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Abstract. In this paper, we prove an integral theorem for Cegrell class F(f) and
use this result to study the F-equivalence relation.

Introduction

Let Ω ⊂ Cn (n ≥ 2) be a bounded hyperconvex domain. Following [Ceg98, Ceg04,
ACCP09], we denote

E0(Ω) = {u ∈ PSH−(Ω) ∩ L∞(Ω) : limz→∂Ω u(z) = 0,
∫

Ω
(ddcu)n <∞},

F(Ω) = {u ∈ PSH−(Ω) : ∃ {uj} ⊂ E0(Ω), uj ↘ u, supj
∫

Ω
(ddcuj)

n <∞} ,
E(Ω) = {u ∈ PSH−(Ω) : ∀K b Ω,∃uK ∈ F(Ω) such that uK = u on K},

and for every f ∈ PSH−(Ω),

F(Ω, f) = {u ∈ PSH−(Ω) : ∃v ∈ F such that v + f ≤ u ≤ f}.
The class E is the largest subclass of PSH−(Ω) on which the complex Monge-Ampère
operator is well-defined [Ceg04, Blo06]. The class F is the subclass of E containing
those functions with smallest maximal plurisubharmonic majorant identically zero and
with finite total Monge-Ampère mass. If f ∈ E then F(f) ⊂ E.

Our main result is the following:

Theorem 1. Suppose (X, d, µ) is a totally bounded metric probability space and u, f :
Ω×X → [−∞, 0] are measurable functions such that

(i) For every a ∈ X, f(·, a) ∈ E.
(ii) For every a ∈ X, u(·, a) ∈ F(f(., a)) and∫

Ua

(ddcu(z, a))n ≤ (M(a))n,

where M ∈ L1(X) is given and Ua = Ω ∩ {z ∈ Ω : u(z, a) < f(z, a)}.
(iii) The function a 7→ u(z, a) is upper semicontinuous in X for every z ∈ Ω.
(iv) The function a 7→ ef(z,a) is lower semicontinuous in X for every z ∈ Ω.

(v) The function f̃(z) :=
∫
X

f(z, a)dµ(a) is not identically −∞.

Then ũ(z) :=
∫
X

u(z, a)dµ(a) ∈ F(f̃). In particular, if f̃ ∈ E then ũ ∈ E and∫
Ω

(ddcũ)n <∞.

This result follows the plurisubharmonic version of [Kli91, Theorem 2.6.5] in the
direction of focusing on the conservation of the existence of Monge-Ampère measures.
We are not sure that the conditions (iii) and (iv) are necessary but we need these
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conditions in our proof. Our method is as follows: we solve the problem for the case
f ≡ 0, then we use plurisubharmonic envelopes to reduce the problem to the case
f ≡ 0. In the first step, we consider a decreasing sequence of functions uj ∈ F and
prove that limj→∞ uj ∈ F. Then we use the condition (iii) to show that u = limj→∞ uj.
In the last step, we need the conditions (iii) and (iv) to reduce the problem to the case
f ≡ 0.

For u1, u2 ∈ E(Ω), we say that u1 is F-equivalent to u2 if there exist v1, v2 ∈ F

such that u1 + v1 ≤ u2 and u2 + v2 ≤ u1. Observe that u1 is F-equivalent to u2 iff
u1, u2 ∈ F(max{u1, u2}). The following result is an immediate corollary of Theorem 1:

Corollary 2. Suppose (X, d, µ) is a totally bounded metric probability space and u, v :
Ω×X → [−∞, 0] are measurable functions such that

(i) For every a ∈ X, u(·, a), v(·, a) ∈ E(Ω) and∫
Ua

(ddcu(z, a))n +
∫
Va

(ddcv(z, a))n ≤ (M(a))n,

where M ∈ L1(X) is given, Ua = Ω ∩ {z ∈ Ω : u(z, a) < v(z, a)} and Va =

Ω ∩ {z ∈ Ω : v(z, a) < u(z, a)}.
(ii) For every a ∈ X, u(·, a) is F-equivalent to v(·, a).

(iii) The functions a 7→ eu(z,a) and a 7→ ev(z,a) are continuous in X for every z ∈ Ω.

Then ũ(z) :=
∫
X

u(z, a)dµ(a) ∈ E iff ṽ(z) :=
∫
X

v(z, a)dµ(a) ∈ E. Moreover, if ũ, ṽ ∈ E

then ũ is F-equivalent to ṽ.

