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Abstract. In this paper, we extend some recent results of Guedj-Lu-Zeriahi
[GLZ19] about psh envelopes of bounded functions on bounded domains in Cn.
We also present a result on the regularity of psh envelopes.

1. Introduction

In [GLZ19], Guedj-Lu-Zeriahi studied quasi-plurisubharmonic envelopes on com-
pact Kähler manifolds and plurisubharmonic envelopes on domains of Cn. By using
and extending an approximation process due to Berman [Ber19], they show that the
(quasi-)plurisubharmonic envelope of a viscosity super-solution is a pluripotential
super-solution of a given complex Monge-Ampère equation. Our goal is to extend
Guedj-Lu-Zeriahi’s results for conditional plurisubharmonic envelopes on domains of
Cn.

Let Ω ⊂ Cn be a bounded domain. Denote by M the set of Borel measures µ on
Ω satisfying µ = (ddcϕ)n for some bounded plurisubharmonic function ϕ in Ω. If
µ ∈M and u is a bounded function in Ω then we define

P (u, µ,Ω) := (sup{v ∈ PSH(Ω) ∩ L∞(Ω) : v ≤ u, (ddcv)n ≥ µ})∗.
By [Kol98], we have fdλ ∈ M for every f ∈ Lp(Ω), p > 1, where λ is the Lebesgue
measure in Cn. If f ∈ Lp(Ω), p > 1, then we also denote P (u, f,Ω) := P (u, fdλ,Ω).
The first main result of this paper is the following:

Theorem 1.1. Assume that Ω ⊂ Cn is a bounded pseudoconvex domain. Suppose
that f ∈ Lp(Ω)(p > 1) and g ∈ C(Ω) are non-negative functions. If u is a bounded
viscosity subsolution to the equation

(1) (ddcw)n = gdλ,

on Ω then (ddcP (u, f,Ω))n ≤ max{f, g}dλ in the pluripotential sense in Ω.

Corollary 1.2. Assume that Ω ⊂ Cn is a bounded pseudoconvex domain and and
0 ≤ f, g ∈ Lp(Ω), p > 1. Suppose that u is a continuous plurisubharmonic on Ω such
that (ddcu)n = gdλ in the pluripotential sense. Then

(ddcP (u, f,Ω))n ≤ max{f, g}dλ.

In this paper, we also study the continuity of P (u, f,Ω) when u is continuous.
Our second main result is the following:

Theorem 1.3. Assume that Ω is a smooth strictly pseudoconvex domain. If 0 ≤
f ∈ Lp(Ω), p > 1, and u ∈ C(Ω) then P (u, f,Ω) ∈ C(Ω).
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Corollary 1.4. Assume that Ω ⊂ Cn is a smooth strictly pseudoconvex domain
and U ⊂ Ω is a hyperconvex domain. Then, for every E b U , for each 0 ≤ f ∈
Lp(Ω), p > 1, if P (−χE, f, U) is continuous then P (−χE, f,Ω) is continuous.

2. Some general properties

In this section, we give some properties of P (u, µ,Ω), mainly about the conver-
gence and stability. Some of them have been proved in [GLZ19] for the case µ = 0.

Proposition 2.1. Let u be a bounded function on Ω and µ ∈M. Denote

T = {v ∈ PSH(Ω) ∩ L∞(Ω) : v ≤ u quasi everywhere, (ddcv)n ≥ µ}.
Then P (u, µ,Ω) ∈ T . Moreover, P (u, µ,Ω) = sup{v : v ∈ T}.

Here v ≤ u quasi everywhere means that there exists a pluripolar set N such
that v ≤ u on Ω \N .

Proof. Since negligible sets are pluripolar [BT82], we have P (u, µ,Ω) = supv∈S v
quasi everywhere, where

S = {v ∈ PSH(Ω) ∩ L∞(Ω) : v ≤ u, (ddcv)n ≥ µ}.

