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orthogonal hull’s extreme points. As a result, an efficient algorithm, based
on the idea of Graham’s scan algorithm, for finding the smallest connected
orthogonal convex hull of a finite planar point set is presented. We also show
that the lower bound of such algorithms is O(nlogn). Some numerical results
for finding the smallest connected orthogonal convex hull of such a set are
given.
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1 Introduction

The computation of the convex hull of a finite planar point set has been stud-
ied extensively. It is natural to relate convex hulls to orthogonal convex hulls.
Orthogonal convexity is also known as rectilinear, or (x,y) convexity. It has
found applications in several research fields, including illumination [1], polyhe-
dron reconstruction [7], geometric search [18], and VLSI circuit layout design
[19], digital images processing [16]. The notation of orthogonal convexity has
been widely studied since early eighties [20] and some of its optimization prop-
erties are given in [8]. However, unlike the classical convex hulls, finding the
orthogonal convex hull of a finite planar point set is fraught with difficulties.
An orthogonal convex hull of a finite planar point set may be disconneted.
Unfornately the connected orthogonal convex hulls of a finite planar point set
might be not unique, even countless. There exist several algorithms to find the
connected orthogonal convex hulls of a finite planar point set [10], [12], [13],
and [14]. In previous works, the definition of orthogonal convex set was used
to find a connected orthogonal convex hull of a finite planar point set, and
no numerical result has been shown. The first question is “what the explicite
form of a connected orthogonal convex hull is?”. To answer this question, first,
we consider some assumption when the smallest connected orthogonal covnex
hull of a finite planar point set is unique. Secondly, we introduce the concept
of extreme points of the smallest connected orthogonal convex hull of a finite
planar point set, and show that this hull of a finite planar point set is to-
tally determined by its extreme points and these points belong to the given
finite planar point set. There arises the second question “How to detect these
extreme points from the given finite planar point set?”

Graham [9] devised a convex hull algorithm depending on an initial or-
dering of the given finite planar point set. The initial point with the orther
points in this order actually forms a star-convex set. Based on this shape, they
constructed Graham’s scan algorithm. Some advantages of Graham’s convex
hull algorithm can be seen in [3]. In case of connected orthogonal hulls, if we
have a reasonably ordered points, we then can scan these ordered points to
detect extreme points of the connected orthogonal hull from these points. As a
result, an efficient algorithm to find the smallest connected orthogonal convex
hull of a finite planar point set which is based on the idea of Graham’s scan
algorithm [9] will be presented in this paper. As can been seen later in this
paper, our new algorithm takes only O(nlogn) time (Theorem 1).

In Sections 2 and 3, we detect in what circumstances, there exists the
smallest connected orthogonal convex hull of a planar points set (Propositions
2 - 3). Following the uniqueness of the smallest connected orthogonal convex
hull, we provide the construction of the hull which is an (x,y)-orthogonal
polygon (Proposition 5 and Corollary 2), and its extreme vertices belong to
the given points (Proposition 6). We present a procedure to determine if a
given finite planar point set has the smallest connected orthogonal convex hull.
Section 4 contains the main algorithm, which is based on the idea of Graham’s
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scan algorithm, for finding the smallest connected orthogonal convex hull of
a finite planar point set (Algorithm 1) and it states that the lower bound of
such algorithm is O(nlogn) (Proposition 8). Some numerical results show the
connected orthogonal convex hulls (Table 1).

2 Preliminaries

Let be given a normed space (X, ||.||). For u,v € X, denote [u,v] := {(1 — XN)u+
Av 0 < A< 1} A path in X is a continuous mapping « from an interval
[to,t1] C R to X. We say that v joins the point v(¢o) to the point (¢1). The
length of 7 : [to,t1] — X is the quantity length(y) = sup, Zle lv(riz1) —
~(7;)||, where the supremum is taken over the set of partitions to = 79 <
T < -+ < 1 = t1 of [to,t1]. We assume that all paths in this paper have
finite length. We have length(y) > ||v(to) — v(t1)]] and equality holds only if
V([to, t1]) = [y (to), v (t1)]-

Most of definitions and results above can be found in [15]. By abuse of
notation, sometimes we also call the image ([to,¢1]) the path v : [to, 1] — X.
For practical purposes, X is usually chosen to be R%2. We denote by z,, and v,,,
respectively the z-coordinate and y-coordinate, respectively of a point u € R2.

3 Orthogonal convex sets and their properties

Definition 1 ([20]) A set K C R? is said to be orthogonal convez if its
intersection with any horizontal or vertical line is convex.

In some previous papers (see [10] and [20]), a slightly different definition
of orthogonal convexity were given. Here, we use the term “convex” to cover
line segments with or without its endpoints. Observe that any convex set is
orthogonal convex as seen in Figure 1 (a), but the vice versa may be not true
as seen in Figure 1 (b).

a) b) °)

Fig. 1 a) and b) are two orthogonal convex sets and c¢) is not an orthogonal convex set.
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K is said to be connected orthogonal convex if it is orthogonal convex and
connected.

