall that k(t) and s(t) respectively are the capital-to-labor ratio and the propensity to

save at a time moment t in the planning interval [t0, T ]. The values φ(k), k ≥ 0, of the

per capita production function φ(·) express the outputs per capita. The utility function ω(·)
depends on the variable c, which is the per capita consumption. The integral

∫ T
t0
ω(c(t))e−λtdt,

where λ ≥ 0 is the real interest rate, represents the total amount of the utility gained by

the society on the time period [t0, T ]. Since c(t) = (1 − s(t))φ(k(t)) for all t ≥ 0, the just-

mentioned integral equals to the value I(k, s) defined in (2.1). The parameters σ and k0

in (2.2) respectively stand for the rate of labor force and the initial capital-to-labor ratio.

Note that (GP ) is a finite horizon optimal control problem of the Lagrange type, where

s(·) and k(·) play as the role of control variable and state variable, respectively. Besides, due

to the appearance of the state constraint k(t) ≥ 0 for t ∈ [t0, T ], (GP ) belong to the class of

optimal control problems with state constraints.

For each α, β ∈ (0, 1] and A > 0, let φ(k) = Akα for all k ≥ 0 and ω(c) = cβ for every

c ≥ 0 in (GP ). Then, we have the optimal control problem

Maximize

∫ T

t0

[1− s(t)]βkαβ(t)e−λtdt (2.3)

over k ∈ W 1,1([t0, T ], IR) and measurable functions s : [t0, T ]→ IR satisfying
k̇(t) = Akα(t)s(t)− σk(t), a.e. t ∈ [t0, T ]

s(t) ∈ [0, 1], a.e. t ∈ [t0, T ]

k(t0) = k0

k(t) ≥ 0, ∀ t ∈ [t0, T ]

(2.4)

with α ∈ (0, 1], β ∈ (0, 1], A > 0, σ > 0, λ ≥ 0, k0 > 0, T and t0, where T > t0 ≥ 0, being

given as eight parameters. We will denote the problem in (2.3)–(2.4) by (GP1).
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Thus, apart from the five parameters σ, λ, k0, t0, T in (GP ), in the description of (GP1)

there are three more parameters α, β, and A. Each choice of the pair (α, β) with α and β

either in (0, 1) or equal to 1 yields a typical problem with the production function and the

utility function being either the Cobb–Douglas function or the AK function (see, e.g., [9]

and [13]). Moreover, the production function w.r.t. the per capita production function in

(GP1) is given by F (K,L) = AKαL1−α, K ≥ 0, L ≥ 0 (see, e.g., [2, Section 4]). In the last

formula, the exponent α (resp., 1 − α) refers to the output elasticity of capital (resp., the

output elasticity of labor), which represents the share of the contribution of the capital K

(resp., of the labor L) to the total product F (K,L). Meanwhile, the coefficient A expresses

the total factor productivity1 (TFP). This measure of economic efficiency is calculated by

dividing output by the weighted average of labour and capital input. TFP represents the

increase in total production which is in excess of the increase that results from increase

in inputs and depends on some intangible factors such as technological change, education,

research and development, etc.

It was shown in Huong, Yao and Yen [1] that, if α = β = 1 and the data triple (A, σ, λ)

satisfies a certain strict linear inequality, then (GP1) admits an explicit simple solution.

Theorem 2.1. ([1, Theorem 4.12]) Consider (GP1) with α = β = 1 and suppose that the

positive parameters A, σ, λ satisfy the inequality A < σ+ λ. Then, (GP1) possesses a unique

solution (k̄, s̄), where s̄(t) = 0 for almost every t ∈ [t0, T ] and k̄(t) = k0e
−σ(t−t0) for all

t ∈ [t0, T ].

It follows from Theorem 2.1 that if the total factor productivity A is smaller than the

sum of the rate of labor force σ and the real interest rate λ, then keeping the saving equal 0

is the optimal strategy. In other words, if the value of total factor productivity is relatively

small, then an expansion of the production facility does not lead to a higher total consumption

satisfaction of the society.

In connection with Theorem 2.1, the question “What happens if A > σ + λ?” was asked

in [1]. The last inequality means that the value of total factor productivity is relatively

high. It was conjectured [1, Sect. 4] that the optimal strategy requires to make the maximum

saving until a special time t̄ ∈ (t0, T ), which depends on the data tube (A, σ, λ), then switch

the saving to minimum. The forthcoming theorem, which is the main result in this paper,

shows that the conjecture is just partly true, since the optimal strategy will be depended on

not only the data triple (A, σ, λ) but also the length T − t0 of the planning interval [t0, T ].

Theorem 2.2. Consider the problem (GP1) with α = β = 1 and suppose that the positive

parameters A, σ, λ satisfy the inequality

A > σ + λ. (2.5)

1See, e.g., https://en.wikipedia.org/wiki/Total factor productivity.
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Let

ρ =
1

σ + λ
ln

A

A− (σ + λ)
and t̄ = T − ρ. (2.6)

Then, (GP1) has a unique global solution (k̄, s̄). Moreover, the following assertions hold:

(a) If T − t0 ≤ ρ (i.e., t0 ≥ t̄), then (k̄, s̄) is given by

s̄(t) = 0, a.e. t ∈ [t0, T ], and k̄(t) = k0e
−σ(t−t0), ∀t ∈ [t0, T ].

(b) If T − t0 > ρ (i.e., t0 < t̄), then (k̄, s̄) is given by

s̄(t) =

1, a.e. t ∈ [t0, t̄]

0, a.e. t ∈ (t̄, T ]
and k̄(t) =

k0e
(A−σ)(t−t0), t ∈ [t0, t̄]

k(t̄)e−σ(t−t̄), t ∈ (t̄, T ].

