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Optimal Processes in a Parametric Optimal Economic Growth Model

Vu Thi Huong, Jen-Chih Yao and Nguyen Dong Yen*

Abstract. A parametric finite horizon optimal economic growth problem is solved by

using the maximum principle for optimal control problems with state constraints in

the book by R. Vinter [Optimal Control, Birkhäuser, Boston, 2000; Theorem 9.3.1].

From the obtained results it follows that if the total factor productivity is relatively

small, then the expansion of the production facility does not lead to a higher total

consumption satisfaction of the society.

1. Introduction

Models of economic growth have been suggested by Ramsey [25], Harrod [12], Domar [8],

Solow [26], Swan [27], and others. The reader is referred to the books by Barro and Sala-

i-Martin [3] and Acemoglu [1] for detailed information about the development of these

models, which allow ones to analyze relationships among capital, labor force, production

technology, and national product of an economy during a period of time.

The question of defining the consumption/saving curve to maximize a certain target

of consumption satisfaction, is known as the optimal economic growth problem. It was

first considered by Ramsey [25]. Later on, the problem has been extended by Cass [4] and

Koopmans [18].

Necessary and sufficient optimality conditions for the solutions of optimal economic

growth problems can be found in the books [28, Chapter 5], [29, Chapters 5, 7, 10, and

11], [6, Chapter 20], [1, Chapters 7 and 8], and in some papers cited therein. For infinite

horizon models, some results on solution existence were given in [1, Example 7.4] and

[7, Subsection 4.1]. The paper of Le Van et al. [19] establishes necessary and sufficient

transversality conditions for an optimal control problem with an infinite horizon arising

in dynamic models in continuous time with an application to Ramsey-like models. For

finite horizon models, a few facts on solution existence are available in [7] and [24]. For

a comprehensive account of this topic, we refer to a recent paper by Huong [13], which

is the basis for our investigations herein. Unlike [13], here we do not discuss the solution
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existence. Our focus point is to solve the problem in question. More precisely, our aim is

to give a complete synthesis of the optimal processes.

The present paper investigates a parametric finite horizon optimal economic growth

problem, where the production function and the utility function are both in the form of AK

functions (see, e.g., [3]). By using a solution existence theorem from [13] and a maximum

principle for optimal control problems with state constraints in the book by Vinter [30],

we are able to prove that the problem has a unique local solution, which is also a global

one, provided that the data triple satisfies a strict linear inequality. Our main theorem

will be obtained via a series of nine lemmas and some involved technical arguments.

Roughly speaking, we will combine an intensive treatment of the system of necessary

optimality conditions given by the maximum principle with the specific properties of the

given parametric optimal economic growth problem. The approach adopted herein has

the origin in our preceding papers [14,15]. From the obtained results it follows that if the

total factor productivity is relatively small, then the expansion of the production facility

does not lead to a higher total consumption satisfaction of the society.

The organization of the paper is as follows. Section 2 is devoted to some materials

from [13] on finite horizon optimal economic growth problems. The maximum principle

for optimal control problems with state constraints in [30, Theorem 9.3.1] is recalled in

Section 3. Our results on optimal processes of a parametric finite horizon optimal economic

growth problem, where the production function and the utility function are both in the

form of AK functions, are established in Section 4.

2. Economic growth models

By R (resp., R+) we denote the set of real numbers (resp., the set of nonnegative real

numbers). The Euclidean norm in the n-dimensional space Rn is denoted by ‖ · ‖. By

Rn+ we denote the nonnegative orthant in Rn. The Sobolev space W 1,1([t0, T ];Rn) (see,

e.g., [16, p. 21]) is the linear space of the absolutely continuous functions x : [t0, T ]→ Rn

equipped with the norm

(2.1) ‖x‖W 1,1 = ‖x(t0)‖+

∫ T

t0

‖ẋ(t)‖ dt.

We now recall some materials from Subsection 2.1 of the paper by Huong [13], and

refer the interested reader to the books [28, Chapter 5], [29, Chapters 5, 7, 10, and 11], [6,

Chapter 20], [1, Chapters 7 and 8] for systematical presentations of optimal economic

growth models.

Consider the problem of optimal growth of an aggregative economy. The national

product at time t is denoted Y (t). Suppose that the dependence of Y (t) on the labor L(t)
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and the capital K(t) is described by Y (t) = F (K(t), L(t)) with t ≥ 0, where F : R2
+ → R+

is the production function. It is assumed that

(2.2) F (αK,αL) = αF (K,L)

for any (K,L) ∈ R2
+ and α > 0. For every t ≥ 0, by C(t) and I(t), respectively, we denote

the consumption amount and the investment amount of the economy. The equilibrium

relation in the output market is depicted by

(2.3) Y (t) = C(t) + I(t), ∀ t ≥ 0.

The relationship between the capital K(t) and the investment amount I(t) is given by the

differential equation

(2.4) K̇(t) = I(t), ∀ t ≥ 0,

where K̇(t) = dK(t)
dt denotes the Fréchet derivative of K(·) at time instance t (see, e.g., [6,

pp. 465–466]). If the investment function I(·) is continuous, then one can compute the

capital stock K(t) at time t by the formula

K(t) = K(0) +

∫ t

0
I(τ) dτ,

where the integral is Riemannian and K(0) signifies the initial capital stock. In particular,

the rate of increase of the capital stock K̇(t) at every time moment t exists and it is finite.

If the initial labor amount is L0 > 0 and the rate of labor force is a constant σ > 0 (i.e.,

L̇(t) = σL(t) for all t ≥ 0), then the labor amount at time moment t is

(2.5) L(t) = L0e
σt, ∀ t ≥ 0.

For any t ≥ 0, as L(t) > 0, from (2.2) we have

Y (t)

L(t)
= F

(
K(t)

L(t)
, 1

)
, ∀ t ≥ 0.

By considering the capital-to-labor ratio k(t) := K(t)
L(t) and the function φ(k) := F (k, 1) for

k ≥ 0, from the last equality we have

(2.6) φ(k(t)) =
Y (t)

L(t)
, ∀ t ≥ 0.

Due to (2.6), one calls φ(k(t)) the output per capita at time t and φ(·) the per capita

production function. Since F has nonnegative values, so does φ. Combining the continuous

differentiability of K(·) and L(·), which is guaranteed by (2.4) and (2.5), with the equality
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defining the capital-to-labor ratio, one can assert that k(·) is continuously differentiable.

Thus, from the relation K(t) = k(t)L(t) one obtains

K̇(t) = k̇(t)L(t) + k(t)L̇(t), ∀ t ≥ 0.

Dividing both sides of the above equality by L(t) and recalling that L̇(t) = σL(t), we get

(2.7)
K̇(t)

L(t)
= k̇(t) + σk(t), ∀ t ≥ 0.

Similarly, dividing both sides of the equality in (2.4) by L(t) and using (2.3), we have

K̇(t)

L(t)
=
Y (t)

L(t)
− C(t)

L(t)
, ∀ t ≥ 0.

So, by considering the per capita consumption c(t) := C(t)
L(t) of the economy at time t and

invoking (2.6), one obtains

K̇(t)

L(t)
= φ(k(t))− c(t), ∀ t ≥ 0.

