ON THE CONDITIONAL PLURISUBHARMONIC ENVELOPES OF BOUNDED FUNCTIONS

HOANG-SON DO AND GIANG LE

Abstract. In this paper, we extend some recent results of Guedj-Lu-Zeriahi [\[GLZ19\]](#page-9-0) about psh envelopes of bounded functions on bounded domains in \mathbb{C}^n . We also present a result on the regularity of psh envelopes.

1. INTRODUCTION

In [\[GLZ19\]](#page-9-0), Guedj-Lu-Zeriahi studied quasi-plurisubharmonic envelopes on compact Kähler manifolds and plurisubharmonic envelopes on domains of \mathbb{C}^n . By using and extending an approximation process due to Berman [\[Ber19\]](#page-9-1), they show that the (quasi-)plurisubharmonic envelope of a viscosity super-solution is a pluripotential super-solution of a given complex Monge-Ampère equation. Our goal is to extend Guedj-Lu-Zeriahi's results for conditional plurisubharmonic envelopes on domains of \mathbb{C}^n .

Let $\Omega \subset \mathbb{C}^n$ be a bounded domain. Denote by M the set of Borel measures μ on Ω satisfying $\mu = (dd^c \varphi)^n$ for some bounded plurisubharmonic function φ in Ω . If $\mu \in \mathcal{M}$ and u is a bounded function in Ω then we define

$$
P(u, \mu, \Omega) := (\sup \{ v \in PSH(\Omega) \cap L^{\infty}(\Omega) : v \le u, (dd^c v)^n \ge \mu \})^*.
$$

By [\[Kol98\]](#page-9-2), we have $fd\lambda \in \mathcal{M}$ for every $f \in L^p(\Omega), p > 1$, where λ is the Lebesgue measure in \mathbb{C}^n . If $f \in L^p(\Omega), p > 1$, then we also denote $P(u, f, \Omega) := P(u, f d\lambda, \Omega)$. The first main result of this paper is the following:

Theorem 1.1. Assume that $\Omega \subset \mathbb{C}^n$ is a bounded pseudoconvex domain. Suppose that $f \in L^p(\Omega)$ ($p > 1$) and $g \in C(\Omega)$ are non-negative functions. If u is a bounded viscosity subsolution to the equation

$$
(1) \t (dd^c w)^n = gd\lambda,
$$

on Ω then $(dd^cP(u, f, \Omega))^n \leq \max\{f, q\}d\lambda$ in the pluripotential sense in Ω .

Corollary 1.2. Assume that $\Omega \subset \mathbb{C}^n$ is a bounded pseudoconvex domain and and $0 \leq f, g \in L^p(\Omega), p > 1$. Suppose that u is a continuous plurisubharmonic on Ω such that $(dd^c u)^n = gd\lambda$ in the pluripotential sense. Then

$$
(dd^c P(u, f, \Omega))^n \le \max\{f, g\}d\lambda.
$$

In this paper, we also study the continuity of $P(u, f, \Omega)$ when u is continuous. Our second main result is the following:

Theorem 1.3. Assume that Ω is a smooth strictly pseudoconvex domain. If $0 \leq$ $f \in L^p(\Omega), p > 1$, and $u \in C(\overline{\Omega})$ then $P(u, f, \Omega) \in C(\overline{\Omega})$.

Date: March 26, 2020

The second author was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2018.03.

Corollary 1.4. Assume that $\Omega \subset \mathbb{C}^n$ is a smooth strictly pseudoconvex domain and $U \subset \Omega$ is a hyperconvex domain. Then, for every $E \in U$, for each $0 \leq f \in$ $L^p(\Omega), p > 1$, if $P(-\chi_E, f, U)$ is continuous then $P(-\chi_E, f, \Omega)$ is continuous.

2. Some general properties

In this section, we give some properties of $P(u, \mu, \Omega)$, mainly about the conver-gence and stability. Some of them have been proved in [\[GLZ19\]](#page-9-0) for the case $\mu = 0$.

Proposition 2.1. Let u be a bounded function on Ω and $\mu \in \mathcal{M}$. Denote

 $T = \{v \in PSH(\Omega) \cap L^{\infty}(\Omega) : v \leq u \text{ quasi everywhere, } (dd^c v)^n \geq \mu \}.$

Then $P(u, \mu, \Omega) \in T$. Moreover, $P(u, \mu, \Omega) = \sup\{v : v \in T\}$.