Figure 1: Optimal trajectories k̄(·) of (GP1) corresponding to parameters α = 1, β = 1,

A = 0.4, σ = 0.1, λ = 0.2, k0 = 0.5, T = 8, and t0 varying in [0, T ]

The economic interpretation of Theorem 2.2 is as follows.

Remark 2.1. According to Theorem 2.2, if the total factor productivity A is higher than the

sum of the rate of labor force σ and the real interest rate λ, then optimal strategy depends on

the length of the planning time [t0, T ]. Namely, if the situation T−t0 ≤ ρ occurs, then keeping

the saving equal to 0 is the optimal strategy. In the opposite situation where T − t0 > ρ, the

best strategy is to implement the maximum saving until the special time instance t̄ = T − ρ
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in (t0, T ), where ρ is defined in (2.6), and switch the saving to minimum afterwards. So,

if the total factor productivity A is enough high but the planning time is short, then an

expansion of the production facility does not lead to a higher total consumption satisfaction

of the society. (This strategy is a must if A < σ+λ; see [1, Remark 4.13].) Meanwhile, if the

total factor productivity A is enough high and the planning time is relatively long, then the

highest total consumption satisfaction of the society is attained only if the largest expansion

of the production facility is made until the special time instance t̄.

In the terminology of [2], a global solution (k̄, s̄) of (GP1) is said to be regular if the

propensity to save function s̄(·) only has finitely many discontinuities of first type on [t0, T ].

By Lemma 4.11 in Huong, Yao and Yen [1], if A 6= σ+ λ is fulfilled, then any solution (k̄, s̄)

of (GP1) with α = β = 1 is a regular one. Moreover, the control function s̄ can have at

most one switching point. This result is clearly illustrated by the explicit descriptions of

the solution (k̄, s̄) of (GP1) provided by Theorem 2.1 for the case where A < σ + λ and by

Theorem 2.2 for the case where A > σ+λ. We conclude this section by noting that problem

(GP1) with α = β = 1 has not been solved in the case where A = σ+λ. In this case, it may

happen that the problem can admit some irregular global solutions.

3 Proof of the Result

3.1 A Maximum Principle

As in Vinter [3, p. 321], we consider the following finite horizon optimal control problem of

the Mayer type, denoted by M,

Minimize g(x(t0), x(T )), (3.7)

over x ∈ W 1,1([t0, T ], IRn) and measurable functions u : [t0, T ]→ IRm satisfying
ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [t0, T ]

u(t) ∈ U(t), a.e. t ∈ [t0, T ]

(x(t0), x(T )) ∈ C

h(t, x(t)) ≤ 0, ∀t ∈ [t0, T ],

(3.8)

where [t0, T ] is a given interval, g : IRn × IRn → IR, f : [t0, T ] × IRn × IRm → IRn, and

h : [t0, T ]× IRn → IR are given functions, C ⊂ IRn× IRn is a closed set, and U : [t0, T ] ⇒ IRm

is a set-valued map.

A measurable function u : [t0, T ] → IRm satisfying u(t) ∈ U(t) a.e. t ∈ [t0, T ] is

called a control function. A process (x, u) consists of a control function u and an arc
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x ∈ W 1,1([t0, T ]; IRn) that is a solution to the differential equation in (3.8). A state tra-

jectory x is the first component of some process (x, u). A process (x, u) is called feasible

if the state trajectory satisfies the endpoint constraint (x(t0), x(T )) ∈ C and the state con-

straint h(t, x(t)) ≤ 0 for all t ∈ [t0, T ]. Due to the appearance of the state constraint, the

problem M in (3.7)–(3.8) is said to be an optimal control problem with state constraints.

Definition 3.1. A feasible process (x̄, ū) is called a W 1,1 local minimizer for M if there

exists δ > 0 such that

g(x̄(t0), x̄(T )) ≤ g(x(t0), x(T )) (3.9)

for any feasible process (x, u) satisfying ‖x̄−x‖W 1,1 ≤ δ. If (3.9) holds true for every feasible

process (x, u), then (x̄, ū) is called a global minimizer for M.

Definition 3.2. The Hamiltonian H : [t0, T ]× IRn × IRn × IRm → IR of (3.8) is defined by

H(t, x, p, u) := p.f(t, x, u) =
n∑
i=1

pifi(t, x, u). (3.10)

The partial hybrid subdifferential (see [3, p. 329]) ∂>x h(t, x) of h(t, x) w.r.t. x is given by

∂>x h(t, x) := co
{
ξ : there exists (ti, xi)

h→ (t, x) such that

h(tk, xk) > 0 for all k and ∇xh(tk, xk)→ ξ
}
, (3.11)

where (tk, xk)
h→ (t, x) means that (tk, xk)→ (t, x) and h(tk, xk)→ h(t, x) as k →∞.

In order to introduce the necessary condition for a process (x̄, ū) be a W 1,1 local minimizer

for M, we now present some related materials.

The convex hull of a subset C ⊂ IRn is denoted by coC. The graph of a set-valued map

F : IRn ⇒ IRm is defined by gphF := {(x, y) ∈ IRn × IRm : y ∈ F (x)}. For a given segment

[t0, T ] of the real line, we denote the σ-algebra of its Lebesgue measurable subsets (resp., the

σ-algebra of its Borel measurable subsets) by L (resp., B).

Let Ω ⊂ IRn be a closed set and v̄ ∈ Ω. The Fréchet normal cone to Ω at v̄ is given by

N̂Ω(v̄) =

{
v′ ∈ IRn : lim sup

v
Ω−→v̄

〈v′, v − v̄〉
‖v − v̄‖

≤ 0

}
,

where v
Ω−→ v̄ means v → v̄ with v ∈ Ω. The limiting normal cone to Ω at v̄ is defined by

NΩ(v̄) =
{
v′ ∈ IRn : ∃ sequences vk → v̄, v′k → v′ with v′k ∈ N̂Ω(vk),∀k ∈ IN

}
.