Combining this with (2.7) yields

(2.8) k̇(t) = φ(k(t))− σk(t)− c(t), ∀ t ≥ 0.

The amount of consumption at time t is

(2.9) C(t) = (1− s(t))Y (t), ∀ t ≥ 0,

with s(t) ∈ [0, 1] being the propensity to save at time t (thus, 1− s(t) is the propensity to

consume at time t). Then, by dividing both sides of (2.9) by L(t) and referring to (2.6),

one gets

(2.10) c(t) = (1− s(t))φ(k(t)), ∀ t ≥ 0.

Thanks to (2.10), one can rewrite (2.8) equivalently as

(2.11) k̇(t) = s(t)φ(k(t))− σk(t), ∀ t ≥ 0.

In the special case where s(·) is a constant function, i.e., s(t) = s > 0 for all t ≥ 0,

relation (2.11) is the fundamental equation of the neo-classical aggregate growth model of

Solow [26].

One major concern of the planners is to choose a pair of functions (k, c) (or (k, s))

defined on a planning interval [t0, T ] ⊂ [0,+∞], that satisfies (2.8) (or (2.11)) and the

initial condition k(t0) = k0, to maximize a certain target of consumption. Here k0 > 0 is a
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given value. As the target function one may choose is
∫ T
t0
c(t) dt, which is the total amount

of per capita consumption on the time period [t0, T ]. A more general kind of the target

function is
∫ T
t0
ω(c(t))e−λt dt, where ω : R+ → R is a utility function associated with the

representative individual consumption c(t) in the society, λ ≥ 0 is called the real interest

rate, and e−λt is the time discount factor. The just mentioned planning task is an optimal

control problem. Interpreting k(t) as the state trajectory and s(t) as the control function,

one can formulate the problem as follows.

Let there be given a production function F : R2
+ → R+ satisfying (2.2) for any (K,L)

from R2
+ and α > 0. Define the function φ(k) on R+ by setting φ(k) = F (k, 1). Assume

that a finite time interval [t0, T ] with T > t0 ≥ 0, a utility function ω : R+ → R, and a real

interest rate λ ≥ 0 are given. Since c(t) = (1− s(t))φ(k(t)) by (2.10), the target function

can be expressed via k(t) and s(t) as∫ T

t0

ω(c(t))e−λt dt =

∫ T

t0

ω[(1− s(t))φ(k(t))]e−λt dt.

So, the problem of finding an optimal growth process for an aggregative economy is the

following one:

(2.12) Maximize I(k, s) :=

∫ T

t0

ω[(1− s(t))φ(k(t))]e−λt dt

over k ∈W 1,1([t0, T ];R) and measurable functions s : [t0, T ]→ R satisfying

(2.13)



k̇(t) = s(t)φ(k(t))− σk(t) a.e. t ∈ [t0, T ],

k(t0) = k0,

s(t) ∈ [0, 1] a.e. t ∈ [t0, T ],

k(t) ≥ 0 ∀ t ∈ [t0, T ].

This problem has five parameters: λ ≥ 0, σ > 0, k0 > 0, t0, T .

The optimal control problem in (2.12) and (2.13) will be denoted by (GP). According

to [5], (GP) is a finite horizon optimal control problem of the Lagrange type. Recall that a

function ϕ : [t0, T ]→ R is said to be measurable if for any α ∈ R the set {t ∈ [t0, T ] | ϕ ∈
(−∞, α)} is Lebesgue measurable. This amounts to saying that, for every Borel set B in

R, the inverse set ϕ−1(B) := {t ∈ [t0, T ] | ϕ ∈ B} is Lebesgue measurable.

For each α, β ∈ (0, 1], let φ(k) = Akα for all k ≥ 0 and ω(c) = cβ for every c ≥ 0 with

A > 0 being a constant in (GP). Then, we have the optimal control problem

(2.14) Maximize

∫ T

t0

[1− s(t)]βkαβ(t)e−λt dt
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over k ∈W 1,1([t0, T ];R) and measurable functions s : [t0, T ]→ R satisfying

(2.15)



k̇(t) = Akα(t)s(t)− σk(t) a.e. t ∈ [t0, T ],

k(t0) = k0,

s(t) ∈ [0, 1] a.e. t ∈ [t0, T ],

k(t) ≥ 0 ∀ t ∈ [t0, T ]

with λ ≥ 0, A > 0, σ > 0, k0 > 0, and T > t0 ≥ 0 being given parameters. We will denote

the problem in (2.14) and (2.15) by (GP1). According to [5], (GP1) is a finite horizon

optimal control problem of the Lagrange type.

The next solution existence theorem for (GP1) will be useful for our further investiga-

tions.

Theorem 2.1. [13, Theorem 4.1] For any constants α ∈ (0, 1] and β ∈ (0, 1], the optimal

economic growth problem (GP1) possesses a global solution.

3. Maximum principle for optimal control problems with state constraints

Let Ω ⊂ Rn be a closed set and v ∈ Ω. The Fréchet normal cone (also called the prenormal

cone, or the regular normal cone) to Ω at v is given by

N̂Ω(v) =

v′ ∈ Rn
∣∣∣∣ lim sup

v
Ω−→v

〈v′, v − v〉
‖v − v‖

≤ 0

 ,

where v
Ω−→ v means v → v with v ∈ Ω. The Mordukhovich (or limiting) normal cone to

Ω at v is defined by

NΩ(v) =
{
v′ ∈ Rn | ∃ sequences vk → v, v′k → v′ with v′k ∈ N̂Ω(vk) for all k ∈ N

}
.

Given an extended real-valued function ϕ : Rn → R∪{−∞,+∞}, one defines the epigraph

of ϕ by epiϕ = {(x, µ) ∈ Rn × R | µ ≥ ϕ(x)}. The Mordukhovich subdifferential (or

limiting subdifferential) of ϕ at x ∈ Rn with |ϕ(x)| <∞ is defined by

∂ϕ(x) = {x∗ ∈ Rn | (x∗,−1) ∈ Nepiϕ((x, ϕ(x)))}.

If |ϕ(x)| = ∞, then one puts ∂ϕ(x) = ∅. The reader is referred to [21–23] for compre-

hensive treatments of the Fréchet normal cone, the limiting normal cone, the limiting

subdifferential, and the related calculus rules.

As in [30, p. 321], we consider the following finite horizon optimal control problem of

the Mayer type, denoted by M,

(3.1) Minimize g(x(t0), x(T ))
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over x ∈W 1,1([t0, T ];Rn) and measurable functions u : [t0, T ]→ Rm satisfying

(3.2)



ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [t0, T ],

(x(t0), x(T )) ∈ C,

u(t) ∈ U(t) a.e. t ∈ [t0, T ],

h(t, x(t)) ≤ 0 ∀ t ∈ [t0, T ],

where [t0, T ] is a given interval, g : Rn × Rn → R, f : [t0, T ] × Rn × Rm → Rn, and

h : [t0, T ]×Rn → R are given functions, C ⊂ Rn×Rn is a closed set, and U : [t0, T ] ⇒ Rm

is a set-valued map.