In the next section, we recall briefly some properties of the class F and plurisubhar-
monic envelopes that will be used to prove the main theorem.
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1. Preliminaries

1.1. The class F. We recall some properties of the class F. The reader can find more
details in [Ceg04, NP09].

The following proposition is a corollary of [Ceg04, Proposition 5.1]:

Proposition 3. Suppose u ∈ F(Ω). If uj ∈ E0(Ω) decreases to u as j →∞ then

lim
j→∞

∫
Ω

(ddcuj)
n =

∫
Ω

(ddcu)n.

In particular,
∫
Ω

(ddcu)n <∞.

Proposition 4. [Ceg04, Corollary 5.6] Suppose u1, ..., un ∈ F(Ω). Then∫
Ω

ddcu1 ∧ ... ∧ ddcun ≤
(∫

Ω

(ddcu1)n
)1/n

...

(∫
Ω

(ddcun)n
)1/n

.

Proposition 5. a) If u, v ∈ F(Ω) then u+ v ∈ F(Ω).
b) If u ∈ F(Ω) and v ∈ PSH−(Ω) then max{u, v} ∈ F(Ω).
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The part a) of Proposition 5 can be obtained by using [Ceg04, Lemma 5.4], Propo-
sition 3 and the definition of the class F. The part b) can be obtained by using the
definition of the class F and the Bedford-Taylor Comparison Principle [BT82].

By [NP09, Theorem 3.7], we have:

Proposition 6. Let Ω be a hyperconvex domain in Cn and u ∈ PSH−(Ω). Assume
that there are uj ∈ F(Ω), j ∈ N, such that uj converges almost everywhere to u as
j →∞. If supj>0

∫
Ω

(ddcuj)
n <∞ then u ∈ F(Ω).

By [NP09, Proposition 3.1], we have:

Proposition 7. Let u, v ∈ F such that u ≤ v in Ω. Then∫
Ω

(ddcv)n ≤
∫
Ω

(ddcu)n.

1.2. Plurisubharmonic envelopes. LetD b Cn be a bounded domain. If u : D → R
is a bounded function then the plurisubharmonic envelope PD(u) of u in D is defined
by

PD(u) = (sup{v ∈ PSH(Ω) : v ≤ u})∗,
where (sup

v∈S
v(z))∗ is the upper envelope of sup

v∈S
v(z).

Lemma 8. a) Let u : D → R be a bounded function. Then PD(u) ≤ u quasi every-
where, i.e., the set {z ∈ D : PD(u)(z) > u(z)} is pluripolar. Moreover,

PD(u) = sup{v ∈ PSH(D) : v ≤ u quasi everywhere on D}.
b) Let uj, u : D → R be bounded functions such that uj ↘ u as j →∞. Then PD(uj)
decreases to PD(u).

The proof of Lemma 8 is the same as the proof of the parts 1), 2) of [GLZ19,
Proposition 2.2]. For every domain W b D, we also consider

PW (u) := (sup{v ∈ PSH(W ) : v̂ ≤ u on W})∗,
where v̂ is the upper semicontinuous extension of v to W defined by

v̂(ξ) := limr→0+ supB(ξ,r)∩W v, ∀ξ ∈ ∂W.
The following results are also proved in [GLZ19]:

Lemma 9. [GLZ19, Lemma 3.11] Let (Dj) be an increasing sequence of relatively
compact domains in D such that ∪Dj = D. Assume that u is a bounded lower semi-
continuous function in D. Then PDj

(u) decreases to PD(u).

Lemma 10. [GLZ19, Lemma 3.10] Let (uj) be an increasing sequence of continuous
functions on D which converges pointwise to a bounded function u. Let W be a relatively
compact domain in D. Then PW (uj) increases almost everywhere to PW (u).

Proposition 11. [GLZ19, Theorem 3.9] Let D b Cn be a bounded pseudoconvex do-
main. Assume that a bounded lower semi-continuous function u is a viscosity superso-
lution (see [EGZ11] for the definition) of the equation

(1) (ddcu)n = fdV,

in D. Then PD(u) is a pluripotential supersolution of (1) in D.
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2. Proof of the main result

We first prove Theorem 1 for the case f = 0.

