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Abstract

In this paper, we first construct a Euler-Maruyama type scheme for Caputo

stochastic fractional differential equations (for short Caputo SFDE) of order

α ∈ ( 1
2 , 1) whose coefficients satisfy a standard Lipschitz and a linear growth

bound conditions. The strong convergence rate of this scheme is established. In

particular, it is α− 1
2 when the coefficients of the SFDE are independent of time.

Finally, we establish results on the convergence and stability of an exponential

Euler-Maruyama scheme for bilinear scalar Caputo SFDEs.
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1. Introduction

In this paper, we study Caputo fractional differential equations in noisy envi-

ronment of the form

CDα
0+X(t) = b(t,X(t)) + σ(t,X(t))

dWt

dt
. (1)
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This type of systems is a natural type of fractional systems whose coefficients

are random and thus has been received an increasing interest due to the fact

that fractional systems appears in many models in mechanics, physics, electrical

engineering, control theory,... see [3, 7].

As far as we are aware, the main achieved results for (3) are limited to problem

of the existence of strong solution [4, 12] and mild solution [9]. A proof of

coincidence of strong and mild solution of (1) under some natural assumptions

on the coefficients has recently been proved in [1].

Our first aim in this paper is to establish a Euler-Maruyama numerical method

for (1). Secondly, we are interested in the stability of numerical scheme for

bilinear scalar Caputo SFDE. Note that in comparison to the bilinear scalar

stochastic differential equations, there is no explicit formula of solutions of bi-

linear scalar Caputo SFDE. Then, it is hard to obtain a similar result as in

[8, Section 4, Eq. (22)] about stability of Euler-Maruyama method for bilinear

scalar Caputo SFDE. Here, we develop an exponential Euler-Maruyama method

for bilinear scalar Caputo SFDE that can be considered as a natural extension

of the exponential Euler-Maruyama method of stochastic differential equations

to this setting. Then, we analysis the convergence and stability of this method.

The paper is organized as follows: In section 2, we give a setting of the problem

and state the main results of the paper (Theorem 1 and Theorem 3). Section

3 and Section 4 are devoted to prove the main results. In section 5, we study

several examples to illustrate the numerical result. Precisely, a simple scalar

system was studied to point out that the convergence rate in Theorem 1 is

optimal.

Notations: Let (Wt)t∈[0,∞) denote a standard scalar Brownian motion on an

underlying complete filtered probability space (Ω,F ,F := {Ft}t∈[0,∞),P). For

each t ∈ [0,∞), let Xt := L2(Ω,Ft,P) denote the space of all Ft-measurable,
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mean square integrable functions f = (f1, , . . . , fd)
T : Ω→ Rd with

‖f‖ms :=

√ ∑
1≤i≤d

E(|fi|2),

where Rd is endowed with the standard Euclidean norm. A process X : [0,∞)→

L2(Ω,F ,P) is said to be F-adapted if X(t) ∈ Xt for all t ≥ 0.

For α, β ∈ (0, 1), the Mittag-Leffler functions Eα,β , Eα : R→ R are defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, Eα(z) :=

∞∑
k=0

zk

Γ(αk + 1)
,

where Γ is the Gamma function, i.e. Γ(x) :=
∫∞

0
sx−1e−s ds.

2. Preliminaries and the statement of the main results

2.1. Setting

Let T > 0 be arbitrary and consider a Caputo SFDE of order α ∈ ( 1
2 , 1) on the

interval [0, T ] of the following form

CDα
0+X(t) = b(t,X(t)) + σ(t,X(t))

dWt

dt
, (2)

where b, σ : [0, T ]×Rd → Rd are measurable and satisfy the following conditions:

(H1) Global Lipschitz continuity in Rd of the drift and diffusion: There exists

L > 0 such that for all x, y ∈ Rd, t ∈ [0, T ],

‖b(t, x)− b(t, y)‖ ∨ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖.

(H2) Hölder continuity in [0, T ] of the drift and diffusion: There exist L1, L2 >

0 and β, γ ∈ [0, 1] such that for all x ∈ Rd, t, s ∈ [0, T ]

‖b(t, x)− b(s, x)‖ ≤ L1|t− s|β , ‖σ(t, x)− σ(s, x)‖ ≤ L2|t− s|γ .

(H3) Linear growth bound : There exists K > 0 such that for t ∈ [0, T ], x ∈ Rd

‖b(t, x)‖ ∨ ‖σ(t, x)‖ ≤ K(1 + ‖x‖).
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For each η ∈ X0, a F-adapted process X is called a solution of (2) on the

interval [0, T ] with the initial condition X(0) = η if the following equality holds

for t ∈ [0, T ]

X(t) = η +
1

Γ(α)

∫ t

0

b(s,X(s))

(t− s)1−α ds+
1

Γ(α)

∫ t

0

σ(s,X(s))

(t− s)1−α dWs, (3)

see [12, p. 209]. Thanks to [4, Theorem 1], for each initial value η ∈ X0 system

(2) has a unique solution on [0, T ] denoted by X(t, η)5.

2.2. Euler-Maruyama type scheme for Caputo SFDEs

An important task in applications is to realize (2) on computers, that is, to

construct a discretized approximation. It is clear that the kernel of (3), the

function (t− s)α−1, becomes infinity at point s = t. This brings us an obvious

difficulty to discretize (2). To avoid touching the singular point, we introduce

the following discretized scheme which is a Euler-Maruyama type scheme for

Caputo SFDEs:

For each n ∈ N∗, where N∗ denotes the set of positive integer numbers, the

approximated solution X(n)(·, η) is defined by X(n)(0, η) := η and for t ∈ (0, T ]

X(n)(t, η) = η +
1

Γ(α)

∫ t

0

b(τn(s), X(n)(τn(s), η))

(t− s)1−α ds

+
1

Γ(α)

∫ t

0

σ(τn(s), X(n)(τn(s), η))

(ρn(t)− τn(s))1−α dWs, (4)

where τn(s) = kT
n =: τ

(n)
k and ρn(s) = (k+1)T

n =: ρ
(n)
k for s ∈

(
kT
n ,

(k+1)T
n

]
.