A measurable function u : [t0, T ] → Rm satisfying u(t) ∈ U(t) a.e. t ∈ [t0, T ] is called

a control function. A process (x, u) consists of a control function u and an arc x ∈
W 1,1([t0, T ];Rn) that is a solution to the differential equation in (3.2). A state trajectory

x is the first component of some process (x, u). A process (x, u) is called feasible if the

state trajectory satisfies the endpoint constraint (x(t0), x(T )) ∈ C and the state constraint

h(t, x(t)) ≤ 0 for all t ∈ [t0, T ].

Due to the appearance of the state constraint h(t, x(t)) ≥ 0, t ∈ [t0, T ], the problem

M in (3.1) and (3.2) is said to be an optimal control problem with state constraints.

But, if the inequality h(t, x(t)) ≤ 0 is fulfilled for every (t, x(t)) with t ∈ [t0, T ] and

x ∈W 1,1([t0, T ];Rn) (for example, when h is constant function having a fixed nonpositive

value), i.e., the condition h(t, x(t)) ≤ 0 for all t ∈ [t0, T ] can be removed from (3.2), then

one says that M an optimal control problem without state constraints.

The convex hull of a subset C ⊂ Rn is denoted by coC. The graph of a set-valued map

F : Rn ⇒ Rm is defined by gphF := {(x, y) ∈ Rn × Rm | y ∈ F (x)}. For a given segment

[t0, T ] of the real line, we denote the σ-algebra of its Lebesgue measurable subsets (resp.,

the σ-algebra of its Borel measurable subsets) by L (resp., B).

The Hamiltonian H : [t0, T ]× Rn × Rn × Rm → R of (3.2) is defined by

(3.3) H(t, x, p, u) := p · f(t, x, u) =
n∑
i=1

pifi(t, x, u).

Definition 3.1. A feasible process (x, u) is called a W 1,1 local minimizer for M if there

exists δ > 0 such that g(x(t0), x(T )) ≤ g(x(t0), x(T )) for any feasible processes (x, u)

satisfying ‖x− x‖W 1,1 ≤ δ.

Definition 3.2. A feasible process (x, u) is called a W 1,1 global minimizer for M if, for

any feasible processes (x, u), one has g(x(t0), x(T )) ≤ g(x(t0), x(T )).

Definition 3.3. [30, p. 329] The partial hybrid subdifferential ∂>x h(t, x) of h(t, x) w.r.t. x
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is given by

∂>x h(t, x) := co
{
ξ | there exists (ti, xi)

h→ (t, x) such that

h(tk, xk) > 0 for all k and ∇xh(tk, xk)→ ξ
}
,

(3.4)

where the symbol (tk, xk)
h→ (t, x) means that (tk, xk) → (t, x) and h(tk, xk) → h(t, x) as

k →∞.

To deal with the state constraint h(t, x(t)) ≤ 0 inM, one introduces a multiplier that

is an element in the topological dual C∗([t0, T ];R) of the space of continuous functions

C([t0, T ];R) with the supremum norm. By the Riesz Representation Theorem (see, e.g.,

[17, Theorem 6, p. 374] and [20, Theorem 1, pp. 113–115]), any bounded linear functional

f on C([t0, T ];R) can be uniquely represented in the form

f(x) =

∫
[t0,T ]

x(t) dv(t),

where v is a function of bounded variation on [t0, T ] which vanishes at t0 and which are

continuous from the right at every point τ ∈ (t0, T ), and
∫

[t0,T ] x(t) dv(t) is the Riemann-

Stieltjes integral of x with respect to v (see, e.g., [17, p. 364]). The set of the elements of

C∗([t0, T ];R) which are given by nondecreasing functions v is denoted by C⊕(t0, T ).

Every v ∈ C∗([t0, T ];R) corresponds to a finite regular measure, denoted by µv, on the

σ-algebra B of the Borel subsets of [t0, T ] by the formula

µv(A) :=

∫
[t0,T ]

χA(t) dv(t),

where χA(t) = 1 for t ∈ A and χA(t) = 0 if t /∈ A. Due to the correspondence v 7→ µv,

we call every element v ∈ C∗([t0, T ];R) a “measure” and identify v with µv. Clearly, the

measure corresponding to each v ∈ C⊕(t0, T ) is nonnegative.

The integrals
∫

[t0,t)
ν(s) dµ(s) and

∫
[t0,T ] ν(s) dµ(s) of a Borel measurable function ν in

next theorem are understood in the sense of the Lebesgue-Stieltjes integration [17, p. 364].

Theorem 3.4. [30, Theorem 9.3.1] Let (x, u) be a W 1,1 local minimizer for M. Assume

that for some δ > 0, the following hypotheses are satisfied:

(H1) f( · , x, · ) is L×Bm measurable, for fixed x. There exists a Borel measurable function

k( · , · ) : [t0, T ]× Rm → R such that t 7→ k(t, u(t)) is integrable and

‖f(t, x, u)− f(t, x′, u)‖ ≤ k(t, u)‖x− x′‖, ∀x, x′ ∈ x(t) + δB, ∀u ∈ U(t)

for almost every t ∈ [t0, T ];

(H2) gphU is a Borel set in [t0, T ]× Rm;
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(H3) g is Lipschitz continuous on the ball (x(t0), x(T )) + δB;

(H4) h is upper semicontinuous and there exists K > 0 such that

‖h(t, x)− h(t, x′)‖ ≤ K‖x− x′‖, ∀x, x′ ∈ x(t) + δB, ∀ t ∈ [t0, T ].

Then there exist p ∈ W 1,1([t0, T ];Rn), γ ≥ 0, µ ∈ C⊕(t0, T ), and a Borel measurable

function ν : [t0, T ] → Rn such that (p, µ, γ) 6= (0, 0, 0), and for q(t) := p(t) + η(t) with

η(t) :=
∫

[t0,t)
ν(s) dµ(s) if t ∈ [t0, T ) and η(T ) :=

∫
[t0,T ] ν(s) dµ(s), the following holds

true:

(i) ν(t) ∈ ∂>x h(t, x(t))µ-a.e.;

(ii) −ṗ(t) ∈ co ∂xH(t, x(t), q(t), u(t)) a.e.;

(iii) (p(t0),−q(T )) ∈ γ∂g(x(t0), x(T )) +NC(x(t0), x(T ));

(iv) H(t, x(t), q(t), u(t)) = maxu∈U(t)H(t, x(t), q(t), u) a.e.

4. Finding the optimal processes

To apply Theorem 3.4 for finding optimal processes for (GP1), we have to interpret (GP1)

in the form of M. For doing so, we set x(t) = (x1(t), x2(t)), where x1(t) plays the role of

k(t) in (2.14), (2.15) and

(4.1) x2(t) := −
∫ t

t0

[1− s(τ)]βxαβ1 (τ)e−λτ dτ

for all t ∈ [0, T ]. Thus, (GP1) is equivalent to the following problem:

(4.2) Minimize x2(T )

over x = (x1, x2) ∈W 1,1([t0, T ];R2) and measurable functions s : [t0, T ]→ R satisfying

(4.3)



ẋ1(t) = Axα1 (t)s(t)− σx1(t) a.e. t ∈ [t0, T ],

ẋ2(t) = −[1− s(t)]βxαβ1 (t)e−λt a.e. t ∈ [t0, T ],

(x(t0), x(T )) ∈ {(k0, 0)} × R2,

s(t) ∈ [0, 1] a.e. t ∈ [t0, T ],

x1(t) ≥ 0 ∀ t ∈ [t0, T ].