Given an extended real-valued function ϕ : IRn → IR∪ {−∞,+∞}, one defines the epigraph

of ϕ by epiϕ = {(x, µ) ∈ IRn × IR : µ ≥ ϕ(x)}. The limiting subdifferential of ϕ at x̄ ∈ IRn

with |ϕ(x̄)| <∞ is defined by

∂ϕ(x̄) =
{
x∗ ∈ IRn : (x∗,−1) ∈ Nepiϕ

(
(x̄, ϕ(x̄))

)}
.
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If |ϕ(x)| = ∞, then one puts ∂ϕ(x̄) = ∅. The reader is referred to [20, 21, 22] for com-

prehensive treatments of the Fréchet normal cone, the limiting normal cone, the limiting

subdifferential, and the related calculus rules.

To deal with the state constraint h(t, x(t)) ≤ 0 in M, one introduces a multiplier that

is an element in the topological dual C∗([t0, T ]; IR) of the space of continuous functions

C([t0, T ]; IR) with the supremum norm. By the Riesz Representation Theorem (see, e.g.,

[23, Theorem 6, p. 374] and [24, Theorem 1, pp. 113–115]), any bounded linear functional f

on C([t0, T ]; IR) can be uniquely represented in the form f(x) =
∫

[t0,T ]
x(t)dv(t), where v is a

function of bounded variation on [t0, T ] which vanishes at t0 and which are continuous from

the right at every point τ ∈ (t0, T ), and
∫

[t0,T ]
x(t)dv(t) is the Riemann-Stieltjes integral of x

with respect to v (see, e.g., [23, p. 364]). The set of the elements of C∗([t0, T ]; IR) which are

given by nondecreasing functions v is denoted by C⊕(t0, T ). The integrals
∫

[t0,t)
ν(s)dµ(s)

and
∫

[t0,T ]
ν(s)dµ(s) of a Borel measurable function ν in next theorem are understood in the

sense of the Lebesgue-Stieltjes integration [23, p. 364].

Theorem 3.1 (See [3, Theorem 9.3.1]). Let (x̄, ū) be a W 1,1 local minimizer forM. Assume

that for some δ > 0, the following hypotheses are satisfied:

(H1) f(., x, .) is L × Bm measurable, for fixed x. There exists a Borel measurable function

k(., .) : [t0, T ]× IRm → IR such that t 7→ k(t, ū(t)) is integrable and

‖f(t, x, u)− f(t, x′, u)‖ ≤ k(t, u)‖x− x′‖, ∀x, x′ ∈ x̄(t) + δB̄, ∀u ∈ U(t)

for almost every t ∈ [t0, T ];

(H2) gphU is a Borel set in [t0, T ]× IRm;

(H3) g is Lipschitz continuous on the ball (x̄(t0), x̄(T )) + δB̄;

(H4) h is upper semicontinuous and there exists K > 0 such that

‖h(t, x)− h(t, x′)‖ ≤ K‖x− x′‖, ∀x, x′ ∈ x̄(t) + δB̄, ∀t ∈ [t0, T ].

Then there exist p ∈ W 1,1([t0, T ]; IRn), γ ≥ 0, µ ∈ C⊕(t0, T ), and a Borel measurable function

ν : [t0, T ]→ IRn such that (p, µ, γ) 6= (0, 0, 0), and for q(t) := p(t) + η(t) with

η(t) :=

∫
[t0,t)

ν(s)dµ(s), for t ∈ [t0, T ), and η(T ) :=

∫
[t0,T ]

ν(s)dµ(s),

the following holds true:

(i) ν(t) ∈ ∂>x h(t, x̄(t)) µ− a.e.;
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(ii) −ṗ(t) ∈ co ∂xH(t, x̄(t), q(t), ū(t)) a.e.;

(iii) (p(t0),−q(T )) ∈ γ∂g(x̄(t0), x̄(T )) +NC(x̄(t0), x̄(T ));

(iv) H(t, x̄(t), q(t), ū(t)) = maxu∈U(t)H(t, x̄(t), q(t), u) a.e.

3.2 Preliminary Analysis

Consider (GP1) with α = β = 1. To apply Theorem 3.1 for finding optimal processes for

(GP1), we have to interpret (GP1) in the form ofM. For doing so, we set x(t) = (x1(t), x2(t)),

where x1(t) plays the role of k(t) in (2.3)–(2.4) and

x2(t) :=

∫ t

t0

(s(τ)− 1)x1(τ)e−λτdτ, t ∈ [0, T ]. (3.12)

Thus, (GP1) is equivalent to the following problem:

Minimize x2(T ) (3.13)

over x = (x1, x2) ∈ W 1,1([t0, T ], IR2) and measurable functions s : [t0, T ]→ IR satisfying

ẋ1(t) = (As(t)− σ)x1(t), a.e. t ∈ [t0, T ]

ẋ2(t) = (s(t)− 1)x1(t)e−λt, a.e. t ∈ [t0, T ]

s(t) ∈ [0, 1], a.e. t ∈ [t0, T ]

(x(t0), x(T )) ∈ {(k0, 0)} × IR2

x1(t) ≥ 0, ∀t ∈ [t0, T ].

(3.14)

The optimal control problem with state constraints in (3.13)–(3.14) is denoted by (GP1a).

To see (GP1a) in the form ofM, we choose n = m = 1, C = {(k0, 0)}× IR2, U(t) = [0, 1]

for all t ∈ [t0, T ], g(x, y) = y2 for all x = (x1, x2) ∈ IR2, y = (y1, y2) ∈ IR2, h(t, x) = −x1 for

all (t, x) ∈ [t0, T ]× IR2, and

f(t, x, s) =
(
(As− σ)x1, (s− 1)x1e

−λt), ∀(t, x, s) ∈ [t0, T ]× IR2 × IR. (3.15)

In accordance with (3.10) and (3.15), the Hamiltonian of (GP1a) is given by

H(t, x, p, s) = (As− σ)x1p1 + (s− 1)x1e
−λtp2, ∀(t, x, p, s) ∈ [t0, T ]× IR2 × IR2 × IR.

