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REGULAR-SINGULAR CONNECTIONS ON RELATIVE COMPLEX

SCHEMES

PHÙNG HÔ HAI AND JOÃO PEDRO DOS SANTOS

Abstract. Deligne’s celebrated “Riemann–Hilbert correspondence” appearing in [Del70]
relates representations of the fundamental group of a smooth complex algebraic variety
and regular-singular integrable connections. In this work, we show how to arrive at
a similar statement in the case of a smooth scheme X over the spectrum of a ring
R = CJt1, . . . , trK/I . On one side of the correspondence we have representations on
R-modules of the fundamental group of the special fibre, and on the other we have cer-
tain integrable R-connections admitting logarithmic models. The correspondence is then
applied to give explicit examples of differential Galois groups of CJtK–connections.

1. Introduction

The objective of this paper is to show how to adapt Deligne’s theory relating regular–
singular connections and representations of the fundamental group [Del70], [Mal87] to the
setting of schemes defined over a complete local C-algebra. This is done with the purpose
of determining easily some differential Galois groups (to be taken in the sense of [DHdS18]
and [HdS19]).

Deligne’s celebrated “Riemann–Hilbert correspondence” establishes that on a smooth
complex algebraic variety X∗ (notation shall become clear soon), the category of complex
linear representations of the topological fundamental group π1(X

∗an) can be recovered as
the category of integrable regular–singular connections. Although a prominent feature
of this correspondence is an intrinsic definition of regular–singular connections, this shall
not be discussed here. For us, regular–singular connections will only be defined after a
“compactification” is chosen. So, let us assume that X∗ is an open subvariety of a proper
and smooth complex algebraic variety X (the compactification) and that Y := (XrX∗)red
is a divisor with normal crossings and smooth connected components. Then, one says
that an integrable connection on X∗ is regular–singular whenever it might be extended
to a logarithmic integrable connection on X. (To repeat, the appropriate terminology
should be (X,X∗)-regular-singular as in [Ki15, Definition 4.1], but we find this somewhat
exhausting.) Under these definitions, we have a “Deligne-Riemann-Hilbert” equivalence of
C-linear tensor categories

DRH :

{
regular–singular

integrable connections on X∗

}
∼
−→

{
finite dimensional complex
representations of π1(X

∗an)

}
;

see for example [Del70, II.5.9, p.97] or [Mal87, Theorem 7.2.1]. One relevant consequence
of this theorem is that it allows one to compute differential Galois groups by means of
“Schlesinger’s theorem”: the differential Galois group is the Zariski closure of the mon-
odromy group.
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A natural question—specially in view of our previous works [DHdS18] and [HdS19]—is
to determine if Deligne’s theory can be extended to a “relative” setting. So let S be the
spectrum of a quotient of CJt1, . . . , trK and consider a smooth and proper S-scheme X → S
having connected fibres. Suppose that Y ⊂ X is a relative divisor with normal crossings
and write X∗ for the complement X rY . Defining a regular-singular connection on X∗ in
analogy with the definition of the previous paragraph and letting X∗

0 be the special fibre
of X∗, we might enquire about the relation between

{
regular–singular

integrable S-connections on X∗

}
and

{
representations of π1(X

∗an
0 )

on finite O(S)-modules

}
.

Our answer is given by Corollary 6.14 and says that under additional hypothesis the afore-
mentioned categories are equivalent.

Our proof of Corollary 6.14 follows Deligne’s original method. Let us describe our strat-
egy rapidly while awaiting a more precise summary below. Firstly (paralleling [Del70]) a
considerable part of the work is developed in the setting of smooth complex spaces over
the analytic spectrum of a C-algebra Λ which is finite dimensional as a vector space. For
such spaces, we show that integrable Λ-connections define the same objects as logarithmic
meromorphic connections on a larger space (Theorem 5.1). The key point to obtain this
description is that smooth complex spaces over Λ do not deform locally, so that we are able
to apply Deligne’s results to extend connections to logarithmic ones (see Theorem 5.10).
Note that this corresponds roughly to [Mal87, Theorem 5.1]. After that, we move to alge-
braic geometry over a complete local noetherian C-algebra R with residue field C (Section
6). Employing Grothendieck’s algebraization theorem and the fact that the order of the
poles of an arrow between logarithmic connections is independent of the the truncation
of R, we show how to find preferred models for regular-singular R-connections (Theorem
6.11). These findings are then assembled to obtain Corollary 6.14.

We now review the remaining sections of the paper separately. In what follows, Λ is a
local C-algebra which is a finite dimensional complex vector space.

Section 2 serves mainly to introduce notation and definitions such as: relative divisors
with normal crossings (Definition 2.1), multiplicity (Definition 2.2) and several variations
on the theme of connections (Definitions 2.8, 2.11 and 2.12). This section is also the right
place to talk about Deligne’s notion of relative local system, a very important tool for this
work, see Theorem 2.16.

Section 3 serves two purposes and the first is to explain the following simple technique.
Let S be the analytic spectrum of Λ and D ⊂ Cn be an open subset. Then the category
of OD×S-modules is canonically identified with the category of OD-modules endowed with
an action of Λ, so that many local results from [Del70, Chapter II] are easily transposed to
the setting of smooth complex spaces over S. One of these transpositions, Theorem 3.6, is
the second purpose of this section; it is yet another manifestation of the classical principle
that singularities “of the first kind” are “regular” [CL55, Chapter 4, Theorem 2.1].

Section 4 introduces the notion of residues of logarithmic connections on complex spaces
over Λ (Definition 4.4). Also in Section 4 the reader shall find the definition of the exponents
(Definition 4.9) of a logarithmic connection as the spectral set of the residue morphisms.
(These constructions are analytic and follows the clear exposition in [Mal87, pp.157-8].)
Key to the understanding of the theory exposed here is the fact that exponents are complex
numbers, and not elements of Λ; that this is a sensible choice is motivated by Lemma 4.5
and Lemma 4.7.

In Section 5 we offer Theorem 5.10 which shows that even in the case of smooth complex
spaces over Λ (as in the previous paragraph) it is possible to extend Λ-connections to
logarithmic ones—we call these extensions Deligne-Manin extensions. These objects, whose
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constructions are attributed to Manin in [Del70], are a cornerstones in op.cit. (In the
literature, such extensions go under the name of canonical or τ -extensions [AB01, I.4,
22ff], [Ki15, Definition 5.1].) The proof of Theorem 5.10 relies on the local existence of
logarithmic extensions and their uniqueness. Once these extensions are found, it then
becomes a simple matter to show the main result of the section, Theorem 5.1, which allows
us to see the category of connections on a smaller complex space as a certain category of
connections on a larger one.

In Section 6 we turn our attention to algebraic geometry and put to use our previ-
ous findings Serre’s GAGA and Grothendieck’s algebraization theorem (or as we call it,
“GFGA”). Section 6.1 discusses elementary properties of relative connections and fixes ter-
minology. Section 6.2 explains how to extend connections on Λ-schemes to a previously
fixed proper ambient Λ-scheme; it goes without saying that these constructions rely on the
analytic picture developed earlier and GAGA. In Section 6.3, we look at the case of a base
ring R = CJt1, . . . , trK/I and, by means of the algebraization theorem (Proposition 6.10)
plus Corollary 5.7 — stating that arrows between logarithmic connections have “bounded
poles” —, define better suited logarithmic extensions, see Theorem 6.11. In Section 6.4
we assemble the various pieces and state our version of the Deligne-Riemann-Hilbert cor-
respondence, Corollary 6.14. To end, we find explicitly certain differential Galois groups
of very explicit regular-singular connections in Section 6.5 showing that differential Galois
group which fail to be of finite type abound.

Notations and conventions.

1) Complex spaces are to be understood in the sense of [GR84, 1.1.5] (called analytic
spaces in [SC13, Exposé 9, 2.1]).

2) We let Λ stand for a local C-algebra whose dimension as a complex vector space is
finite. Its maximal ideal is denoted by m.

3) We shall find convenient to denote by |X| the topological space underlying a ringed
space X.

4) If (X,OX) is a complex space and p a point of X, we let Mp stand for the maximal
ideal of the local ring OX,p (so that OX,p = C⊕Mp).

5) If (X,OX) is a complex space p a point of X and E is a coherent sheaf, we let E (p)
stand for the complex vector space Ep/MpEp. In like manner, for a section e ∈ Γ(X,E )
we let s(p) be the image of sp ∈ Ep in E (p).

6) A vector bundle over a locally ringed space (X,OX) is simply a locally free sheaf of
OX-modules of finite rank.

7) If X is a scheme, respectively complex space, Y ⊂ X is a closed subscheme, respectively
subspace, and M is a coherent sheaf on X, we write M |Y for the pull-back of M to
Y , that is, M |Y is an OY -module. Analogous notations are in force for sections.

8) If M is a topological space and E is a set, we let EM denote the simple, or locally
constant sheaf associated to E.

9) We fix once and for all a subset τ of C containing exactly one element in each class of
(C,+) modulo (Z,+).

10) If V is a finite dimensional complex vector space and A and endomorphism of V , we
write SpA for the set of eigenvalues of A and, for each λ ∈ SpA, we write E(A,λ),
respectively G(A,λ), for its λ–eigenspace, respectively generalized λ-eigenspace.

11) We shall find convenient to work with the following version of the Minkowiski difference
of two sets of complex numbers: if A and B are subsets of the complex plane, we write
B ⊖ A to denote the set {b − a : b ∈ B, a ∈ A}. (Warning: In the literature, the
Minkowski difference is usually defined differently.)
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12) All tensor categories (or ⊗-categories) are to be taken in the sense of [DM82, Defini-
tion 1.1,p.105]. Abelian tensor categories are also understood in the sense of [DM82,
Definition 1.15,p.118].

13) For a an affine group scheme G over a noetherian ring R, we let RepR(G) stand for the
category of representations of G on finite R-modules.

2. Setup

2.1. Analytic geometry. In this section we discuss some elementary properties of ana-
lytic spaces and sheaves on them for the lack of a suitable reference. We have designed it
to reassure the reader with an education in algebraic geometry but with little experience
in complex analysis.