The optimal control problem with state constraints in (4.2) and (4.3) is denoted by (GP1a).

To see (GP1a) in the form of M, one chooses n = m = 1, C = {(k0, 0)} × R2, U(t) =

[0, 1] for t ∈ [t0, T ], g(x, y) = y2 for x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2, h(t, x) = −x1
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for (t, x) ∈ [t0, T ]× R2. As concerning the function f , for any (t, x, s) ∈ [t0, T ]× R2 × R,

one lets f(t, x, s) = (Axα1 s− σx1,−(1− s)βxαβ1 e−λt) if x1 ∈ R+ and s ∈ [0, 1], and defines

f(t, x, s) in a suitable way if x1 /∈ R+, or s /∈ [0, 1].

Let (x, s) be a W 1,1 local minimizer for (GP1a). To satisfy the assumption (H1) in

Theorem 3.4, for any s ∈ [0, 1], the function f(t, · , s) must be locally Lipschitz around

x(t) for almost every t ∈ [t0, T ]. This requirement cannot be satisfied if α ∈ (0, 1) and the

set of t ∈ [t0, T ] when the curve x1(t) hits the lower bound x1 = 0 of the state constraint

x1(t) ≥ 0 has a positive measure. To overcome this situation, we may use one of the

following two additional assumptions:

(A1) α = 1;

(A2) α ∈ (0, 1) and the set {t ∈ [t0, T ] | x1(t) = 0} has the Lebesgue measure 0, i.e.,

x1(t) > 0 for almost every t ∈ [t0, T ].

Regarding the exponent β ∈ (0, 1], we distinguish two cases: (B1) β = 1; (B2) β ∈ (0, 1).

From now on, we will consider problem (GP1a) under the conditions (A1)

and (B1). Thanks to these assumptions, we have

f(t, x, s) = (Axα1 s− σx1,−(1− s)βxαβ1 e−λt) = ((As− σ)x1, (s− 1)x1e
−λt)

if x1 ∈ R+ and s ∈ [0, 1]. Clearly, the most natural extension of the function f from the

domain [t0, T ]×R+×R× [0, 1] to [t0, T ]×R2×R, which is the domain of variables required

by Theorem 3.4, is as follows:

(4.4) f(t, x, s) = ((As− σ)x1, (s− 1)x1e
−λt), ∀ (t, x, s) ∈ [t0, T ]× R2 × R.

In accordance with (3.3) and (4.4), the Hamiltonian of (GP1a) is given by

(4.5) H(t, x, p, s) = (As− σ)x1p1 + (s− 1)x1e
−λtp2

for every (t, x, p, s) ∈ [t0, T ] × R2 × R2 × R. Since the function in (4.5) is continuously

differentiable in x, we have

(4.6) ∂xH(t, x, p, u) =
{

((As− σ)p1 + (s− 1)e−λtp2, 0)
}

for all (t, x, p, s) ∈ [t0, T ]× R2 × R2 × R. By (3.4), the partial hybrid subdifferential of h

at (t, x) ∈ [t0, T ]× R2 is given by

(4.7) ∂>x h(t, x) =

∅ if x1 > 0,

{(−1, 0)} if x1 ≤ 0.

The relationships between a control function s(·) and the corresponding trajectory x(·)
of (4.3) can be described as follows.
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Lemma 4.1. For each measurable function s : [t0, T ] → R with s(t) ∈ [0, 1], there exists

a unique trajectory x = (x1, x2) ∈ W 1,1([t0, T ];R2) such that (x, s) is a feasible process of

(4.3). Moreover, for every τ ∈ [t0, T ], one has

(4.8) x1(t) = x1(τ)e
∫ t
τ (As(z)−σ) dz, ∀ t ∈ [t0, T ].

In particular, x1(t) > 0 for all t ∈ [t0, T ].

Proof. Given a function s satisfying the assumptions of the lemma, we suppose that

x = (x1, x2) ∈ W 1,1([t0, T ];R2) such that (x, s) is a feasible process of (4.3). Then,

the condition α = 1 implies that

(4.9)

ẋ1(t) = [As(t)− σ]x1(t) a.e. t ∈ [t0, T ],

x1(t0) = k0.

Since s(·) is measurable and bounded on [t0, T ], so is the function t 7→ As(t) − σ. In

particular, the latter is Lebesgue integrable on [t0, T ]. Hence, by the lemma in [2, pp. 121–

122] on the solution existence and uniqueness of the Cauchy problem for linear differential

equations, one knows that (4.9) has a unique solution. Thus, x1(·) is defined uniquely via

s(·). This and the equality x2(t) = −
∫ t
t0

[1 − s(τ)]x1(τ)e−λτ dτ , which follows from (4.1)

together with the conditions α = 1 and β = 1, imply the uniqueness of x2(·). To prove

the second assertion, put

(4.10) Ω(t, τ) = e
∫ t
τ (As(z)−σ) dz, ∀ t, τ ∈ [t0, T ].

By the Lebesgue integrability of the function t 7→ As(t) − σ on [t0, T ], Ω(t, τ) is well

defined on [t0, T ]× [t0, T ], and by [17, Theorem 8, p. 324] one has

(4.11)
d

dt

(∫ t

τ
(As(z)− σ) dz

)
= As(t)− σ a.e. t ∈ [t0, T ].

Therefore, from (4.10) and (4.11) it follows that Ω( · , τ) is the solution of the Cauchy

problem

d

dt
Ω(t, τ) = (As(t)− σ)Ω(t, τ) a.e. t ∈ [t0, T ] and Ω(τ, τ) = 1.

In other words, the real-valued function Ω(t, τ) of the variables t and τ is the principal

matrix solution (see [2, p. 123]) specialized to the homogeneous differential equation in

(4.9). Hence, by the theorem in [2, p. 123] on the solution of linear differential equations,

we obtain (4.8). Since x1(t0) = k0 > 0, applying (4.8) for τ = t0 implies that x1(t) > 0

for all t ∈ [t0, T ].
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Remark 4.2. By Lemma 4.1, any process satisfying the first four conditions in (4.3) au-

tomatically satisfies the state constraint x1(t) ≥ 0 for all t ∈ [t0, T ]. Thus, the latter can

be omitted in the problem formulation. This means that, for the case α = 1, instead of

the maximum principle in Theorem 3.4 one can apply the maximum principle for optimal

control problems without state constraints in [30, Theorem 6.2.1] (see also [14, Proposi-

tion 2.5]). Note that both theorems yield the same necessary optimality conditions (see,

e.g., [14, Subsection 3.2]).

Remark 4.3. For the case α ∈ (0, 1), one cannot claim that any process satisfying the

first four conditions in (4.3) automatically satisfies the state constraint x1(t) ≥ 0 for all

t ∈ [t0, T ]. Thus, if we consider problem (GP1a) under the conditions (A2) and (B1), or

(A2) and (B2), then we have to rely on Theorem 3.4. Referring to the classification of

optimal economic growth models given in [13, Section 4], we can say that models of the

types “Nonlinear-linear” and “Nonlinear-nonlinear” may require the use of Theorem 3.4.

