ON THE CONDITIONAL PLURISUBHARMONIC ENVELOPES
OF BOUNDED FUNCTIONS
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ABSTRACT. In this paper, we extend some recent results of Guedj-Lu-Zeriahi
[GLZ19] about psh envelopes of bounded functions on bounded domains in C™.
We also present a result on the regularity of psh envelopes.

1. INTRODUCTION

In [GLZ19], Guedj-Lu-Zeriahi studied quasi-plurisubharmonic envelopes on com-
pact Kéhler manifolds and plurisubharmonic envelopes on domains of C". By using
and extending an approximation process due to Berman [Ber19], they show that the
(quasi-)plurisubharmonic envelope of a viscosity super-solution is a pluripotential
super-solution of a given complex Monge-Ampere equation. Our goal is to extend
Guedj-Lu-Zeriahi’s results for conditional plurisubharmonic envelopes on domains of
C.

Let Q C C" be a bounded domain. Denote by M the set of Borel measures p on
Q) satisfying p = (dd°p)™ for some bounded plurisubharmonic function ¢ in Q. If
1 € M and u is a bounded function in €2 then we define

P(u, p1,2) := (sup{v € PSH(Q) N L®(Q) : v < u, (ddv)" > p})*.
By [Kol98], we have fd\ € M for every f € LP(Q2),p > 1, where X is the Lebesgue

measure in C". If f € LP(Q),p > 1, then we also denote P(u, f,Q) := P(u, fd\,Q).
The first main result of this paper is the following:

Theorem 1.1. Assume that 2 C C" is a bounded pseudoconvexr domain. Suppose
that f € LP(Q)(p > 1) and g € C(Y) are non-negative functions. If u is a bounded
viscosity subsolution to the equation

(1) (dd“w)" = gdA\,
on ) then (dd°P(u, f,Q2))" < max{f, g}d\ in the pluripotential sense in §Q.

Corollary 1.2. Assume that Q C C" is a bounded pseudoconvexr domain and and
0< f,g€ LP(Q),p>1. Suppose that u is a continuous plurisubharmonic on §) such
that (dd“u)™ = gdX in the pluripotential sense. Then

(dd°P(u, f,Q))" < max{f, g}dA.

In this paper, we also study the continuity of P(u, f,€) when wu is continuous.
Our second main result is the following:

Theorem 1.3. Assume that € is a smooth strictly pseudoconvex domain. If 0 <

ferP(Q),p>1, and u € C(Q) then P(u, f,Q) € C(Q).
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Corollary 1.4. Assume that Q C C" is a smooth strictly pseudoconvexr domain
and U C € is a hyperconvex domain. Then, for every E € U, for each 0 < f €
LP(Q),p > 1, if P(—xg, f,U) is continuous then P(—xg, f,2) is continuous.

2. SOME GENERAL PROPERTIES

In this section, we give some properties of P(u, p, ), mainly about the conver-
gence and stability. Some of them have been proved in [GLZ19] for the case pu = 0.

Proposition 2.1. Let u be a bounded function on € and p € M. Denote
T ={ve PSH(Q)N LX) :v < u quasi everywhere, (dd“v)™ > p}.
Then P(u,p,Q) € T. Moreover, P(u,u, ) =sup{v:v € T}.

Here v < w quasi everywhere means that there exists a pluripolar set N such
that v <won Q\ N.

Proof. Since negligible sets are pluripolar [BT82], we have P(u,p,2) = sup,cgqv
quasi everywhere, where

S={ve PSHQ)NL®(Q) :v < u, (ddv)" > u}.

Hence, P(u, f,Q) < u quasi everywhere.

By Choquet lemma, there exists a sequence of functions u; € S such that P(u, f,2) =
(sup, u;)*. Note that if v,w € PSH(2) N L>*(Q) and (ddv)", (dd“w)™ > p then
(dd® max{v,w})" > pu. Hence (dd°(max;j<ju;))™ > p for every k. Letting k& — oo
and using [BT82, Theorem 2.6](see also [K1i91, Theorem 3.6.1]), we get (dd°P(u, f,2))" >
p. Then P(u, f,Q) € T.