This equation can be solved step by step on each interval
(
Tk
n ,

T (k+1)
n

]
, k =

0, 1, . . . , n− 1. Our first main result in this paper is to give an estimate on the

mean-square distance between the numerical solution X(n)(t, η) and the exact

solution X(t, η).

5By [4, Theorem 1], for the existence and uniqueness solution we only require the assump-

tions (H1) and (H3).
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Theorem 1 (Strong convergence of the Euler-Maruyama scheme for Caputo

SFDE). Let κ := min
{
β, γ, α− 1

2

}
. Then, there exists a constant C depending

only on T, L, L1, L2, α, β, γ,K such that

sup
0≤t≤T

‖X(n)(t, η)−X(t, η)‖2ms ≤
C

n2κ
. (5)

Remark 2. (i) When the coefficients are independent of time, then the conver-

gence rate of Euler-Maruyama scheme for (2) is α− 1
2 .

(ii) When α = 1, i.e. equation (2) becomes a stochastic differential equation,

the convergent rate of the scheme in Theorem 1 coincides with the well-known

convergent rate of the classical Euler-Maruyama, see [5].

(iii) It is clear that there exist connections between the result in this paper to the

existing result about Euler scheme for general stochastic Volterra equations with

singular kernels, see e.g. [14, 13]. Since the kernels in our systems are explicit

then we obtain explicit and optimal rate of convergence of Euler scheme. This

rate is better than the restriction of results in [14, 13] to fractional setting.

2.3. Exponential Euler-Maruyama scheme for bilinear scalar Caputo SFDEs

We are interested in investigating the stability of numerical method on the test

systems, bilinear scalar Caputo SFDE. More precisely, we consider systems of

the form

CDα
0+X(t) = λX(t) + µX(t)

dWt

dt
. (6)

Note that the problem in determining λ, µ for which system (6) is mean-square

asymptotically stable is not trivial due to the fact that there is no explicit form

of solutions of (6). It has been recently proved in [11, Proposition 11] that

system (6) is mean-square asymptotically stable if and only if

λ < 0 and µ2

∫ ∞
0

s2α−2 (Eα,α(λsα))
2
ds < 1. (7)

The main ingredient in the proof of the preceding result is to use the variation

of constants formula developed in [1, Theorem 2.3], i.e. the integral form of (6)
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is given by

X(t) = Eα(λtα)X(0) + µ

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)X(s) dWs. (8)

For a fixed step-size h > 0, the exponential Euler-Maruyama scheme for the

above integral equation is given by

X̂h(t) = Eα(λtα)X(0) + µ

∫ t

0

(t− τh(s))α−1Eα,α(λ(t− τh(s))α)X̂h(τh(s)) dWs,

(9)

where τh : (0,∞)→ [0,∞) is defined by

τh(s) = kh for s ∈ (kh, (k + 1)h], k = 0, 1, 2, . . . . (10)

We now state the result about convergence and stability of the above Euler-

Maruyama scheme for bilinear scalar Caputo SFDE.

Theorem 3 (Convergence and Stability of exponential Euler-Maruyama method

for bilinear scalar Caputo SFDE). (i) For any T > 0, there exists a constant C

depending on T, λ and µ such that

sup
t∈[0,T ]

‖X̂h(t)−X(t)‖ms ≤ Chα−
1
2 .

(ii) Suppose that the condition (7) holds. For any step-size h > 0, there exists

K > 0 such that the solution X̂h of (9) satisfies

‖X̂h(t)‖ms ≤ K‖X(0)‖ms for all t ≥ 0

and furthermore for any δ ∈ (0, α) we have limt→∞ tδ‖X̂h(t)‖ms = 0. Conse-

quently, the numerical solution remains asymptotically stable.

3. Proof of the strong convergence of the Euler-Maruyama method

for Caputo SFDE

Before going to the proof of the main result, we need some preparatory lemmas.

Firstly, we show in the following lemma a bound on sup0≤t≤T ‖Xn(t, η)‖ms.
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Lemma 4. Let

C1 := (1 + 3‖η‖2ms)E2α−1

(
(6T + 6)K2T 2α−1

Γ(α)

)
. (11)

Then, for all n ∈ N∗ we have

sup
0≤t≤T

‖X(n)(t, η)‖2ms ≤ C1.

Proof. From (4) and the inequality ‖x+ y+ z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all

x, y, z ∈ Rd, we derive

E
(
‖X(n)(t, η)‖2

)
≤ 3E‖η‖2 +

3

Γ2(α)
E

(∥∥∥∥∫ t

0

b(τn(s), X(n)(τn(s), η))

(t− s)1−α ds

∥∥∥∥2
)

+
3

Γ2(α)
E

(∥∥∥∥∫ t

0

σ(τn(s), X(n)(τn(s), η))

(ρn(t)− τn(s))1−α dWs

∥∥∥∥2
)
.

Using the Hölder inequality, Ito’s isometry, we obtain

‖X(n)(t, η)‖2ms ≤ 3‖η‖2ms +
3t

Γ2(α)

∫ t

0

E‖b(τn(s), X(n)(τn(s), η))‖2

(t− s)2−2α
ds

+
3

Γ2(α)

∫ t

0

E‖σ(τn(s), X(n)(τn(s), η))‖2

(ρn(t)− τn(s))2−2α
ds.

This together with the fact that |ρn(t)− τn(s)| ≥ |t− s| and the linear growth

condition (H3) implies that

‖X(n)(t, η)‖2ms ≤ 3‖η‖2ms +
3t

Γ2(α)

∫ t

0

2K2(1 + E‖X(n)(τn(s), η)‖2)

(t− s)2−2α
ds

+
3

Γ2(α)

∫ t

0

2K2(1 + E‖X(n)(τn(s), η)‖2)

(t− s)2−2α
ds

= 3‖η‖2ms +
(6t+ 6)K2

Γ2(α)

∫ t

0

1 + E‖X(n)(τn(s), η)‖2

(t− s)2−2α
ds.

Let mt := 1 + sup0≤s≤t ‖X(n)(s, η)‖2ms. Then,

mt ≤ (1 + 3‖η‖2ms) +
(6T + 6)K2

Γ(α)2

∫ t

0

ms

(t− s)2−2α
ds.