Here $v \leq u$ quasi everywhere means that there exists a pluripolar set N such that $v \leq u$ on $\Omega \setminus N$.

Proof. Since negligible sets are pluripolar [\[BT82\]](#page-9-3), we have $P(u, \mu, \Omega) = \sup_{v \in S} v$ quasi everywhere, where

$$
S = \{ v \in PSH(\Omega) \cap L^{\infty}(\Omega) : v \le u, (dd^c v)^n \ge \mu \}.
$$

Hence, $P(u, f, \Omega) \leq u$ quasi everywhere.

By Choquet lemma, there exists a sequence of functions $u_i \in S$ such that $P(u, f, \Omega) =$ $(\sup_j u_j)^*$. Note that if $v, w \in PSH(\Omega) \cap L^{\infty}(\Omega)$ and $(dd^c v)^n$, $(dd^c w)^n \geq \mu$ then $(dd^c\max\{v,w\})^n\geq\mu.$ Hence $(dd^c(\max_{j\leq k}u_j))^n\geq\mu$ for every k. Letting $k\to\infty$ and using [\[BT82,](#page-9-3) Theorem 2.6](see also [\[Kli91,](#page-9-4) Theorem 3.6.1]), we get $(dd^cP(u, f, \Omega))^n$ μ . Then $P(u, f, \Omega) \in T$.

Now, let v be an arbitrary element of T. Then there exists $\varphi \in PSH^{-}(\Omega)$ such that $\{v > u\} \subset \{\varphi = -\infty\}$. Denote $M = \sup |u - v|$. We have

$$
v_{\epsilon} := v + \max\{\epsilon \varphi, -M\} \in S,
$$

for every $\epsilon > 0$. Letting $\epsilon \searrow 0$, we obtain

$$
v = (\lim_{\epsilon \to 0^+} v_{\epsilon})^* \le P(u, \mu, \Omega).
$$

Thus $P(u, \mu, \Omega) = \sup\{v : v \in T\}.$

Corollary 2.2. Let u be a bounded function on Ω and $\mu \in \mathcal{M}$. Then $P(u, \mu, \Omega) = P(P(u, 0, \Omega), \mu, \Omega).$

Proposition 2.3. Let u be a bounded function on Ω and $\mu \in \mathcal{M}$. If Ω_j is an increasing sequence of relative compact domains in Ω such that $\cup_j \Omega_j = \Omega$ then $P(u, \mu, \Omega_i)$ decreases to $P(u, \mu, \Omega)$.

Proof. By the definition, we have

$$
P(u, \mu, \Omega) \le P(u, \mu, \Omega_{j+1}) \le P(u, \mu, \Omega_j),
$$

on Ω_j for every j. Denote $v = \lim_{j \to \infty} P(u, \mu, \Omega_j)$. Then v is a bounded plurisubharmonic function on Ω satisfying

- (2) $P(u, \mu, \Omega) < v$,
- and
- (3) $(dd^c$ $(v)^n \geq \mu$.

It follows from Proposition [2.1,](#page-1-0) that $P(u, \mu, \Omega_j) \leq u$ quasi everywhere on Ω_j . Then $v \leq u$ quasi everywhere on Ω . Hence, by the last assertion of Proposition [2.1](#page-1-0) and by (3) , we get

$$
(4) \t v \le P(u, \mu, \Omega).
$$

Combining [\(2\)](#page-1-2) and [\(4\)](#page-2-0), we obtain $v = P(u, \mu, \Omega)$. Thus $P(u, \mu, \Omega)$ decreases to $P(u, \mu, \Omega)$ as $j \to \infty$.

Proposition 2.4. Let $u, u_j (j \in \mathbb{Z}^+)$ be bounded functions on Ω and $\mu \in \mathcal{M}$. Then the following statements hold:

(i) If u_j decreases to u as $j \to \infty$ then $P(u_j, \mu, \Omega)$ decreases to $P(u, \mu, \Omega)$.

(ii) Assume that u_i is continuous for every j. If u_i increases to u as $j \to \infty$ then $P(u_j, \mu, \Omega)$ increases to $P(u, \mu, \Omega)$ almost everywhere.