Let f : X → S be a smooth morphism of complex spaces [SC13, Exposé 9], [SC13, Ex-
posé 13]. For any p ∈ X, there exists an open neighbourhood U and functions x1, . . . , xn ∈
Γ(U,OX) vanishing on p such that the associated morphism [SC13, Exposé 10, 1.1]

(x1, . . . , xn, f) : U −→ C
n × S

defines an isomorphism of U with D× V , where D is an open polydisk about 0 and V an
open neighbourhood of f(p). The couple (U, x1, . . . , xn) = (U,x) is called a relative system
of coordinates about p in this text. Given such a relative system, we shall find useful to
let {∂xj} stand for the basis of DerS(OX)|U = Hom(Ω1

X/S ,OX)|U dual to {dxj}. We also

put ϑxj = xj∂xj .
The following definition is central (and standard):

Definition 2.1. Let Y ⊂ X be a closed complex subspace defined by the ideal I ⊂ OX

[SC13, Exposé 9, 2.2] and p a point of Y .

(1) A relative system of coordinates (U,x) about p is called adapted to Y if I |U =
x1 · · · xmOU for a certain m ≤ n.

(2) We say that Y is a relative effective divisor with normal crossings if for each p ∈ Y , it
is possible to find a relative system of coordinates about p which is adapted to Y .

(3) The number m appearing above is called the number of branches of Y in (U,x).

To lighten the text, we will abandon the adjective “effective” in “effective relative divisor
with normal crossings” in what follows.

Let us now fix a relative divisor with normal crossings Y ⊂ X and write I for its ideal;
as customary, OX(Y ) denotes the invertible OX-module I −1 [EGA IV4, 21.2.8,p.260] and
OX(kY ) is OX(Y )⊗k.

In what follows, we interpret the number of branches in terms of local algebra. Recall
that given a ring A and an ideal I, the prime divisors of I are just the associated primes
of A/I [Mat89, p.38].

Definition 2.2. For each q ∈ Y , we call the number of minimal prime divisors of Iq

[Mat89, p.39] the multiplicity of Y at q.

We now require a Lemma from Commutative algebra.

Lemma 2.3. Let h : A→ B be a morphism of local noetherian rings and let {b1, . . . , bm}
be a set of elements of B none of which divides zero or is invertible. Suppose that

(1) The ring A has only one associated prime r.
(2) For each i, the A-module B/(bi) is flat.
(3) For any i, the extended ideal pi = (r, bi) is prime.

Then p1, . . . , pm are the minimal prime divisors of (b1 · · · bm) and (b1), . . . , (bm) are the
corresponding primary components.
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Proof. To ease notation we write Bi instead of B/(bi). Using [BAC, IV.2.6, Theorem 2]
we have

AssB(Bi) = AssB(Bi/rBi)

= AssB(B/pi)

= {pi}.

This allows us to say, using [Mat89, Theorem 6.6,p.40], that (bi) is pi-primary. From the
Hauptidealensatz, we have ht(pi) ≤ 1. Now, if ht(pi) = 0, then pi is a minimal prime
ideal containing (0), which implies that pi ∈ Ass(B) due to [Mat89, Theorem 6.5, p.39];
this is impossible because bi is not a zero divisor. In conclusion, ht(pi) = 1. As b1 · · · bm
is not a zero divisor, it follows that pi is a minimal prime containing (b1 · · · bm). Now, if
q ⊃ (b1 . . . bm) is a prime, then q ⊃ (bi0) for a certain i0. Since q ∩ A ⊃ r, we conclude
that q ⊃ pi0 . Hence p1, . . . , pm are the minimal prime ideals containing (x1 · · · xm). In
particular, they are also the minimal prime divisors [Mat89, Theorem 6.5, p.39]. �

Corollary 2.4. Let p ∈ Y and assume that OS,f(p) has only one associated prime. Let
(U,x) be a relative system of coordinates about p which is adapted to Y ; denote the number
of branches of Y in (U,x) by m. Then (x1,p), . . . , (xm,p) are the minimal primary compo-
nents of Ip; in particular the multiplicity (Definition 2.2) of Y at p is precisely the number
of branches. �

Let us end this section by introducing meromorphic functions with poles along Y . We let
OX(∗Y ) stand for the sheaf of OX-algebras OX [I

−1] described in [EGA IV4, 20.1.1, 226ff];
it is clearly a coherent sheaf of rings on X which shall be called the sheaf of meromorphic
functions with poles on Y . Note that, if Ip = hpOX,p, then the natural morphism

OX(∗Y )p
∼

−→ OX,p[1/hp]

is an isomorphism (loc.cit.). Alternatively, OX(∗Y ) can be defined as the OX–algebra
lim
−→k

OX(kY ).

As suggested in [Mal87], coherent OX(∗Y )-modules shall also be called Y -meromorphic
coherent modules on X; the natural base-change functor OX – coh → OX(∗Y ) – coh is
denoted by F 7→ F (∗Y ).

A fundamental property of Y -meromorphic coherent modules follows easily from Rück-
ert’s Nullstellensatz [GR84, Ch. 3, §2, p. 67]:

Lemma 2.5 ([Mal87, 2.3, p.154]). If M is a Y -meromorphic coherent module supported
at Y , then M = 0. �

Corollary 2.6. Let E and F be coherent OX(∗Y )–modules. If X∗ = X r Y , then the
restriction arrow

HomOX(∗Y )(E,F ) −→ HomOX∗ (E|X∗ , F |X∗)

is injective.

Proof. Let ϕ : E → F vanish on X∗. Working with the coherent OX(∗Y )–module Im(ϕ),
we only need to use Lemma 2.5. �

2.2. Connections. Let f : X → S be a smooth morphism between analytic spaces. We
shall introduce several notations concerning categories of connections.

Definition 2.7. We let C(X/S) stand for the category of integrable S-connections (E,∇ :
E → E⊗Ω1

X/S), see [Ka70, 1.0-1] or [Del70, I.2.22], such that E is a coherent OX-module.
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For the sake of brevity, in what follows, the word connection is synonymous with inte-
grable connection. With this convention, C(X/S) is the category of S-connections.

Let now Y ⊂ X be a relative divisor with normal crossings (cf. Definition 2.1); write I

for the ideal defining Y and X∗ for the open subspace X r Y .

Definition 2.8. We let C
log
Y (X/S) stand for the category of integrable logarithmic S-

connections (E,∇), see [Ka70, 4.0-2], where they are called integrable S-connections on
E with logarithmic singularities along Y , or [Del70, I.2.22, 14ff], such that the underlying
OX-module E is coherent.

As in the case of connections, we shall drop the adjective integrable in “integrable loga-
rithmic connections.”

Note that Clog
Y (X/S) is abelian and has a tensor product rendering the forgetful functor

C
log
Y (X/S) → OX – coh exact, faithful and tensorial. In addition, for E ∈ C

log
Y (X/S),

the coherent OX-module HomX(E ,OX) also carries a natural logarithmic connection, see
[Ka70, 4.3].

If DerY (X/S) is the OX-submodule of Der(X/S) formed by the derivations which stabi-
lize the ideal I —it is actually a sheaf of OS-Lie algebras—then a logarithmic connection
on E ∈ OX – coh amounts to a morphism of OX-modules ∇ : DerY (X/S) → EndOS

(E)
which is compatible with brackets and satisfies ∇(∂) : ae 7→ ∂(a)e + a∇(∂)(e). See also
[Ka70, 4.2].

Example 2.9. The ideal I = OX(−Y ) carries a tautological logarithmic connection
turning it into a subobject of OX . Along these lines, each one of the line bundles OX(kY )
carries a logarithmic connection.

In general, given F ∈ C
log
Y (X/S), we let F (kY ) stand for the tensor product F ⊗OX

OX(kY ) in C
log
Y (X/S).

Needless to say, each (E,∇) ∈ C
log
Y (X/S) produces, by restriction to X∗, an S-linear

connection. Reversing this process is important for the present work, so we make the:

Definition 2.10. Let (E,∇) ∈ C(X∗/S). Any (Ẽ, ∇̃) ∈ C
log
Y (X/S) which, when restricted

to X∗, is isomorphic to (E,∇) shall be called a logarithmic model of (E,∇).

It should be observed that in the above definition, no assumption is made a priori on
the nature of the coherent model. Some simple adjustments can be made, but these shall
be left to Section 6.

Because of the sheaf of Y –meromorphic functions on X, we have yet another relevant
category of connections in sight.

Definition 2.11. Let E be a Y -meromorphic coherent module. An integrable connection
on E is a morphism of OS-modules

∇ : E −→ E ⊗
OX(∗Y )

Ω1
X/S(∗Y )

having vanishing curvature. The couple (E ,∇) is called an integrable Y -meromorphic con-
nection. Morphisms are simply morphisms of OX(∗Y )-modules which respect the connec-
tions. The category of integrable Y -meromorphic connections is denoted by MCY (X/S).

As above, we shall drop the adjective integrable in “integrable Y -meromorphic connec-
tion.”

Note also that the base-change functor OX – coh → OX(∗Y ) – coh defines a functor

C
log
Y (X/S) → MCY (X/S) and this prompts us to consider yet another relevant category

of connections:
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Definition 2.12. Let (E ,∇) ∈ MCY (X/S) be given. We say that (E ,∇) has at worst
logarithmic poles if, for each p ∈ X, there exists an open neighbourhood U of p such that

(E ,∇)|U ∈ MCY ∩U (U/S) belongs to the image of C
log
Y ∩U (U/S). The full subcategory of

MCY (X/S) having as objects those connections having at worst logarithmic poles shall be

denoted by MC
log
Y (X/S).

Remark 2.13. If S is the reduced analytic space associated to a point, we shall usually
omit reference to it in notation, that is, in this case, we prefer C(X∗) to C(X∗/S), etc.

To avoid confusions—the algebraic geometer’s reflexes tend to downplay the role of

MC
log
Y (X/S)—the reader is asked to bear in mind the following diagram of categories:

C
log
Y (X/S)

not nec. full
��

MC
log
Y (X/S)

��

fully faithful

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

MCY (X/S)

faithfulww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

C(X∗/S)

Example 2.14. Let S be the point and X be the open unit disc in the complex plane with
coordinate function x. Let Y be the origin and L = OXe be a free OX-module. Define

∇0(e) = 0, ∇1(e) = e ⊗ x−1dx. Then both (L ,∇0) and (L ,∇1) are objects of Clog
Y (X).