Clearly, H is continuously differentiable in x and

∂xH(t, x, p, u) =
{(

(As− σ)p1 + (s− 1)e−λtp2

)}
, ∀(t, x, p, s) ∈ [t0, T ]× IR2 × IR2 × IR.
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By (3.11), the partial hybrid subdifferential of h at (t, x) ∈ [t0, T ]× IR2 is given by

∂>x h(t, x) =

∅, if x1 > 0

{(−1, 0)}, if x1 ≤ 0.

The following lemma is a known result in Huong [1]. It descibes the relationships between

a control function s(·) and the corresponding trajectory x(·) of (3.14).

Lemma 3.1. ([1, Lemma 4.1]) For each measurable function s : [t0, T ]→ IR with s(t) ∈ [0, 1],

there exists a unique trajectory x = (x1, x2) ∈ W 1,1([t0, T ], IR2) such that (x, s) is a feasible

process of (3.14). Moreover, for every τ ∈ [t0, T ], one has

x1(t) = x1(τ)e
∫ t
τ (As(z)−σ)dz, ∀t ∈ [t0, T ].

In particular, x1(t) > 0 for all t ∈ [t0, T ].

The next two remarks, which were mentioned in [1], are aimed at clarifying the tool used

to solve (GP1a).

Remark 3.3. By Lemma 3.1, any process satisfying the first four conditions in (3.14) au-

tomatically satisfies the state constraint x1(t) ≥ 0 for all t in [t0, T ]. Thus, the latter can

be omitted in the problem formulation. This means that, for the case α = 1, instead of

the maximum principle in Theorem 3.1 one can apply the maximum principle for optimal

control problems without state constraints in [3, Theorem 6.2.1]. Note that both theorems

yield the same necessary optimality conditions (see, e.g., [14, Subsection 3.2]).

Remark 3.4. For the case α ∈ (0, 1), one cannot claim that any process satisfying the

first four conditions in (3.14) automatically satisfies the state constraint x1(t) ≥ 0 for all

t ∈ [t0, T ]. Thus, we have to rely on Theorem 3.1. Referring to the classification of optimal

economic growth models given in [2, Sect. 4], we can say that models of the types “nonlinear-

linear” and “nonlinear-nonlinear” may require the use of Theorem 3.1. For this reason, we

prefer to present the latter in this paper to prepare a suitable framework for dealing with

(GP1a) under different sets of assumptions.

Let (x̄, s̄) be a W 1,1 local minimizer for (GP1a). As it was shown in [1], the hypotheses

(H1)–(H4) in Theorem 3.1 are satisfied. By that theorem, we can find p ∈ W 1,1([t0, T ]; IR2),

γ ≥ 0, µ ∈ C⊕(t0, T ), and a Borel measurable function ν : [t0, T ]→ IR2 such that (p, µ, γ) 6=
(0, 0, 0), and for q(t) := p(t) + η(t) with

η(t) :=

∫
[t0,t)

ν(τ)dµ(τ), for t ∈ [t0, T ), and η(T ) :=

∫
[t0,T ]

ν(τ)dµ(τ), (3.16)
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conditions (i)–(iv) in Theorem 3.1 hold true.

As x̄1(t) > 0 for all t ∈ [t0, T ] by Lemma 3.1, condition (i) implies that µ([t0, T ]) = 0,

i.e., µ = 0. So, we have η(t) = 0 for all t ∈ [t0, T ]. Thus, the relation q(t) = p(t) + η(t)

allows us to have q(t) = p(t) for every t ∈ [t0, T ]. Analyzing conditions (ii)–(iv) with p(t)

playing the role of q(t) therein, we get p2(t) = −γ for every t ∈ [t0, T ], p1(T ) = 0,

ṗ1(t) = −(As̄(t)− σ)p1(t) + γ(s̄(t)− 1)e−λt, a.e. t ∈ [t0, T ] (3.17)

and
(
Ap1(t)−γe−λt

)
x̄1(t)s̄(t) = maxs∈[0,1]

{(
Ap1(t)− γe−λt

)
x̄1(t)s

}
for a.e. t ∈ [t0, T ]. Since

x̄1(t) > 0 for all t ∈ [t0, T ], it follows from the last relation that(
Ap1(t)− γe−λt

)
s̄(t) = max

s∈[0,1]

{(
Ap1(t)− γe−λt

)
s
}
, a.e. t ∈ [t0, T ]. (3.18)

Describing the adjoint trajectory p corresponding to (x̄, s̄) in (3.17), the next lemma is an

analogue of Lemma 3.1.

Lemma 3.2. ([1, Lemma 4.2]) The Cauchy problem defined by the differential equation

(3.17) and the condition that p1(T ) = 0 possesses a unique solution p1(·) : [t0, T ]→ IR,

p1(t) = −
∫ T

t

c(z)Ω̄(z, t)dz, ∀t ∈ [t0, T ], (3.19)

where Ω̄(t, τ) is defined by

Ω̄(t, τ) := e
∫ t
τ (As̄(z)−σ)dz, ∀t, τ ∈ [t0, T ], (3.20)

and

c(t) := γ(s̄(t)− 1)e−λt, ∀t ∈ [t0, T ]. (3.21)

Looking back to the maximum principle in Theorem 3.1, we see that the objective function

g is taken into a full account in condition (iii) only if γ > 0. In such a situation, the maximum

principle is said to be normal. The reader is referred to [25, 26, 27] for investigations on

the normality of maximum principles for optimal control problems. For the problem (GP1a),

thanks to formulas (3.19)–(3.21) and the property that (p, µ, γ) 6= (0, 0, 0), in [1] it was

shown that the situation γ = 0 can be excluded.