Proof. (i) By the definition, we have

$$
P(u, \mu, \Omega) \le P(u_{j+1}, \mu, \Omega) \le P(u_j, \mu, \Omega),
$$

for every i . Then

(5)
$$
v := \lim_{j \to \infty} P(u_j, \mu, \Omega) \ge P(u, \mu, \Omega).
$$

Since $(dd^cP(u_j,\mu,\Omega))^n\geq\mu$ for every j, we also have

(6)
$$
(dd^c v)^n \ge \mu.
$$

It follows from Proposition [2.1](#page-1-0) that $P(u_j, \mu, \Omega) \leq u_j$ quasi everywhere on Ω_j . Letting $j \to \infty$, we get $v \leq u$ quasi everywhere on Ω . Hence, by the last assertion of Proposition [2.1](#page-1-0) and by [\(3\)](#page-1-1), we have

(7)
$$
v \le P(u, \mu, \Omega).
$$

Combining [\(5\)](#page-2-1) and [\(7\)](#page-2-2), we obtain $v = P(u, \mu, \Omega)$. Thus $P(u_j, \mu, \Omega)$ decreases to $P(u, \mu, \Omega)$ as $j \to \infty$.

(ii) By the defintion, we have

$$
P(u, \mu, \Omega) \ge P(u_{j+1}, \mu, \Omega) \ge P(u_j, \mu, \Omega),
$$

for every j . Then

(8)
$$
v := (\lim_{j \to \infty} P(u_j, \mu, \Omega))^* \le P(u, \mu, \Omega).
$$

We will show that $v = \sup_{w \in T} w$, where

$$
T = \{ w \in PSH(\Omega) \cap L^{\infty}(\Omega) : w \le u \text{ quasi everywhere, } (dd^c w)^n \ge \mu \}.
$$

Since $(dd^cP(u_j,\mu,\Omega))^n\geq\mu$ for every j, we have

$$
(9) \qquad \qquad (dd^c v)^n \ge \mu.
$$

Combining [\(8\)](#page-2-3) and [\(9\)](#page-2-4) and using Proposition [2.1,](#page-1-0) we get that

$$
(10) \t\t v \in T.
$$

Let $\varphi \in T$. Since $\varphi - u \leq 0$ and $u_j - u \nearrow 0$, we have $\max{\lbrace \varphi - u_j, 0 \rbrace}$ decreases to 0. Denote by $\hat{\varphi}$ the upper semicontinuous extension of φ to $\overline{\Omega}$, i.e.,

$$
\hat{\varphi}(\xi) := \lim_{r \to 0^+} \sup_{B(\xi, r) \cap \Omega} \varphi, \ \forall \xi \in \partial \Omega.
$$

$$
\varphi - \epsilon \le u_j.
$$

Then

$$
\varphi - \epsilon \le P(u_j, \mu, \Omega) \le v.
$$

Since φ and ϵ are arbitrary, we get

$$
(11) \t\t v \geq \sup_{w \in T} w.
$$

Combining (10) and (11) , we have

$$
v = \sup_{w \in T} w.
$$

Hence, by Proposition [2.1,](#page-1-0) we obtain $v = P(u, \mu, \Omega)$. Thus, $P(u_j, \mu, \Omega)$ increases to $P(u, \mu, \Omega)$ almost everywhere.

Proposition 2.5. Let u be a bounded function on Ω and $0 \leq f, g \in L^p(\Omega)$ for some $p > 1$. Then, there exists a uniform constant $C > 0$ such that

$$
|P(u, f, \Omega) - P(u, g, \Omega)| \le C(||f - g||_{L^p(\Omega)})^{1/n}.
$$

Proof. Let D be a smooth strictly pseudoconvex domain in \mathbb{C}^n such that $\Omega \in D$. Then, by [\[Kol98,](#page-9-2) Corollary 3.1.3], there exists $\phi \in PSH(D) \cap C(\overline{D})$ such that $(dd^c\phi)^n = \chi_{\Omega} |f - g|$ and $\phi|_{\partial D} = 0$. By Proposition [2.1,](#page-1-0) we have

$$
P(u, f, \Omega) + \phi|_{\Omega} \le P(u, g, \Omega),
$$

and

$$
P(u, g, \Omega) + \phi|_{\Omega} \le P(u, f, \Omega).
$$

Then

(12)
$$
\sup_{\Omega} |P(u, f, \Omega) - P(u, g, \Omega)| \leq \sup_{\Omega} |\phi|.
$$

Using [\[GKZ08,](#page-9-5) Theorem 1.1] for $\phi/(\|f-g\|_{L^p(\Omega)})^{1/n}$ and 0, with $\gamma=0$, we have

(13)
$$
\sup_{D} \frac{|\phi|}{(\|f - g\|_{L^p(\Omega)})^{1/n}} \leq C,
$$

where $C > 0$ is a uniform constant.