Putting ∇2(e) = e ⊗ x−2dx, we define the object (L (∗Y ),∇2) of MCY (X). Note that
the images of (L ,∇0) and (L ,∇1) in MCY (X) are isomorphic, but (L (∗Y ),∇2) is not
isomorphic to any each one of the latter. On the other hand, the images of (L (∗Y ),∇2)
and (L ,∇0) in C(X∗) are isomorphic.

Let us end this section by highlighting a theorem of Deligne which will prove useful
further below. In it, we need the notion of a relative local system [Del70, I.2.22, p.14].

Definition 2.15. A sheaf of f−1(OS)-modules E on X is called a relative local system if
for each p ∈ X, there exist open neighbourhoods U of p and V of f(p) with f(U) ⊂ V ,
and M ∈ OS – coh such that E|U = f−1(M). Morphism between relative local systems
are simply f−1(OS)-linear arrows, and the category constructed from this information is
denoted by LS(X/S).

Theorem 2.16 ([Del70, I.2.23, 14ff]). Let f : X → S be a smooth morphism of complex
spaces and (E,∇) an object of C(X/S). Then the OS-module Ker∇ is a relative local
system. In addition, the functor

C(X/S) −→ LS(X/S), (E,∇) 7−→ Ker∇

is an equivalence of categories.

3. Extending arrows between meromorphic connections with at worst

logarithmic poles

We let S denote the analytic spectrum of Λ and give ourselves a smooth morphism
f : X → S of complex spaces. Let Y ⊂ X be a divisor with relative normal crossings in X
(Definition 2.1) and denote, as usual, X r Y by X∗.
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A founding principle of Fuch’s theory of regular singularities is that “solutions are mero-
morphic”; in this section we wish to show how to adapt Deligne’s version of this principle
(see [Del70, II.4.1, p.86] and [Mal87, pp. 168-9]) to our present setting. Section 3.1 de-
velops the artifice allowing us the adaptation while Section 3.2 states and proves the main
result (Theorem 3.6). The latter result shall be amplified in Section 5 after the introduction
of residues and exponents in Section 4.

3.1. Local description of categories of sheaves and connections. We begin by some
categorical remarks. Let C be a C-linear category. A couple (c, α) consisting of an object
c ∈ C and a morphism of C-algebras α : Λ → EndC (c) is called a Λ-module of C .
Morphisms of Λ-modules are defined in an obvious way and the category of Λ-modules in
C is denoted by C(Λ).

Example 3.1. Let A be an associative C-algebra and let C be the category of A-modules
(on the left say). Then, C(Λ) is just the category of A ⊗C Λ-modules. If (M,A ) is a
topological space with a sheaf of C-algebras and C is the category of A -modules, then
C(Λ) is just the category of A ⊗C ΛM -modules.

Let D be a domain in Cn and H ⊂ D an effective divisor. Suppose that X = D × S
and Y = H × S; write pr : X → D for the canonical projection. It follows that |X| = |D|,
OX = OD ⊗C ΛX , and OX(∗Y ) = OD(∗H) ⊗C ΛX . Denote by pr∗ any one of the natural
functors

OX – coh −→ OD – coh or OX(∗Y ) – coh −→ OD(∗H) – coh.

Then pr∗ induces an equivalence between the categories on the left and the respective
categories of Λ-modules.

Let ∇ : E → E ⊗OX
Ω1
X/S be a connection. Since the natural morphism

pr∗(Ω1
D) −→ Ω1

X/S

is an isomorphism [SC13, Exposé 14, 2.1], the projection formula guarantees that the
natural morphism

pr∗(E )⊗OD
Ω1
D −→ pr∗

(
E ⊗OX

Ω1
X/S

)

is an isomorphism. Furthermore, it is easy to see that the composition

pr∗E
pr∗(∇)

// pr∗(E ⊗ Ω1
X/S)

∼ // pr∗E ⊗OD
Ω1
D

is also a connection. From these considerations we in fact obtain equivalences

ω : C(X/S) −→ C(D)(Λ) and ω : MCY (X/S) −→ [MCH(D)](Λ) .

We end this section by fixing a definition which will be employed further below.

Definition 3.2. We say that E ∈ (OD – coh)(Λ) is a Λ-vector bundle if each p ∈ D has
an open neighbourhood U such that E |U ≃ OU ⊗C E for some finite Λ-module E and, for
each λ ∈ Λ, we have λ · (1 ⊗ e) = 1 ⊗ λe. Analogously, E ∈ OX – coh is a relative vector
bundle, or a vector bundle relatively to S, if pr∗(E ) ∈ (OD – coh)(Λ) is a Λ-vector bundle.

The verification of the following is trivial but shall be employed many times.

Lemma 3.3. If E ∈ (OD – coh)(Λ) is a Λ-vector bundle, then pr∗E is a vector bundle. �

Note that E ∈ OX – coh is a relative vector bundle if and only if for each p ∈ X there
exists an open neighbourhood U of p such that E |U is the pull-back of a coherent sheaf
on S. This means that Definition 3.2 possesses a natural global version; let us drop the
assumption that X = D × S.
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Definition 3.4. A coherent OX -module E is a relative vector bundle, or a vector bundle
relatively to Λ, if, locally, it comes from a coherent sheaf on S.

3.2. Extending morphisms between connections with at worst logarithmic poles.

We begin by recalling the following result, see [Mal87, pp. 163-4], specially Lemma 5.7.

Theorem 3.5. Let D ⊂ Cn be an open polydisk about the origin and denote by xj ∈ O(D)
the jth coordinate function. Let H be the effective divisor defined by x1 · · · xmOD and
denote by D∗ the open subset D r H. Let us give ourselves (E,∇) and (E′,∇′) objects

of MC
log
H (D). Then any horizontal arrow ϕ : E|D∗ → E′|D∗ extends uniquely to an arrow

ϕ̃ : E → E′. �

Employing the technique of Section 3.1, we can prove the following.

Theorem 3.6. The restriction functor

MC
log
Y (X/S) −→ C(X∗/S)

is fully faithful.

Proof. From Lemma 2.6, the restriction OX(∗Y ) – coh → OX∗ – coh is faithful, so that

MC
log
Y (X/S) → C(X∗/S) is also faithful. Let (E,∇) and (E′,∇′) be in MC

log
Y (X/S) and

let ϕ : E|X∗ → E′|X∗ be horizontal. We wish to find a horizontal arrow of coherent
OX(∗Y )-modules ϕ̃ : E → E′ whose restriction to X∗ is ϕ.

Due to uniqueness, it is enough to deal with the problem locally: we suppose that
X = D × S where D ⊂ Cn is an open polydisk about the origin and that Y = H × S,
where, writing {xj} for the coordinate functions on D, H is defined by ODx1 . . . xm. This
being the case, we have a commutative diagram whose horizontal arrows are equivalences,

MCY (X/S)

��

ω // MCH(D)(Λ)

��
C(X∗/S) ω

// C(D∗)(Λ),

as explained on section 3.1. We now consider the arrow ωϕ : ω(E)|D∗ → ω(E′)|D∗ of
C(D∗)(Λ); by Theorem 3.5, ωϕ can be extended to an arrow ω̃ϕ : ω(E) → ω(E′) of
MCH(D). Because the restriction of ω̃ϕ to D∗ is a morphism of Λ-modules, Lemma 2.6
assures that ω̃ϕ is a morphism of Λ-modules. Hence, there exists ϕ̃ : E → E′ in MCY (X/S)
such that ω(ϕ̃) = ω̃ϕ. It is clear that ϕ̃ is an extension of ϕ. �

4. Residues and exponents of logarithmic connections

Throughout this section we work with a smooth morphism of complex spaces f : X → S
and a relative divisor with normal crossings defined by the ideal I . We suppose from the
start that for each p ∈ Y , the local ring OS,f(p) has only one associated prime.

4.1. Residue morphisms. We shall also require another assumptions on Y .

Hypothesis 4.1. There exist a finite set C, a family of smooth and connected relative
effective divisors {Yc}c∈C indexed by C such that Y =

∑
Yc.

Lemma 4.2. Let p ∈ Y be given and write Cp = {c ∈ C : p ∈ Yc}.

(1) The multiplicity (Definition 2.2) of Y at p is #Cp.
(2) Let (U,x) be a relative system of coordinates adapted to Y about p. Denote by m the

number of branches of Y in (U,x). There exist an open neighbourhood V ⊂ U of p
and a bijection σ : Cp → {1, . . . ,m} such that xσ(c)OV is the ideal of Yc in V .
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Proof. Let hc ∈ OX,p generate the ideal of Yc so that Ip is generated by
∏
c∈Cp

hc. By

Lemma 2.3, the ideals {(hc)}c∈Cp are the minimal primary components of Ip. If (U,x)
is as in (2), Corollary 2.4 assures that {(hc)}c∈Cp = {(xj,p)}1≤j≤m and that m is also the
multiplicity at p. Let cj ∈ Cp be such that (hcj ) = (xj,p) and suppose that a certain
c of Cp lies outside {c1, . . . , cm}. Then (hc) ∈ {(xj,p)}1≤j≤m; suppose, for convenience,
that (x1,p) = (hc). Hence x21,p divides

∏
j xj,p which means that x1,p divides

∏
j>1 xj,p

(the product over the empty set being understood as the unit). This is impossible. Hence
#Cp = m and the bijection σ is obtained easily. �

For each c ∈ C, write

Y †
c := Yc r

⋃

c′ 6=c

Yc′;

the natural composition Y → S is smooth on the points of Y †
c .

Let (E ,∇) ∈ C
log
Y (X/S) be given and, for a fixed c ∈ C, pick p ∈ Y †

c . From Lemma 4.2,
we are able to find a relative system of coordinates adapted to p, call it (U,x), such that
I |U = x1OU . (In particular, Y ∩U = Yc∩U .) Write ϑj instead of ϑxj . A simple calculation
shows that ∇ϑ1 preserves the OU -submodule x1E |U and that the induced morphism of
abelian sheaves

Resxc : E |U∩Yc −→ E |U∩Yc

is in fact OYc-linear. Moreover, the additive morphisms

∇ϑj : E |U −→ E |U , j > 1,

also preserve x1E |U and hence induce morphisms of abelian sheaves

∇ϑj : E |U∩Yc −→ E |U∩Yc .