Applying the Gronwall’s inequality for fractional differential equations, see e.g.

[3, Lemma 6.19], we arrive at

mt ≤ (1 + 3‖η‖2ms)E2α−1

(
(6T + 6)K2

Γ(α)
t2α−1

)
,

which completes the proof.
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Finally, we establish an upper bound on ‖X(n)(t, η)−X(n)(t̃, η)‖2ms in terms of

|t− t̃|2α−1 and 1
n2α−1 .

Lemma 5. Let

C2 :=
8K2(1 + C1) T 2α−1

(2α− 1)Γ2(α)
, C3 :=

8K2(1 + C1)(T + 2)

(2α− 1)Γ2(α)
, (12)

where C1 is given as in (11). Then, for all n ∈ N∗ and t, t̃ ∈ [0, T ] we have

‖X(n)(t, η)−X(n)(t̃, η)‖2ms ≤
C2

n2α−1
+ C3|t− t̃|2α−1.

Proof. Choose and fix t, t̃ ∈ [0, T ] with t > t̃. By (4), we have

Γ(α)
(
X(n)(t, η)−X(n)(t̃, η)

)
=

∫ t

t̃

b(τn(s), X(n)(τn(s), η))

(t− s)1−α ds+

∫ t

t̃

σ(τn(s), X(n)(τn(s), η))

(ρn(t)− τn(s))1−α dWs

+

∫ t̃

0

( 1

(t− s)1−α −
1

(t̃− s)1−α

)
b(τn(s), X(n)(τn(s), η)) ds

+

∫ t̃

0

( 1

(ρn(t)− τn(s))1−α −
1

(ρn(t̃)− τn(s))1−α

)
σ(τn(s), X(n)(τn(s), η)) dWs.

Using the inequality ‖x + y + z + w‖2 ≤ 4(‖x‖2 + ‖y‖2 + ‖z‖2 + ‖w‖2) for all

x, y, z, w ∈ Rd and Ito’s isometry, we derive that

Γ2(α)

4
‖X(n)(t, η)−X(n)(t̃, η)‖2ms

≤ E

(∥∥∥∥∫ t

t̃

b(τn(s), X(n)(τn(s), η))

(t− s)1−α ds

∥∥∥∥2
)

+

∫ t

t̃

‖σ(τn(s), X(n)(τn(s), η))‖2ms

(ρn(t)− τn(s))2−2α
ds

+E

∥∥∥∥∥
∫ t̃

0

( 1

(t− s)1−α −
1

(t̃− s)1−α

)
b(τn(s), X(n)(τn(s), η)) ds

∥∥∥∥∥
2


+

∫ t̃

0

(‖σ(τn(s), X(n)(τn(s), η))‖ms

(ρn(t)− τn(s))1−α − ‖σ(τn(s), X(n)(τn(s), η))‖ms

(ρn(t̃)− τn(s))1−α

)2

ds.
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By Hölder inequality and the fact that |ρn(t)− τn(s)| ≥ |t− s|, we have

Γ2(α)

4
‖X(n)(t, η)−X(n)(t̃, η)‖2ms

≤ (t− t̃)
∫ t

t̃

‖b(τn(s), X(n)(τn(s), η))‖2ms

(t− s)2−2α
ds+

∫ t

t̃

‖σ(τn(s), X(n)(τn(s), η))‖2ms

(t− s)2−2α
ds

+t̃

∫ t̃

0

( 1

(t− s)1−α −
1

(t̃− s)1−α

)2

‖b(τn(s), X(n)(τn(s), η))‖2ms ds

+

∫ t̃

0

(‖σ(τn(s), X(n)(τn(s), η))‖ms

(ρn(t)− τn(s))1−α − ‖σ(τn(s), X(n)(τn(s), η))‖ms

(ρn(t̃)− τn(s))1−α

)2

ds.

This together with the inequality( 1

(t− s)1−α −
1

(t̃− s)1−α

)2

<
1

(t̃− s)2−2α
− 1

(t− s)2−2α
,

and

1

(ρn(t̃)− τn(s))2−2α
− 1

(ρn(t)− τn(s))2−2α
≤ 1

(ρn(t̃)− s)2−2α
− 1

(ρn(t)− s)2−2α
6

implies that

Γ2(α)

8K2(1 + C1)
‖X(n)(t, η)−X(n)(t̃, η)‖2ms

≤
∫ t

t̃

t− t̃+ 1

(t− s)2−2α
ds+

∫ t̃

0

(
t̃

(t̃− s)2−2α
− t̃

(t− s)2−2α

)
ds

+

∫ t̃

0

(
1

(ρn(t̃)− s)2−2α
− 1

(ρn(t)− s)2−2α

)
ds. (13)

A direct computation yields that∫ t

t̃

t− t̃+ 1

(t− s)2−2α
ds+

∫ t̃

0

(
t̃

(t̃− s)2−2α
− t̃

(t− s)2−2α

)
ds

= −(t− t̃+ 1)
(t− s)2α−1

2α− 1

∣∣∣t
t̃

+ t̃

(
− (t̃− s)2α−1

2α− 1
+

(t− s)2α−1

2α− 1

)∣∣∣t̃
0

≤ (t+ 1)(t− t̃)2α−1

2α− 1
. (14)

6To gain this inequality, we define h(x) := 1
(ρn(t̃)−x)2−2α − 1

(ρn(t)−x)2−2α for x < ρn(t̃) <

ρn(t). Then, h′(x) = (2 − 2α)((ρn(t̃) − x)2α−3 − (ρn(t) − x)2α−3) > 0. It together with

τn(s) < s implies that H(τn(s)) < H(s).
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Furthermore, we also have∫ t̃

0

(
1

(ρn(t̃)− s)2−2α
− 1

(ρn(t)− s)2−2α

)
ds

=

(
− (ρn(t̃)− s)2α−1

2α− 1
+

(ρn(t)− s)2α−1

2α− 1

)∣∣∣t̃
0

≤ (ρn(t)− t̃)2α−1 − (ρn(t̃)− t̃)2α−1

2α− 1
.