Combining (12) , (13) , we get

$$
|P(u, f, \Omega) - P(u, g, \Omega)| \le C(||f - g||_{L^p(\Omega)})^{1/n}.
$$

Proposition 2.6. Let $\Omega \subset \mathbb{C}^n$ be a bounded hyperconvex domain. Assume that $u \in USC(\Omega) \cap L^{\infty}(\Omega), v \in LSC(\Omega) \cap L^{\infty}(\Omega), \mu \in \mathbb{N}$ and $W \Subset \Omega$. Denote $M = \sup |u - v|$. Then W

$$
Cap({\{ |P(u,\mu,W) - P(v,\mu,W)| \ge M\epsilon \}}, \Omega) \le \frac{2(n!)^2}{\epsilon^n}Cap({\{ |u-v| \ge \epsilon \}} \cap \overline{W}, \Omega),
$$

for every $\epsilon > 0$.

Here $Cap(E, \Omega)$ is the relative capacity defined by Bedford-Taylor [\[BT82\]](#page-9-3) as follows:

(14)
$$
Cap(E, \Omega) = \sup \{ \int_E (dd^c v)^n : v \in PSH(\Omega, [0, 1]) \}.
$$

Proof. Denote $E_1 = \{u-v \geq \epsilon\} \cap \overline{W}$, $E_2 = \{u-v < -\epsilon\} \cap W$ and $\delta = Cap(\{|u-v| \geq \epsilon\})$ ϵ } $\cap \overline{W}, \Omega$). Then

$$
Cap(E_j, \Omega) \le \delta, \quad j = 1, 2.
$$

Since E_1 is compact and E_2 is open, we have

$$
Cap(E_j, \Omega) = Cap^*(E_j, \Omega), \quad j = 1, 2.
$$

Denote $E = E_1 \cup E_2$. We have

(15)
$$
Cap^*(E,\Omega) \le Cap^*(E_1,\Omega) + Cap^*(E_2,\Omega) \le 2\delta.
$$

Let $h_E = \sup\{h \in PSH^-(\Omega) : h|_E \leq -1\}$. It follows from [\[BT82,](#page-9-3) Proposition 6.5] that

(16)
$$
\int_{\Omega} (dd^c h_E^*)^n = Cap^*(E, \Omega) \leq 2\delta.
$$

By using [\[Xin96,](#page-9-6) Lemma 1] for h_E^* and 0, we get

$$
\int_{\Omega} (-h_E^*)^n (dd^c h)^n \le (n!)^2 \int_{\Omega} (dd^c h_E^*)^n \le 2(n!) \delta,
$$

for all $h \in PSH(\Omega, [0, 1])$. Hence

(17)
$$
Cap(\lbrace h_E^* < -\epsilon \rbrace, \Omega) \le \frac{2(n!)^2 \delta}{\epsilon^n}.
$$

Note that, by [\[BT82\]](#page-9-3), $h_E^* = h_E$ quasi everywhere. Then, by the definition of h_E , we have

$$
u + Mh_E^* \le v \text{ and } v + Mh_E^* \le u,
$$

quasi everywhere in W . Hence

$$
P(u, \mu, W) + Mh_E^* \le P(v, \mu, W)
$$
 and $P(v, \mu, W) + Mh_E^* \le P(u, \mu, W)$.

Then

$$
Cap({\left\{ |P(u,\mu,W) - P(v,\mu,W)| \ge M\epsilon \},\Omega)} \le Cap({h_E^* < -\epsilon},\Omega) \le \frac{2(n!)^2\delta}{\epsilon^n}.
$$

 \Box

6 HOANG-SON DO AND GIANG LE

3. Proof of the main theorems

3.1. **Proof of Theorem [1.1.](#page-0-0)** We use the same method as in the proof of $\left| GLZ19, \right|$ Theorem 3.9.]. First, we prove a special case of Theorem [1.1.](#page-0-0)

Proposition 3.1. Assume that $\Omega \subset \mathbb{C}^n$ is a bounded smooth strictly pseudoconvex domain and $0 \leq f, q \in C(\overline{\Omega})$. If $u \in C(\overline{\Omega})$ is a viscosity subsolution to the equation

(18)
$$
(dd^c w)^n = gd\lambda,
$$

on Ω then $(dd^cP(u, f, \Omega))^n \leq \max\{f, g\}d\lambda$ in the pluripotential sense in Ω .