Hence, P (u, f,Ω) ≤ u quasi everywhere.
By Choquet lemma, there exists a sequence of functions uj ∈ S such that P (u, f,Ω) =

(supj uj)
∗. Note that if v, w ∈ PSH(Ω) ∩ L∞(Ω) and (ddcv)n, (ddcw)n ≥ µ then

(ddc max{v, w})n ≥ µ. Hence (ddc(maxj≤k uj))
n ≥ µ for every k. Letting k → ∞

and using [BT82, Theorem 2.6](see also [Kli91, Theorem 3.6.1]), we get (ddcP (u, f,Ω))n ≥
µ. Then P (u, f,Ω) ∈ T .

Now, let v be an arbitrary element of T . Then there exists ϕ ∈ PSH−(Ω) such
that {v > u} ⊂ {ϕ = −∞}. Denote M = sup |u− v|. We have

vε := v + max{εϕ,−M} ∈ S,
for every ε > 0. Letting ε↘ 0, we obtain

v = ( lim
ε→0+

vε)
∗ ≤ P (u, µ,Ω).

Thus P (u, µ,Ω) = sup{v : v ∈ T}. �

Corollary 2.2. Let u be a bounded function on Ω and µ ∈M. Then

P (u, µ,Ω) = P (P (u, 0,Ω), µ,Ω).

Proposition 2.3. Let u be a bounded function on Ω and µ ∈ M. If Ωj is an
increasing sequence of relative compact domains in Ω such that ∪jΩj = Ω then
P (u, µ,Ωj) decreases to P (u, µ,Ω).

Proof. By the definition, we have

P (u, µ,Ω) ≤ P (u, µ,Ωj+1) ≤ P (u, µ,Ωj),

on Ωj for every j. Denote v = lim
j→∞

P (u, µ,Ωj). Then v is a bounded plurisubhar-

monic function on Ω satisfying

(2) P (u, µ,Ω) ≤ v,

and

(3) (ddcv)n ≥ µ.
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It follows from Proposition 2.1, that P (u, µ,Ωj) ≤ u quasi everywhere on Ωj. Then
v ≤ u quasi everywhere on Ω. Hence, by the last assertion of Proposition 2.1 and
by (3), we get

(4) v ≤ P (u, µ,Ω).

Combining (2) and (4), we obtain v = P (u, µ,Ω). Thus P (u, µ,Ωj) decreases to
P (u, µ,Ω) as j →∞. �

Proposition 2.4. Let u, uj(j ∈ Z+) be bounded functions on Ω and µ ∈ M. Then
the following statements hold:

(i) If uj decreases to u as j →∞ then P (uj, µ,Ω) decreases to P (u, µ,Ω).
(ii) Assume that uj is continuous for every j. If uj increases to u as j → ∞ then
P (uj, µ,Ω) increases to P (u, µ,Ω) almost everywhere.

Proof. (i) By the definition, we have

P (u, µ,Ω) ≤ P (uj+1, µ,Ω) ≤ P (uj, µ,Ω),

for every j. Then

(5) v := lim
j→∞

P (uj, µ,Ω) ≥ P (u, µ,Ω).

Since (ddcP (uj, µ,Ω))n ≥ µ for every j, we also have

(6) (ddcv)n ≥ µ.

It follows from Proposition 2.1 that P (uj, µ,Ω) ≤ uj quasi everywhere on Ωj. Letting
j → ∞, we get v ≤ u quasi everywhere on Ω. Hence, by the last assertion of
Proposition 2.1 and by (3), we have

(7) v ≤ P (u, µ,Ω).

Combining (5) and (7), we obtain v = P (u, µ,Ω). Thus P (uj, µ,Ω) decreases to
P (u, µ,Ω) as j →∞.

(ii) By the defintion, we have

P (u, µ,Ω) ≥ P (uj+1, µ,Ω) ≥ P (uj, µ,Ω),

for every j. Then

(8) v := ( lim
j→∞

P (uj, µ,Ω))∗ ≤ P (u, µ,Ω).

We will show that v = supw∈T w, where

T = {w ∈ PSH(Ω) ∩ L∞(Ω) : w ≤ u quasi everywhere, (ddcw)n ≥ µ}.

Since (ddcP (uj, µ,Ω))n ≥ µ for every j, we have

(9) (ddcv)n ≥ µ.