In this way, we define on the OU∩Yc–module E |U∩Yc an S-connection ∇x

c . It is then a
simple task to show that Resxc is horizontal for the S-connection ∇x

c .
Now, let (U ′,x′) be a relative system of coordinates adapted to Y about a point p′ ∈ U

and such that x′1OU ′ = I |U ′ . (Again U ′ ∩ Y = U ′ ∩ Yc.) Since x1OU∩U ′ = x′1OU∩U ′ , we
conclude that x′1 = v1x1 for a certain v1 ∈ O(U ∩ U ′)×. From this,

x1
∂

∂x1
= x1

∂x′1
∂x1

·
∂

∂x′1
+ x1

∑

j>1

∂x′j
∂x1

·
∂

∂x′j

= x′1
∂

∂x′1
+
x′1
v21

∂v1
∂x1

· x′1
∂

∂x′1
+
x′1
v1

∑

j>1

· · ·

and hence

Resxc = Resx
′

c

on Y †
c ∩ U ∩ U ′. Summarizing:

Proposition 4.3. Let c ∈ C be fixed. There exists an O
Y †
c
–linear endomorphism

Resc : E |
Y †
c
−→ E |

Y †
c

with the following property. If p ∈ Y †
c and (U,x) is a relative system of coordinates adapted

to Y at p such that I |U = x1OU , then Resc is induced by ∇ϑx1
: E → E upon passage to

the quotient. �

Definition 4.4. The O
Y †
c
-linear endomorphism Resc constructed in Proposition 4.3 is

called the residue endomorphism of E along Y †
c .
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In order to proceed with the study of Resc, we shall need some preliminary material on
relative local systems.

4.2. Eigenvalues of endomorphisms. We gather here simple fact concerning endomor-
phism of finite modules and local systems.

Lemma 4.5. Let E be a finite Λ-module and ϕ : E → E an endomorphism. Let ωϕ : E →
E denote the C-linear endomorphism associated to ϕ.

(1) For each ̺ ∈ Spωϕ, the subspace G(ωϕ, ̺) is a Λ-submodule.

(2) If ϕ : E → E stands for the C-linear endomorphism obtained by reducing ϕ modulo
m, we have Spωϕ = Spϕ. �

Motivated by this result, in what follows, given an endomorphism of a finite Λ-module
ϕ : E → E, we put

Spϕ =
the spectrum of ϕ regarded
as a C-linear endomorphism

= the spectrum of ϕ : E/mE → E/mE.

Let T be a locally connected (like all complex spaces [GR84, 9.3, 177ff]) and connected
topological space and E a coherent ΛT -module. (Recall that ΛT is the simple sheaf asso-
ciated to Λ: it is in addition a coherent sheaf of rings.) Since E is of finite presentation,
each point of T possesses a connected neighbourhood U such that, writing E = E(U), we
have E|U = EU ; this is to say that E is locally constant. In particular, for each connected
U ⊂ T and each p ∈ T , the natural morphism E(U) → Ep is injective.

Let ϕ : E → E be a ΛT –linear endomorphism. It is easily proved that for any two
p, q ∈ T , we have Spϕp

= Spϕq
; we therefore make the following:

Definition 4.6. The spectrum of ϕ : E → E is the spectrum of the Λ-linear endomorphism
induced by ϕ on an unspecified stalk. It shall be denoted by Spϕ.

Given ̺ ∈ Spϕ, let us write G(ϕ, ̺) to denote the pre-sheaf of ΛT -modules

U 7−→
∞⋃

ν=1

{e ∈ E(U) : (ϕ− ̺)ν(e) = 0}.

Using that E is locally constant, Jordan’s decomposition allows us to say:

Lemma 4.7. For each ̺ ∈ Spϕ, there exists µ ∈ N such that G(ϕ, ̺) = Ker(ϕ − ̺)µ. In
particular, G(ϕ, ̺) is a coherent sheaf of ΛT –modules and

⊕

̺∈Spϕ

G(ϕ, ̺) = E.

�

4.3. The exponents. Let us now suppose that S is the analytic spectrum of Λ and that
the relative divisor Y ⊂ X satisfies Hypothesis 4.1, whose notations are now in force. Given

(E ,∇) ∈ C
log
Y (X/S), we set out to elaborate on the properties of the residue morphism

(Definition 4.4).

Let c ∈ C and p ∈ Y †
c . We pick a relative system of coordinates (U,x) adapted to Y at

p such that I |U = x1OU , see Lemma 4.2. (In particular Y †
c ∩ U = Y ∩ U .) Then,

Resxc : E |U∩Yc −→ E |U∩Yc

induces an endomorphism

HResxc : Ker(∇x

c ) −→ Ker(∇x

c ).
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Since Ker(∇x

c ) is a local system on U ∩ Y †
c (Theorem 2.16) and |U ∩ Y †

c | is homeomorphic
to a polydisk in Cn−1, we are able to introduce the spectrum of HResxc as in Definition
4.6. Let us deepen our analysis. By axiom, for any given q ∈ Y ∩U , the set Sp(HResxc ) is
just the set of eigenvalues for the Λ-linear endomorphism

Ker(∇x

c )q
HResxc // Ker(∇x

c )q .

Now, by Theorem 2.16, the natural arrow

Ker(∇x

c )q ⊗
Λ

OX,q −→ Eq

is an isomorphism. Since Mq∩Λ = m, using a standard isomorphism [BA, II.3.6, Corollary
3], we arrive at a commutative diagram

Ker(∇x

c )q/m
∼ //

HResxc
��

Eq/Mq

Resxc (q)

��
Ker(∇x

c )q/m
∼ // Eq/Mq.

Lemma 4.5-(2) then tells us that Sp(HResxc ) is simply the spectrum of the C-linear endo-
morphism (independent of (U,x))

Resc(q) : E (q) −→ E (q).

Lemma 4.8. The topological space |Y †
c | is connected.

Proof. By assumption, |Yc| is connected. In addition, |Yc| is the topological space of a

complex manifold, call it Zc. Now, |Y †
c | is the complement of a thin subset of |Zc|, and

hence is connected [GR84, 7.1.3, p.133]. �

Using the fact that |Y †
c | is a connected topological space, the following definitions carry

no ambiguity.

Definition 4.9 (The exponents). The spectrum of Resc(p) : E (p) → E (p) for any point

p ∈ Y †
c is called the set of exponents of ∇ along Yc. It shall be denoted by ExpYc(∇) or

ExpYc(E ) if no confusion is likely. In like manner, ExpY (∇), or ExpY (E ), is the union⋃
c ExpYc(∇).

Example 4.10. Let us suppose that Λ = C[t]/(t2), that X = SpecanΛ[x] and that Y is
defined by xOX . Let L = OXe be free and put ∇e = e⊗ tx−1dx. Then C is a singleton
and ExpY (∇) = {0}.

5. Extending morphisms and connections

In this section we set out to prove:

Theorem 5.1. Let S be the analytic spectrum of Λ, f : X → S a smooth morphism of
complex spaces, and Y ⊂ X a relative divisor with normal crossings satisfying Hypothesis
4.1; write as usual X∗ = X r Y .

(1) The restriction functor

C
log
Y (X/S) −→ C(X∗/S)

is essentially surjective.
(2) The restriction functor

MC
log
Y (X/S) −→ C(X∗/S)

is an equivalence.
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Note that, once statement (1) is shown to be true, the work required for proving (2)

reduces to the verification of fully faithfulness of MC
log
Y (X/S) → C(X∗/S), which is The-

orem 3.6. Hence, we concentrate on finding preferred extensions for objects of C(X∗/S)
and aim at Theorem 5.10.

The idea employed here is the same as in [Mal87, Theorem 4.4]: one solves the problem
locally (this shall be done by Theorem 5.9-(1)) and one proves then uniqueness of solu-
tions (Theorem 5.9-(2)). The work around local existence follows without much effort from
[Mal87, pp. 159-60], except that we need to replace the well–known argument concerning
the surjectivity of the exponential (Lemma 4.5 in op.cit.) by a slightly longer one (Proposi-
tion 5.11). On the other hand, in extending morphisms, we have chosen to deviate slightly
from the standard technique (see [Mal87, pp. 161-2] or, for example, [Wa65, Theorem 4.1])
and put forward Proposition 5.3 which shall play a role in Section 6 as well.

5.1. The dissonance. As in the theory of regular-singular connections one finds con-
sistently the need to exclude the case where exponents differ by integers, the following
definition shall be useful.

Definition 5.2. (1) Let A = {Aj}j∈J and B = {Bj}j∈J be two families of subsets of C
indexed by a common finite set J . Define the dissonance from B to A, call it δ(B,A),
as being the maximum of

⋃

j∈J

N ∩ (Bj ⊖Aj)

in case this set is non-empty, and zero otherwise.
(2) Let X → S be a smooth morphism, where S is the analytic spectrum of Λ. Let

Y =
∑

c∈C Yc be a relative divisor with normal crossings satisfying the assumptions of

Hypothesis 4.1. We define, once given (E ,∇E ) and (F ,∇F ) objects of Clog
Y (X/S), the

dissonance from ∇F to ∇E , denoted δ(∇F ,∇E ), as the dissonance from the family
{ExpYc(∇F )}c∈C to {ExpYc(∇E )}c∈C .

5.2. Extension of arrows: local case. Let D be an open polydisk in Cn about the
origin, {xj}

n
j=1 be the coordinate functions and H, respectively Hj, be the effective divisor

in D defined by the ideal x1 · · · xmOD, respectively xjOD. Write

D∗ = D rH,

H†
j = Hj r

m⋃

k 6=j

Hk

and

Hcross =
⋃

i<j

Hi ∩Hj

= H r

⋃

j

H†
j .

Proposition 5.3. Let (E ,∇E ) and (F ,∇F ) be objects of C
log
H (D), δ = δ(∇F ,∇E ) the

dissonance from ∇F to ∇E and ϕ : E (∗H) → F (∗H) an arrow in MC
log
H (D). If F is a

vector bundle, then Im(ϕ) ⊂ F (δH). More precisely, there exists an arrow

ϕ̃ : E −→ F (δH)
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in C
log
H (D) rendering the diagram

E (∗H)
ϕ // F (∗H)

E

can

OO

ϕ̃ // F (δH)

can

OO

commutative. In addition, ϕ̃ is the unique arrow of HomOD
(E ,F (δH)) extending ϕ.

Proof. We are only required to show that ϕ extends to an arrow ϕ̃ : E → F (δH) between
OD-modules; indeed, since for each U ⊂ D the natural arrow Γ(U,F (δH)) → Γ(U,F (∗H))
is injective, the fact that ϕ is horizontal immediately assures that ϕ̃ is likewise.