For this reason, we prefer to present the latter in this paper to prepare a suitable framework

for dealing with (GP1a) under different sets of assumptions.

Recall that (x, s) is a W 1,1 local minimizer for (GP1a). It is easy to show that, for any

δ > 0, there are constants M1 > 0 and M2 > 0 such that k(t, x) := M1 +M2e
−λt satisfies

the conditions described in the hypothesis (H1) of Theorem 3.4. The fulfillment of the

hypotheses (H2)–(H4) is obvious. Applying Theorem 3.4, we can find p ∈W 1,1([t0, T ];R2),

γ ≥ 0, µ ∈ C⊕(t0, T ), and a Borel measurable function ν : [t0, T ]→ R2 such that (p, µ, γ) 6=
(0, 0, 0), and for q(t) := p(t) + η(t) with

(4.12) η(t) :=

∫
[t0,t)

ν(τ) dµ(τ), ∀ t ∈ [t0, T )

and

(4.13) η(T ) :=

∫
[t0,T ]

ν(τ) dµ(τ),

conditions (i)–(iv) in Theorem 3.4 hold true.

Let us expose the meanings of the conditions (i)–(iv) in Theorem 3.4.

Condition (i). Note that

µ{t ∈ [t0, T ] | ν(t) /∈ ∂>x h(t, x(t))}

= µ{t ∈ [t0, T ] | ∂>x h(t, x(t)) = ∅}+ µ{t ∈ [t0, T ] | ∂>x h(t, x(t)) 6= ∅, ν(t) /∈ ∂>x h(t, x(t))}.

Since x1(t) ≥ 0 for every t, combining this with (4.7) gives

µ{t ∈ [t0, T ] | ν(t) /∈ ∂>x h(t, x(t))}

= µ{t ∈ [t0, T ] | x1(t) > 0}+ µ{t ∈ [t0, T ] | x1(t) = 0, ν(t) 6= (−1, 0)}.
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So, from (i) it follows that

(4.14) µ{t ∈ [t0, T ] | x1(t) > 0} = 0

and µ{t ∈ [t0, T ] | x1(t) = 0, ν(t) 6= (−1, 0)} = 0.

Condition (ii). By (4.6), (ii) implies that

−ṗ(t) = ((As(t)− σ)q1(t) + (s(t)− 1)e−λtq2(t), 0) a.e. t ∈ [t0, T ].

Hence, p2(t) is a constant for all t ∈ [t0, T ] and

ṗ1(t) = −(As(t)− σ)q1(t) + (1− s(t))e−λtq2(t) a.e. t ∈ [t0, T ].

Condition (iii). By the formulas for g and C, ∂g(x(t0), x(T )) = {(0, 0, 0, 1)} and

NC(x(t0), x(T )) = R2 × {(0, 0)}. Thus, (iii) yields

(p(t0),−q(T )) ∈ {(0, 0, 0, γ)}+ R2 × {(0, 0)},

which means that q1(T ) = 0 and q2(T ) = −γ.

Condition (iv). By (4.5), from (iv) one gets

(As(t)− σ)x1(t)q1(t) + (s(t)− 1)x1(t)e−λtq2(t)

= max
s∈[0,1]

{
(As− σ)x1(t)q1(t) + (s− 1)x1(t)e−λtq2(t)

}
for almost every t ∈ [t0, T ]. Equivalently, we have

(Aq1(t) + e−λtq2(t))x1(t)s(t) = max
s∈[0,1]

{
(Aq1(t) + e−λtq2(t))x1(t)s

}
a.e. t ∈ [t0, T ].

Since x1(t) > 0 for all t ∈ [t0, T ], it follows that

(4.15) (Aq1(t) + e−λtq2(t))s(t) = max
s∈[0,1]

{
(Aq1(t) + e−λtq2(t))s

}
a.e. t ∈ [t0, T ].

To prove that the optimal control problem in question has a unique optimal solution

under a mild condition imposed on the data tube (A, σ, λ), we have to deepen the above

analysis of the conditions (i)–(iv). As x1(t) > 0 for all t ∈ [t0, T ] by Lemma 4.1, the

equality (4.14) implies that µ([t0, T ]) = 0, i.e., µ = 0. Combining this with (4.12) and

(4.13), one gets η(t) = 0 for all t ∈ [t0, T ]. Thus, the relation q(t) = p(t) + η(t) allows

us to have q(t) = p(t) for every t ∈ [t0, T ]. Therefore, the properties of p(t) and q(t)

established in the above analysis of the conditions (ii) and (iii) imply that p2(t) = −γ for

every t ∈ [t0, T ], p1(T ) = 0, and

(4.16) ṗ1(t) = −(As(t)− σ)p1(t) + γ(s(t)− 1)e−λt a.e. t ∈ [t0, T ].
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Now, by substituting q1(t) = p1(t) and q2(t) = −γ into (4.15), we have

(4.17) (Ap1(t)− γe−λt)s(t) = max
s∈[0,1]

{
(Ap1(t)− γe−λt)s

}
a.e. t ∈ [t0, T ].

Describing the adjoint trajectory corresponding to the control function s(·), next

lemma is an analogue of Lemma 4.1.

Lemma 4.4. The Cauchy problem defined by the differential equation (4.16) and the

condition p1(T ) = 0 possesses a unique solution p1(·) : [t0, T ]→ R,

(4.18) p1(t) = −
∫ T

t
c(z)Ω(z, t) dz, ∀ t ∈ [t0, T ],

where Ω(t, τ) is defined by (4.10) for s(t) = s(t), i.e.,

(4.19) Ω(t, τ) := e
∫ t
τ (As(z)−σ) dz, ∀ t, τ ∈ [t0, T ]

and

(4.20) c(t) := γ(s(t)− 1)e−λt, ∀ t ∈ [t0, T ].

In addition, for any fixed value τ ∈ [t0, T ], one has

(4.21) p1(t) = p1(τ)Ω(τ, t)−
∫ τ

t
c(z)Ω(z, t) dz, ∀ t ∈ [t0, T ].

Proof. Since s(·) is measurable and bounded, the function t 7→ c(t) defined by (4.20) is

also measurable and bounded on [t0, T ]. Moreover, the function t 7→ As(t) − σ is also

measurable and bounded on [t0, T ]. In particular, both functions c(·) and As(·) − σ are

Lebesgue integrable on [t0, T ]. Hence, by the lemma in [2, pp. 121–122] we can assert

that, for any τ ∈ [t0, T ] and η ∈ R, the Cauchy problem defined by the linear differential

equation (4.16) and the initial condition p1(τ) = η has a unique solution p1(·) : [t0, T ]→ R.

As shown in the proof of Lemma 4.1, Ω(t, τ) given in (4.19) is the principal solution of

the homogeneous equation

ẋ1(t) = (As(t)− σ)x1(t) a.e. t ∈ [t0, T ].

Besides, by the form of (4.16) and by the theorem in [2, p. 123], the solution of (4.16)

is given by (4.21). Especially, applying this formula for the case τ = T and note that

p1(T ) = 0, we obtain (4.18).

In Theorem 3.4, the objective function g plays a role in condition (iii) only if γ > 0.