Combining (8) and (9) and using Proposition 2.1, we get that

(10) v ∈ T.
Let ϕ ∈ T . Since ϕ − u ≤ 0 and uj − u ↗ 0, we have max{ϕ − uj, 0} decreases to
0. Denote by ϕ̂ the upper semicontinuous extension of ϕ to Ω, i.e.,

ϕ̂(ξ) := limr→0+ supB(ξ,r)∩Ω ϕ, ∀ξ ∈ ∂Ω.
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Then max{ϕ̂− uj, 0} decreases to 0 on Ω as j →∞. It follows from Dini’s theorem
that max{ϕ − uj, 0} converges uniformly on Ω to 0. Hence, for every ε > 0, there
exists j such that

ϕ− ε ≤ uj.

Then

ϕ− ε ≤ P (uj, µ,Ω) ≤ v.

Since ϕ and ε are arbitrary, we get

(11) v ≥ sup
w∈T

w.

Combining (10) and (11), we have

v = supw∈T w.

Hence, by Proposition 2.1, we obtain v = P (u, µ,Ω). Thus, P (uj, µ,Ω) increases to
P (u, µ,Ω) almost everywhere. �

Proposition 2.5. Let u be a bounded function on Ω and 0 ≤ f, g ∈ Lp(Ω) for some
p > 1. Then, there exists a uniform constant C > 0 such that

|P (u, f,Ω)− P (u, g,Ω)| ≤ C(‖f − g‖Lp(Ω))
1/n.

Proof. Let D be a smooth strictly pseudoconvex domain in Cn such that Ω b D.
Then, by [Kol98, Corollary 3.1.3], there exists φ ∈ PSH(D) ∩ C(D) such that
(ddcφ)n = χΩ|f − g| and φ|∂D = 0. By Proposition 2.1, we have

P (u, f,Ω) + φ|Ω ≤ P (u, g,Ω),

and

P (u, g,Ω) + φ|Ω ≤ P (u, f,Ω).

Then

(12) sup
Ω
|P (u, f,Ω)− P (u, g,Ω)| ≤ sup

Ω
|φ|.

Using [GKZ08, Theorem 1.1] for φ/(‖f − g‖Lp(Ω))
1/n and 0, with γ = 0, we have

(13) sup
D

|φ|
(‖f − g‖Lp(Ω))1/n

≤ C,

where C > 0 is a uniform constant.
Combining (12), (13), we get

|P (u, f,Ω)− P (u, g,Ω)| ≤ C(‖f − g‖Lp(Ω))
1/n.

�

Proposition 2.6. Let Ω ⊂ Cn be a bounded hyperconvex domain. Assume that
u ∈ USC(Ω) ∩ L∞(Ω), v ∈ LSC(Ω) ∩ L∞(Ω), µ ∈ M and W b Ω. Denote
M = sup

W
|u− v|. Then

Cap({|P (u, µ,W )− P (v, µ,W )| ≥Mε},Ω) ≤ 2(n!)2

εn
Cap({|u− v| ≥ ε} ∩W,Ω),

for every ε > 0.
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Here Cap(E,Ω) is the relative capacity defined by Bedford-Taylor [BT82] as fol-
lows:

(14) Cap(E,Ω) = sup{
∫
E

(ddcv)n : v ∈ PSH(Ω, [0, 1])}.

Proof. Denote E1 = {u−v ≥ ε}∩W,E2 = {u−v < −ε}∩W and δ = Cap({|u−v| ≥
ε} ∩W,Ω). Then

Cap(Ej,Ω) ≤ δ, j = 1, 2.

Since E1 is compact and E2 is open, we have

Cap(Ej,Ω) = Cap∗(Ej,Ω), j = 1, 2.

Denote E = E1 ∪ E2. We have

(15) Cap∗(E,Ω) ≤ Cap∗(E1,Ω) + Cap∗(E2,Ω) ≤ 2δ.

Let hE = sup{h ∈ PSH−(Ω) : h|E ≤ −1}. It follows from [BT82, Proposition 6.5]
that

(16)

∫
Ω

(ddch∗E)n = Cap∗(E,Ω) ≤ 2δ.