Lemma 3.3. ([1, Lemma 4.4]) One must have γ > 0.

In accordance with (3.18), to define the control value s̄(t), it is important to know the

sign of the real-valued function

ψ(t) := Ap1(t)− γe−λt, t ∈ [t0, T ]. (3.22)
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By (3.18), one has s̄(t) = 1 when ψ(t) > 0 and s̄(t) = 0 when ψ(t) < 0. Hence s̄(·) is a

constant function on each segment where ψ(·) has a fixed sign. The following lemma gives

formulas for x̄1(·) and p1(·) on such a segment. The proof of this lemma (see [1]) was based

on Lemmas 3.1 and 3.2.

Lemma 3.4. ([1, Lemma 4.3]) Let [t1, t2] ⊂ [t0, T ] and τ ∈ [t1, t2] be given arbitrarily.

(a) If s̄(t) = 1 for a.e. t ∈ [t1, t2], then

x̄1(t) = x̄1(τ)e(A−σ)(t−τ), ∀t ∈ [t1, t2]

and

p1(t) = p1(τ)e−(A−σ)(t−τ), ∀t ∈ [t1, t2].

(b) If s̄(t) = 0 for a.e. t ∈ [t1, t2], then

x̄1(t) = x̄1(τ)e−σ(t−τ), ∀t ∈ [t1, t2]

and

p1(t) = p1(τ)eσ(t−τ) +
γ

σ + λ
eσt
[
e−(σ+λ)t − e−(σ+λ)τ

]
, ∀t ∈ [t1, t2].

For any t ∈ [t0, T ], if ψ(t) = 0, then (3.18) holds automatically no matter what s̄(t) is.

Thus, by (3.18) we can assert nothing about the control function s̄(·) at this t. Motivated

by this observation, we consider the set

Γ = {t ∈ [t0, T ] : ψ(t) = 0}. (3.23)

Since the functions p1(·) is absolutely continuous on [t0, T ], so is ψ(·). It follows that Γ is a

compact set. Besides, as p1(T ) = 0 and γ > 0, the equality ψ(T ) = Ap1(T )− γe−λT implies

that ψ(T ) < 0. Thus, T /∈ Γ.

We are now in a position to prove Theorem 2.2, the main result of this paper.

3.3 Proof of Theorem 2.2

Consider (GP1) with α = β = 1. Suppose that the positive parameters A, σ, λ satisfy the

inequality (2.5).

Let (x̄, s̄) be a W 1,1 local minimizer of (GP1a). As it has been explained in the previous

subsection, by Theorem 3.1 we can find p ∈ W 1,1([t0, T ]; IR2), γ ≥ 0, µ ∈ C⊕(t0, T ), and a

Borel measurable function ν : [t0, T ] → IR2 such that (p, µ, γ) 6= (0, 0, 0) and the conditions

(i)–(iv) in Theorem 3.1 hold true for q(t) := p(t) + η(t) with η(t) being given in (3.16) for all

t ∈ [t0, T ]. In what follows, we will keep all the notations of Subsection 3.2. In particular,

ψ(t) is given by (3.22) and the set Γ is defined by (3.23). Recall that T /∈ Γ as ψ(T ) < 0.
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First, consider the situation where Γ = ∅. Then we have ψ(t) < 0 on the whole seg-

ment [t0, T ]. Indeed, otherwise we would find a point τ ∈ [t0, T ) such that ψ(τ) > 0, as

ψ(T ) < 0. Since ψ(τ)ψ(T ) < 0, by the continuity of ψ(·) on [t0, T ] we can assert that

Γ ∩ (τ, T ) 6= ∅. This contradicts our supposition that Γ = ∅. Now, as ψ(t) < 0 for all

t ∈ [t0, T ], from (3.18) we have s̄(t) = 0 for a.e. t ∈ [t0, T ]. Applying Lemma 3.4 for t1 = t0,

t2 = T , and τ = t0, we get x̄1(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ].

Now, consider the situation where Γ 6= ∅. According to [1, Lemma 4.11], the set Γ

contains at most one element when the data triple (A, σ, λ) satisfies the inequality A 6= σ+λ.

Since (2.5) implies the latter inequality and Γ 6= ∅, we can assert that Γ is a singleton, say,

Γ = {t∗}. By the continuity of ψ(·), and the fact that ψ(T ) < 0, we have ψ(t) < 0 for

every t ∈ (t∗, T ]. This and (3.18) imply that s̄(t) = 0 for almost every t ∈ [t∗, T ]. Invoking

Lemma 3.4 for t1 = t∗, t2 = T , and τ = t∗, we obtain x̄1(t) = x̄1(t∗)e−σ(t−t∗) for all t ∈ [t∗, T ].

If t0 = t∗, then we get s̄(t) = 0 for a.e. t ∈ [t0, T ] and x̄1(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ]. If

t0 < t∗, then either ψ(t0) < 0 or ψ(t0) > 0.

• If ψ(t0) < 0, then ψ(t) < 0 for all t ∈ [t0, t
∗) by the continuity of ψ(·). So, by (3.18) one

has s̄(t) = 0 for a.e. t ∈ [t0, t
∗]; therefore, s̄(t) = 0 for a.e. t ∈ [t0, T ]. Applying Lemma 3.4

for t1 = t0, t2 = T , and τ = t0, we get x̄1(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ].