In such a situation, the maximum principle is said to be normal. Investigations on the

normality of maximum principles for optimal control problems are available in [9–11]. For

the problem (GP1a), by using (4.18)–(4.20) and the property (p, µ, γ) 6= (0, 0, 0), we now

show that the situation γ = 0 cannot happen.
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Lemma 4.5. One must have γ > 0.

Proof. Suppose on the contrary that γ = 0. Then, c(t) ≡ 0 by (4.20). Hence, from (4.18)

it follows that p1(t) ≡ 0. Combining this with the facts that p2(t) = −γ = 0 for all

t ∈ [t0, T ] and µ = 0, we get a contradiction to the requirement (p, µ, γ) 6= (0, 0, 0) in

Theorem 3.4.

To define the control value s(t) by (4.17), it is important to know the sign of the

real-valued function

(4.22) ψ(t) := Ap1(t)− γe−λt

for each t ∈ [t0, T ]. Namely, one has s(t) = 1 whenever ψ(t) > 0 and s(t) = 0 whenever

ψ(t) < 0. Hence s(·) is a constant function on each segment where ψ(·) has a fixed sign.

The forthcoming lemma gives formulas for x1(·) and p1(·) on such a segment.

Lemma 4.6. Let [t1, t2] ⊂ [t0, T ] and τ ∈ [t1, t2] be given arbitrarily.

(a) If s(t) = 1 for a.e. t ∈ [t1, t2], then

(4.23) x1(t) = x1(τ)e(A−σ)(t−τ), ∀ t ∈ [t1, t2]

and

(4.24) p1(t) = p1(τ)e−(A−σ)(t−τ), ∀ t ∈ [t1, t2].

(b) If s(t) = 0 for a.e. t ∈ [t1, t2], then

(4.25) x1(t) = x1(τ)e−σ(t−τ), ∀ t ∈ [t1, t2]

and

(4.26) p1(t) = p1(τ)eσ(t−τ) +
γ

σ + λ
eσt
[
e−(σ+λ)t − e−(σ+λ)τ

]
, ∀ t ∈ [t1, t2].

Proof. If s(t) = 1 for a.e. t ∈ [t1, t2], then (4.23) is obtained from (4.8) with x1(·) = x1(·)
and s(·) = s(·). Besides, as s(·) ≡ 1 a.e. on [t1, t2], the function c(t) defined in (4.20) equals

0 a.e. on [t1, t2], which implies that the integral in (4.21) vanishes. In addition, substituting

the formulas for s(·) and x1(·) on [t1, t2] to (4.19), we get Ω(τ, t) = e−(A−σ)(t−τ) for all

t ∈ [t1, t2]. Thus, (4.24) follows from (4.21).

If s(t) = 0 for a.e. t ∈ [t1, t2], then we get (4.25) by applying (4.8) with x1(·) = x1(·)
and s(·) = s(·). To prove (4.26), we use (4.21) and the formulas for s(·) and x1(·) on
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[t1, t2]. Namely, we have Ω(τ, t) = eσ(t−τ), Ω(z, t) = eσ(t−z), and c(z) = −γe−λz for all

t, z ∈ [t1, t2]. Substituting these formulas to (4.21) yields

p1(t) = p1(τ)eσ(t−τ) −
∫ τ

t
(−γe−λz)(eσ(t−z)) dz

= p1(τ)eσ(t−τ) + γeσt
∫ τ

t
e−(σ+λ)z dz

= p1(τ)eσ(t−τ) +
γ

σ + λ
eσt
[
e−(σ+λ)t − e−(σ+λ)τ

]
for all t ∈ [t1, t2]. This shows that (4.26) is valid.

To proceed furthermore, put Γ = {t ∈ [t0, T ] | ψ(t) = 0}. Since the functions p1(·)
is absolutely continuous on [t0, T ], so is ψ(·). Thus, the set Γ is compact. Besides, as

p1(T ) = 0 and γ > 0, the equality ψ(T ) = Ap1(T )− γe−λT implies that ψ(T ) < 0. Thus,

T /∈ Γ.

First, consider the situation where Γ = ∅. Then we have ψ(t) < 0 on the whole segment

[t0, T ]. Indeed, otherwise we would find a point τ ∈ [t0, T ) such that ψ(τ) > 0. Since

ψ(τ)ψ(T ) < 0, by the continuity of ψ(·) on [t0, T ] we can assert that Γ ∩ (τ, T ) 6= ∅. This

contradicts our assumption that Γ = ∅. Now, as ψ(t) < 0 for all t ∈ [t0, T ], from (4.17)

we have s(t) = 0 for a.e. t ∈ [t0, T ]. Applying Lemma 4.6 for t1 = t0, t2 = T , and τ = t0,

we get x1(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ].

Now, consider the situation where Γ 6= ∅. Let

(4.27) α1 := min{t | t ∈ Γ} and α2 := max{t | t ∈ Γ}.

Since ψ(T ) < 0, we see that t0 ≤ α1 ≤ α2 < T . Moreover, by the continuity of ψ(·), and

the fact that ψ(T ) < 0, we have ψ(t) < 0 for every t ∈ (α2, T ]. This and (4.17) imply

that s(t) = 0 for almost every t ∈ [α2, T ]. Invoking Lemma 4.6 for t1 = α2, t2 = T , and

τ = α2, we obtain x1(t) = x1(α2)e−σ(t−α2) for all t ∈ [α2, T ]. If t0 < α1, then to find s(·)
and x1(·) on [t0, α1], we will use the following observation.

Lemma 4.7. Suppose that t0 < α1. If ψ(t0) < 0, then s(t) = 0 for a.e. t ∈ [t0, α1] and

x1(t) = k0e
−σ(t−t0) for all t ∈ [t0, α1]. If ψ(t0) > 0, then s(t) = 1 for a.e. t ∈ [t0, α1] and

x1(t) = k0e
(A−σ)(t−t0) for all t ∈ [t0, α1].

Proof. From the condition t0 < α1 it follows that ψ(t0)ψ(t) > 0 for all t ∈ [t0, α1). Indeed,

otherwise there exists τ ∈ (t0, α1) satisfying ψ(t0)ψ(τ) < 0, which together with the

continuity of ψ(·) implies that there is some t ∈ Γ with t < α1. This contradicts the

definition of α1. If ψ(t0) < 0, then ψ(t) < 0 for all t ∈ [t0, α1). Hence, by (4.17), s(t) = 0

for a.e. t ∈ [t0, α1]. If ψ(t0) > 0, then ψ(t) > 0 for all t ∈ [t0, α1). In this situation, by

(4.17) we have s(t) = 1 for a.e. t ∈ [t0, α1]. Thus, in both situations, applying Lemma 4.6

for t1 = t0, t2 = α1, and τ = t0, we obtain the desired formulas for x1(·) on [t0, α1].
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If α1 6= α2, then we must have a complete understanding of the behavior of the

function ψ(t) on the whole interval [α1, α2]. Towards that aim, we are going to establish

three lemmas.

Lemma 4.8. There does not exist any subinterval [t1, t2] of [t0, T ] with t1 < t2 such that

ψ(t1) = ψ(t2) = 0, and ψ(t) > 0 for every t ∈ (t1, t2).