Proposition 12. Let Ω ⊂ Cn be a bounded hyperconvex domain and (X, d, µ) be a
totally bounded metric probability space. Let u : Ω×X → [−∞, 0] such that

(i) For every a ∈ X, u(·, a) ∈ F(Ω) and∫
Ω

(ddcu(z, a))n ≤ (M(a))n,

where M ∈ L1(X) is given.
(ii) For every z ∈ Ω, the function u(z, ·) is upper semicontinuous in X.

Then ũ(z) :=
∫
X

u(z, a)dµ(a) ∈ F(Ω). Moreover∫
Ω

(ddcũ)n ≤ (
∫
X

M(a)dµ(a))n.

Proof. We will show that there exists a sequence of functions ũj ∈ F(Ω) such that
ũj ↘ ũ as j →∞

sup
j∈Z+

∫
Ω

(ddcũj)
n ≤M(a),

for every a ∈ X.
Since X is totally bounded, there exists a finite cover {Xk}m1

k=1 of X such that the
diameter of each Xk is at most 1/2. Denote

U1,1 = X1, U1,2 = X2 \X1, ..., U1,m1 = Xm1 \ (∪m1−1
l=1 Xl).

Then {U1,k}m1
k=1 is a finite cover of X such that

• U1,k ∩ U1,l = ∅ if k 6= l;
• diam(U1,k) ≤ 1/2 for all k = 1, ...,m1;
• U1,k is totally bounded for all k = 1, ...,m1.

By using induction, for every j ∈ Z+, we can find a finite cover {Uj,k}
mj

k=1 of X such
that

• For every 1 ≤ k ≤ mj+1, there exists 1 ≤ l ≤ mj such that Uj+1,k ⊂ Uj,l;
• Uj,k ∩ Uj,l = ∅ if k 6= l;
• diam(Uj,k) ≤ 2−j for all k = 1, ...,m1.

For every j ∈ Z+, we define

uj(z) =
mj∑
k=1

µ(Uj,k) sup
a∈Uj,k

u(z, a) and ũj = (uj)
∗.

Then ũj ∈ F(Ω). Let aj,k be an arbitrary element of Uj,k for j ∈ Z+ and k = 1, ...,mj.

By using Proposition 7 for ũj and
mj∑
k=1

µ(Uj,k)u(z, aj,k) and by applying Proposition 4,

we have∫
Ω

(ddcũj)
n ≤

∫
Ω

(ddc(
mj∑
k=1

µ(Uj,k)u(z, aj,k)))
n

=
∑

k1+...+kmj =n

n!

k1!...kmj
!

(
mj∏
l=1

µ(Uj,l)
kl

)∫
Ω

(ddcu(z, aj,1))k1 ∧ ... ∧ (ddcu(z, aj,mj
))kmj
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≤
∑

k1+...+kmj =n

n!

k1!...kmj
!

(∏mj

l=1 µ(Uj,l)
kl
)∏mj

l=1(
∫
Ω

(ddcu(z, aj,l))
n)kl/n

≤
∑

k1+...+kmj =n

n!

k1!...kmj
!

(∏mj

l=1 µ(Uj,l)
kl
)∏mj

l=1M(aj,l)
kl

≤
∑

k1+...+kmj =n

n!

k1!...kmj
!

(∏mj

l=1 µ(Uj,l)
kl
)∏mj

l=1(
∫
Ω

(ddcu(z, aj,l))
n)kl/n

=
∑

k1+...+kmj =n

n!

k1!...kmj
!

∏mj

l=1 µ(Uj,l)M(aj,l))
kl

= (µ(Uj,1)M(aj,1) + ...+ µ(Uj,kmj
M(aj,kmj

)))n,

for all j ∈ Z+. Since aj,k is arbitrary for every j, k, we have

(2)

∫
Ω

(ddcũj)
n ≤

(
mj∑
k=1

µ(Uj,k) inf
Uj,k

M(a)

)n

≤

∫
X

M(a)dµ(a)

n

,

for all j ∈ Z+.
We will show that ũj is decreasing to ũ and use Proposition 6 to prove that ũ ∈ F(Ω).
For every z ∈ Ω, a ∈ X and j ∈ Z+, we define

φj(z, a) =
mj∑
k=1

χUj,k
(a) sup

a∈Uj,k

u(z, a) = sup
ξ∈Uj,k(j,a)

u(z, ξ),

where χUj,k
is the characteristic function of Uj,k and k(j, a) is given by a ∈ Uj,k(j,a).