• If ψ(t0) > 0, then ψ(t) > 0 for all t ∈ [t0, t
∗) also by the continuity of ψ(·). Thus, from

(3.18) we have s̄(t) = 1 for a.e. t ∈ [t0, t
∗]. Applying Lemma 3.4 for t1 = t0, t2 = t∗, and

τ = t0, we get x̄1(t) = k0e
(A−σ)(t−t0) for all t ∈ [t0, t

∗]. Combining this with the obtained

formulas for x̄1(·) and s̄(·) on [t∗, T ], we get

s̄(t) =

1, a.e. t ∈ [t0, t
∗]

0, a.e. t ∈ (t∗, T ]
and x̄1(t) =

k0e
(A−σ)(t−t0), t ∈ [t0, t

∗]

x̄1(t∗)e−σ(t−t∗), t ∈ (t∗, T ].

Now, our task is to find a formula for computing the value of t∗. To that aim, we fix a

value τ ∈ [t0, T ] and consider the control function sτ (·) defined by

sτ (t) =

1, t ∈ [t0, τ ]

0, t ∈ (τ, T ].
(3.24)

Denote the unique trajectory of (GP1a) corresponding to sτ (·) (see Lemma 3.1) by xτ (·).
Then one has

xτ1(t) =

k0e
(A−σ)(t−t0), t ∈ [t0, τ ]

xτ1(τ)e−σ(t−τ), t ∈ (τ, T ].
(3.25)

From (3.12) and (3.24), we have xτ2(T ) = −
∫ T
τ
xτ1(t)e−λtdt Thus, by using (3.25), we get

xτ2(T ) =
k0

σ + λ
e(σ−A)t0eAτ

[
e−(σ+λ)T − e−(σ+λ)τ

]
. (3.26)
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Clearly, (xt
∗
, st

∗
) = (x̄, s̄). Thus, applying (3.26) with τ = t∗ one has

x̄2(T ) =
k0

σ + λ
e(σ−A)t0eAt

∗[
e−(σ+λ)T − e−(σ+λ)t∗

]
. (3.27)

It follows from (3.26) and (3.27) that

x̄2(T )− xτ2(T ) =
k0

σ + λ
e(σ−A)t0 ×

{
[eAt

∗
e−(σ+λ)T − e(A−σ−λ)t∗ ] − [eAτe−(σ+λ)T − e(A−σ−λ)τ ]

}
.

So, setting

ϕ(t) := [eAt
∗
e−(σ+λ)T − e(A−σ−λ)t∗ ]− [eAte−(σ+λ)T − e(A−σ−λ)t], t ∈ IR, (3.28)

we have

x̄2(T )− xτ2(T ) =
k0

σ + λ
e(σ−A)t0 × ϕ(τ). (3.29)

Observe that ϕ(t∗) = 0 and ϕ(·) is differentiable on IR. In addition, we have

ϕ̇(t) = −AeAte−(σ+λ)T + (A− σ − λ)e(A−σ−λ)t, ∀t ∈ IR. (3.30)

As σ+ λ > 0 and A− σ− λ > 0 by (2.5), the number ρ in (2.6) is well-defined and positive.

Since t̄ = T − ρ, one has t̄ < T . By (3.30), ϕ̇(t) = 0 if and only if t = t̄, ϕ̇(t) < 0 if and only

if t > t̄, and ϕ̇(t) > 0 if and only if t < t̄. One must have t∗ = t̄. Indeed, if this is false, then

either t∗ < t̄ or t∗ > t̄.

If t∗ < t̄, then we have ϕ̇(t) > 0 for all t ∈ [t∗, t̄), which means that the function ϕ(·)
is strictly increasing on [t∗, t̄). So, for any τ ∈ (t∗, t̄), one has ϕ(τ) > ϕ(t∗) = 0. From the

latter and (3.29), one gets x̄2(T ) > xτ2(T ). This contradicts the assumption that (x̄, ū) is a

W 1,1 local minimizer of (GP1a), because τ can be taken as close to t∗ as one wishes.

If t∗ > t̄, then we have ϕ̇(t) < 0 for all t ∈ (t̄, t∗], meaning that ϕ(·) is strictly decreasing

on (t̄, t∗]. So, for any τ ∈ (t̄, t∗), one has ϕ(τ) > ϕ(t∗) = 0. Thus, from (3.29), one obtains

x̄2(T ) > xτ2(T ), a contradiction to the fact that (x̄, ū) is a W 1,1 local minimizer of (GP1a) as

τ ∈ (t̄, t∗) can be chosen arbitrarily.

We have proved that t̄ = t∗. Thus, since t∗ ∈ (t0, T ), one has t̄ ∈ (t0, T ). The latter can

be rewritten equivalently as T − t0 > ρ.

From the above analysis we can infer that (GP1a) may have at most two candidates for

W 1,1 local minimizers. Using the above definition of the process (xτ , sτ ) corresponding to sτ

given in (3.24) for τ ∈ [t0, T ], we see that the first candidate for the W 1,1 local minimizers of

(GP1a) is (xt0 , st0) and the second one is (xt̄, st̄), where t̄ = T − ρ. Since the second one may

exist only if T − t0 > ρ we can assert that if T − t0 ≤ ρ, then the unique candidate for W 1,1

local minimizers of (GP1a) is (xt0 , st0). Now, in the case where T − t0 > ρ, we will prove

that the unique candidate for W 1,1 local minimizers of (GP1a) is (xt̄, st̄). To do so, we claim
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that (xt0 , st0) is not a W 1,1 local minimizer of (GP1a). Indeed, for any δ > 0, one can find

some t1 ∈ (t0, t̄) such that the feasible process (xt1 , st1) has the property ‖xt0 −xt1‖W 1,1 ≤ δ.

Since T − t0 > ρ, one has t0 < t̄. Thus, the function ϕ(·) defined by (3.28) has ϕ̇(t) > 0

for all t ∈ (−∞, t̄). So, ϕ(t) is strictly increasing on (−∞, t̄); in particular, ϕ(t0) < ϕ(t1).