Now, let v be an arbitrary element of 7. Then there exists ¢ € PSH™(2) such
that {v > u} C {¢ = —o0}. Denote M = sup |u — v|. We have

ve := v+ max{ep, —M} € S,
for every € > 0. Letting € \, 0, we obtain
v=(lim v.)* < P(u, i, Q).

e—0t

Thus P(u, p, Q) = sup{v:v e T}. O

Corollary 2.2. Let u be a bounded function on 2 and pu € M. Then
P(u, p1,2) = P(P(u,0,), u, ).

Proposition 2.3. Let u be a bounded function on Q0 and p € M. If Q; is an
increasing sequence of relative compact domains in 0 such that U;§); = € then
P(u, p1,2;) decreases to P(u, 1, $2).

Proof. By the definition, we have
P(“?M? Q) < P(u,,u, Qj-‘rl) < P(U’Jlua Qj>7
on €2; for every j. Denote v = lim P(u,p,€2;). Then v is a bounded plurisubhar-

Jj—00
monic function on 2 satisfying
(2) P(u, 1, ) <,
and

(3) (dd“v)"™ > p.
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It follows from Proposition 2.1, that P(u, u1,§2;) < u quasi everywhere on ;. Then
v < u quasi everywhere on 2. Hence, by the last assertion of Proposition 2.1 and
by (3), we get

(4) v < Plu, p, Q).
Combining (2) and (4), we obtain v = P(u,p,2). Thus P(u,p,€2;) decreases to
P(u, i1, Q) as j — oo. O

Proposition 2.4. Let u,u;(j € Z") be bounded functions on Q@ and p € M. Then
the following statements hold:

(i) If u; decreases to u as j — oo then P(uj, i, <) decreases to P(u, p,2).

(ii) Assume that u; is continuous for every j. If u; increases to u as j — oo then
P(uj, i, Q) increases to P(u, p,2) almost everywhere.

Proof. (i) By the definition, we have

P(u, 1, Q) < P(ujy, 1, ) < Plug, i, Q),
for every j. Then
(5) v:= lim P(uj, u, Q) > P(u, p, ).

j—00
Since (dd°P(u;, p, 2))™ > p for every j, we also have
(6) (dd“v)" > p.

It follows from Proposition 2.1 that P(u;, t, 2) < u; quasi everywhere on €2;. Letting
j — oo, we get v < u quasi everywhere on 2. Hence, by the last assertion of
Proposition 2.1 and by (3), we have

(7) v < P(u, u, ).
Combining (5) and (7), we obtain v = P(u, 41,). Thus P(uj, u,$2) decreases to
P(u, 1, Q) as j — oo.
(ii) By the defintion, we have
Plu, p, ) > Plujia, 1, Q) = Puy, p, ),
for every j. Then
(8) vi= (lim Pluj, 1, Q)" < Plu, 4, 42).
We will show that v = sup,,c w, where
T={we PSH(Q)NL>®(Q) : w < u quasi everywhere, (ddw)" > pu}.
Since (dd°P(u;, p1,2))" > p for every j, we have

(9) (ddv)" = p.
Combining (8) and (9) and using Proposition 2.1, we get that
(10) vel.

Let ¢ € T Since ¢ —u < 0 and u; —u 0, we have max{p — u;,0} decreases to
0. Denote by ¢ the upper semicontinuous extension of ¢ to €2, i.e.,

@(5) = lim, o+ SUPB(¢,rna Ps VS € 0.
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Then max{® — u;, 0} decreases to 0 on Q as j — co. It follows from Dini’s theorem
that max{¢ — u;,0} converges uniformly on € to 0. Hence, for every e > 0, there
exists j such that

@ —€ < uj.
Then
o —€ < Pluj,p, Q) <w.
Since ¢ and e are arbitrary, we get

(11) v > sup w.
weT

Combining (10) and (11), we have
U = SUPy,ep W-

Hence, by Proposition 2.1, we obtain v = P(u, i, €2). Thus, P(u;, 1, {2) increases to
P(u, i, Q) almost everywhere. O

Proposition 2.5. Let u be a bounded function on Q2 and 0 < f,g € LP(QY) for some
p > 1. Then, there exists a uniform constant C' > 0 such that

|P(u7 fﬁ Q) - P(U,g, Q)' S C(Hf _gHLp(Q))l/n'

Proof. Let D be a smooth strictly pseudoconvex domain in C" such that 2 € D.
Then, by [Kol98, Corollary 3.1.3], there exists ¢ € PSH(D) N C(D) such that
(dd°¢)™ = xalf — g| and ¢|sp = 0. By Proposition 2.1, we have

P(u7f79>+¢|9 < P(U,,g,Q),

and

P(u,g,) + ¢la < P(u, f,9).
Then
(12) sup | P(u, f,42) = P(u, g, Q)| < sup|].