Then, we have

(3) uj(z) =

∫
X

φj(z, a)dµ(a) ≥
∫
X

u(z, a)dµ(a) = ũ(z),

for every z ∈ Ω and j ∈ Z+.
Note that a ∈ Uj+1,k(j+1,a) ∩ Uj,k(j,a) 6= ∅. Then, by the construction of the sets Uj,k,

we have Uj+1,k(j+1,a) ⊂ Uj,k(j,a). Hence

(4) uj(z) =

∫
X

φj(z, a)dµ(a) ≥
∫
X

φj+1(z, a)dµ(a) = uj+1(z),

for every z ∈ and j ∈ Z+.
By the semicontinuity of u(z, ·), we have,

(5) u(z, a) ≥ lim
j→∞

(sup{u(z, ξ) : |ξ − a| ≤ 2−j}) ≥ lim
j→∞

φj(z, a),

for every z ∈ Ω and a ∈ X. By integrating the sides of (5) with respect to a and using
Fatou’s lemma, we get

(6) ũ(z) ≥ lim
j→∞

uj(z).
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Combining (3), (4) and (6), we get that uj is decreasing to ũ as j → ∞. Note
that uj = ũj almost everywhere [Kli91, Proposition 2.6.2], and then lim

j→∞
ũj = ũ al-

most everywhere. Since lim
j→∞

ũj is either plurisubharmonic or identically −∞, we have

lim
j→∞

ũj = ũ everywhere. Therefore, ũj is decreasing to ũ as j →∞.

By Proposition 6, max{ũ,−k} ∈ F(Ω) for k > 0 and it implies that ũ is not identi-
cally −∞. Then, by using Proposition 6 for ũ, we get that ũ ∈ F(Ω). Moreover, since
the sequence ũj is decreasing, we have∫

Ω

(ddcũ)n ≤ lim inf
j→∞

∫
Ω

(ddcũj)
n ≤ (

∫
X

M(a)dµ(a))n.

�

In order to prove Theorem 1, we need the following proposition:

Proposition 13. Let ϕ ∈ E(Ω) and u ∈ F(ϕ). Define

φ(u) := (sup{v ∈ PSH−(Ω) : v + ϕ ≤ u})∗.
Then φ(u) ∈ F, φ(u) + ϕ ≤ u and (ddcφ(u))n ≤ χU(ddcu)n, where U = Ω ∩ {u < ϕ}.

We proceed through some lemmas.

Lemma 14. Let u ∈ C(Ω) ∩ PSH(Ω) and v ∈ L∞(Ω) ∩ PSH(Ω). Then, for every
relatively compact pseudoconvex domain W in Ω, PW (u−v) ∈ L∞(W )∩PSH(W ) and
(ddcPW (u− v))n ≤ (ddcu)n on W .

Proof. Since u|W − supW v ≤ PW (u−v) ≤ u|W − infW v, we have PW (u−v) ∈ L∞(W ).
It remains to show that (ddcPW (u− v))n ≤ (ddcu)n on W .

Let uj, vj be sequences of smooth plurisubharmonic functions on a neighborhood of
W such that uj ↘ u and vj ↘ v as j → ∞. Then, for every j, k ≥ 1, the function
uj − vk is a viscosity supersolution to the equation

(7) (ddcw)n = (ddcuj)
n,

on W . It follows from Proposition 11 that the function PW (uj − vk) ∈ L∞(W ) ∩
PSH(W ) satisfies

(8) (ddcPW (uj − vk))n ≤ (ddcuj)
n,

on W in the pluripotential sense. Moreover, by Lemma 8, we have

(9) PW (uj − vk)↘ PW (u− vk),
as j →∞. Combining (8) and (9), we have

(10) (ddcPW (u− vk))n ≤ (ddcu)n.

By Lemma 10, we also have PW (u− vk)↗ PW (u− v) almost everywhere as k →∞.
Therefore, by (10), we have

(ddcPW (u− v))n ≤ (ddcu)n.