Proof. On the contrary, suppose that there is a subinterval [t1, t2] of [t0, T ] with t1 < t2

such that ψ(t) > 0 for all t ∈ (t1, t2) and ψ(t1) = ψ(t2) = 0. Then, by (4.17) we

have s(t) = 1 almost everywhere on [t1, t2]. So, using Lemma 4.6(a) with τ = t1, we

have p1(t) = p1(t1)e−(A−σ)(t−t1) for all t ∈ [t1, t2]. The condition ψ(t1) = 0 implies that

p1(t1) = γ
Ae
−λt1 . Thus, p1(t) = γ

Ae
−λt1e−(A−σ)(t−t1) for all t ∈ [t1, t2]. As γe−λt > 0 for all

t ∈ [t0, T ], the function ψ1(t) := ψ(t)
γe−λt

is well defined on [t1, t2]. By the definition of ψ(·),
the above formulas for x1(·) and p1(·) on [t1, t2], we have

ψ1(t) =
Ap1(t)

γe−λt
− 1 =

γe−λt1e−(A−σ)(t−t1)

γe−λt
− 1 = e(σ+λ−A)(t−t1) − 1

for all t ∈ [t1, t2]. If σ + λ− A 6= 0, then it is easy to see that the equation ψ1(t) = 0 has

a unique solution t1 on [t1, t2]. Hence ψ(t2) 6= 0, and we have arrived at a contradiction.

If σ+λ−A = 0, then ψ1(t) = 0 for every t ∈ (t1, t2). This implies that ψ(t) = 0 for every

t ∈ (t1, t2). The latter contradicts our assumption on ψ(t).

The proof is complete.

Lemma 4.9. There does not exist a subinterval [t1, t2] of [t0, T ] with t1 < t2 such that

ψ(t1) = ψ(t2) = 0 and ψ(t) < 0 for all t ∈ (t1, t2).

Proof. To argue by contradiction, suppose that there is a subinterval [t1, t2] of [t0, T ] with

t1 < t2, ψ(t) < 0 for all t ∈ (t1, t2), and ψ(t1) = ψ(t2) = 0. Then, by (4.17) we have

s(t) = 0 almost everywhere on [t1, t2]. Therefore, using Lemma 4.6(b) with τ = t1, we

obtain

p1(t) = p1(t1)eσ(t−t1) +
γ

σ + λ
eσt
[
e−(σ+λ)t − e−(σ+λ)t1

]
, ∀ t ∈ [t1, t2].

The assumption ψ(t1) = 0 yields p1(t1) = γ
Ae
−λt1 . Thus,

p1(t) =
γ

A
e−λt1eσ(t−t1) +

γ

σ + λ
eσt
[
e−(σ+λ)t − e−(σ+λ)t1

]
, ∀ t ∈ [t1, t2].

By the definition of ψ(·) and the formulas for x1(·) and p1(·) on [t1, t2], we have

ψ(t) = γe−λt1eσ(t−t1) +
Aγ

σ + λ
eσt
[
e−(σ+λ)t − e−(σ+λ)t1

]
− γe−λt, ∀ t ∈ [t1, t2].
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Consider the function ψ2(t) := ψ(t)
γeσt , which is well defined for every t ∈ [t1, t2]. Then, by

an elementary calculation one has

(4.28) ψ2(t) =

(
A

σ + λ
− 1

)[
e−(σ+λ)t − e−(σ+λ)t1

]
, ∀ t ∈ [t1, t2].

If A
σ+λ − 1 = 0, then ψ2(t) = 0 for all t ∈ [t1, t2]. This yields ψ(t) = 0 for all t ∈ [t1, t2],

a contradiction to our assumption that ψ(t) < 0 for all t ∈ (t1, t2). If A
σ+λ − 1 6= 0, then

by (4.28) one can assert that ψ2(t) = 0 if and only if t = t1. Equivalently, ψ(t) = 0 if and

only if t = t1. The latter contradicts the conditions ψ(t2) = 0 and t2 6= t1.

Lemma 4.10. If the condition

(4.29) A 6= σ + λ

is fulfilled, then we cannot have ψ(t) = 0 for all t from an open subinterval (t1, t2) of

[t0, T ] with t1 < t2.

Proof. Suppose that (4.29) is valid. If the claim is false, then we would find t1, t2 ∈ [t0, T ]

with t1 < t2 such that ψ(t) = 0 for t ∈ (t1, t2). So, from (4.22) it follows that

(4.30) p1(t) =
γ

A
e−λt, ∀ t ∈ (t1, t2).

Therefore, one has ṗ1(t) = −λγ
A e
−λt for almost every t ∈ (t1, t2). This and (4.16) imply

that

−(As(t)− σ)p1(t) + γ(s(t)− 1)e−λt = −λγ
A
e−λt a.e. t ∈ (t1, t2).

Combining this with (4.30) yields

−(As(t)− σ)
γ

A
e−λt + γ(s(t)− 1)e−λt = −λγ

A
e−λt a.e. t ∈ (t1, t2).

Since γ > 0, simplifying the last equality yields A = σ+λ. This contradicts to (4.29).

Under a mild condition, the constants α1 and α2 defined by (4.27) coincide. Namely,

the following statement holds true.

Lemma 4.11. If (4.29) is fulfilled, then the situation α1 6= α2 cannot occur.

Proof. Suppose on the contrary that (4.29) is satisfied, but α1 6= α2. Then, we cannot have

ψ(t) = 0 for all t ∈ (α1, α2) by Lemma 4.10. This means that there exists t ∈ (α1, α2) such

that ψ(t) 6= 0. Put α1 = max{t ∈ [α1, t] | ψ(t) = 0} and α2 = min{t ∈ [t, α2] | ψ(t) = 0}.
It is not hard to see that ψ(α1) = ψ(α2) = 0 and ψ(t)ψ(t) > 0 for all t ∈ (α1, α2). This is

impossible by either Lemma 4.8 when ψ(t) > 0 or Lemma 4.9 when ψ(t) < 0.

We are now in a position to formulate and prove the main result of this paper.
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Theorem 4.12. Suppose that the assumptions (A1) and (B1) are satisfied. If

(4.31) A < σ + λ,

then (GP1a) has a unique W 1,1 local minimizer (x, s), which is a global minimizer, where

s(t) = 0 for a.e. t ∈ [t0, T ] and x1(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ]. This means that

the problem (GP1) has a unique solution (k, s), where s(t) = 0 for a.e. t ∈ [t0, T ] and

k(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ].

Proof. Suppose that (A1), (B1), and the condition (4.31) are satisfied. According to

Theorem 2.1, (GP1) has a global solution. Hence (GP1a) also has a global solution.

Let (x, s) be a W 1,1 local minimizer of (GP1a). As it has already been explained

in this section, applying Theorem 3.4, we can find p ∈ W 1,1([t0, T ];R2), γ ≥ 0, µ ∈
C⊕(t0, T ), and a Borel measurable function ν : [t0, T ] → R2 such that (p, µ, γ) 6= (0, 0, 0)

and conditions (i)–(iv) in Theorem 3.4 hold true for q(t) := p(t) + η(t) with η(t) (resp.,

η(T )) being given by (4.12) for t ∈ [t0, T ) (resp., by (4.13)). In the above notations, we

consider the set Γ = {t ∈ [t0, T ] | ψ(t) = 0}.
In the case Γ = ∅, we have shown that s(t) = 0 for a.e. t ∈ [t0, T ] and x1(t) =

k0e
−σ(t−t0) for all t ∈ [t0, T ] (see the arguments given after Lemma 4.6).