Using [GKZ08, Theorem 1.1] for ¢/(||f — g/rr))¥™ and 0, with v = 0, we have

o
13 sup <C,
" > 7= ollra) 7

where C' > 0 is a uniform constant.
Combining (12), (13), we get

‘P(uv f7 Q) - P(U,g, Q)' S O(”f _gHLp(Q))l/n'
0]

Proposition 2.6. Let 2 C C" be a bounded hyperconvexr domain. Assume that
u e USC(QY) NL®N), ve LSCQ)NLXN), p € M and W € Q. Denote
M =sup|u —v|. Then

w

2(n!)

E’I’L

Cap({|P(u, p, W) = P(v, p, W)| = Me}, Q) < 2Cap(ﬂu —v[ =N, Q),

for every e > 0.
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Here Cap(E, Q) is the relative capacity defined by Bedford-Taylor [BT82] as fol-
lows:

(14) Cap(E,Q) = sup{/(ddcv)” cv e PSH(,]0,1])}.
E
Proof. Denote By = {u—v > ENW, By = {u—v < —e}NW and 6 = Cap({|lu—v| >
e} NW,Q). Then
Cap(E;,Q) <¢, j=1,2.
Since FE; is compact and Es is open, we have
Cap(E;,Q) = Cap*(E;,Q), j=1,2.
Denote F = E; U Ey. We have
(15) Cap*(E,Q) < Cap*(E;,Q) + Cap*(E,, Q) < 20.

Let hg = sup{h € PSH=(Q) : h|g < —1}. It follows from [BT82, Proposition 6.5]
that

(16) / (dd°h%)" = Cap*(E, Q) < 26.

By using [Xin96, Lemma 1] for A}, and 0, we get

J(=h)"(ddeh)" < (n)? [ (ddhip)" < 2(n))s,

for all h € PSH(,[0,1]). Hence

2(n!)%§

en

(17) Cap({hy < —€},Q) <

Note that, by [BT82], h}, = hg quasi everywhere. Then, by the definition of hg, we
have

u+ Mhy <vandov+ Mhy <u,
quasi everywhere in W. Hence
P(u, i, W) + Mhy < P(v, p, W) and P(v, u, W) + Mh < P(u, pu, W).

Then

C’ap({|P(U,/L,W) - P(U7M7 W>| > M6}7Q) < Oap({h*E < _6}79) <
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3. PROOF OF THE MAIN THEOREMS

3.1. Proof of Theorem 1.1. We use the same method as in the proof of [GLZ19,
Theorem 3.9.]. First, we prove a special case of Theorem 1.1.

Proposition 3.1. Assume that Q2 C C" is a bounded smooth strictly pseudoconvex

domain and 0 < f,g € C(Q). If u € C(Q) is a viscosity subsolution to the equation
(18) (dd°w)"™ = gdA,
on  then (dd°P(u, f,Q))" < max{f, g}d\ in the pluripotential sense in §Q.

Proof. By [BT76], for every j € Z*, there exists u; € PSH(2) N C(Q) such that
(19) (ddu;)™ = max{e? g, f1dA,

in the pluripotential sense in 2 and u; = u on ).

By [EGZ11], u; satisfies (19) in the viscosity sense. Applying the viscosity com-
parison principle [EGZ11, DDT19] to the equation (dd‘w)” = max{e’“~%g, f}d\,
we get u; < u and w; < ujiq for every j € Z*. Denote v := (lim u;)*. We have

j—00
max { f, g}dA > (dd°u;)" % (dd°v)" > fd,
and
v < P(u, f,Q) < u.