Proposition 1 Let K C R%. Then, K is connected orthogonal convezx iff for
all a,b € K, there exists a shortest path SP(a,b) C K joining a and b with Ly
norm, and [(SP(a,b)) = ||a — b1, where Ly norm is determined by ||u — vl =
[Ty, — x| + [Yyu — Yo, for u= (zy,yu),v = (Tv,y»). In addition, SP(a,b) is an
insreasingly monotone path (i.e., for u,v € SP(a,b), (x4 — Tv)(Yu — y») > 0).

The proof is given in the Appendix. It is obvious that the intersection of any
family (finite or infinite) of orthogonal convex sets is orthogonal convex. An
orthogonal convex hull [12] of a set K C R? is the smallest orthogonal convex
set which contains K. Thus, the orthogonal convex hull of A is the intersection
of all orthogonal convex sets containing K and therefore, the orthogonal convex
hull of a set is unique. But it may be not connected.

Definition 2 ([14]) A connected orthogonal convex hull of K, (co-convex hull,
for brevity) is a smallest connected orthogonal convex set containing K.

In Figure 2 we display a set of three distinct points in the plane. Observe
that the orthogonal convex set of the set is themself, and it is disconnected
as in Figure 2 (a). The connected orthogonal convex hulls of the set are not
unique, as in Figure 2 (b, c).

a) b) <)

Fig. 2 a) the set of three points in the plane and its orthogonal convex hull consists of
these points; b) and c¢) The union of polylines is a connected orthogonal convex hull of these
points.

We define a line to be rectilinear if the line is parallel to either z-axe or
y-axe. A half line or a line segment are rectilinear if the lines on which they
lie are rectilinear.

Let a # b be two given points in the plane. We define 1(a, b) (2, # b, Yo #
yp) through a, b to be union of two rectilinear half lines having the same starting
point. If x, = xpory, = yp then 1(a,b) is the line through a and b. The set
1(a, b) is called the orthogonal line through a and b.

Thus, an orthogonal line 1(a,b), (z, # b, Ya 7# y») Separates the plane
into two regions, as shown in Figure 3. The quadrant region together with the
orthogonal line 1(a, b) will be called a quadrant determined by the orthogonal
line. In Figure 3, the quadrant regions are shaded.
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a) b)

Fig. 3 In two cases a) and b), orthogonal lines are through the points a and b with z, # z}
and yq # yp. The quadrants of these orthogonal lines are shadow regions.

Definition 3 Given a set K C R%. An I(a,b) is an orthogonal supporting line
(O-support, for brevity) of a set K (a and b might not belong to K) if the
intersection of 1(a,b) with K is non-empty and either all points of K are not
on the quadrant of 1(a, b)(x, # b, Ya 7 Y»), or all points of K are on one open
half plane which is determined by the line 1(a,b)(x, = xp,0r Yo = yp)-

Two O-supports 1(a,b) and (¢, d) of a set K is said to be opposite if their
half lines meet in exactly two points. Such O-supports are indicated in Figure
4.

We denote by F(K) the set of all connected orthogonal convex hulls of
K. For F € F(K), if there exist two opposite O-supports H and L of K
intersecting in only two points, say p and ¢, with z, # x4, vy, # y,, then there
exists a monotone path connecting p and ¢ in E. We define all points on such
path (not including p and ¢q) to be semi-isolated points of E. Thus, all semi-
isolated points of F(K) is the interior of the rectangle with the diagonal [p, ¢].
Some semi-isolated points are illustrated in Figure 4.
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P L

Fig. 4 Two opposite O-supports H and L of the set K. The set of semi-isolated points is
the interior of the rectangle with the diagonal [p, ¢]

It follows immediately from the definition of semi-isolated point the fol-
lowing result.

Remark 1 If E € F(K) has no semi-isolated point then for every F' € F(K)
also has no semi-isolated point.

Note that the intersection of all connected orthogonal convex hulls of a set
may be a disconnected set, and it also might not be the orthogonal convex
hull of the set. As shown in Figure 2, connected orthogonal convex hulls of a
finite planar point set may be countless. That is the reason why in the below
we consider the smallest connected orthogonal convex hull of a finite planar
point set.

Proposition 2 Let P be a finite planar point set and F(P) be the family
of all connected orthogonal convex hulls of P. If there exists an element of
F(P) that has no semi-isolated point then ﬂEG}-(P) E is the smallest connected
orthogonal convex hull of P.