The heart of the proof is the Claim: For any j ∈ {1, . . . ,m}, any p ∈ H†
j , any open

polydisk V ⊂ DrHcross about p, and any e ∈ Γ(V,E ), the section ϕ(e) ∈ Γ(V,F (∗H)) is
actually an element of Γ(V,F (δH)).

To ease notations, we prove the claim in case j = 1. Let p ∈ H†
1 and fix V an open

polydisk about p and contained in DrHcross (in particular, V ∩H1 = V ∩H†
1). Let U ⊂ V

be a polydisk about p where we can find a relative system of coordinates adapted to H,
call it y, and such that y1OU is the ideal of H1 ∩ U .

In what follows, let us write ϑ in place of ϑy1 ,

ϑE : E |U −→ E |U and ϑF : F |U −→ F |U

for the C–linear endomorphisms defined by ϑ by means of the connection. We will require
the following simple result:

Lemma 5.4. For any k ∈ N, µ ∈ N and ̺ ∈ C, the following formula holds:

[ϑ− (̺+ k)]µyk1 = yk1 (ϑ− ̺)µ,

�

Adopting the notations of Section 4.3 and employing Lemma 4.7, we can write

Ker(∇y

E ,1) =
⊕

̺

Ker (Res1(E )− ̺)µ̺ .

(In Section 4.3 we have actually employed the notation HRes for the restriction of Res
to the sheaf Ker; this chance should cause no confusion.) Let ̺ ∈ ExpH1

(E ) and choose
e ∈ Γ(U ∩H1,E |H1

) such that

e ∈ Ker (Res1(E )− ̺)µ̺ .

Because U is a polydisk (and hence a Stein space), there exists e ∈ Γ(U,E ) such that
e|H1

= e [GR84, 1.4.6, p. 35]. Consequently,

(ϑE − ̺)µ̺(e) ∈ Γ(U, y1E ) = y1Γ(U,E ).

Let k > δ be such that yk1ϕ(E ) ⊂ F . By Lemma 5.4, we have

[ϑF − (̺+ k)]µ̺(yk1ϕ(e)) = yk1 (ϑF − ̺)µ̺(ϕ(e))

= yk1ϕ[(ϑE − ̺)µ̺(e)]

∈ yk+1
1 ϕ(E ).

Hence,
[ϑF − (̺+ k)]µ̺(yk1ϕ(e)) ∈ Γ(U, y1F ).

This implies that {
yk1ϕ(e)

}∣∣∣
H1

∈ Ker (Res1(F )− (̺+ k))µ̺ .
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Since ̺ + k cannot be an exponent of F , since k > δ is supposed true,
{
yk1ϕ(e)

}∣∣
H1

has

to vanish altogether which means that

yk1ϕ(e) ∈ Γ(U, y1F ).

(Here we used the fact that the only section s of a vector bundle S over a reduced complex
space Z such that s(z) = 0 for all z ∈ Z is the zero section.) Hence,

yk−1
1 ϕ(e) ∈ Γ(U,F )

since F has no y1-torsion.
Let now e ∈ Γ(U,E ) be an arbitrary section and write

(#) e|H1
=

∑

̺

a̺ · e̺,

where a̺ ∈ O(U ∩H1) and e̺ ∈ Ker(Res1(∇)− ̺)µ̺ . This is possible because

OU∩H1
⊗Ker(∇y

E ,1)
∼

−→ E |U∩H1
.

By the Stein property, we may assume that e̺ = e̺|H1
and a̺ = a̺|H1

so that, using eq.

(#) and multiplying by yk−1
1 , we have

yk−1
1 e =

∑

̺

a̺ · y
k−1
1 e̺ + yk1ε, for some ε ∈ Γ(U,E ).

Hence, ϕ(yk−1
1 e) ∈ Γ(U,F ). By induction, we are then able to say that ϕ(yδ1e) ∈ Γ(U,F ).

It is now a simple matter to show that the Claim holds in all generality.
Granted the claim, we can assure that for any p ∈ H, any open polydisk V about p

in D and any e ∈ Γ(V,E ), the section ϕ(e)|V rHcross belongs to Γ(V r Hcross,F (δH)).
Using Riemann’s second extension theorem [GR84, p.132, 7.1.2] we are able to say that
ϕ(e) ∈ Γ(V,F (δH)). It is then a simple matter to see that Im(ϕ) ⊂ F (δH).

We end by arguing that the arrow constructed previously is unique. Let ϕ̂ : E → F (δH)
extend ϕ. It then follows that ϕ̂−ϕ̃ when restricted toD∗, coincides with 0 : E |D∗ → F |D∗ .
But a section of F (δH) over an open subset W ⊂ D which vanishes on WrH must vanish
on the whole of W by the identity theorem [FG02, I.4.10, p.22], so that ϕ̂ = ϕ̃ as maps
from Γ(W,E ) to Γ(W,F (δH)); this is enough argument. �

At this point, it is perhaps useful to combine Proposition 5.3 and Theorem 3.5 to obtain:

Theorem 5.5. Let (E ,∇E ) and (F ,∇F ) be objects of Clog
H (D) and let

ϕ : E |D∗ −→ F |D∗

be an arrow in C(D∗).

(1) There exists a unique extension of ϕ to an arrow ϕ̃ : E (∗H) → F (∗H) of MC
log
H (D).

(2) Suppose that F is a vector bundle and let δ = δ(∇F ,∇E ) denote the dissonance from
∇F to ∇E . Then, there exists an arrow

ϕ : E −→ F (δH)

in C
log
H (D) rendering

E (∗H)
ϕ̃ // F (∗H)

E

can

OO

ϕ // F (δH)

can

OO

commutative. In particular, ϕ extends ϕ so that if δ = 0, then ϕ extends to an arrow

of Clog
H (D) between (E ,∇E ) and (F ,∇F ).
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Finally, ϕ is the unique extension of ϕ to an arrow E → F (δH). �

Let now

X = D × S, Y = H × S and Yj = Hj × S;

notations and conventions introduced in Section 3.1 shall be employed. The following
result is tautological and will be used further ahead.

Lemma 5.6. Let (E ,∇E ) ∈ C
log
Y (X/S). Then, for each j ∈ {1, . . . ,m}, we have ExpYj (∇E ) =

ExpHj
(ω∇E ). In particular, if (F ,∇F ) is another object of Clog

Y (X/S), then we have an

equality of dissonances δ(F ,E ) = δ(ωF , ωE ). �

Using this and Theorem 5.5 we can prove:

Corollary 5.7. Let (E ,∇E ) and (F ,∇F ) be objects of Clog
Y (X/S) and suppose that F is

a vector bundle relatively to S. Let ϕ : E |X∗ → F |X∗ be a horizontal arrow and denote
by δ the dissonance from ∇F to ∇E (Definition 5.2). Then, abusing notation and writing
E |X∗ and F |X∗ for the push-forward sheaves, there exists an arrow

ϕ̃ : E −→ F (δY )

in C
log
Y (X/S) rendering

E |X∗

ϕ // F |X∗

E

can

OO

ϕ̃ // F (δY )

can

OO

commutative. In particular, ϕ̃ extends ϕ and is in fact the unique extension of ϕ to an
arrow between OX -modules.

Proof. We shall apply Theorem 5.5 to the objects ωE and ωF from [Clog
H (D)](Λ). We have

an arrow in C(D∗)(Λ):

ωϕ : ωE |D∗ −→ ωF |D∗ .

From Lemma 5.6, the dissonance δ in the statement equals δ(ωF , ωE ). As ωF is locally

free, Theorem 5.5 gives us an arrow from C
log
H (D),

ωϕ : ωE −→ ωF (δH),

which extends ωϕ. The identity principle [FG02, I.4.10,p.22] assures that the restriction
morphism

HomOD
(ωE , ωF (δH)) −→ HomOD∗ (ωE |D∗ , ωF |D∗)

is injective and consequently ωϕ is also Λ-linear. Hence, ϕ extends to a horizontal mor-
phism ϕ̃ : E → F (δY ) because we can identify ω(F (δY )) with ωF (δH).

Injectivity of the restriction morphism HomOX
(E ,F (δY )) → HomOX∗ (E |X∗ ,F |X∗)

guarantees that ϕ̃ is unique. �

5.3. Extension of arrows: global case. The work here has all been done by Corollary
5.7, and we simply record the outcome for future reference.

Proposition 5.8. Let S be the analytic spectrum of Λ and f : X → S a smooth morphism.
Let Y ⊂ X be a relative divisor with normal crossings satisfying Hypothesis 4.1 and denote

the complement of Y by X∗. Let (E ,∇E ) and (F ,∇F ) be objects of C
log
Y (X/S), and

suppose that F is a vector bundle relatively to S. Denote by δ the dissonance from ∇F

to ∇E . Then, any arrow ϕ : E |X∗ → F |X∗ in C(X∗/S) can be extended to an arrow

ϕ̃ : E → F (δY ) of Clog
Y (X/S). Moreover, this extension is unique. �
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5.4. Extension of connections: local case. In this section, notations and conventions
are those described at the start of Section 5.2: D is an open polydisk, etc.

Theorem 5.9 (“Local Deligne-Manin extension”). Let (E,∇) be an object of C(D∗)(Λ).

(1) There exists E ∈ C
log
H (D)(Λ) and an isomorphism in C(D∗)(Λ),

ϕ : E |D∗
∼

−→ E.

In addition, E can be chosen to enjoy the following properties.
(i) As an OD-module with action of Λ, E is a Λ-vector bundle (see Definition 3.2).
(ii) For each j ∈ {1, . . . ,m}, the exponents of E along Hj are all on τ .

(2) Let E ′ ∈ C
log
H (D)(Λ) enjoy properties (i) and (ii) of (1), and let

ψ : E
′|D∗

∼
−→ E

be an isomorphism. Then there exists an isomorphism

ξ : E
∼
−→ E

′

in C
log
H (D)(Λ) rendering diagram

E |D∗

ϕ //

ξ|D∗ ##●
●
●
●
●
●
●
●

E

E ′|D∗

ψ

OO

commutative. Moreover, the isomorphism ξ is the only one having this property.