Proof. By [\[BT76\]](#page-9-7), for every $j \in \mathbb{Z}^+$, there exists $u_j \in PSH(\Omega) \cap C(\overline{\Omega})$ such that

(19)
$$
(dd^c u_j)^n = \max\{e^{j(u_j - u)}g, f\}d\lambda,
$$

in the pluripotential sense in Ω and $u_j = u$ on $\partial \Omega$.

By [\[EGZ11\]](#page-9-8), u_i satisfies [\(19\)](#page-5-0) in the viscosity sense. Applying the viscosity com-parison principle [\[EGZ11,](#page-9-8) [DDT19\]](#page-9-9) to the equation $(dd^c w)^n = \max\{e^{j(w-u)}g, f\}d\lambda$, we get $u_j \le u$ and $u_j \le u_{j+1}$ for every $j \in \mathbb{Z}^+$. Denote $v := (\lim_{j \to \infty} u_j)^*$. We have

$$
\max\{f, g\}d\lambda \ge (dd^c u_j)^n \stackrel{weak}{\longrightarrow} (dd^c v)^n \ge f d\lambda,
$$

and

$$
v \le P(u, f, \Omega) \le u.
$$

It remains to show that $v \ge P(u, f, \Omega)$. For every $j \in \mathbb{Z}^+, \epsilon > 0$ and $h \in$ $PSH(\Omega, [-1, 0))$, we denote

$$
E(j,\epsilon,h) = \{ z \in \Omega : u_j < P(u,f,\Omega) - \epsilon + \epsilon h \}.
$$

By Proposition [2.1,](#page-1-0) we have $(dd^cP(u, f, \Omega))^n \geq fd\lambda$. Then

(20)
$$
\int_{E(j,\epsilon,h)} (fd\lambda + \epsilon^n (dd^c h)^n) \leq \int_{E(j,\epsilon,h)} (dd^c (P(u,f,\Omega) + \epsilon dd^c h))^n.
$$

By the Bedford-Taylor comparison principle, we have

(21)
$$
\int_{E(j,\epsilon,h)} (dd^c(P(u,f,\Omega)+\epsilon dd^c h))^n \leq \int_{E(j,\epsilon,h)} (dd^c u_j)^n.
$$

Since $u_j - u \leq -\epsilon$ in $E(j, \epsilon, h)$, we get

(22)
$$
\int_{E(j,\epsilon,h)} (dd^c u_j)^n = \int_{E(j,\epsilon,h)} \max\{e^{j(u_j-u)}g, f\} d\lambda \le \int_{E(j,\epsilon,h)} \max\{e^{-j\epsilon}g, f\} d\lambda.
$$

Combining (20) , (21) and (22) , we obtain

$$
\epsilon^n \int\limits_{E(j,\epsilon,h)} (dd^c h)^n \leq \int\limits_{E(j,\epsilon,h)} (\max\{e^{-j\epsilon}g, f\} - f) d\lambda.
$$

Then

$$
\epsilon^n \int\limits_{\{u_j \le P(u,f,\Omega)-2\epsilon\}} (dd^c h)^n \le \int\limits_\Omega (\max\{e^{-j\epsilon}g,f\}-f) d\lambda.
$$

Since $h \in PSH(\Omega, [-1, 0))$ is arbitrary, it implies that

$$
Cap({uj \le P(u, f, \Omega) - 2\epsilon}, \Omega) \le \frac{1}{\epsilon^n} \int_{\Omega} (max\{e^{-j\epsilon}g, f\} - f) d\lambda,
$$

where $Cap(.,\Omega)$ is the relative capacity of Bedford-Taylor (see [\(14\)](#page-4-0)). Letting $j \to \infty$, we get

$$
Cap({v \le P(u, f, \Omega) - 2\epsilon}, \Omega) \le \lim_{j \to \infty} Cap({u_j \le P(u, f, \Omega) - 2\epsilon}, \Omega) = 0.
$$