Proof. 1) We first prove that S = ﬂEef(P) FE is orthogonal convex. Suppose
that the intersection of S and a vertical (horizontal, respectively) line contains
two points e and f, where e is the highest point and f is the lowest point (e is
the leftmost point and f is the rightmost point, respectively). Then e, f € E,
for all E € F(P). Since F is orthogonal convex, we have [e, f] C F, for all
E € F(P). Therefore, [e, f] € S. This implies that S is orthogonal convex.

ii) We now prove that S is connected. Suppose that S is disconnected.
Without loss of generality, suppose S has only two connected components:
Ty and T3, and x, < 24,Yp < yq for all p € T1 and ¢ € T5. Let a be the
highest rightmost of 77, b be the rightmost highest point of T; ¢ be the lowest
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Ir v

Fig. 5 Four corners I, I, III and IV of an orthogonal line L are open regions. II belongs to
the quadrant of 1(a, b)

leftmost of Ts, d be the leftmost lowest point of T5. Then there exist two O-
supports of P: one connects a and d and the other connects b and c¢. These
O-supports intersect in each other. Therefore F € P has semi-isolated point.
This contradicts the fact that every member of F(P) has no semi-isolated
point. Thus, S is connected. ]

According to Propostion 2, we have

ﬂ E= ﬂ{F : F'is a connected orthogonal convex set which contains P}.
EE€F(P)

We will denote by COCH(P) the intersection of all connected orthogonal con-
vex sets which contains P when no semi-isolated point can arise. Therefore,
COCH(P) is the smallest set of F(P). In Section 4, we will consider the con-
struction of COCH(P) and in Section 5, we will present an efficient algorithm
for finding COCH(P).

The intersection of all connected orthogonal convex set which contains P
might not be the orthogonal convex hull of P, even when we assume that
every orthogonal convex hull of P has no semi-isolated points. The equality
only happens when the othorgonal convex hull of P is connected.

For two arbitrary sets K71 C K5 in the plane, we might not have F(K;) C
F(K3). This property only holds true under the assumption of no semi-isolated
point. The following results are implied directly from Proposition 2.

Remark 2 If Ky C K5 and there exist a connected orthogonal convex hull
of K7 and a connected orthogonal convex hull of K5 such that they have no
semi-isolated point then COCH(K;) € COCH(Kz).

In the plane, two perpendicular rectilinear lines that define an orthogonal
line 1(a, b) divide the plane into four open corners: I, II, III and IV, and two
rectilinear lines, as shown in Figure 5. Two corners I and III (or I and IV) are
opposite. Thus, IT and two half lines through a, b form the quadrant of 1(a, b).

Proposition 3 Let P be a finite set of points in the plane and the following
condition hold
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(A) There ezists an O-support 1(a,b) of P (a,b € P) such that all points of
P\ {a,b} lie only in both two opposite corners of 1(a,b).

Then there exists a connected orthogonal convex hull of P that has at least one
semi-isolated point and vice versa.

Proof. Suppose that all points of P\ {a,b} lie only in two opposite corners I
and IIT of 1(a, b). Let ¢ be a smallest y-coordinate point among these points in
corner I, and d be a greatest z-coordinate point among these points in corner
III (because P is finte, such ¢ and d exist). Then an orthogonal line 1(c, d) is
an O-support and the intersection of 1(c,d) and 1(a,b) is exact two distinct
points. Therefore, connected orthogonal convex hulls of P have semi-isolated
points. The vice versa is obtained from the definition of semi-isolated points.
Thus the proof is complete. ]

Let us describe COCH(P) when P is a finite planer point set. Take the
points a, b, ¢, d, e, f, g, and h belonging to P such that

(B) a (b, respectively) is the leftmost (rightmost, respectively) of highest points
of P,
— e (f, respectively) is the rightmost (leftmost, respectively) of lowest points
of P,
— ¢ (d, respectively) is the highest (lowest, respectively) of rightmost points
of P,
— g (h, respectively) is the lowest (highest, respectively) of leftmost points of
P.

Then the rectangle pquv formed by a, b, c,d, e, f, g, h is the minimum rectan-
gle containing P and its edges are rectilinear (p is the intersection of the lines
through ab and gh, ¢ is the intersection of the lines through ab and cd, w is the
intersection of the lines through cd and ef, v is the intersection of the lines
through ef and gh). Assume without loss of generality that p # ¢ # u # v.
This rectangle pquv is connected orthogonal convex and therefore contains
COCH(P). In addition, the rectilinear line segments [a,b], [c,d],[e, f], [g, P
belong the boundary of COCH(P) as (B) holds and COCH(P) is orthogo-
nal convex. Assume without loss of generality that p # g # u # v and a # p.

Suppose that E € F(P) has a semi-isolated point. According to Proposi-
tion 3, there are two opposite O-supports of P such that one lies in 1(a, h) and
the other lies in 1(d, ), or one lies in 1(b, ¢) and the other lies in 1(f, g). Based
on Proposition 3, procedure Semi-Isolated _Point(P, flag) that is presented in
the Appendix finds out if a connected orthogonal convex hull of a set of points
has semi-isolated point or not.