Proof. (1) Let b = (b1, . . . , bn) ∈ D∗ and write Γ for the fundamental group of D∗ based
at b. Let

γ1(t) = (b1e
2πit, b2, . . .), γ2(t) = (b1, b2e

2πit, . . .), etc

so that Γ is the free abelian group generated by {γj}. The dictionary of [Del70, I.2, 5 ff.]
produces an equivalence of categories

C(D∗)(Λ)
∼

−→ RepC(Γ)(Λ), F 7−→ F (p0).

Let g1, . . . , gm ∈ AutC(E(p0)) be associated to γ1, . . . , γm; obviously, each gj is Λ-linear.
Employing Proposition 5.11, we can find T1, . . . , Tm ∈ EndΛ(E(p0)) such that

• exp(−2πiTj) = gj ,
• the eigenvalues of every Tj belong to τ .
• Tj commutes with the remaining Tk.

Let E = OD ⊗C E(p0) be endowed with the obvious action of Λ and define

∇E (1⊗ e) =

m∑

j=1

[1⊗ Tj(e)] ⊗
dxj
xj

∈ Γ
(
D , E ⊗ Ω1

D(logH)
)
.

Since TjTk = TkTj , the connection ∇E is integrable. Clearly, Λ acts by horizontal endo-

morphisms because each Tj is Λ-linear. This shows that (E ,∇E ) is an object of Clog
H (D)(Λ)

enjoying property (i). Obviously, the residue endomorphism

E |Hj
−→ E |Hj

sends a section 1⊗ e to 1 ⊗ Tj(e), so that condition (ii) is fulfilled by construction of Tj .
Finally, the restriction of (E ,∇E ) to D∗ is an object of C(D∗)(Λ) which corresponds, under
the equivalence C(D∗)(Λ) ≃ RepC(Γ)(Λ), to the representations defined by γj 7→ gj because
exp(−2πiTj) = gj . Consequently, the restriction of E to D∗ is isomorphic to E.
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(2) Let now E ′ and ψ be as in (2). By Theorem 5.5, there exists an arrow in C
log
H (D),

call it ξ : E → E ′, such that ξ|D∗ = ψ−1ϕ. As the restriction of ξ to C(D∗) commutes with
the actions of Λ and the restriction map

HomOD
(E ,E ′) −→ HomOD∗ (E |D∗ ,E ′|D∗)

is injective, we conclude that ξ commutes with the action of Λ as well. Arguing with

ϕ−1ψ instead of ψ−1ϕ, it is not hard to see that ξ is an isomorphism from C
log
H (D)(Λ). The

injectivity of the restriction arrow again proves the uniqueness statement concerning ξ. �

5.5. Extension of connections: the global case. Let S be the analytic spectrum of Λ
and f : X → S a smooth morphism. Let Y ⊂ X be a relative divisor with relative normal
crossings satisfying in addition Hypothesis 4.1. As usual, we write X∗ for X r Y . Putting
Theorem 5.9, the equivalences of Section 3.1 and Lemma 5.6 together, we obtain:

Theorem 5.10 (Deligne-Manin extension). Let (E,∇) be an arbitrary object of C(X∗/S).
The following claims are true.

(1) There exists E ∈ C
log
Y (X/S) and an isomorphism

ϕ : E |X∗
∼

−→ E

in C(X∗/S). Moreover, E can be found to have the following properties:
(i) The OX-module E is a vector bundle relatively to S.
(ii) The exponents of E along Y are all on τ .

(2) Let E ′ ∈ C
log
Y (X/S) enjoy properties (i) and (ii) of (1), and let ψ : E ′|X∗

∼
→ E be an

isomorphism. Then there exists an isomorphism ξ : E
∼
→ E ′ rendering the diagram

E |X∗

ϕ //

ξ|X∗ ##●
●
●
●
●
●
●
●

E

E ′|X∗

ψ

OO

commutative. Moreover, the isomorphism ξ is the only one having this property.

Given Theorem 5.10, the proof of point (1) in Theorem 5.1 is concluded. Also, as argued
after its statement, the verification of item (2) is also finished.

5.6. An exercise on the matrix exponential. Let M be a finite Λ-module. In proving
Theorem 5.9 we needed the following simple result.

Proposition 5.11. Let α, g1, . . . , gm ∈ AutΛ(M) be given and suppose that α commutes
with each gj . Then, there exists a unique X ∈ EndΛ(M) such that exp(2πiX) = α and
SpX ⊂ τ . In addition, X commutes with each gj .

Proof. Let Zj stand for the center of gj in the linear algebraic group AutΛ(M) and let
α = s ·u be the Jordan-Chevalley decomposition of α in ∩jZj [St74, 2.4, 29ff]. Since u− Id
is nilpotent, the series

N =
1

2πi

∑

k≥1

(−1)k−1

k
(u− Id)k

is in fact a sum and exp(2πiN) = u. Obviously N belongs to EndΛ(M) and commutes
with each gj .

For every ̺ ∈ Spα = Sps, let ℓ(̺) stand for the unique element of z ∈ τ such that
e2πiz = ̺. Because s is semi-simple, we have the direct sum decomposition

M =
⊕

̺∈Sps

E(s, ̺),
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where in addition, each E(s, ̺) is stable under u, Λ and each gj. Define S ∈ EndC(M) by
decreeing that

S|E(s,̺) = ℓ(̺) · Id.

It then follows that S ∈ EndΛ(M), that S commutes with u, and a fortiori with N , and
that exp(2πiS) = s. In addition, S commutes with each gj . We now put X = S+N which
shows the existence of an element in EndΛ(M) commuting with each gj , whose spectrum is
contained in τ and such that exp(2πiX) = α. The following well-known Lemma establishes
uniqueness. �

Lemma 5.12. Let X and X ′ be C-linear endomorphism of M such SpX and SpX′ are
contained in τ . Then exp(2πiX) = exp(2πiX ′) implies X = X ′.

Proof. This is a well-known exercise, but we were unable to find a reference. Let us sketch
a proof. One first deals with the case where X and X ′ are diagonalisable, resp. nilpotent.
Then one applies the additive Jordan-Chevalley decomposition together with the fact that
the exponential sends diagonalisable endomorphism, resp. nilpotent, to diagonalisable
automorphisms, resp. unipotent. �

6. Connections in the algebraic and analytic case

The following conventions are fixed in this section: S is a noetherian C-scheme, f : X →
S is a smooth morphism of C-schemes, Y ⊂ X a relative effective (positive) divisor having
relative normal crossings [Ka70, 4.0, p.187]. The ideal of Y shall be denoted by I . Write
X∗ = X r Y and let u : X∗ → X stand for the inclusion.

6.1. Connections in the algebraic case. We define the categories C(X/S) and C
log
Y (X/S)

in complete analogy with Section 2.2 (see also [Ka70, Section 4]). On the other hand, if
we follow the path of Section 2.2 and introduce MCY (X/S), we obtain simply C(X∗/S).
Indeed, we see that OX(∗Y ) = u∗(OX∗) and because u is an affine morphism [EGA II,
1.2.1, p.6], we conclude that OX(∗Y ) – coh is none other than OX∗ – coh [EGA II, 1.4,
9ff].

Definition 6.1. We let Crs
Y (X

∗/S) be the full subcategory of C(X∗/S) whose object are

isomorphic to some object in the image of the restriction functor C
log
Y (X/S) → C(X∗/S).

(More succinctly, Crs
Y (X

∗/S) is the essential image of the restriction.) We refer to objects
in Crs

Y (X
∗/S) as regular-singular S-connections on X∗. If (E,∇E) ∈ Crs

Y (X
∗/S), any

(E ,∇E ) ∈ C
log
Y (X/S) such that (E ,∇E )|X∗ ≃ (E,∇E) is called a logarithmic model of

(E,∇E).

Remark 6.2. The reference to Y in the notation Crs
Y (X

∗/S) is there to remind us of the
dependence of X; it is envisageable to develop, as in [Del70], a more general theory, but
we have chosen not to do so.

Note that no particular assumption on the coherent modules defining logarithmic models
is made. Of course, it is possible to simplify certain models as the following constructions
show.

Let E ∈ OX – coh; define

(0 : I
k)E = HomX(OX/I

k,E );

this is naturally a coherent submodule of E supported on Y . Put (0 : I ∞)E =
⋃
k(0 : I k)E

and note that (0 : I ∞)E is the kernel of E → u∗(u
∗E ).

Definition 6.3 ([EGA IV2, 5.9.9, p.112]). We say that E is Y -pure if (0 : I ∞)E = 0.

We now note that obtaining Y -pure logarithmic models is always possible:
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Lemma 6.4. For each (E ,∇) ∈ C
log
Y (X/S), the OX -submodule (0 : I k)E is a subcon-

nection. In particular, each (E,∇) ∈ Crs
Y (X

∗/S) has a logarithmic model E which is
Y -pure. �

Let now E ∈ Crs
Y (X

∗/S) and let F ⊂ E be a subobject. If E ∈ C
log
Y (X/S) is a Y -

pure logarithmic model, so that E is naturally a OX -submodule of u∗(E), we define F :=
u∗(F ) ∩ E , which is a coherent OX -module [EGA I, 9.2.2, p.172]. In addition, it is clear
that F is stable under DerY (X/S), and hence F is a logarithmic model for F . In the same
vein, if E → Q is an epimorphism with kernel N , let N ⊂ E be the logarithmic model
of N previously constructed. It then follows that Q := E /N is a logarithmic model for
Q and we have verified the truth of the first two statements of the following proposition.
The final claims are very simple and left without proof.

Proposition 6.5. The full subcategory Crs
Y (X

∗/S) of C(X∗/S) is stable under subobjects
and quotients. It is also stable under tensor products and duals. �

6.2. Construction of models when the base is SpecΛ. In addition to the assumptions
of the beginning of the section, we suppose that f is proper, that S = SpecΛ and that
Y =

∑
c Yc, where each Yc is connected and smooth over S. We write X, S, Y, etc for

the analytifications of X, S, Y , etc. Note that Y now satisfies Hypothesis 4.1 since each
Y an
c = Yc is connected [SGA1, XII.2.4] and smooth [SGA1, XII.3.1]. As usual, X∗ = XrY

and X∗ = XrY = (X r Y )an.
The following two results, Proposition 6.6 and Lemma 6.7, shall be employed in structur-

ing our arguments. The first one is a simple consequence of GAGA [SGA1, Exposé XIII,
Theorem 4.4] and the unconvinced reader will find some details in [HdS19, 5.4]. While
Lemma 6.7 is essentially GAGA, we find necessary to proceed carefully.