Since 0 < 2α− 1 < 1 and using the inequality |x+ y|2α−1 ≤ |x|2α−1 + |y|2α−1,

we obtain that∫ t̃

0

(
1

(ρn(t̃)− s)2−2α
− 1

(ρn(t)− s)2−2α

)
ds ≤ (ρn(t)− ρn(t̃))2α−1

2α− 1
.

By definition of ρn, we also have ρn(t)− ρn(t̃) ≤ t− t̃+ T
n . Thus,∫ t̃

0

(
1

(ρn(t̃)− s)2−2α
− 1

(ρn(t)− s)2−2α

)
ds ≤

(t− t̃)2α−1 + T 2α−1

n2α−1

2α− 1
.

This together with (13) and (14) implies that

‖X(n)(t, η)−X(n)(t̃, η)‖2ms ≤ 8K2(1 + C1)

(2α− 1)Γ2(α)

(
(T + 2)(t− t̃)2α−1 +

T 2α−1

n2α−1

)
.

The proof is complete.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Choose and fix η ∈ X0. From (3) and (4) we have

X(n)(t, η)−X(t, η)

=
1

Γ(α)

∫ t

0

b(τn(s), X(n)(τn(s), η))− b(s,X(s, η))

(t− s)1−α ds

+
1

Γ(α)

∫ t

0

σ(τn(s), X(n)(τn(s), η))− σ(s,X(s, η))

(t− s)1−α dWs

+
1

Γ(α)

∫ t

0

(
σ(τn(s), X(n)(τn(s), η))

(ρn(t)− τn(s))1−α − σ(τn(s), X(n)(τn(s), η))

(t− s)1−α

)
dWs.
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Using the inequality ‖x + y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd,

Hölder inequality and Ito’s isometry, we derive that

Γ2(α)

3
‖X(n)(t, η)−X(t, η)‖2ms

≤ t
∫ t

0

‖b(τn(s), X(n)(τn(s), η))− b(s,X(s, η))‖2ms

(t− s)2−2α
ds

+

∫ t

0

‖σ(τn(s), X(n)(τn(s), η))− σ(s,X(s, η))‖2ms

(t− s)2−2α
ds

+

∫ t

0

(
‖σ(τn(s), X(n)(τn(s), η))‖ms

(ρn(t)− τn(s))1−α − ‖σ(τn(s), X(n)(τn(s), η))‖ms

(t− s)1−α

)2

ds.(15)

Moreover, in light of (H1) and (H2) it is easily seen that

‖b(τn(s), X(n)(τn(s), η))− b(s,X(s, η))‖2ms

≤ 2L2‖X(n)(τn(s), η)−X(s, η)‖2ms + 2L2
1|τn(s)− s|2β , (16)

and

‖σ(τn(s), X(n)(τn(s), η))− σ(s,X(s, η))‖2ms

≤ 2L2‖X(n)(τn(s), η)−X(s, η)‖2ms + 2L2
2|τn(s)− s|2γ . (17)

By (H3), Lemma 4 and the inequality(
1

(ρn(t)− τn(s))1−α −
1

(t− s)1−α

)2

≤ 1

(t− s)2−2α
− 1

(ρn(t)− τn(s))2−2α

≤ 1

(t− s)2−2α
− 1

( 2T
n + t− s)2−2α

,

we have∫ t

0

(
‖σ(τn(s), X(n)(τn(s), η))‖ms

(ρn(t)− τn(s))1−α − ‖σ(τn(s), X(n)(τn(s), η))‖ms

(t− s)1−α

)2

ds

≤ 2K2(1 + C1)

∫ t

0

(
1

(t− s)2−2α
− 1

( 2T
n + t− s)2−2α

)
ds

≤ 2K2(1 + C1)(2T )2α−1

(2α− 1)

1

n2α−1
.

11



This together with (15), (16) and (17) implies that

‖X(n)(t, η)−X(t, η)‖2ms

≤ 6L2(t+ 1)

Γ2(α)

∫ t

0

‖X(n)(τn(s), η)−X(s, η)‖2ms

(t− s)2−2α
ds

+
6L2

1t

Γ2(α)

∫ t

0

|τn(s)− s|2β

(t− s)2−2α
ds+

6L2
2

Γ2(α)

∫ t

0

|τn(s)− s|2γ

(t− s)2−2α
ds

+
6K2(1 + C1)(2T )2α−1

(2α− 1)Γ2(α)

1

n2α−1
. (18)

By definition of τn, we have |τn(s) − s| ≤ T
n for s ∈ [0, T ]. Hence, a direct

computation yields that

6L2
1t

Γ2(α)

∫ t

0

|τn(s)− s|2β

(t− s)2−2α
ds+

6L2
2

Γ2(α)

∫ t

0

|τn(s)− s|2γ

(t− s)2−2α
ds

≤ 6L2
1T

2α+2β

(2α− 1)Γ2(α)

1

n2β
+

6L2
2T

2α+2γ−1

(2α− 1)Γ2(α)

1

n2γ
. (19)

On the other hand, by virtue of Lemma 5 we have

‖X(n)(τn(s), η)−X(s, η)‖2ms

≤ 2‖X(n)(τn(s), η)−X(n)(s, η)‖2ms + 2‖X(n)(s, η)−X(s, η)‖2ms

≤ 2C2

n2α−1
+ 2C3|τn(s)− s|2α−1 + 2‖X(n)(s, η)−X(s, η)‖2ms

≤ 2C2 + 2T 2α−1C3

n2α−1
+ 2‖X(n)(s, η)−X(s, η)‖2ms,

where C2 and C3 are given as in (12). This together with (18) and (19) gives

that

sup
0≤s≤t

‖X(n)(s, η)−X(s, η)‖2ms

≤ 12L2(T + 1)

Γ2(α)

∫ t

0

sup0≤r≤s ‖X(n)(r, η)−X(r, η)‖2ms

(t− s)2−2α
ds

+D1
1

n2β
+D2

1

n2γ
+D3

1

n2α−1
,

where D1 :=
6L2

1T
2α+2β

(2α−1)Γ2(α) , D2 :=
6L2

2T
2α+2γ−1

(2α−1)Γ2(α) and

D3 :=
6K2(1 + C1)(2T )2α−1

(2α− 1)Γ2(α)
+ (2C2 + 2T 2α−1C3)

6L2(T + 1)

Γ2(α)

T 2α−1

2α− 1
.
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Applying the Gronwall’s inequality for fractional differential equations, we arrive

at

sup
0≤t≤T

‖X(n)(t, η)−X(t, η)‖2ms

≤
(
D1

n2β
+
D2

n2γ
+

D3

n2α−1

)
E2α−1

(
12L2(T + 1)T 2α−1

Γ(α)

)
.