From now on, we only consider the finite set of points P in the plane such
that |P| > 1 and P does not satisfy the condition (A).

Proposition 4 Let P be a finite planar point set. For two distinct points a
and b in P there exists at most one O-support of P through a and b.
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Proof. Suppose | (a,b) through a and b having starting point at (z,,ys) is an
O-support of P and lz(a,b) is another orthogonal line through a and b having
starting point (xp,y,). Then 1;(a,b) and l3(a, b) are opposite O-supports of P.
Since P does not satisfy the condition (A), no semi-isolated point can arise.
Hence, there exists a point of P that is in the rectangle determined by 1 (a, b)
and la(a,b). Therefore, l3(a,b), from the definition of O-support, can not be
an O-support. O

From Proposition 4, two given points of a finite planar point set P deter-
mine at most one O-support of P.

4 Construction of the smallest connected orthogonal convex hull of
a finite planar point set

We need some definitions.

A rectilinear polygon (see [12]) is a simple polygon whose edges are recti-
linear (i.e., they are parallel to either x or y axis). The polygon has therefore
only 90 and 270 degree internal angles.

Definition 4 ([12]) An (z,y)—polygon is one of the following: a) a point; b)
connected rectilinear line segments; ¢) a rectilinear polygon; and d) a connected
union of type b) and or type c) (z,y)-polygons.

Let us describe COCH(P) when P is a finite planer point set. Take the
points a, b, ¢, d, e, f, g, and h belonging to P satisfying (B).
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h = pr

0 x

Fig. 6 The case a # h. A staircase path (coloured in blue) joining a and h is formed by
maximal elements pg = a,p1,...,Pr_1,pr = h of the set P,y

Consider the case a # h. Since COCH(P) has no semi-isolated point, the
part of the orthogonal line (b, c) between b and ¢ belongs to COCH(P), as
seen in Figure 6. We define

(C) If a # h, P,y is the set of points of P in the quadrant of L,;. Otherwise,
Py, :={a}.

— If b # ¢, P, is the set of points of P in the quadrant of Lj.. Otherwise,
Pcb = {b}

— If g # f, P,y is the set of points of P in the quadrant of L,y. Otherwise,
Py ={f}.

— If e # d, P,y is the set of points of P in the quadrant of L.;. Otherwise,
P,y := {e}.

We use the scanline technique given in [10] to find the successive layers of

maximal elements of P,,, where a point w € P, is maximal if there are
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no other points z of P,, such that z,, > x, and ¥y, < y.. Assume that
Po = @, P1,---,Pk—1,Pk = h are such maximal elements. They form a staircase
path, say, P, (i.e., a union of parts of O-supports through p; and p;y1, i =
0,...,k—1) joining a and h such that the region formed by this path and L,
consists of P, and the area of this region is minimum.

The other cases d # e, f # g and b # c are similar. Thus there is an orthog-
onal convex (x,y)-polygon, say T'(P), formed by the rectilinear line segments
la,b], [c,d], e, f],[g, ] and staircase paths Pey, Pan, Pyf, Ped, respectively join-
ing c and b, a and h, g and f, e and d, respectively.

Proposition 5 Let P be a finite planar point set, don’t satisfy the condition
(A) and F(P) be the family of all connected orthogonal convex hulls of P.
Then the intersection COCH(P) of all connected orthogonal convex sets is
an orthogonal convex (x,y)-polygon formed by the rectilinear line segments
[a,b], [c,d],[e, f1, g, k] and staircase paths Pey, Pan, Pgfs Ped-

Proof. Suppose that T(P) is the region formed by [a,b], [¢,d], [e, f], (g, h], Peb,
Pans Pgf, Peqa. By the construction of T'(P), we have P C T'(P) and T(P)
has no semi-isolated point. It follows from Remark 2 that COCH(P) C T(P).
We are in position to prove that T'(P) € COCH(P). Assume the contrary
that there exists ¢* € T(P). Because COCH(P) has no semi-isolated point, a
horizonal line through ¢* intersects two of staircase paths Py, Pan, Pgf, Ped,
say at wy € Py and wy € Py (see Figure 6). Assume that w; belongs to
the O-support L of P through p;,p;11 and between these points. Because P
does not satisfy (A), the part of L between p; and p;+1 belongs to COCH(P).
It implies that wy € rmCOCH(P). Similarly, wy € COCH(P). Therefore,
q* € [wy,ws] € COCH(P). Hence, T'(P) C COCH(P). O

Definition 5 Let P be a finite planar point set. We define a point u €
COCH(P) to be extreme of COCH(P) if there exists an orthogonal line L (u
is the starting point of two half lines of L) whose intersection with COCH(P)
is only u and there is no point of COCH(P) \ {u} which lies in the quad-
rant determined by L. We denote all extreme points of COCH(P) briefly by
0-ext(COCH(P)).