Then $v \ge P(u, f, \Omega) - 2\epsilon$. Since $\epsilon > 0$ is arbitrary, we obtain $v \ge P(u, f, \Omega)$. \Box

Proposition 3.2. Assume that $\Omega \subset \mathbb{C}^n$ is a bounded pseudoconvex domain and $W \in \Omega$ is a smooth strictly pseudoconvex domain. Suppose that $0 \leq f, g \in C(\Omega)$. If u is a bounded viscosity subsolution to the equation

(23)
$$
(dd^c w)^n = gd\lambda,
$$

on Ω then $(dd^cP(u, f, W))^n \leq \max\{f, q\}d\lambda$ in the pluripotential sense in W.

Proof. Let $A > \sup_{\Omega} |u|$ and denote $B = \inf \{ d(x, y) : x \in W, y \in \partial \Omega \} > 0$. For every $m > m_0 := \frac{2A}{B}$, we consider

$$
u_m(z) := \inf\{u(z+\xi) + m|\xi| : |\xi| < \frac{m_0 B}{m}\},
$$

for $z \in \overline{W}$. Then (u_m) is an increasing sequence of continuous functions in \overline{W} satisfying $\lim_{m\to\infty} u_m = u$ and

$$
(dd^c u_m)^n \le g_m d\lambda,
$$

in W in the viscosity sense, where $g_m(z) = \sup\{g(z+\xi) : |\xi| < \frac{m_0 B}{\epsilon}\}$ m }. By Proposition [3.1,](#page-5-4) we have

$$
(dd^c P(u_m, f, W))^n \le \max\{f, g_m\}d\lambda,
$$

in the pluripotential sense in W for all $m > m_0$.

Letting $m \to \infty$ and using Proposition [2.4,](#page-2-6) we obtain

$$
(dd^c P(u, f, W))^n \le \max\{f, g\}d\lambda.
$$

Proof of Theorem [1.1.](#page-0-0) Since Ω is pseudoconvex, there exists an increasing sequence of smooth strictly pseudoconvex domains $\Omega_i \in \Omega$ such that $\cup_i \Omega_i = \Omega$ (see, for example, [\[Hor73,](#page-9-10) Theorem 2.6.11]). Let f_k be a sequence of continuous functions in \mathbb{C}^n such that f_k converges to f in L^p as $k \to \infty$. By Proposition [3.2,](#page-6-0) we have

$$
(dd^c P(u, f_k, \Omega_j))^n \le \max\{f_k, g\}d\lambda,
$$

in the pluripotential sense in Ω_j for all $j, k \in \mathbb{Z}^+$. Letting $j \to \infty$ and using Proposition [2.3,](#page-1-3) we get

$$
(dd^c P(u, f_k, \Omega))^n \le \max\{f_k, g\}d\lambda,
$$

in the pluripotential sense in Ω for all $j, k \in \mathbb{Z}^+$. Moreover, it follows from Proposi-tion [2.5](#page-3-3) that $P(u, f_k, \Omega)$ converges uniformly to $P(u, f, \Omega)$ as $k \to \infty$. Thus

$$
(dd^c P(u, f, \Omega))^n = \lim_{k \to \infty} (dd^c P(u, f_k, \Omega))^n \le \lim_{k \to \infty} \max\{f_k, g\} d\lambda = \max\{f, g\} d\lambda.
$$

The proof is completed.

 \Box

3.2. Proof of Theorem [1.3.](#page-0-1) We proceed through some lemmas.

Lemma 3.3. Assume that Ω is a smooth strictly pseudoconvex domain and $u, f \in$ $C^{\infty}(\overline{\Omega})$ with $f \geq 0$. Then, there exists $C > 0$ such that, for every $\delta > 0$, if $\Omega_{\delta} := \{z \in \Omega : d(z, \partial \Omega) > \delta\} \neq \emptyset$ then

$$
P(u, f, \Omega_{\delta}) \le P(u, f, \Omega) + C\delta,
$$

on Ω_{δ} .

Proof. Since Ω is a smooth strictly pseudoconvex, there exists $\rho \in C^{\infty}(\overline{\Omega}) \cap PSH(\Omega)$ such that $\rho|_{\partial\Omega}0$, $\inf_{\Omega} det(\rho_{\alpha\overline{\beta}}) > 0$ and

$$
-C_1 d(z, \partial \Omega) \le \rho(z) \le -C_2 d(z, \partial \Omega),
$$

for every $z \in \Omega$, where $0 < C_2 < C_1$.