Proposition 6.6 (GAGA). The analytification functor

C
log
Y (X/S) −→ C

log
Y (X/S)

is an equivalence. �

Lemma 6.7. Let E and F be coherent OX -modules and assume that F is Y -pure. Then

HomOX(∗Y )(E (∗Y ),F (∗Y )) −→ HomOX(∗Y)(E
an(∗Y),F an(∗Y))

is bijective.

Sketch of proof. We require two steps.
Step 1. We claim that the natural arrows

Φ : lim
−→
k

HomOX
(E ,F (kY )) −→ HomOX

(E ,F (∗Y ))

and

Ψ : lim
−→
k

HomOX
(E an,F an(kY)) −→ HomOX

(E an,F an(∗Y))

are bijective. Since the argument is sufficiently general, we give it only in the case of Φ.
Even without assuming F to be Y -pure, quasi-compacity of X shows that Φ is injective.

Surjectivity requires Y -purity since we need the natural arrows F (kY ) → lim
−→ℓ

F (ℓY ) =

F (∗Y ) to be injective in order to glue.
Step 2. Using the natural bijections

HomOX
(E ,F (∗Y )) = HomOX(∗Y )(E (∗Y ),F (∗Y ))

and

HomOX
(E an,F an(∗Y)) = HomOX(∗Y)(E

an(∗Y),F an(∗Y)),
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the Lemma shall be proved once we establish that the natural arrow

HomOX
(E ,F (∗Y )) −→ HomOX

(E an,F an(∗Y))

is bijective. But this follows from GAGA [SGA1, XIII, Theorem 4.4] and bijectivity of Φ
and Ψ.

�

Theorem 6.8 (Deligne-Manin extension). Let (E,∇) be an object of Crs
Y (X

∗/S). Then,

there exists Ẽ ∈ C
log
Y (X/S) enjoying the two properties enumerated below and an isomor-

phism Φ : Ẽ|X∗
∼
→ E.

(1) All the exponents of Ẽan (this is an object of Clog
Y (X/S)) along Y lie in τ .

(2) The OX-module Ẽan is a relative vector bundles.

In addition, if F̃ ∈ C
log
Y (X/S) also enjoys (1) and (2) above and Ψ : F̃ |X∗ → E is an

isomorphism, then there exists an isomorphism Ξ : Ẽ → F̃ such that Φ|X∗ = Ψ ◦ Ξ|X∗ .

Proof. Let M ∈ C
log
Y (X/S) be a logarithmic model of E; we may assume that M is Y -

pure because of Lemma 6.4. Applying Theorem 5.10, there exists Ẽ ∈ C
log
Y (X/S) enjoying

properties (i) and (ii) of the said result, and a horizontal isomorphism

ϕ : Ẽ|X∗
∼
−→ Ean.

Using Theorem 3.6, it is possible to find an arrow

ϕ̃ : Ẽ(∗Y) −→ M
an(∗Y)

in MCY(X/S) extending ϕ. By GAGA, there exists Ẽ ∈ C
log
Y (X/S) whose analytification

is Ẽ. By Lemma 6.7, there exists a morphism of OX(∗Y )-modules

ϕ̃alg : Ẽ(∗Y ) −→ M (∗Y )

such that
(
ϕ̃alg

)an
= ϕ̃. In particular,

(
ϕ̃alg|X∗

)an
is just ϕ and hence is a horizontal

isomorphism. Since the analytification functor OX∗ – coh → OX∗ – coh is conservative
[SGA1, XII.1.3.1, p.241] (it is exact and faithful), it follows that ϕ̃alg|X∗ is a horizontal

isomorphism and Ẽ is a logarithmic model for E.
The last statement is a direct consequence of claim (2) in Theorem 5.10 and GAGA. �

6.3. Logarithmic models in the case of a complete base. Let R be a complete
noetherian local C-algebra with residue field C. If r ⊂ R stands for the maximal ideal, we
shall write Rk instead of R/rk+1: these are all finite dimensional complex vector spaces.

We now place ourselves in the situation explained in the beginning of this section and
add the ensuing assumptions: The scheme S is SpecR and the morphism f : X → S is
proper with connected fibres. The divisor Y is

∑
c Yc, where for each c, the S-scheme Yc

is smooth and the C-scheme Yc⊗R0 is connected. (Recall that in this case, (Yc⊗R0)
an is

likewise connected [SGA1, XII, Proposition 2.4, p.243].)
To simplify notation, given k ∈ N, we write

Sk = SpecRk, Xk = X ⊗R Rk, Yk = Y ⊗R Rk, etc.

These produce, via the analytification functor, complex spaces Sk, Xk, Yk, etc.
We wish to compare Crs

Y (X/S) and the category of representations on R-modules of the
fundamental group of X0 in analogy with [HdS19] and [Mal87, 7.2.1, p.170] (or [Del70,
Theorem II.5.9, p.97]). We begin with the analogue of [HdS19, Definition 5.2].

Definition 6.9. The category C
log
Y (X/S)∧ is the category whose
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objects are sequences (Ek, qk), with Ek ∈ C
log
Yk

(Xk/Sk) and qk : Ek+1|Xk+1
→ E |Xk

an

isomorphism in C
log
Yk

(Xk/Sk), and

arrows between (Ek, qk) and (Fk, rk) are compatible families of arrows ϕk : Ek → Fk.

We introduce analogously the categories C(X∗/S)∧, C(X/S)∧ and C(X∗/S)∧ (and note
that here X, X∗ and S carry no mathematical meaning).

We begin with a consequence of Grothendieck’s algebraization theorem [Ill05]. Its proof
is simple and omitted; the unconvinced reader might find further details in [HdS19, Propo-
sition 5.3].

Proposition 6.10 (The GFGA equivalence). The natural morphism

C
log
Y (X/S) −→ C

log
Y (X/S)∧

is an equivalence. �

We can now find certain preferred logarithmic models for objects in Crs
Y (X

∗/S).

Theorem 6.11. Any E ∈ Crs
Y (X

∗/S) possesses a logarithmic model E enjoying the follow-
ing properties.

(1) For each k ∈ N, the analytification (E |Xk
)an, which is an object of Clog

Yk
(Xk/Sk), has

all its exponents on τ .
(2) For each k ∈ N, the coherent sheaf (E |Xk

)an is a vector bundle relatively to Sk.

Proof. We shall write Ek instead of E|X∗
k

and let qk denote the canonical isomorphism

Ek+1|X∗
k
→ Ek. Let

Ẽk ∈ C
log
Yk

(Xk/Sk)

be the logarithmic model of Ek obtained from an application of Theorem 6.8: Ẽan
k has all

its exponents on τ , is a vector bundle relatively to Sk and there exists an isomorphism

ϕk : Ẽk|X∗
k
→ Ek.

Claim. For each k ∈ N, qk extends to an isomorphism in C
log
Yk

(Xk/Sk):

Ẽk+1|Xk

q̃k // Ẽk.

Proof. Let us consider the morphisms qk and uk defined by the commutative diagrams

{(
Ẽk+1|Xk

)∣∣∣
X∗

k

}an
qk ////

{
Ẽk|X∗

k

}an

∼

��

{(
Ẽk+1|X∗

k+1

)∣∣∣
X∗

k

}an

∼

��(
Ek+1|X∗

k

)an

(qk)
an

// Ean
k
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and {(
Ẽk+1|Xk

)∣∣∣
X∗

k

}an
qk // //

{
Ẽk|X∗

k

}an

(Ẽk+1|Xk
)an

∣∣∣
X∗
k

uk
// Ẽan

k |X∗
k
.

(Note that the first diagram is the image of a diagram from C(X∗
k/Sk) by the analytification

functor.) The fact that (Ẽk+1|Xk
)an ≃ Ẽan

k+1|Xk
and Ẽan

k have exponents on τ and are vector
bundles relatively to Sk allows us to apply Theorem 5.10-(2) and assure that uk = ũk|X∗

k
for

a certain isomorphism ũk : (Ẽk+1|Xk
)an → Ẽan

k . By GAGA (Proposition 6.6), ũk = (q̃k)
an

for some isomorphism q̃k : Ẽk+1|Xk
→ Ẽk. By functoriality, we see that qk = (q̃k|X∗

k
)an.

Since (−)an : OX∗
k

– coh → OX∗
k
– coh is faithful [SGA1, XII.1.3.1, p.241], q̃k is the desired

extension of qk, which completes the proof of the claim.

Using the GFGA equivalence (Proposition 6.10) and the family {q̃k}, we can find Ẽ ∈

C
log
Y (X/S) such that

Ẽ|Xk
= Ẽk, for each k.

Claim. The logarithmic connection Ẽ is a model of E.
Proof. This is not automatic since the natural arrow C(X∗/S) −→ C(X∗/S)∧ does not

have to be full. Let M ∈ C
log
Y (X/S) be any logarithmic model of E so that (M |Xk

)an is a
logarithmic model of (E|Xk

)an. Hence, by Theorem 3.6, there exists a unique isomorphism

(M |Xk
)an(∗Yk)

gk

∼
// (Ẽ|Xk

)an(∗Yk)

in MC
log
Yk

(Xk/Sk) whose restriction to X∗
k is the identity of (E|Xk

)an. Let δ be the disso-

nance from (Ẽ|Xk
)an to (M |Xk

)an for an arbitrary k. By Proposition 5.8, there exists an

unique arrow in C
log
Yk

(Xk/Sk)

(M |Xk
)an

hk // (Ẽ|Xk
)an(δYk)

extending gk. In particular, hk|X∗
k
= id(E|Xk

)an , and uniqueness assures that hk+1|Xk
= hk.

Let

M |Xk

hk // Ẽ(δY )|Xk

be an arrow of C
log
Yk

(Xk/Sk) inducing hk after analytification. Since hk+1|Xk
= hk, we

conclude also that hk+1|Xk
= hk. Hence, by GFGA, it is possible to find a morphism in

C
log
Y (X/S),

M
h // Ẽ(δY ),

such that h|Xk
= hk for each k. In particular, (h|X∗)|X∗

k
is an isomorphism for each k,

which shows that h|X∗ : M |X∗ → Ẽ|X∗ is an isomorphism on an open neighbourhood of
the closed fibre X∗

0 [EGA I, 10.8.14, p.198]. From Lemma 6.12, we deduce that h|X∗ is an

isomorphism so that Ẽ(δY ), and hence Ẽ, is a logarithmic model of E. �

The following result was employed in proving Theorem 6.11 and shall be useful also in
the verification of Theorem 6.13.
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Lemma 6.12. Let T be the spectrum of a local and noetherian C-algebra with closed point
o. Let g : Z → T be a smooth morphism with connected fibres.