In Figure 7 we display a point v € COCH(P) that is an extreme point
of COCH(P). Consider the boundary of COCH(P) between a and h. It is a
staircase path formed by the maximal elements py = a,p1,...,Pk—1,px = h
(Figure 6). We claim that p; is an extreme point of COCH(P). Indeed, if it
was not an extreme point of COCH(P), there was some point of P, in the
quadrant of an orthogonal line, say L; at p;. It follows that p; was not a
maximal element, a contradition. Thus, all points po = a,p1,...,Pr—1,pr = h
are extreme points of COCH(P). Therefore, we obtain the following

Proposition 6 Let P be a finite planar point set. All extreme points of COCH(P)
in Py are maximal elements of in Pyy. They are formed by the staircase paths
Pan. Consequently, all extreme points of COCH(P) are formed by the staircase
paths Pep, Pan, Pyr, Pea and therefore they belong to P.
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Fig. 7 u is an extreme point of COCH(P).

According to Proposition 6, pg = a, p1 € P, are extreme points of COCH(P).
It implies that if we sort all points of P, in decreasing their y-coordinates
in which if two points have the same y-coordinate, the one having smaller z-
coordinate is chosen then they are the first and the second points in the new
order of P,,. Thus we obtain the following

Corollary 1 If we sort all points of P, in decreasing their y-coordinates
in which if two points have the same y-coordinate, the one having smaller
x-coordinate is chosen then the first and the second points of the new order
formed by the sort are extreme points of COCH(P).

Proposition 7 Let P be a finite planar point set. Then,

COCH(P) = COCH(o — ext(COCH(P))).

Proof. Let T = COCH(o0-ext(COCH(P))). By Proposition 6,
0-ext(COCH(P)) C P. Then, by Remark 2, T'= COCH(o-ext(COCH(P))) C
COCH(P).

On the other hand, by Proposition 5, the COCH(P) is formed by the

rectilinear line segments determined by extreme points of COCH(P). It implies
that COCH(P) C T. The proof is complete. O

Obviously, the staircase path Pep (Pan, Pgf, Ped, respectively) can be seen
as an union of finite set of O-supports, and each O-support goes through two
extreme points of Py P,p, Pyr, Peq, respectively). It follows directly from
Prop. 6 the following

Corollary 2 The smallest connected orthogonal convex hull of a finite planar
point set P is an orthogonal convez (x,y)-polygon whose boundary is union of

finite set of O-supports, and each O-support goes through two extreme points
of P.
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5 Algorithm

5.1 New Algorithm based on Graham’s Scan

Let P be a finite planar point set and (A) don’t hold. In case of connected
orthogonal hulls, if we have a reasonably ordered points, we then can scan
these ordered points to get candidates for extreme points of COCH(P).

Assume without loss of generality that p # ¢ # u # v and a # p. First of
all, for each set Py, Pyn, Pys, Peq, we reorder points due to their y-coordinates
only. Then we use Graham’s scan. More details can be seen in Algorithm 1.

Before starting the algorithm we need to determine an orthogonal line
l(pe, pe—1) through two points p¢, pi—1 in Pra, Pyf, Peq, Pey as follows

(D) In Pho: If zp, < ap, ,, Upi—1,p¢) is parallel to [g,u] U [u,v]. Otherwise,
1(pt, pe—1) is parallel to [p, ¢] U [g, u].

— In Pys: If xp, < xp, ., U(pe, pi—1) is parallel to [g,u] U [u,v]. Otherwise,
l(pt, pe—1) is parallel to [p, ] U [g, u].

—In Pg: If z,,, < xp, ,, U(pe,pr—1) is parallel to [u,v] U [v,p]. Otherwise,
U(pt, pr—1) is parallel to [v,p] U [p, q].

— In Py: If z,, < xp, ., U(ps,pe—1) is parallel to [u,v] U [v,p]. Otherwise,
l(pt, pe—1) is parallel to [v, p] U [p, q].
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Fig. 8 The orthogonal line I(p¢, pt—1) is defined by the relation between z,, and zp, , and
by the location of pt, pt—1 in Pha, Pyg, Peq and Pgp.

Let I(q1,g2) be an orthogonal line through two points ¢1, g2 and its rectilin-
ear half lines have starting point ¢s. If the triple (¢1,¢s, ¢2) forms a clockwise
circuit, and a point g4 is not in the quadrant determined by L, then ¢4 is to
the left of L. In other words, a point ¢4 is to the left of L if ¢4 is to the left of
the directed line ¢iq3 or ¢4 is to the left of the directed line ¢zga’.