Let $M \gg 1$ such that $(M \rho + u)$ is plurisubharmonic in Ω and $(dd^c(M \rho + u))^n \ge$ $fd\lambda$.

For every $0 < \delta < 1$, if $\Omega_{\delta} \neq \emptyset$ then we define

$$
v_{\delta} = \begin{cases} M\rho + u & \text{on } \Omega \setminus \Omega_{\delta}, \\ \max\{M\rho + u, P(u, f, \Omega_{\delta}) - 2MC_1\delta\} & \text{on } \Omega_{\delta}. \end{cases}
$$

Then $v_{\delta} \in PSH(\Omega) \cap L^{\infty}(\Omega)$, $v_{\delta} \leq u$ and $(dd^c v_{\delta})^n \geq fd\lambda$. Hence

(24)
$$
v \le P(u, f, \Omega).
$$

Moreover, by the definition of v_{δ} , we have

(25)
$$
v_{\delta}|_{\Omega_{\delta}} \ge P(u, f, \Omega_{\delta}) - 2MC_1\delta.
$$

By (24) and (25) , we obtain

$$
P(u, f, \Omega_{\delta}) \le P(u, f, \Omega) + 2MC_1\delta,
$$

on Ω_{δ} .

The proof is completed.

Lemma 3.4. Let $u \in PSH(\Omega) \cap L^{\infty}(\Omega)$ and $0 \leq f \in L^{p}(\Omega), p > 1$. Suppose that $\phi : \Omega \to W$ is a biholomorphic mapping. Then

$$
P(u, f, \Omega) \circ \phi^{-1} = P(u \circ \phi, (f \circ \phi).|J_{\phi}|^{2}, \phi^{-1}(\Omega)).
$$

Proof. The proof is straightforward from the definitions of $P(u, f, \Omega)$ and $P(u \circ$ $\phi, (f \circ \phi).|J_{\phi}|^2, \phi^{-1}$ (Ω)).

Lemma 3.5. Assume that Ω is a smooth strictly pseudoconvex domain and $u, f \in$ $C^{\infty}(\overline{\Omega})$ with $f \geq 0$. Then $P(u, f, \Omega)$ is Lipschitz.

Proof. Since Ω is bounded and smooth, there exists a constant $A > 0$ such that, for every $z_0, z \in \Omega$,

$$
|z - z_0| \le A \inf \{ length(\gamma) : \gamma \in C^1([0, 1], \Omega), \gamma(0) = z_0, \gamma(1) = z \}.
$$

Hence, $P(u, f, \Omega)$ is Lipschitz iff

(26)
$$
\sup_{z_0 \in \Omega} \limsup_{z \to z_0} \frac{|P(u, f, \Omega)(z) - P(u, f, \Omega)(z_0)|}{|z - z_0|} < \infty.
$$

Let $a, b \in \Omega, a \neq b$, such that $\delta := |a - b| \leq \frac{1}{2}$ 2 $min{d(a, \partial\Omega), d(b, \partial\Omega)}$. Since $a - b + \Omega_{\delta} \subset \Omega$, we have

(27)
$$
P(u, f, \Omega)(a) \le P(u, f, b - a + \Omega_{\delta})(a)
$$

By using Lemma [3.4](#page-7-2) for $\phi(z) = z + b - a$, we have

(28)
$$
P(u, f, b - a + \Omega_{\delta})(a) = P(u(z + b - a), f(z + b - a), \Omega_{\delta})(b).
$$

Since $u, f \in C^1(\overline{\Omega})$, there exists $C_1 > 0$ such that

$$
|u(z) - u(z')| \le C_1 |z - z'|,
$$

and

 $|f(z) - f(z')| \leq C_1 |z - z'|,$

for every $z, z' \in \Omega$. Hence

(29)
$$
P(u(z+b-a), f(z+b-a), \Omega_{\delta})(b) \leq C_1 \delta + P(u, (f - C_1 \delta)_+, \Omega_{\delta})(b).
$$

By Proposition [2.5,](#page-3-3) there exists $C_2 > 0$ that does not depend on δ such that

(30)
$$
P(u,(f-C_1\delta)_+,\Omega_\delta) \leq C_2\delta + P(u,f,\Omega_\delta).
$$