(1) Let F an object of C(Z/T ) such that Fp = 0 for each p ∈ Zo. Then F = 0.
(2) Let ϕ : E → E ′ be an arrow of C(Z/T ) which is an isomorphism, respectively vanishes,

on an open neighbourhood of Zo. Then ϕ is an isomorphism, respectively vanishes
allover.

Proof. (1) We need to show that the open subset Supp(F )c is in fact Z and start by noting
that Supp(F )c has the following distinctive property. If p ∈ Supp(F )c, then the fibre
g−1(g(p)) is also contained in Supp(F )c. Indeed, if Fp = 0, then F |g−1(g(p))(p) = 0 and,
since F |g−1(g(p)) is locally free [Ka70, Proposition 8.8,p.206], we conclude that F |g−1(g(p)) =

0. Consequently, if q ∈ g−1(g(p)), then F (q) = 0 and hence, by Nakayama’s Lemma,
Fq = 0. Once this has been put under the light, it follows easily that Supp(F )c = Z
because g(Supp(F )c) is open in T [EGA IV2, 2.4.6, p.20] and contains the closed point.

(2) Follows from (1) applied to Ker(ϕ) and Coker(ϕ), respectively to Im(ϕ). �

6.4. The relative Deligne-Riemann-Hilbert correspondence. Assumptions and no-
tations are the same as on Section 6.3.

Theorem 6.13. The natural functor

ν : Crs
Y (X

∗/S) −→ C(X∗/S)∧

is an equivalence.

Proof. Consider the natural composition of functor

C
log
Y (X/S) −→ Crs

Y (X
∗/S)

ν
−→ C(X∗/S)∧,

call it µ. The result shall be proved once we establish that µ is essentially surjective and
that ν is fully faithful.

Essential surjectivity of µ. This is very similar to the beginning of the proof of Theorem
6.11 and we leave to the reader to fill in the details.

Fullness of ν. Let E and F be in Crs(X/S) and consider
{
gk : (E|X∗

k
)an −→ (F |X∗

k
)an

}
k∈N

a compatible system of arrows defining a morphism of C(X/S)∧. Let E and F be loga-
rithmic models of E and F satisfying conditions (1) and (2) of Theorem 6.11. Once E|X∗

k
,

respectively F |X∗
k
, is identified with (E |Xk

)|X∗
k
, respectively (F |Xk

)|X∗
k
, Proposition 5.8

shows that each gk can be extended to an arrow

g̃k : (E |Xk
)an −→ (F |Xk

)an

in C
log
Yk

(Xk/Sk). Now GAGA assures that g̃k is the analytification of a horizontal arrow

g̃k : E |Xk
−→ F |Xk

.

Unravelling all identifications and using the uniqueness statement in Proposition 5.8, we
can assure that

g̃k+1|Xk
= g̃k.

By GFGA (Proposition 6.10), there exists a horizontal arrow g̃ : E → F such that g̃|Xk
=

g̃k. In particular, if g = g̃|X∗ , then (g|X∗
k
)an = gk.

Faithfulness of ν. This follows from faithfulness of each (−)an : OX∗
k
– coh → OX∗

k
– coh

[SGA1, XII, Proposition 1.3.1, p.241], from [EGA I, 10.8.13, p.198] and from part (2) of
Lemma 6.12. �
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Let now Γ be the fundamental group of the topological space (X⊗R0)
an at an unspecified

point. Proceeding as in [HdS19, Section 5.6], it is not difficult to see that the R-linear ⊗-
category C(X∗/S)∧ is equivalent to RepR(Γ). Then:

Corollary 6.14. Let ξ : S → X∗ be a section of X → S and let Γ stand for the fundamental
group of the topological space (X ⊗R0)

an = (X ⊗ C)an based at the image of ξ(S0). Then

we obtain an equivalence of R-linear ⊗-categories Φ : Crs
Y (X

∗/S)
∼
→ RepR(Γ). In addition,

the composition of Φ with the forgetful functor RepR(Γ) → R-mod is isomorphic to M 7→
ξ∗M .

6.5. Applications to the calculation of differential Galois groups. Assumptions
and notations are as in Section 6.3, except that we now take R = CJtK. We set out to
compute differential Galois groups for connections on X∗ using Corollary 6.14, so we begin
by a brief review. Let us fix an R-point ξ of X∗ and write Γ for the topological fundamental
group of (X0 ⊗R0)

an based at ξ(S0). To avoid repetitions, all group schemes in sight are
affine and flat over R.

Let (M,∇) ∈ C(X∗/S) be such that M is a vector bundle and introduce the full sub-
category 〈M〉⊗ of C(X∗/S) by means of the following set of objects



N ∈ C(X∗/S) :

There exist non-negative integers {aj , bj}
r
j=1, a

subobject N ′ of (M⊗a1 ⊗ M̌⊗b1)⊕ · · · ⊕ (M⊗ar ⊗ M̌⊗br)
and a horizontal epimorphism N ′ → N



 .

Then, [DH18, Theorem 1.2.6, p.1109 and 1140] says that the functor which associates to
N ∈ 〈M〉⊗ its pull-back via ξ,

ξ∗ : 〈M〉⊗ −→ R-mod,

induces a ⊗-equivalence between 〈M〉⊗ and the category RepR(Gal′(M)), where Gal′(M)
is a group scheme called the full differential Galois group of M [DHdS18, Section 7].
Contrary to the case of a base field, Gal′(M) might easily fail to be of finite type [A01,
3.2.1.5], [DHdS18, Example 7.11].

Provided that M is regular-singular, Proposition 6.5 assures that 〈M〉⊗ is a full subcate-
gory of Crs

Y (X
∗/S), so that the equivalence in Corollary 6.14 allows us to compute Gal′(M)

with the help of Γ in the following way.
The category RepR(Γ) is Tannakian (in the sense of [DH18, Definition 1.2.5] and due to

[HdS19, Corollary 4.5]) so that RepR(Γ) ≃ RepR(Π) for a certain group scheme Π, called
the Tannakian envelope of Γ [HdS19, Definition 4.1]. In fact, the abstract group Π(R) is
the target of an “universal” arrow

u : Γ −→ Π(R)

having the property that the natural functor

u# : RepR(Π) −→ RepR(Γ)

deduced from u is an equivalence of R-linear ⊗-categories. Moreover, if G is a group scheme
and ϕ : Γ → G(R) is a morphism of abstract groups, then there exists a unique arrow of
group schemes uϕ : Π → G such that

Γ

ϕ
!!❈

❈
❈
❈
❈
❈
❈
❈
❈

u // Π(R)

uϕ(R)

��
G(R)

commutes. See Corollary 4.9 in [HdS19] and the discussion preceding it.
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For any finite and free R-module E affording a representation of Γ, let 〈E〉⊗ be the full
subcategory of RepR(Γ) whose set of objects is



F :

There exist non-negative integers {aj , bj}
r
j=1, a

subobject F ′ of (E⊗a1 ⊗ Ě⊗b1)⊕ · · · ⊕ (E⊗ar ⊗ Ě⊗br)
and an epimorphism F ′ → F



 .

By Tannakian duality [DH18, Theorem 1.2.6, p.1109 and 1140], the category 〈E〉⊗ is
equivalent to RepR(Gal′(E)), where Gal′(E) is a group scheme which we call, for the sake of
discussion, the full Galois group of E. In addition, the inclusion functor 〈E〉⊗ → RepR(Γ)
produces a faithfully flat arrow Π → Gal′(E) as assured by [DH18, Theorem 4.1.2(i),
p.1125]. (We note in passing that the same construction applies to any finite and free
R-module affording a representation of a group scheme G.)

In view of Corollary 6.14, if M ∈ Crs
Y (X

∗/S) is as above, then

Gal′(M) ≃ Gal′(ΦM).

Using this and the material developed in [HdS19, §4.2-3], we now exhibit a simple case
where Gal′(M) is easily computed and fails to be of finite type.

Let us assume that X = P1
S , that Y = 0 × S + ∞ × S and that ξ = 1. In this case,

writing x for an inhomogeneous coordinate in P1
S, the OX-module Ω1

X/R(log Y ) is free on

x−1dx and Γ is generated by the loop γ : s 7→ eis. In [HdS19], Section 4.3, we constructed
a group scheme N having the ensuing properties.

(i) There exists an arrow j : N → Ga × Gm which, over the generic fibre of R, is an
isomorphism.

(ii) On the level of R-points, j(R) identifies N (R) with the group of couples (a, λ) ∈
R×R∗ such that λ = eta.

(iii) If ϕ : Γ → N (R) is defined by γ 7→ (1, et), then the morphism uϕ : Π → N

mentioned before is faithfully flat [HdS19, Proposition 4.15].

Let E be a free R-module affording a faithful representation of Ga × Gm, say ρ :
Ga ×Gm → GL(E). From (i) and (iii) we conclude that

Π //

uϕ

��

GL(E)

N
j

// Ga ×Gm

ρ

OO

is the diptych of Π → GL(E) [DHdS18, Definition 4.1]. Hence, according to [DHdS18,
Proposition 4.10], RepR(N ) = 〈j#E〉⊗. (Here and in what follows, we use the upper-script
(−)# to denote the functor associated to a homomorphism.) Employing the equivalence
u#, we are able to compute the full Galois group of ϕ#j#(E) ∈ RepR(Γ):

Gal′(ϕ#j#E) ≃ N .

To be more explicit, let us now take E = R2 with an action of Ga ×Gm via (a, λ) 7→(
λ λa
0 λ

)
so that ϕ#j#E is determined by γ 7→

(
et et

0 et

)
. Let M = OXm1 ⊕ OXm2 and

define on it a logarithmic connection by the equations

−2πi∇m1 = tm1 ⊗
dx

x

−2πi∇m2 = (m1 + tm2)⊗
dx

x
.
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Let M denote the object of Crs
Y (X

∗/S) obtained by restricting M . Then the representation

of Γ on ξ∗M corresponds to γ 7→

(
et et

0 et

)
. Therefore, Gal′(M) ≃ N is not of finite type.
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