1 ¢ is left of a directed line ab iff (z; — Za)(Ye — Ya) — (e — Ta)(Yp — Ya) > 0.
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Algorithm 1 FINDING THE SMALLEST CONNECTED ORTHOGONAL CONVEX

HULL
Require: A set of finite distinct points P in the plane.
Ensure: List of extreme points of COCH(P) in order.
1: Find a,b,¢,d,¢, f,g,h € P satisfying (B) and Py, Pan, Pys, and Peg satisfying (C). >
Now we reorder points of P in Po, U Pyp U Pyyp U Py due to their y-coordinates.
2: Sort all points of P,;, U Py in decreasing their y-coordinates. If two points have the
same y-coordinate, the one having smaller z-coordinate is chosen.
3: Sort all points of P.qU P, in ascending their y-coordinates. If two points have the same
y-coordinate, the one having bigger xz-coordinate is chosen.
4: Label these points to po,p1,...,pn. > Due to Corollary 1 po,p1 are extreme points of
COCH(P).
5: Stack S =< po,p1 >=< pt—1,pt >; t indexes top.
6: for i = 2 to n do
7 if p; is left of the orthogonal line I(ps—1,p¢) through ps and p;—1 then > where

p(pt,pi—1) 1s defined by (D).

8: Push(p;, S)

9: else

10: Pop(S).

11: end if

12: end for

13: return S > By Corollary 2, we obtain COCH(P) from S.

Theorem 1 Algorithm 1 determines COCH(P). The time complexity is
O(nlogn), where n is the number of points of P.

Proof. As we have seen that a, b, c,d, e, f, g, h are extreme point of COCH(P),
we can assume without loss of generality, that P = Py, (b=c¢,g = f,e = d).
Firstly, we claim that each point which is poped from the stack S is impossible
to be an extreme point of COCH(P). Indeed, suppose that point p; is poped
from the stack, i.e., there is some p; such that p; is not on the left of I(p;—1, pt)
and p; = p;. Assume that p; = p;_1. Then [ < ¢ < j as we order points of P,
in decreasing their y-coordinates. Hence, p; € Pap, Tp, > Tp, and yp, > yp,
(see Fig. 8). Thus, p; is not a maximal element of P,;. According to Prop. 6,
p; is not an extreme point of COCH(P).

Next, we claim that when the algorithm stops, the points on stack always
are extreme points of COCH(P). Indeed, by Corollary 1, a = pg, p1 are extreme
points of COCH(P). We now prove by induction. Assume that p;,_; € S with
t > 2 is an extreme point of COCH(P), we prove that p; is an extreme point
of COCH(P), too. Indeed, we have p; is left of [(p;—1,ps) for all j > i, where
pe = pi,pe—1 =1 ,1 <i. As 7 > i and the sort of points of P, is in decreasing
their y-coordinates, we have y,. < yp,. On the other hand, as p;_1,p; are
conscutive points in .S, we get that all points p,, € P, (i’ < m < i) are left of
l(pt—1,pt). It follows from Prop. 6 and the fact that p;—; is a maximal element
of P, that z,, > x,, ,. Thus, p; is a maximal element of P, It follows from
Prop. 6 that p; is an extreme point of COCH(P).

We now turn to analysis the complexity of the algorithm. Step 1 needs
O(n) time. Steps 2 and 3 need O(nlogn) time. Steps 6-13 take O(n) time.
Therefore, Algorithm 1 takes O(nlogn) time. O
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Fig. 9 The smallest connected orthogonal convex  hull of P =
{[0, 1], [10,0], [7, 3], [5,4], [1, 6], [10,4], [7, 8], [6, 9], [8, 10]}

Example. A demonstration of the algorithm is shown in Figure 9. The
input is P = {(0,1), (10,0), (7, 3), (5,4), (1,6), (10,4),(7,8),(6,9),(8,10)} that
does not satisfy (A). A highest point is a = b = (8,10), a leftmost point is
g = h = (0,1), a lowest point is e = f = (10,0), the rightmost point is
c=d=(10,4).

After sorting via y-coordinates, we have the list of points

P ={(8,10),(6,9),(7,8),(1,6),(5,4),(7,3),(0,1),(10,0), (10,4)}.

Below is shown the stack S and the value of i at the for loop:

7;:

Hence, COCH(P) is determined by the extreme points (8,10), (6,9), (1,6),
(0,1), (10,0), (10,4) and their order.

5.2 Lower bound

The lower bound of algorithms for finding the smallest connected orthogonal

convex hull can be proved similarily to lower bound of finding convex hulls
(see [17]).
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p = (wi,w—wy) q = (w2, wy — w)

Y=z — (w1 +w)/2|

w3 zp 1 w Tn-1 T2 W2

Fig. 10 The order in which the points of P (black spots and two white spots) occur on the
hull COCH(P) in counterclockwise from p is the sorted order of z1,x2,...,Zn.