By using [Xin96, Lemma 1] for h∗E and 0, we get∫
Ω

(−h∗E)n(ddch)n ≤ (n!)2
∫
Ω

(ddch∗E)n ≤ 2(n!)δ,

for all h ∈ PSH(Ω, [0, 1]). Hence

(17) Cap({h∗E < −ε},Ω) ≤ 2(n!)2δ

εn
.

Note that, by [BT82], h∗E = hE quasi everywhere. Then, by the definition of hE, we
have

u+Mh∗E ≤ v and v +Mh∗E ≤ u,

quasi everywhere in W . Hence

P (u, µ,W ) +Mh∗E ≤ P (v, µ,W ) and P (v, µ,W ) +Mh∗E ≤ P (u, µ,W ).

Then

Cap({|P (u, µ,W )− P (v, µ,W )| ≥Mε},Ω) ≤ Cap({h∗E < −ε},Ω) ≤ 2(n!)2δ

εn
.

�
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3. Proof of the main theorems

3.1. Proof of Theorem 1.1. We use the same method as in the proof of [GLZ19,
Theorem 3.9.]. First, we prove a special case of Theorem 1.1.

Proposition 3.1. Assume that Ω ⊂ Cn is a bounded smooth strictly pseudoconvex
domain and 0 ≤ f, g ∈ C(Ω). If u ∈ C(Ω) is a viscosity subsolution to the equation

(18) (ddcw)n = gdλ,

on Ω then (ddcP (u, f,Ω))n ≤ max{f, g}dλ in the pluripotential sense in Ω.

Proof. By [BT76], for every j ∈ Z+, there exists uj ∈ PSH(Ω) ∩ C(Ω) such that

(19) (ddcuj)
n = max{ej(uj−u)g, f}dλ,

in the pluripotential sense in Ω and uj = u on ∂Ω.
By [EGZ11], uj satisfies (19) in the viscosity sense. Applying the viscosity com-

parison principle [EGZ11, DDT19] to the equation (ddcw)n = max{ej(w−u)g, f}dλ,
we get uj ≤ u and uj ≤ uj+1 for every j ∈ Z+. Denote v := ( lim

j→∞
uj)
∗. We have

max {f, g}dλ ≥ (ddcuj)
n weak−→ (ddcv)n ≥ fdλ,

and

v ≤ P (u, f,Ω) ≤ u.

It remains to show that v ≥ P (u, f,Ω). For every j ∈ Z+, ε > 0 and h ∈
PSH(Ω, [−1, 0)), we denote

E(j, ε, h) = {z ∈ Ω : uj < P (u, f,Ω)− ε+ εh}.

By Proposition 2.1, we have (ddcP (u, f,Ω))n ≥ fdλ. Then

(20)

∫
E(j,ε,h)

(fdλ+ εn(ddch)n) ≤
∫

E(j,ε,h)

(ddc(P (u, f,Ω) + εddch))n.

By the Bedford-Taylor comparison principle, we have

(21)

∫
E(j,ε,h)

(ddc(P (u, f,Ω) + εddch))n ≤
∫

E(j,ε,h)

(ddcuj)
n.

Since uj − u ≤ −ε in E(j, ε, h), we get

(22)

∫
E(j,ε,h)

(ddcuj)
n =

∫
E(j,ε,h)

max{ej(uj−u)g, f}dλ ≤
∫

E(j,ε,h)

max{e−jεg, f}dλ.

Combining (20), (21) and (22), we obtain

εn
∫

E(j,ε,h)

(ddch)n ≤
∫

E(j,ε,h)

(max{e−jεg, f} − f)dλ.

Then

εn
∫

{uj≤P (u,f,Ω)−2ε}
(ddch)n ≤

∫
Ω

(max{e−jεg, f} − f)dλ.

Since h ∈ PSH(Ω, [−1, 0)) is arbitrary, it implies that
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Cap({uj ≤ P (u, f,Ω)− 2ε},Ω) ≤ 1

εn
∫
Ω

(max{e−jεg, f} − f)dλ,

where Cap(.,Ω) is the relative capacity of Bedford-Taylor (see (14)). Letting j →∞,
we get

Cap({v ≤ P (u, f,Ω)− 2ε},Ω) ≤ lim
j→∞

Cap({uj ≤ P (u, f,Ω)− 2ε},Ω) = 0.