Hence, inequality (5) holds for

C := (D1 +D2 +D3)E2α−1

(
12L2(T + 1)T 2α−1

Γ(α)

)
.

The proof is complete.

The main result of this paper can be extended to more general Caputo SFDEs

with vector-valued noise. Precisely, for α ∈ ( 1
2 , 1) we consider the following

system of Caputo SFDEs on [0, T ]

CDα
0+X(t) = b(t,X(t)) +

N∑
i=1

σi(t,X(t))
dW i

t

dt
, (20)

where drift function b and the diffusion functions σi, i = 1, . . . N, are measurable

and satisfy the same assumptions as in (H1), (H2) and (H3) with the same

constants β, γ. For the initial value condition X(0) = η, the corresponding

integral form of (20) is

X(t) = η +
1

Γ(α)

∫ t

0

b(s,X(s))

(t− s)1−α ds+
1

Γ(α)

N∑
i=1

∫ t

0

σi(s,X(s))

(t− s)1−α dW i
s .

The Euler-Maruyama scheme is now written as

X(n)(t, η) = η +
1

Γ(α)

∫ t

0

b(τn(s), X(n)(τn(s), η))

(t− s)1−α ds

+
1

Γ(α)

N∑
i=1

∫ t

0

σi(τn(s), X(n)(τn(s), η))

(ρn(t)− τn(s))1−α dW i
s ,

where τn(s) = kT
n =: τ

(n)
k and ρn(s) = (k+1)T

n =: ρ
(n)
k for s ∈ (kTn ,

(k+1)T
n ]. By

simply adapting the proof of Theorem 1, we also have the following result about

the convergence rate of ‖X(n)(t, η)−X(t, η)‖2ms.

13



Theorem 6. Let κ := min
{
β, γ, α− 1

2

}
. Then, there exists a constant C such

that

sup
0≤t≤T

‖X(n)(t, η)−X(t, η)‖2ms ≤
C

n2κ
. (21)

4. Proof of the convergence and stability of exponential Euler-Maruyama

method for bilinear scalar Caputo SFDE

Before going to the proof of the Theorem 3, we need some preparatory lemmas.

Lemma 7 and Lemma 8 are useful in proving the part (i) of Theorem 3 and there

is no requirement on λ, µ. Meanwhile, Lemma 9 and Lemma 10 are useful in

proving the part (ii) of Theorem 3 and here we assume that λ, µ satisfy condition

(7).

Firstly, we show in the following lemma a bound on sup0≤t≤T ‖X̂h(t)‖ms.

Lemma 7. Let M1 := max0≤t≤T (Eα(λtα))2,M2 := max0≤t≤T (Eα,α(λtα))2

and

C4 := M1E2α−1

(
µ2M2Γ(α)T 2α−1

)
‖X(0)‖2ms. (22)

Then, for all h > 0 we have

sup
0≤t≤T

‖X̂h(t)‖2ms ≤ C4.

Proof. By (9), we arrive at

(X̂h(t))2 =

(
(Eα(λtα))X(0) + µ

∫ t

0

Eα,α(λ(t− τh(s))α)

(t− τh(s))1−α X̂h(τh(s)) dWs

)2

.

Taking the expectation of the both sides of the above equality and using the

Ito’s isometry, we obtain that

‖X̂h(t)‖2ms = (Eα(λtα))
2 ‖X(0)‖2ms

+µ2

∫ t

0

(Eα,α(λ(t− τh(s))α))
2

(t− τh(s))2−2α
‖X̂h(τh(s))‖2ms ds.

14



Note that τh(s) ≤ s and using the monotonically decreasing of the function

Eα,α(·) on R− (see e.g. [10]), we derive

‖X̂h(t)‖2ms ≤ (Eα(λtα))
2 ‖X(0)‖2ms

+µ2

∫ t

0

(Eα,α(λ(t− s)α))
2

(t− s)2−2α
‖X̂h(τh(s))‖2ms ds

≤ M1‖X(0)‖2ms + µ2M2

∫ t

0

sup0≤r≤s ‖X̂h(r)‖2ms

(t− s)2−2α
ds.

Let mt := sup0≤s≤t ‖X̂h(s)‖2ms. Then,

mt ≤M1‖X(0)‖2ms + µ2M2

∫ t

0

ms

(t− s)2−2α
ds.

Applying the Gronwall’s inequality for fractional differential equations, see e.g.

[3, Lemma 6.19], we arrive at

sup
0≤s≤t

‖X̂h(s)‖2ms ≤M1‖X(0)‖2msE2α−1

(
µ2M2Γ(α)t2α−1

)
,

which completes the proof.

Secondly, we establish an upper bound on the difference ‖X̂h(t) − X̂h(t̃)‖2ms in

terms of |t− t̃|2α−1.

Lemma 8. Let

M3 :=

(
max

x∈[0,Tα]
∂xEα(λx)

)2

,M4 :=

(
max

x∈[0,Tα]
∂xEα,α(λx)

)2

and

C5 := 4M3T‖X(0)‖2ms +
8µ2M2C4 + 4µ2M4C4T

2α−1

2α− 1
, (23)

where C4 is given as in (22). Then, for all h > 0 and t, t̃ ∈ [0, T ] we have

‖X̂h(t)− X̂h(t̃)‖2ms ≤ C5|t− t̃|2α−1.
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Proof. Choose and fix t, t̃ ∈ [0, T ] with t > t̃. By (9), we have

X̂h(t)− X̂h(t̃)

= (Eα(λtα)− Eα(λt̃α))X(0) + µ

∫ t

t̃

Eα,α(λ(t− τh(s))α)

(t− τh(s))1−α X̂h(τh(s)) dWs

+µ

∫ t̃

0

(Eα,α(λ(t− τh(s))α)

(t− τh(s))1−α − Eα,α(λ(t− τh(s))α)

(t̃− τh(s))1−α

)
X̂h(τh(s)) dWs

+µ

∫ t̃

0

(Eα,α(λ(t− τh(s))α)

(t̃− τh(s))1−α
− Eα,α(λ(t̃− τh(s))α)

(t̃− τh(s))1−α

)
X̂h(τh(s)) dWs.