�

Lemma 15. Let u ∈ C(Ω) ∩ PSH(Ω) and v ∈ L∞(Ω) ∩ PSH(Ω). Then PΩ(u− v) ∈
L∞(Ω) ∩ PSH(Ω) and (ddcPΩ(u− v))n ≤ (ddcu)n.
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Proof. Since u−supΩ v ≤ PΩ(u−v) ≤ u−infΩ v, we have PΩ(u−v) ∈ L∞(Ω)∩PSH(Ω).
Let (Ωj) be an increasing sequence of relatively compact pseudoconvex domains in Ω
such that ∪j∈Z+Ωj = Ω. It follows from Lemma 14 that

(ddcPΩj
(u− v))n ≤ (ddcu)n,

on Ωj for every j ∈ Z+. Moreover, by Lemma 9, we have PΩj
(u − v) decreases to

PΩ(u− v). Hence, we have

(ddcPΩ(u− v))n ≤ (ddcu)n, on Ω.

�

Proof of Proposition 13. By the assumption, there exists v ∈ F such that v+ϕ ≤ u ≤
ϕ. Then v ≤ φ(u) ≤ 0. It follows from Proposition 5 that φ(u) ∈ F. By the definition
of φ(u), we have φ(u)+ϕ ≤ u almost everywhere. Therefore, by the subharmonicity of
φ(u) + ϕ and u, we have φ(u) + ϕ ≤ u. It remains to show that (ddcφ(u))n ≤ (ddcu)n.

Since u ∈ PSH−(Ω), it follows from [Ceg04, Theorem 2.1] that there exists a se-
quence of functions uj ∈ E0(Ω)∩C(Ω) such that uj ↘ u as j →∞. For every j ∈ Z+,
we denote

wj = uj −max{ϕ, uj}.

We have

wj = uj −
ϕ+ uj + |ϕ− uj|

2
=
uj − ϕ− |ϕ− uj|

2
= min{−ϕ+ uj, 0}.

Then

(11) φ(u) ≤ wj+1 ≤ wj ≤ 0,

for every j ∈ Z+. Hence

(12) φ(u) ≤ PΩ(wj+1) ≤ PΩ(wj) ≤ 0,

for every j ∈ Z+. In particular, PΩ(wj) ∈ F(Ω) for every j.
Since PΩ(wj)+max{ϕ, uj} and uj are plurisubharmonic and PΩ(wj)+max{ϕ, uj} ≤

wj almost everywhere, we have PΩ(wj) + max{ϕ, uj} ≤ uj for all z ∈ Ω. Letting
j →∞, we get

(13) lim
j→∞

PΩ(wj) + ϕ ≤ u.

Combining (12) and (13), we get PΩ(wj) ↘ φ(u) as j → ∞. Moreover, by Lemma
15, we have (ddcPΩ(wj))

n ≤ (ddcuj)
n. Therefore, by letting j → ∞, we obtain

(ddcφ(u))n ≤ (ddcu)n. Observe that φ(u) is maximal plurisubharmonic (see [Sad81],

[Kli91] for the definition) on Ω\{u < φ} = Int{u = φ}. Then, we have (ddcφ(u))n = 0

on Ω \ {u < φ}. Thus (ddcφ(u))n ≤ χU(ddcu)n. �

Proof of Theorem 1. As in the proposition 13, for all a ∈ X, we define

φ(u)(·, a) := (sup{v ∈ PSH−(Ω) : v + f ≤ u(·, a)})∗
= sup{v ∈ F(Ω) : v + ϕ ≤ u(·, a)}.

For every a ∈ X, we have
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u(z, a) ≥ lim sup
ξ→a

u(z, ξ) ≥ lim sup
ξ→a

(φ(u)(z, ξ) + f(z, ξ))

≥ lim sup
ξ→a

φ(u)(z, ξ) + lim inf
ξ→a

f(z, ξ)

≥ lim sup
ξ→a

φ(u)(z, ξ) + f(z, a).

Hence

φ(u)(z, a) ≥ lim sup
ξ→a

φ(u)(z, ξ).

Moreover, by Proposition 13, we have∫
Ω

(ddcφ(u)(z, a))n ≤
∫
Ua

(ddcu(z, a))n ≤ (M(a))n.

Hence, the function φ(u) satisfies the assumptions of Proposition 12. Then φ̃(u) :=∫
X
φ(u)dµ(a) ∈ F(Ω). In the other hand, we have

φ̃(u) + f̃ ≤ ũ ≤ f̃ .

Thus ũ ∈ F(f̃). �
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