Then v ≥ P (u, f,Ω)− 2ε. Since ε > 0 is arbitrary, we obtain v ≥ P (u, f,Ω). �

Proposition 3.2. Assume that Ω ⊂ Cn is a bounded pseudoconvex domain and
W b Ω is a smooth strictly pseudoconvex domain. Suppose that 0 ≤ f, g ∈ C(Ω). If
u is a bounded viscosity subsolution to the equation

(23) (ddcw)n = gdλ,

on Ω then (ddcP (u, f,W ))n ≤ max{f, g}dλ in the pluripotential sense in W .

Proof. Let A > supΩ |u| and denote B = inf{d(x, y) : x ∈ W, y ∈ ∂Ω} > 0. For
every m > m0 := 2A

B
, we consider

um(z) := inf{u(z + ξ) +m|ξ| : |ξ| < m0B

m
},

for z ∈ W . Then (um) is an increasing sequence of continuous functions in W
satisfying limm→∞ um = u and

(ddcum)n ≤ gmdλ,

in W in the viscosity sense, where gm(z) = sup{g(z + ξ) : |ξ| < m0B

m
}. By Proposi-

tion 3.1, we have

(ddcP (um, f,W ))n ≤ max{f, gm}dλ,
in the pluripotential sense in W for all m > m0.

Letting m→∞ and using Proposition 2.4, we obtain

(ddcP (u, f,W ))n ≤ max{f, g}dλ.
�

Proof of Theorem 1.1. Since Ω is pseudoconvex, there exists an increasing sequence
of smooth strictly pseudoconvex domains Ωj b Ω such that ∪jΩj = Ω (see, for
example, [Hor73, Theorem 2.6.11]). Let fk be a sequence of continuous functions in
Cn such that fk converges to f in Lp as k →∞. By Proposition 3.2, we have

(ddcP (u, fk,Ωj))
n ≤ max{fk, g}dλ,

in the pluripotential sense in Ωj for all j, k ∈ Z+. Letting j → ∞ and using
Proposition 2.3, we get

(ddcP (u, fk,Ω))n ≤ max{fk, g}dλ,
in the pluripotential sense in Ω for all j, k ∈ Z+. Moreover, it follows from Proposi-
tion 2.5 that P (u, fk,Ω) converges uniformly to P (u, f,Ω) as k →∞. Thus

(ddcP (u, f,Ω))n = lim
k→∞

(ddcP (u, fk,Ω))n ≤ lim
k→∞

max{fk, g}dλ = max{f, g}dλ.

The proof is completed. �
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3.2. Proof of Theorem 1.3. We proceed through some lemmas.

Lemma 3.3. Assume that Ω is a smooth strictly pseudoconvex domain and u, f ∈
C∞(Ω) with f ≥ 0. Then, there exists C > 0 such that, for every δ > 0, if
Ωδ := {z ∈ Ω : d(z, ∂Ω) > δ} 6= ∅ then

P (u, f,Ωδ) ≤ P (u, f,Ω) + Cδ,

on Ωδ.

Proof. Since Ω is a smooth strictly pseudoconvex, there exists ρ ∈ C∞(Ω)∩PSH(Ω)
such that ρ|∂Ω0, infΩ det(ραβ) > 0 and

−C1d(z, ∂Ω) ≤ ρ(z) ≤ −C2d(z, ∂Ω),

for every z ∈ Ω, where 0 < C2 < C1.
Let M � 1 such that (Mρ+ u) is plurisubharmonic in Ω and (ddc(Mρ+ u))n ≥

fdλ.
For every 0 < δ < 1, if Ωδ 6= ∅ then we define

vδ =

{
Mρ+ u on Ω \ Ωδ,

max{Mρ+ u, P (u, f,Ωδ)− 2MC1δ} on Ωδ.

Then vδ ∈ PSH(Ω) ∩ L∞(Ω), vδ ≤ u and (ddcvδ)
n ≥ fdλ. Hence

(24) v ≤ P (u, f,Ω).

Moreover, by the definition of vδ, we have

(25) vδ|Ωδ ≥ P (u, f,Ωδ)− 2MC1δ.