Proposition 8 Lower bound on computational complexity of algorithms for
finding the smallest connected orthogonal convex hull of a finite planar point
set is the same as for sorting, it means O(nlogn).

Proof. We have presented Algorithm 1 that runs in O(nlogn) time to find
the smallest connected convex hull of a finite set of points. We will prove that
any algorithm for finding the smallest connected convex hull of a finite set of
points cannot run fater than sorted algorithms (Hence, since the lower bound
of sorted algorithms is O(nlogn), this implies the required proof).

Suppose that problem A is an unsorted list P; of numbers to be sorted,
T1,%2,...,T, and we have some alogrithm B that constructs the smallest
connected orthogonal convex hull as a (x, y)-polygon of n points in T'(n) time.
Now we will use B to solve A in time T'(n) 4+ O(n), where the additional O(n)
represents the time to convert the solution of B to a solution of A.

Let Py C [wy, ws]. Take w = (wy + wsy)/2. Now we have the set

P:={(z; € P,|x; —wl|),i=1,...,n}U{(w,w — wy), (w2, ws —w)}

in the plane, as shown in Figure 10, where {(wi,w — wy), (w2, w2 — w)} are
artificial points. P lies on the graph of the function y = | — w| and does not
satisfy (A). We use algorithm B to construct the smallest connected orthogonal
convex hull COCH(P) of these points. It follows from Proposition 6 that every
point of P is extreme point of COCH(P). The order in which the points of P
occur on the hull in counterclockwise from p is the sorted order for P;. Thus
we can use any algorithm for finding the smallest connected orthogonal convex
hull to sort the list Py, but it cannot run faster than sorted algorithms. OJ

6 Implementation

Our algorithm was implemented in Python. Tests were run on a PC 3.20GHz
with an intel Core i5 and 8 GB of memory. The actual run times of our algo-
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rithm on the set of a finite number of points which is randomly positioned in
the interior of a square of size 10000000 having sides parallel to the coordinate
lines are given in Table 1. In our expriments, the more points we add the less
cases of semi-isolated point happen.

In the code we consider the case a = h = p as follows: We take an artificial
point pg on the line through v and p such that p is midpoint of the line segment
[po,v] and set p; = a and I(p1,po) through pi, po is parallel to L(g,v). When
the algorithm stops, py is moved out of the stack S (as it does not belong P).

7 Concluding Remarks

The method of orienting curves [4], [5], [6], can be used for finding the small-
est connected orthogonal convex hull of a finite planar point set. A similar
definition of extreme points can be used for Og-convex sets, where Og-convex
was introduced in [2]. The smallest connected orthogonal convex hull can be
applied in aircraft type recognition [11]. They will be the subject of another

paper.
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Number of points | Time(s) | Illustrations of smallest connected orthogonal convex
hulls of some planar point sets
© 1
10 1.21E-03 oo
100 7.86E-03
1000 02 e %
10000 9.53E-01 o
100000 38,01 T Sw o o o o on
1000000 8919.93

Table 1 Time (an average of 100 runs) required to compute the smallest connected orthog-
onal convex hull of the set of n points with integer coordinates randomly positioned in the
interior of a square of size 10000000 having sides parallel to the coordinate lines.
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Appendix

The proof of Proposition 1:

Proof. 1) Suppose that K is connected orthogonal convex, a # b € K. If
ZTq = Tp OF Yo = yp then SP(a,b) = [a,b] C K and I(SP(a,b)) = |la — b||1.
Othewise, we assume, without loss of generality, that b is on the north east
of a (z, < xp and y, < yp). Take a path v joining a and b in K (since K is
connected, such a path exists).

Consider the rectangle acbd determined by a and b such that the lines
go through its egdes [a, ], [b,d], respectively are vertical lines, respectively
and the lines go through its egdes [a, d], [b, ¢, respectively are horizonal lines,
respectively.

We first prove that there exists an insreasingly monotone path 3 joining a
and b (geometrically speaking, this path only goes to right or goes up from a
to b) and in K Nadbc and length(vy) > length(B). Indeed, if v\ {a,b}Nabed = O
then v\ {a, b} intersects with at least one of vertical and horizonal lines through
a. Suppose that v\ {a, b} intersects with the horizonal line through a at e (see
Fig. 11 (I)). By the orthogonalness of K, [a,e] C K.If d € [a, ] then [b,d] C K.
Tt follows that [a,d] U [b,d] is an insreasingly monotone path joining a and b
and lies in K. If there are two points f1, fo of v in K N adbc having the same
z-coordinates (or having the same y-coordinates) then by the orthogonalness
of K, [f1, fo] C K and we replace the part of v between f; and fo, say vy, by
[f1, f2]. Clearly,

length(vy) > U([f1, f2]) = lfr = fellx-

As a result, we get an insreasingly monotone path g in K Nadbc joining a and
b (see Figure 11 (I)) and length(vy) > length(pB).
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Fig. 11 (I) ~ is an arbitrary path joining a and b in K. We replace its parts between a
and a1, e; and ez, f1 and f2 by [a,a1], [e1,e2], [f1, f2] to get B. (II) B is an increasingly
monotone path joining a and b in K N acbd.