It remains to show that v > P(u, f,Q). For every j € Z*, ¢ > 0 and h €
PSH(,[—1,0)), we denote

E(j,e,h) ={2z€ Q:u; < P(u, f,Q2) — e+ €h}.
By Proposition 2.1, we have (dd°P(u, f,Q))" > fd\. Then
(20) / (fd\+ €"(dd°h)"™) < / (dd°(P(u, f,Q) + edd®h))".
E(j,¢,h) E(j,¢,h)

By the Bedford-Taylor comparison principle, we have
(21) / (dd(P(u, f,Q) + edd*h))" < / (dd°u;)".
E(j,€e,h) E(j,¢,h)
Since u; —u < —e in E(j, €, h), we get
(22) / (dduj)" = / max{e/( g, f1d\ < / max{e g, f}dA.
E(j,e,h) E(j,e,h) E(j,e,h)

Combining (20), (21) and (22), we obtain
" [ (ddh)* < [ (max{e g, f} — f)dA.

E(j,¢e,h) E(j,e,h)
Then
e f (dd°h)" < f(max{e*jeg, f} = fdA.
{u;<P(u,f,Q)—2¢} Q

Since h € PSH(2,[—1,0)) is arbitrary, it implies that
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Caplfu; < P(u, £,0) ~ 26}, 9) < - [(max{eg, f} — f)iA
Q

where Cap(., §2) is the relative capacity of Bedford-Taylor (see (14)). Letting j — oo,
we get

Cap({v < P(u, f,2) — 2¢},0) < }E?o Cap({u; < P(u, f,) —2¢},Q) = 0.

Then v > P(u, f,Q) — 2¢. Since € > 0 is arbitrary, we obtain v > P(u, f,€2). O

Proposition 3.2. Assume that 2 C C" is a bounded pseudoconvex domain and
W e Q is a smooth strictly pseudoconvex domain. Suppose that 0 < f,g € C(Q). If
u s a bounded viscosity subsolution to the equation

(23) (dd°w)"™ = gdA,
on ) then (dd°P(u, f, W)™ < max{f, g}d\ in the pluripotential sense in W.

Proof. Let A > supg, |u| and denote B = inf{d(x,y) : = € W,y € 092} > 0. For
every m > myg 1= %, we consider

moB
U (2) 1= inf{u(z + &) + mlé] : |¢] < —

m

h
for = € W. Then (un,) is an increasing sequence of continuous functions in w
satisfying lim,, o t,, = u and
(ddUpm )™ < gmdA,

TTL()B

in W in the viscosity sense, where g,,(2) = sup{g(z +¢) : [§| < }. By Proposi-

m
tion 3.1, we have

(dd°P(tp, f, W)™ < max{f, gm}dA,

in the pluripotential sense in W for all m > my.
Letting m — oo and using Proposition 2.4, we obtain

(dd°P(u, f,W))" < max{f, g}dA.
0

Proof of Theorem 1.1. Since € is pseudoconvex, there exists an increasing sequence
of smooth strictly pseudoconvex domains ; € € such that U;Q; = Q (see, for
example, [Hor73, Theorem 2.6.11]). Let f; be a sequence of continuous functions in
C" such that f; converges to f in LP as k — oo. By Proposition 3.2, we have

(dd°P(u, fi, ;)" < max{ fi, g}dA\,

in the pluripotential sense in €, for all j,k € Z*. Letting j — oo and using
Proposition 2.3, we get

(dch(u7 fk7 Q))n S maX{fk7 g}d)‘7

in the pluripotential sense in 2 for all 5, k € Z*. Moreover, it follows from Proposi-
tion 2.5 that P(u, fi, Q) converges uniformly to P(u, f,2) as k — oo. Thus

(dd°P(u, f,Q))" = k11_>m (dd°P(u, fi, Q)" < k11_>m max{ fx, g }d\ = max{f, g}dA.

The proof is completed. O
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3.2. Proof of Theorem 1.3. We proceed through some lemmas.

Lemma 3.3. Assume that ) is a smooth strictly pseudoconvexr domain and u, f €

C>®(Q) with f > 0. Then, there exists C > 0 such that, for every 6 > 0, if
Qs :={2€Q:d(2,00) >} # 0 then

P(u7f795) SP(U,f,Q)—i—Cé,
on s.