Using the inequality ‖x + y + z + w‖2 ≤ 4(‖x‖2 + ‖y‖2 + ‖z‖2 + ‖w‖2) for all

x, y, z, w ∈ Rd and Ito’s isometry, we derive that

‖X̂h(t)− X̂h(t̃)‖2ms

≤ 4|Eα(λtα)− Eα(λt̃α)|2‖X(0)‖2ms

+4µ2

∫ t

t̃

(
Eα,α(λ(t− τh(s))α)

)2

(t− τh(s))2−2α
‖X̂h(τh(s))‖2ms ds

+4µ2

∫ t̃

0

(Eα,α(λ(t− τh(s))α)

(t− τh(s))1−α − Eα,α(λ(t− τh(s))α)

(t̃− τh(s))1−α

)2

‖X̂h(τh(s))‖2ms ds

+4µ2

∫ t̃

0

(Eα,α(λ(t− τh(s))α)

(t̃− τh(s))1−α
− Eα,α(λ(t̃− τh(s))α)

(t̃− τh(s))1−α

)2

‖X̂h(τh(s))‖2ms ds.

By Mean Value Theorem, Lemma 7 and the fact that ( 1
(t−τh(s))1−α−

1
(t̃−τh(s))1−α

)2 ≤
1

(t̃−s)2−2α − 1
(t−s)2−2α , we arrive at

‖X̂h(t)− X̂h(t̃)‖2ms

≤ 4M3|tα − (t̃)α|2‖X(0)‖2ms +

∫ t

t̃

4µ2M2C4

(t− s)2−2α
ds

+4µ2M2C4

∫ t̃

0

( 1

(t̃− s)2−2α
− 1

(t− s)2−2α

)
ds

+4µ2C4

∫ t̃

0

M4

(
(t− τh(s))α − (t̃− τh(s))α

)2
(t̃− s)2−2α

ds.

Since 0 < α < 1 it follows that |x + y|α ≤ |x|α + |y|α for x, y > 0. Thus we
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obtain that

‖X̂h(t)− X̂h(t̃)‖2ms

≤ 4M3(t− t̃)2α‖X(0)‖2ms +
4µ2M2C4

2α− 1
(t− t̃)2α−1

+
4µ2M2C4

2α− 1
(t− t̃)2α−1 +

4µ2M4C4(t̃)2α−1

2α− 1
(t− t̃)2α

≤
(

4M3T‖X(0)‖2ms +
8µ2M2C4 + 4µ2M4C4T

2α−1

2α− 1

)
(t− t̃)2α−1.

The proof is complete.

To proof Theorem 3(ii), we recall the following result about an estimate of the

Mittag-Leffler function.

Lemma 9. Suppose that λ > 0. Then, there exists M(λ, α) depending on λ

and α such that

Eα(λtα) ≤ M(λ, α)

max{1, tα}
, Eα,α(λtα) ≤ M(λ, α)

max{1, t2α}
for all t ≥ 0. (24)

Proof. See [7, Theorem 1.4] or [2, Theorem 2].

Next, we need the following preparatory lemma.

Lemma 10. Suppose that µ2
∫∞

0
(Eα,α(λsα))2

s2−2α ds < 1. Let δ ∈ (0, α) be arbi-

trary. Then,

lim sup
t→∞

µ2

∫ t

0

(Eα,α(λ(t− s)α))
2

(t− s)2−2α

max{1, t2δ}
max{1, s2δ}

ds < 1.

Proof. Since µ2
∫∞

0
(Eα,α(λsα))2

s2−2α ds < 1, there exists η ∈ (0, 1) such that

µ2

η2δ

∫ ∞
0

(Eα,α(λsα))
2

s2−2α
ds < 1.

17



Choose and fix such a η satisfying the preceding inequality. Then,

lim sup
t→∞

µ2

∫ t

ηt

(Eα,α(λ(t− s)α))
2

(t− s)2−2α

max{1, t2δ}
max{1, s2δ}

ds

≤ lim sup
t→∞

µ2

η2δ

∫ t

ηt

(Eα,α(λ(t− s)α))
2

(t− s)2−2α
ds

<
µ2

η2δ

∫ ∞
0

(Eα,α(λuα))
2

u2−2α
ds < 1. (25)

On the other hand, by virtue of Lemma 9 we have∫ ηt

0

(Eα,α(λ(t− s)α))
2

(t− s)2−2α

max{1, t2δ}
max{1, s2δ}

ds ≤M(α, λ)2

∫ ηt

0

max{1, t2δ}
(t− s)2+2α

ds

A direct estimation yields that

lim sup
t→∞

t2δ
∫ ηt

0

1

(t− s)2+2α
ds ≤ lim sup

t→∞
t2δ

ηt

(t− ηt)2+2α
= 0,

which implies that

lim sup
t→∞

∫ ηt

0

(Eα,α(λ(t− s)α))
2

(t− s)2−2α

max{1, t2δ}
max{1, s2δ}

ds = 0.

This together with (25) completes the proof.

Finally, we are now in a position to prove Theorem 3.

Proof of Theorem 3. (i) From (8) and (9) we have

X̂h(t)−X(t)

= µ

∫ t

0

( 1

(t− τh(s))1−α −
1

(t− s)1−α

)
Eα,α(λ(t− τh(s))α)X̂h(τh(s)) dWs

+µ

∫ t

0

(Eα,α(λ(t− τh(s))α)

(t− s)1−α − Eα,α(λ(t− s)α)

(t− s)1−α

)
X̂h(τh(s)) dWs

+µ

∫ t

0

Eα,α(λ(t− s)α)

(t− s)1−α (X̂h(τh(s))−X(s)) dWs.