Applying (3.29) for τ := t0 and τ = t1 and recalling that (xt̄, st̄) = (x̄, s̄) in that formula, we

have

xt̄2(T )− xt02 (T ) =
k0

σ + λ
e(σ−A)t0 × ϕ(t0) and xt̄2(T )− xt12 (T ) =

k0

σ + λ
e(σ−A)t0 × ϕ(t1).

Thus, xt02 (T )−xt12 (T ) =
k0

σ + λ
e(σ−A)t0×[ϕ(t1)−ϕ(t0)]. This and the inequality ϕ(t0) < ϕ(t1)

yield xt02 (T ) > xt12 (T ). As (xt1 , st1) is a feasible process of (GP1a) with ‖xt0 − xt1‖W 1,1 ≤ δ,

the last inequality yields that is not a W 1,1 local minimizer of (GP1a). The claim is proved.

We have just show that, the set of W 1,1 local minimizers of (GP1a) contains at most one

element (x̄, s̄). Moreover, if T − t0 ≤ ρ, then (x̄, s̄) = (xt0 , st0); and if T − t0 > ρ, then

(x̄, s̄) = (xt̄, st̄). Thus, the set of global minimizers of (GP1a) also contains at most such the

element (x̄, s̄). By the equivalence between (GP1a) and (GP1) and by the fact that (GP1)

has a global solution (see Theorem 4.1 in [2] or Theorem B in the Appendix), we get the

claims (a) and (b) in Theorem 2.2.
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Appendix: Solution Existence of (GP1)

In [2, Theorem 4.1], exploiting the concavity of both the per capital production function

and the utility function, the fact that (GP1) has a solution was derived from the solution

existence theorem for (GP ) as a corollary. Since the present paper focuses on the character-

ization of the solution, rather than on the solution existence, we will now provide a direct

proof for the solution existence of (GP1) to make the paper self-contained.

To recall a solution existence theorem for optimal control problems of the Lagrange type,

which is a special version of the one for problems of the Bolza type in [19], suppose that

A ⊂ IR× IRn is a subset and U : A⇒ IRm is a set-valued map defined on A. Let

M := {(t, x, u) ∈ IR× IRn × IRm : (t, x) ∈ A, u ∈ U(t, x)},

f0(t, x, u) and f(t, x, u) = (f1, f2, . . . , fn) be functions defined on M . Let there be given an

interval [t0, T ] ⊂ IR and a point x0 ∈ IRn. By L we denote the following optimal control
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problem:

Minimize J(x, u) :=

∫ T

t0

f0(t, x(t), u(t))dt

over pairs (x, u) such that x(·) : [t0, T ] → IRn is absolutely continuous, u(·) : [t0, T ] → IRm

is measurable, f0(., x(·), u(·)) : [t0, T ] → IR is Lebesgue integrable, and
ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [t0, T ]

u(t) ∈ U(t, x(t)), a.e. t ∈ [t0, T ]

x(t0 = x0

(t, x(t)) ∈ A, ∀t ∈ [t0, T ].

Such a pair (x, u) is called a feasible process. The set of all the feasible processes for L
is denoted by Ω. A feasible process (x̄, ū) is said to be a global solution for L if one has

J(x̄, ū) ≤ J(x, u) for any feasible process (x, u).

Let A0 :=
{
t : ∃x ∈ Rn s.t. (t, x) ∈ A

}
. Set A(t) =

{
x ∈ IRn : (t, x) ∈ A

}
for t ∈ A0,

and Q̃(t, x) =
{

(z0, z) ∈ IRn+1 : z0 ≥ f0(t, x, u), z = f(t, x, u) for some u ∈ U(t, x)
}

for

(t, x) ∈ A.

Theorem A (Filippov’s Theorem; see [19, Theorem 9.3.i, p. 317, and Section 9.5]) Suppose

that Ω is nonempty, f0 and f is continuous on M and, for almost every t ∈ [t0, T ], the

sets Q̃(t, x), x ∈ A(t), are convex. Moreover, assume that A is closed and contained in

[t0, T ]× IRn and the following conditions are fulfilled:

(a) For any ε ≥ 0, the set Mε := {(t, x, u) ∈M : ‖x‖ ≤ ε} is compact;

(b) There exists c ≥ 0 such that ‖f(t, x, u)‖ ≤ c(‖x‖+ 1) for all (t, x, u) ∈M .

Then, L has a global solution.

Theorem B (GP1) has a global solution.

Proof. To apply Theorem A, we have to interpret (GP1) in the form of L. For doing so, we

let the variable k (resp., the variable s) play the role of the phase variable x in L (resp., the

control variable u in L). Then, (GP1) has the form of L with n = m = 1, A = [t0, T ]× IR+,

U(t, k) = [0, 1] for all (t, k) ∈ A, M = [t0, T ]×IR+× [0, 1], f0(t, k, s) = −[1−s(t)]βkαβ(t)e−λt,

and f(t, k, s) = Akαs− σk for all (t, k, s) ∈M .

It is not hard to see that the pair (k, s) with s(t) = 0 and k(t) = k0e
−σ(t−t0) for all

t ∈ [t0, T ] is a feasible process for (GP ). Thus, the set Ω is nonempty. The continuity of f0

and f are continuous on M are obvious. Besides, by the formula for A, one has A0 = [t0, T ]

and A(t) = IR+ for all t ∈ A0. In addition, it follows from the formulas for f0, f and U

that Q̃(t, k) =
{

(z0, z) ∈ IR2 : ∃s ∈ [0, 1] s.t. z0 ≥ −[1 − s]βkαβe−λt, z = Akαs − σk
}
, for
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any (t, k) ∈ A. Let us show that, for any t ∈ [t0, T ] and k ∈ A(t), the set Q̃(t, k) is convex.