Proof. Since Q is a smooth strictly pseudoconvex, there exists p € C®(Q)NPSH(Q)
such that plan0, info det(p,z) > 0 and

—Chd(z,090) < p(z) < —Cqd(z,00),

for every z € €, where 0 < Cy < (.

Let M > 1 such that (Mp + u) is plurisubharmonic in € and (dd°(Mp + u))" >
FdX.

For every 0 < § < 1, if Qs # () then we define

v — {Mp—l—u on Q\ Qy,
max{Mp + u, P(u, f,Qs) —2MC10} on Qs.
Then vs € PSH(Q2) N L>®(R), vs < u and (dd°vs)™ > fdA. Hence
(24) v < P(u, f,Q).
Moreover, by the definition of vs, we have
(25) vsla; > P(u, f,Qs) — 2MC46.
By (24) and (25), we obtain
P(u, f,Q5) < P(u, f,Q) + 2MC46,

on Qg.
The proof is completed. [l

Lemma 3.4. Let u € PSH(Q) N L>®(Q) and 0 < f € LP(Q),p > 1. Suppose that
¢ : Q — W is a biholomorphic mapping. Then

P(u, f,Q) 0 ¢7" = P(uo ¢, (fo¢).|Js*, ¢~ ().
Proof. The proof is straightforward from the definitions of P(u, f,Q) and P(u o
¢, (f 0 @)1 Jsl* ¢~ (2)). -

Lemma 3.5. Assume that Q) is a smooth strictly pseudoconver domain and u, f €

C>*(Q) with f > 0. Then P(u, f,Q) is Lipschitz.

Proof. Since §2 is bounded and smooth, there exists a constant A > 0 such that, for
every 2o, z € €2,

|Z - ZO| S Amf{length(y) e € Cl([()? 1]7 9)77(0> - Z07’7(1) = Z}
Hence, P(u, f,2) is Lipschitz iff
(26) sup lim sup |P(u, £, 2)(2) = P, f, ) (z0)] < 00

2060  z—20 |Z - ZO|
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Let a,b € Q,a # b, such that 6 := |a — b] < %min{d(a, 0Q),d(b,0Q)}. Since
a—b+ Qs C €, we have
(27) P(u, f,)(a) < P(u, f,b—a+Qs)(a)
By using Lemma 3.4 for ¢(z) = z + b — a, we have

(28) P(u, f,b—a+ Qs)(a) = P(u(z +b—a), f(z+b—a),Qs)(b).
Since u, f € C'(Q), there exists C} > 0 such that

u(z) —u(Z)] < Chlz — 2]
and

1f(2) = F(Z) < Cilz = 2],
for every z, 2z’ € Q. Hence
(29) Pu(z+b—a), f(z+b—a),Q)(b) < C1d+ Pu, (f — C10)4+,5)(b).
By Proposition 2.5, there exists Cy > 0 that does not depend on § such that
(30) P(u, (f = C16)+,%s) < Ca6 + P(u, f, ).
Moreover, it follows from Lemma 3.3 that
(31) P(u, f,Qs) < C50 + P(u, f,Q),

where C3 > 0 that does not depend on ¢. By combining (27), (28), (29), (30) and
(31), we obtain

P(u, f,Q)(a) < P(u, f,Q2)(b) + C9,
where C' > 0 that does not depend on 4. Similarly, we have
P(u, f,Q2)(b) < P(u, f,Q)(a) + C4.
Then
|P(u, f,Q)(a) — P(u, f,Q)(b)] < Co = Cla —b.
Thus, for every a € (2,
oy P02 2)0) = Pl £ (@)

b—a |b_ a|

and we get (26). O

<C,

Proof of Theorem 1.5. Let u;, f; € C*°(2) such that f; > 0, u; converges uniformly
to uw and f; converges in LP(Q2) to f. By Lemma 3.5, we have P(uy, f;, 2) is con-
tinuous for every j, k € Z*. Moreover, since u; converges uniformly to u, we have
P(uy, f;,8) converges uniformly to P(u, f;,(2) as k — oo. Hence P(u, f;,2) is con-
tinuous for every j. Since f; converges in LP(2) to f, it follows from Proposition
2.5 that P(u, f;,€) converges uniformly to P(u, f,2) as j — oco. Then P(u, f,) is
continuous.

The proof is completed. O
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