Using the inequality ‖x + y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd
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and Ito’s isometry, we derive that

‖X̂h(t)−X(t)‖2ms

≤ 3µ2

∫ t

0

( 1

(t− s)1−α −
1

(t− τh(s))1−α

)2

|Eα,α(λ(t− τh(s))α)|2‖X̂h(τh(s))‖2ms ds

+3µ2

∫ t

0

1

(t− s)2−2α

∣∣∣Eα,α(λ(t− τh(s))α)− Eα,α(λ(t− s)α)
∣∣∣2‖X̂h(τh(s))‖2ms ds

+3µ2

∫ t

0

|Eα,α(λ(t− s)α)|2

(t− s)2−2α
‖X̂h(τh(s))−X(s)‖2ms ds.

Moreover, using the inequality
(

1
(t−τn(s))1−α −

1
(t−s)1−α

)2

≤ 1
(t−s)2−2α− 1

(t−τn(s))2−2α

and t− τn(s) ≤ t+ h− s, we obtain that∫ t

0

(
1

(t− τn(s))1−α −
1

(t− s)1−α

)2

ds ≤
∫ t

0

( 1

(t− s)2−2α
− 1

(h+ t− s)2−2α

)
ds

≤ h2α−1

2α− 1
.

Thus,

3µ2

∫ t

0

( 1

(t− s)1−α −
1

(t− τh(s))1−α

)2

|Eα,α(λ(t− τh(s))α)|2‖X̂h(τh(s))‖2ms ds

≤ 3µ2M2C4

2α− 1
h2α−1. (26)

By the Mean Value Theorem and Lemma 7, we arrive at

3µ2

∫ t

0

1

(t− s)2−2α

∣∣∣Eα,α(λ(t− τh(s))α)− Eα,α(λ(t− s)α)
∣∣∣2‖X̂h(τh(s))‖2ms ds

≤ 3µ2M4C4

∫ t

0

|(t− τh(s))α − (t− s)α|2

(t− s)2−2α
ds

≤ 3µ2M4C4

∫ t

0

|s− τh(s)|2α

(t− s)2−2α
ds ≤ 3µ2M4C4T

2α−1

2α− 1
h2α. (27)

Moreover, in light of Lemma 8

‖X̂h(τh(s))−X(s)‖2ms ≤ 2‖X̂h(τh(s))− X̂h(s)‖2ms + 2‖X̂h(s)−X(s)‖2ms

≤ 2C5|τh(s)− s|2α−1 + 2‖X̂h(s)−X(s)‖2ms

≤ 2C5h
2α−1 + 2‖X̂h(s)−X(s)‖2ms.
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Thus,

3µ2

∫ t

0

|Eα,α(λ(t− s)α)|2

(t− s)2−2α
‖X̂h(τh(s))−X(s)‖2ms ds

≤ 3µ2M2

(∫ t

0

2C5h
2α−1

(t− s)2−2α
ds+

∫ t

0

2‖X̂h(s)−X(s)‖2ms

(t− s)2−2α
ds

)

≤ 3µ2M2C5T
2α−1

2α− 1
h2α−1 + 6µ2M2

∫ t

0

‖X̂h(s)−X(s)‖2ms

(t− s)2−2α
ds,

which together with (26) and (27) implies that

‖X̂h(t)−X(t)‖2ms ≤
(

3µ2M2C4

2α− 1
+

3µ2M4C4T
2α−1h

2α− 1
+

3µ2M2C5T
2α−1

2α− 1

)
×h2α−1 + 6µ2M2

∫ t

0

‖X̂h(s)−X(s)‖2ms

(t− s)2−2α
ds.

Applying the Gronwall’s inequality for fractional differential equations, see e.g.

[3, Lemma 6.19], we arrive at

sup
0≤t≤T

‖X̂h(t)−X(t)‖2ms ≤ Ch2α−1,

where

C :=

(
3µ2M2C4

2α− 1
+

3µ2M4C4T
2α

2α− 1
+

3µ2M2C5T
2α−1

2α− 1

)
E2α−1(6µ2M2Γ(α)T 2α−1).

The proof is complete.

(ii) By (9) and using the Ito’s isometry, , we arrive at

‖X̂h(t)‖2ms = (Eα(λtα))
2 ‖X(0)‖2ms

+µ2

∫ t

0

(Eα,α(λ(t− τh(s))α))
2

(t− τh(s))2−2α
‖X̂h(τh(s))‖2ms ds.

Note that τh(s) ≤ s and using the monotonically decreasing of the function

Eα,α(·) on R− (see e.g. [10]), we obtain that

‖X̂h(t)‖2ms ≤ (Eα(λtα))
2 ‖X(0)‖2ms

+µ2

∫ t

0

(Eα,α(λ(t− s)α))
2

(t− s)2−2α
‖X̂h(τh(s))‖2ms ds.

By virtue of Lemma 9, there exists M(α, λ) > 0 such that for any X(0) 6= 0

‖X̂h(t)‖2ms

‖X(0)‖2ms

≤ M(α, λ)

max{1, t2α}
+ µ2

∫ t

0

(Eα,α(λ(t− s)α))
2

(t− s)2−2α

‖X̂h(τh(s))‖2ms

‖X(0)‖2ms

ds. (28)
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Now, let

K :=
M(α, λ)

1− µ2
∫∞

0
(Eα,α(λsα))2

s2−2α ds
. (29)

Thanks to (7), K > 0 and we are now proving supt≥0
‖X̂h(t)‖2ms

‖X(0)‖2ms
< K by contra-

diction, i.e. there exists T > 0 being the first time for which
‖X̂h(t)‖2ms

‖X(0)‖2ms
≥ K, i.e.