In the case Γ 6= ∅, we define the numbers α1 and α2 by (4.27). Thanks to the condi-

tion (4.31), which implies (4.29), by Lemma 4.11 we have α2 = α1. Then, as it was shown

before Lemma 4.7, we must have s(t) = 0 for a.e. t ∈ [α1, T ] and x1(t) = x1(α1)e−σ(t−α1)

for all t ∈ [α1, T ]. If t0 = α1, then we obtain the desired formulas for s(·) and x1(·).

Figure 4.1: The optimal process (k, s) of (GP1) corresponding to parameters α = 1, β = 1,

A = 0.045, σ = 0.015, λ = 0.034, k0 = 1, t0 = 0, and T = 6.

Suppose that t0 < α1. If ψ(t0) < 0, then we can get the desired formulas for s(·) and

x1(·) on [t0, T ] from the formulas for s(·) and x1(·) on [t0, α1] in Lemma 4.7 and the just
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mentioned formulas for s(·) and x1(·) on [α1, T ]. If ψ(t0) > 0, by Lemma 4.7 one has

s(t) = 1 for a.e. t ∈ [t0, α1]. Then we have

s(t) =

1 a.e. t ∈ [t0, α1],

0 a.e. t ∈ (α1, T ]
and x1(t) =

k0e
(A−σ)(t−t0) if t ∈ [t0, α1],

x1(α1)e−σ(t−α1) if t ∈ (α1, T ].

To proceed furthermore, fix an arbitrary number ε ∈ (0, α1 − t0] and put tε = α1 − ε.
Consider the control function sε(t) defined by setting sε(t) = 1 for all t ∈ [t0, tε] and

sε(t) = 0 for all t ∈ (tε, T ]. Denote the trajectory corresponding to sε(·) by xε(·). Then

one has

xε1(t) =

k0e
(A−σ)(t−t0) if t ∈ [t0, tε],

xε1(tε)e
−σ(t−tε) if t ∈ (tε, T ].

Note that

x2(T ) = −
∫ T

t0

[1− s(τ)]x1(τ)e−λτ dτ = −
∫ T

α1

x1(τ)e−λτ dτ

= −
∫ T

α1

x1(α1)e−σ(τ−α1)e−λτ dτ =
x1(α1)eσα1

σ + λ

[
e−(σ+λ)T − e−(σ+λ)α1

]
.

Since x1(α1) = k0e
(A−σ)(α1−t0), it follows that

x2(T ) =
k0

σ + λ
e(σ−A)t0eAα1

[
e−(σ+λ)T − e−(σ+λ)α1

]
.

Similarly, one gets

xε2(T ) =
k0

σ + λ
e(σ−A)t0eAtε

[
e−(σ+λ)T − e−(σ+λ)tε

]
.

Therefore, one gets

x2(T )− xε2(T )

=
k0e

(σ−A)t0

σ + λ
×
{
eAα1

[
e−(σ+λ)T − e−(σ+λ)α1

]
− eAtε

[
e−(σ+λ)T − e−(σ+λ)tε

]}
=
k0e

(σ−A)t0

σ + λ
×
{
e−(σ+λ)T

[
eAα1 − eAtε

]
+
[
e(A−σ−λ)tε − e(A−σ−λ)α1

]}
.

Since tε ∈ [t0, α1), we have eAα1−eAtε > 0. In addition, as A−σ−λ < 0 by (4.31), we get

e(A−σ−λ)tε − e(A−σ−λ)α1 > 0. Combining these inequalities with the above expression for

x2(T )−xε2(T ), we conclude that xε2(T ) < x2(T ). By using (2.1), it is not difficult to show

that the norm ‖x − xε‖W 1,1 tends to 0 as ε goes to 0. So, the inequality xε2(T ) < x2(T ),

which holds for every ε ∈ (0, α1−t0], implies that the process (x, s) under our consideration

cannot be a W 1,1 local minimizer of (GP1a) (see Definition 3.1).
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Summing up the above analysis and taking into account the fact that (GP1a) has a

global minimizer, we can conclude that (GP1a) has a unique W 1,1 local minimizer (x, s),

which is a global minimizer, where s(t) = 0 for a.e. t ∈ [t0, T ] and x1(t) = k0e
−σ(t−t0) for

all t ∈ [t0, T ].

It is worthy to state clearly some economic interpretation of Theorem 4.12.

Remark 4.13. Recall that σ is the rate of labor force (closely related to the population

growth rate) and λ is the real interest rate (which indicates the rate of the decrease along

time of the satisfaction level of the society w.r.t. the same amount of consumption). Note

that, in the problem (GP1), the original production function of the per capita produc-

tion function φ(k) = Akα, k ≥ 0, is given by F (K,L) = AKαL1−α, K ≥ 0, L ≥ 0

(see [13, Section 4]). In the last formula, the exponent α (resp., 1−α) refers to the output

elasticity of capital (resp., the output elasticity of labor), which represents the share of the

contribution of the capital (resp., of the labor) to the total product F (K,L). Meanwhile,

the coefficient A expresses the total factor productivity1 (TFP). This measure of economic

efficiency is calculated by dividing output by the weighted average of labour and capital

input. TFP represents the increase in total production which is in excess of the increase

that results from increase in inputs and depends on some intangible factors such as tech-

nological change, education, research and development, etc. Therefore, Theorem 4.12 says

that if the total factor productivity A is smaller than the sum of the rate of labor force

σ and the real interest rate λ, then optimal strategy is to keep the saving equal to 0. In

other words, if the total factor productivity A is relatively small, then an expansion of the

production facility does not lead to a higher total consumption satisfaction of the society.

Thanks to the valuable observations and comments from one referee of this paper, we

have the following remark.

Remark 4.14. The rate of labor force σ is around 1.5%. The real interest rate λ is in

general 3.4%. Hence σ + λ = 0.049. Thus, roughly speaking, the assumption A < σ + λ

in Theorem 4.12 means that A < 0.05. Since weak and very weak economies do exist, the

latter assumption is acceptable. Theorem 4.12 is meaningful as here the barrier A = σ+λ

for the TFP appears for the first time. Due to Theorem 4.12, the notions of weak economy

(with A < σ+λ) and strong economy (with A > σ+λ) can have exact meanings. Moreover,

the behaviors of a weak economy and of a strong economy might be very different.

By Theorem 4.12 we have solved the problem (GP1) in the situation where A < σ+λ.

A natural question arises: What happens if A > σ + λ? The latter condition means that

if the total factor productivity A is relatively large. In this situation, it is likely that the

optimal strategy requires to make the maximum saving until a special time t ∈ (t0, T ),

1See, e.g., https://en.wikipedia.org/wiki/Total factor productivity.



22 Vu Thi Huong, Jen-Chih Yao and Nguyen Dong Yen

which depends on the data tube (A, σ, λ), then switch the saving to minimum. Further

investigations in this direction are going on.
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