Indeed, given any (z0
1 , z1), (z0

2 , z2) ∈ Q̃(t, k) and µ ∈ [0, 1], one can find s1, s2 ∈ [0, 1] such

that z0
1 ≥ −[1 − s1]βkαβe−λt, z1 = Akαs2 − σk, z0

2 ≥ −[1 − s2]βkαβe−λt, z2 = Akαs2 − σk.

Therefore, it holds that

µz0
1 + (1− µ)z0

2 ≥ −µ[1− s1]βkαβe−λt − (1− µ)[1− s2]βkαβe−λt (1)

and

µz1 + (1− µ)z2 = µ[Akαs2 − σk] + (1− µ)[Akαs2 − σk]. (2)

Setting sµ = µs1 + (1− µ)s2, one has sµ ∈ [0, 1] and it follows from (2) that

µz1 + (1− µ)z2 = Akαsµ − σk. (3)

As β ∈ (0, 1], the function s 7→ −(1− s)β is convex on [0, 1]. So,

−µ(1− s1)β − (1− µ)(1− s2)β ≥ −(1− sµ)β.

Hence, by (1) we obtain µz0
1 +(1−µ)z0

2 ≥ −(1−sµ)βkαβe−λt, which together with (3) implies

that µ(z0
1 , z1) + (1− µ)(z0

2 , z2) ∈ Q̃(t, k).

Now, since A = [t0, T ] × IR+ is closed, it remains to check the conditions (a) and (b) in

Theorem B. For any ε ≥ 0, the set Mε is compact because

Mε = {(t, k, s) ∈ [t0, T ]× IR+ × [0, 1] : |k| ≤ ε} = [t0, T ]× [0, ε]× [0, 1].

So, condition (a) is satisfied. By the formula for M and f , condition (b) is satisfied if there

exists a constant c > 0 such that

|Askα − σk| ≤ c(k + 1), ∀k ≥ 0, s ∈ [0, 1]. (4)

Fix any k ≥ 0 and s ∈ [0, 1]. We have

|Askα − σk| ≤ Askα + σk < Akα + σk. (5)

Besides, as α ∈ (0, 1], the function k 7→ y(k) := Akα + σk is concave on IR+ and differential

on IR+ \{0}. So, y(k) ≤ ẏ(1)(k−1)+y(1). Equivalently, Akα+σk ≤ (A+σ)(k−1)+A+σ.

Thus, with c := A+ σ, the last inequality and (5) imply (4). Condition (b) is verified.
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[4] Ramsey FP. A mathematical theory of saving. Econ. J. 1928; l38: 543–559.

[5] Harrod RF. An essay in dynamic theory. The Economic Journal 1939; 49: 14–33.

[6] Domar ED. Capital expansion, rate of growth, and employment. Econometrica 1946; 14:

137–147.

[7] Solow RM. A contribution to the theory of economic growth. Quart. J. Econom. 1956;

70: 65–94.

[8] Swan TW. Economic growth and capital accumulation. Economic Record 1956; 32: 334–

361.

[9] Barro RJ, Sala-i-Martin X. Economic Growth. MIT Press; 2004.

[10] Acemoglu D. Introduction to Modern Economic Growth. Princeton University Press;

2009.

[11] Cass D. Optimum growth in an aggregative model of capital accumulation. Review of

Economic Studies 1965; 32: 233–240.

[12] Koopmans T.C. On the concept of optimal economic growth. In The Econometric Ap-

proach to Development Planning. Amsterdam: North-Holland; 1965; pp. 225–295.

[13] Takayama A. Mathematical Economics. Illinois: The Dryden Press, Hinsdale; 1974.

[14] Huong VT, Yao JC, Yen ND. Analyzing a maximum principle for finite horizon state

constrained problems via parametric examples. Part 1: Unilateral state constraints. J.

Nonlinear Convex Anal. 2020; 21: 157–182.

[15] Huong VT, Yao JC, Yen ND. Analyzing a maximum principle for finite horizon state

constrained problems via parametric examples. Part 2: Bilateral state constraints. Preprint

2019. (Submitted)

[16] Ioffe AD, Tihomirov VM. Theory of Extremal Problems. Amsterdam: North-Holland

Publishing Company; 1979.

[17] Pierre NVT. Introductory Optimization Dynamics. Optimal Control with Economics

and Management Science Applications. Berlin: Springer-Verlag; 1984.

Page 19 of 20

URL: http://mc.manuscriptcentral.com/gapa

Applicable Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

20

[18] Chiang AC, Wainwright K. Fundamental Methods of Mathematical Economics.

McGraw-Hill; 2005.

[19] Cesari L. Optimization Theory and Applications. New York: Springer-Verlag; 1983.

[20] Mordukhovich BS. Variational Analysis and Generalized Differentiation. Vol. I: Basic

Theory. New York: Springer; 2006.

[21] Mordukhovich BS. Variational Analysis and Generalized Differentiation. Vol. II: Appli-

cations. New York: Springer; 2006.

[22] Mordukhovich BS. Variational Analysis and Applications. Berlin, Switzerland: Springer;

2018.

[23] Kolmogorov AN, Fomin SV. Introductory Real Analysis. New York: Dovers Publica-

tions, Inc.; 1970.

[24] Luenberger DG. Optimization by Vector Space Methods. New York: John Wiley &

Sons; 1969.

[25] Ferreira MMA., Vinter RB. When is the maximum principle for state constrained prob-

lems nondegenerate?. J. Math. Anal. Appl. 1994; 187: 438–467.

[26] Frankowska H. Normality of the maximum principle for absolutely continuous solutions

to Bolza problems under state constraints. Control Cybernet. 2009; 38: 1327–1340.

[27] Fontes FACC, Frankowska H. Normality and nondegeneracy for optimal control prob-

lems with state constraints. J. Optim. Theory Appl. 2015; 166: 115–136.

Page 20 of 20

URL: http://mc.manuscriptcentral.com/gapa

Applicable Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