By (24) and (25), we obtain

P (u, f,Ωδ) ≤ P (u, f,Ω) + 2MC1δ,

on Ωδ.
The proof is completed. �

Lemma 3.4. Let u ∈ PSH(Ω) ∩ L∞(Ω) and 0 ≤ f ∈ Lp(Ω), p > 1. Suppose that
φ : Ω→ W is a biholomorphic mapping. Then

P (u, f,Ω) ◦ φ−1 = P (u ◦ φ, (f ◦ φ).|Jφ|2, φ−1(Ω)).

Proof. The proof is straightforward from the definitions of P (u, f,Ω) and P (u ◦
φ, (f ◦ φ).|Jφ|2, φ−1(Ω)). �

Lemma 3.5. Assume that Ω is a smooth strictly pseudoconvex domain and u, f ∈
C∞(Ω) with f ≥ 0. Then P (u, f,Ω) is Lipschitz.

Proof. Since Ω is bounded and smooth, there exists a constant A > 0 such that, for
every z0, z ∈ Ω,

|z − z0| ≤ A inf{length(γ) : γ ∈ C1([0, 1],Ω), γ(0) = z0, γ(1) = z}.

Hence, P (u, f,Ω) is Lipschitz iff

(26) sup
z0∈Ω

lim sup
z→z0

|P (u, f,Ω)(z)− P (u, f,Ω)(z0)|
|z − z0|

<∞.
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Let a, b ∈ Ω, a 6= b, such that δ := |a − b| ≤ 1

2
min{d(a, ∂Ω), d(b, ∂Ω)}. Since

a− b+ Ωδ ⊂ Ω, we have

(27) P (u, f,Ω)(a) ≤ P (u, f, b− a+ Ωδ)(a)

By using Lemma 3.4 for φ(z) = z + b− a, we have

(28) P (u, f, b− a+ Ωδ)(a) = P (u(z + b− a), f(z + b− a),Ωδ)(b).

Since u, f ∈ C1(Ω), there exists C1 > 0 such that

|u(z)− u(z′)| ≤ C1|z − z′|,

and

|f(z)− f(z′)| ≤ C1|z − z′|,

for every z, z′ ∈ Ω. Hence

(29) P (u(z + b− a), f(z + b− a),Ωδ)(b) ≤ C1δ + P (u, (f − C1δ)+,Ωδ)(b).

By Proposition 2.5, there exists C2 > 0 that does not depend on δ such that

(30) P (u, (f − C1δ)+,Ωδ) ≤ C2δ + P (u, f,Ωδ).

Moreover, it follows from Lemma 3.3 that

(31) P (u, f,Ωδ) ≤ C3δ + P (u, f,Ω),

where C3 > 0 that does not depend on δ. By combining (27), (28), (29), (30) and
(31), we obtain

P (u, f,Ω)(a) ≤ P (u, f,Ω)(b) + Cδ,

where C > 0 that does not depend on δ. Similarly, we have

P (u, f,Ω)(b) ≤ P (u, f,Ω)(a) + Cδ.

Then

|P (u, f,Ω)(a)− P (u, f,Ω)(b)| ≤ Cδ = C|a− b|.

Thus, for every a ∈ Ω,

lim sup
b→a

|P (u, f,Ω)(b)− P (u, f,Ω)(a)|
|b− a|

≤ C,

and we get (26). �

Proof of Theorem 1.3. Let uj, fj ∈ C∞(Ω) such that fj ≥ 0, uj converges uniformly
to u and fj converges in Lp(Ω) to f . By Lemma 3.5, we have P (uk, fj,Ω) is con-
tinuous for every j, k ∈ Z+. Moreover, since uj converges uniformly to u, we have
P (uk, fj,Ω) converges uniformly to P (u, fj,Ω) as k →∞. Hence P (u, fj,Ω) is con-
tinuous for every j. Since fj converges in Lp(Ω) to f , it follows from Proposition
2.5 that P (u, fj,Ω) converges uniformly to P (u, f,Ω) as j →∞. Then P (u, f,Ω) is
continuous.

The proof is completed. �
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