Moreover, it follows from Lemma [3.3](#page-7-3) that

(31)
$$
P(u, f, \Omega_{\delta}) \leq C_3 \delta + P(u, f, \Omega),
$$

where $C_3 > 0$ that does not depend on δ . By combining [\(27\)](#page-8-0), [\(28\)](#page-8-1), [\(29\)](#page-8-2), [\(30\)](#page-8-3) and [\(31\)](#page-8-4), we obtain

$$
P(u, f, \Omega)(a) \le P(u, f, \Omega)(b) + C\delta,
$$

where $C > 0$ that does not depend on δ . Similarly, we have

$$
P(u, f, \Omega)(b) \le P(u, f, \Omega)(a) + C\delta.
$$

Then

$$
|P(u, f, \Omega)(a) - P(u, f, \Omega)(b)| \le C\delta = C|a - b|.
$$

Thus, for every $a \in \Omega$,

$$
\limsup_{b \to a} \frac{|P(u, f, \Omega)(b) - P(u, f, \Omega)(a)|}{|b - a|} \le C,
$$

and we get (26) .

Proof of Theorem [1.3.](#page-0-1) Let $u_j, f_j \in C^\infty(\overline{\Omega})$ such that $f_j \geq 0$, u_j converges uniformly to u and f_j converges in $L^p(\Omega)$ to f. By Lemma [3.5,](#page-7-5) we have $P(u_k, f_j, \Omega)$ is continuous for every $j, k \in \mathbb{Z}^+$. Moreover, since u_j converges uniformly to u, we have $P(u_k, f_j, \Omega)$ converges uniformly to $P(u, f_j, \Omega)$ as $k \to \infty$. Hence $P(u, f_j, \Omega)$ is continuous for every j. Since f_j converges in $L^p(\Omega)$ to f, it follows from Proposition [2.5](#page-3-3) that $P(u, f_j, \Omega)$ converges uniformly to $P(u, f, \Omega)$ as $j \to \infty$. Then $P(u, f, \Omega)$ is continuous.

The proof is completed.

ACKNOWLEDGE

This paper was partially written while the second author visited Vietnam Institute for Advanced Study in Mathematics(VIASM). She would like to thank the institution for its hospitality.

REFERENCES

- [Ber19] R. J. Berman: From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit, Math. Z. 291 (2019), no. 1-2, 365-394.
- [BT76] E. Bedford, B. A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37, (1976) no. 1, 1–44.
- [BT82] E. Bedford, B.A. Taylor: A new capacity for plurisubharmonic functions, Acta Math. 149 $(1982), 1-40.$
- [DDT19] S. Dinew, H-S Do, T. D. Tô: A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations, Analysis & PDE, 12 (2019), No. 2, 505–535.
- [EGZ11] P. Eyssidieux, V. Guedj and A. Zeriahi: Viscosity solutions to degenerate complex Monge-*Ampère equations,* Comm. Pure Appl. Math. 64 (2011), no. 8, 1059–1094.
- [GKZ08] V. Guedj, S. Kolodziej and A. Zeriahi: Hölder continuous solutions to Monge-Ampère equations, Bull. London Math. Soc. 40, no. 6, 1070–1080 (2008).
- [GLZ19] V. Guedj, C. H. Lu, A. Zeriahi: Plurisubharmonic envelopes and supersolutions. J. Differential Geom. 113 (2019), no. 2, 273–313.
- [Hor73] L. Hörmander: An introduction to complex analysis in several variables. Second revised edition. North-Holland Math. Libr. Vol. 7, North-Holland, Amsterdam, 1973.
- [Kli91] M. Klimek: *Pluripotential theory*, Oxford Univ. Press, Oxford, 1991.
- [Kol98] S. Kolodziej: *The complex Monge-Ampère equation*, Acta Math. 180, (1998) no. 1, 69– 117.
- [Xin96] Y. Xing: Continuity of the Complex Monge-Ampère Operator, Proc. Amer. Math. Soc. 124 (1996), No. 2, 457–467.

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 HOANG QUOC VIET, HANOI, VIETNAM

Email address: hoangson.do.vn@gmail.com, dhson@math.ac.vn

Department of Mathematics, Hanoi National University of Education, 136-Xuan THUY, CAU GIAY, HANOI, VIETNAM

Email address: legiang@hnue.edu.vn, legiang01@yahoo.com