Next, we prove that length(8) = |la — b||;. Take a partition of [a,b] as
follows: vo = a,v1,...,v4,...,v, = b € B such that z,, <@y, ,,i=0,...,n—
1. Since 3 is insreasingly monotone, we have y,,., > yy,,t = 0,...,n — 1. It
follows that

n—1
length(B) = sup Z [vi = viga
7 =0

n—1
= sup Z('xvi+l — Ty, | + |y’Ui+1 — Yo, )
7 =0
n—1
= sup Z(I”H-l — Ty, + Yvigr — yvi)
7 =0

= Sup(xvn — Ty + Yv,, — yvo) =Ty — Tq + Yb — Ya
o

16— allx

where the supremum is taken over the set of such partitions. Therefore, length(vy) >
length(B) = ||b — a|l; for an arbitrary path ~ joining a and b in K. We
conclude that § is a shortest path joining ¢ and b in K with norm L; and
length(B) = ||b — al|;.

ii) It remains to prove that for every a,b € K, if there exists a shortest path
SP(a,b) joining a and b with Ly norm and lying in K and length(SP(a,b)) =
|la — b||1, then K is connected orthogonal convex. Suppose p, g belong to the
intersection of some horizontal line [ to K and x, < x4 (the case of a vertical
line  is similar). Then y, = y, and therefore |p — ¢|[1 = 24 — ). Take a point
v € SP(p, q) such that x, < z, < z4. If y, # y, then by the triangle inequality,
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we have ||g — v||1 + |lv — pll1 < I(SP(p,q)). It implies that

Tyg—Tp =2Tqg— Ty + Ty —Tp
< Tg— Ty + ‘yq _yU‘ + |yq_yv|+$v—l’p
= |lg —vlls + [[v = plli <IU(SP(p,q)).

Hence, ||p — ¢lli < I(SP(p,q), a contracdition. Thus, y, = y,. It follows that
[p,q) € SP(p,q). As SP(p,q) C K, we get [p,q] C K. By the defintion of
orthogonal convex sets, K is orthogonal convex. It is easy to see that K is
connected. O

Based on Proposition 3, procedure Semi-Isolated _ Point(P, flag) below finds
out if a connected orthogonal convex hull of a set of points has semi-isolated
point or not. Note that we need only to check points of P in the l(a, h)’s quad-
rant and in the 1(b, ¢)’s quadrant. If all points of P in 1(a, h)’s quadrant don’t
sastify the condition (A), then we continue to check the points of P in 1(b, ¢)’s
quadrant. Here our pseudocode is only for the 1(a, h)’s quadrant. The case of
the 1(b, ¢)’s quadrant is similar.

1: procedure SEMI-ISOLATED _ POINT(P, flag)

Require: A set of finite points P in the plane.
Ensure: Determine whether a co-convex hull of P has semi-isolated points.

Take a and h satisfying (B).

Consider the orthogonal line 1(a, h) through a and h parallel to the line segment [g, v]
and [u, v].
4 Find A := {{rmalipointsof P lieinthequadrantof 1(a,h)}.
5 Find the set S of all O-supports 1(r, s) of P(r,s € P) in the corner II of 1(a, h)
6: if S # 0 then
7.
8

flag =0
: for each I(r,s) € S do

9: k=0,Q=1r,s)NP
10: for w € P\Q do
11: if w is in corner I or corner III of 1(7, s) then
12: ki=k+1
13: end if
14: end for
15: if k= |P|—|Q| then
16: flag:=1
17: return flag > If flag=1, a co-convex hull of P has semi-isolated points.

Otherwise, it has no ones.
18: end if
19: end for
20: end if

21: end procedure

Example 1. A demonstration of the procedure is shown in Figure 12. The
input is P = {(1,10),(2,12),(3,8), (4,4), (6,6),(7,2)}. The highest points is
a = (2,12), the leftmost point is h = (1,10). S := {l(a,b)}.
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Fig. 12 P ={a,b,c,h,i,m,n} and COCH(P) has semi-isolated points.

Counsider (3,8),(4,4),(6,6), (7,2) € P. Step 5 gives k = 0. Thus, flag = 0.
Therefore, we continue to check points of P in 1(b,¢)’s quadrant. b = a =
(2,12), ¢ = (7,2). T = {l(b,i),1(i, m),(m, c)}. Similarly, the procedure gives
k =4 = |P|—2. Thus, flag = 1. Therefore, COCH(P) has semi-isolated points.