‖X̂h(T )‖2ms

‖X(0)‖2ms

= K,
‖X̂h(t)‖2ms

‖X(0)‖2ms

< K for t ∈ [0, T ) (30)

Thus, replacing t = T in (28) yields that

K ≤ M(α, λ) + µ2K

∫ T

0

(Eα,α(λ(T − s)α))
2

(T − s)2−2α
ds

< M(α, λ) + µ2K

∫ ∞
0

(Eα,α(λuα))
2

u2−2α
du,

which contradicts to the definition of K as in (29). Let δ ∈ (0, α) be arbitrary

and then to conclude the proof we need to show that limt→∞ tδ‖X̂h(t)‖ms = 0.

In fact, choose and fix an arbitrary δ̂ ∈ (δ, α) it is sufficient to show that

lim sup
t→∞

t2δ̂
‖X̂h(t)‖2ms

‖X(0)‖2ms

<∞.

Suppose the contrary. Then, there exists an increasing sequence (tn)n∈N tending

to ∞ such that γn := max{1, t2δ̂n }
‖X̂h(tn)‖2ms

‖X(0)‖2ms
satisfies

γn = max

{
max{1, t2δ̂}‖X̂h(t)‖2ms

‖X(0)‖2ms

: t ∈ [0, tn]

}
for n ∈ N (31)

and limn→∞ γn =∞. Replacing t = tn in (28) yields that

‖X̂h(tn)‖2ms

‖X(0)‖2ms

≤ M(α, λ)

max{1, t2αn }
+ µ2

∫ tn

0

(Eα,α(λ(tn − s)α))
2

(tn − s)2−2α

‖X̂h(τh(s))‖2ms

‖X(0)‖2ms

ds,

which together with (31) implies that

γn ≤
M(α, λ) max{1, t2δ̂n }

max{1, t2αn }
+ γnµ

2

∫ tn

0

(Eα,α(λ(tn − s)α))
2

(tn − s)2−2α

max{1, t2δ̂n }
max{1, s2δ̂}

ds.

Thus,

γn

(
1− µ2

∫ tn

0

(Eα,α(λ(tn − s)α))
2

(tn − s)2−2α

max{1, t2δ̂n }
max{1, s2δ̂}

ds

)
≤ M(α, λ) max{1, t2δ̂n }

max{1, t2αn }
.
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Since δ̂ < α it follows that

lim sup
n→∞

M(α, λ) max{1, t2δ̂n }
max{1, t2αn }

= 0.

However, by virtue of Lemma 10 and limn→∞ γn =∞

lim sup
n→∞

γn

(
1− µ2

∫ tn

0

(Eα,α(λ(tn − s)α))
2

(tn − s)2−2α

max{1, t2δ̂n }
max{1, s2δ̂}

ds

)
=∞,

which leads to a contradiction. The proof is complete.

5. Examples

In this section, we study a simple Caputo SFDS with additive noise. For this

kind of system, we have explicit formulas for the solution and the numerical

solution by using the Euler-Maruyama scheme. Then, we arrive at that the

convergence rate of the scheme is α− 1
2 , i.e. the rate in Theorem 1 is optimal.

Note that for the stochastic differential equation with additive noise the conver-

gence rate of the Euler-Maruyama scheme is usually equal to 1 (see [5] and [6]).

Then the convergence rate which we find in the following example indicates a

new aspect in numerical computation of stochastic fractional systems.

Example 11. Consider a simple scalar Caputo SFDE on interval [0, 1] of the

form

CDα
0+X(t) = 1

dWt

dt
.

Then, the exact solution for X(0) = 0 is given by

X(1) =
1

Γ(α)

∫ 1

0

1

(1− s)1−α dWs.

Meanwhile, by (4) the numerical solution X(n) is given by

X(n)(1) =
1

Γ(α)

∫ 1

0

1

(1− τn(s))1−α dWs.

Then, by Ito’s isometry we arrive at

‖X(1)−X(n)(1)‖2ms =
1

Γ2(α)

∫ 1

0

(
1

(1− s)1−α −
1

(1− τn(s))1−α

)2

ds.
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α = 0.75 α = 0.6 α = 0.9
√
en log2

√
en√
e2n

√
en log2

√
en√
e2n

√
en log2

√
en√
e2n

n = 128 0.1744 0.2499 1.0094 0.0999 0.0249 0.3998

n = 256 0.1467 0.2499 0.9418 0.1000 0.0188 0.3999

n = 512 0.1233 0.2499 0.8787 0.1000 0.0143 0.3999

n = 1024 0.1037 0.2499 0.8199 0.1000 0.0108 0.3999

n = 2048 0.0872 0.2500 0.7650 0.1000 0.0082 0.3999

n = 4096 0.0733 0.2500 0.7137 0.1000 0.0062 0.3999

α− 1/2 0.25 0.1 0.4

Table 1: Rates of convergence for a simple scalar SFDE

Let us denote en = ‖X(1)−X(n)(1)‖2ms. The rate of convergence of our scheme

for this equation will then be estimated by log2

√
en√
e2n

for some large values of

n. The Table 1 reveals that those rates are α− 1/2 for various values of α, i.e.
√
en ∼ nα−

1
2 as n→∞.

In order to get a further insight into the performance of the proposed method,

we investigate a nonlinear scalar Caputo SFDE whose drift term and diffusion

term satisfy the conditions (H1), (H2) and (H3).

Example 12. Consider the following autonomous Caputo SFDE with α = 3
4

CDα
0+X(t) = cos(X(t)) + sin(X(t))

dWt

dt
. (32)

The computation process is as follows. We first generate 1000 Brownian motions,

for each motion, we use our scheme to compute the approximate solutions with

n, 2n, 4n discretized points for n = 1024. The errors of X(n) and X(2n) are

estimated by ‖X(n)(t)−X(4n)(t)‖ms and ‖X(2n)(t)−X(4n)(t)‖ms, respectively.

These errors in turn are computed by taking the average of 1000 computed

solution errors. The outcome of this process are presented in Figure 1.
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Figure 1: Estimated errors for Equation (32)

Conclusion

In this paper, we have established the convergence of the Euler-Maruyama type

scheme for Caputo stochastic fractional differential equations. The convergence

rate of this scheme is given explicitly. Next, we investigated the convergence and

stability of an exponential Euler-Maruyama scheme for bilinear scalar Caputo

SFDEs.
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