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Abstract: This study investigates the asymptotic properties of mixed-order fractional systems. By using the variation of constants
formula, properties of real Mittag-Leffler functions, and Banach fixed-point theorem, the authors first propose an explicit criterion
guaranteeing global attractivity for a class of mixed-order linear fractional systems. The criterion is easy to check requiring the
system’s matrix to be strictly diagonally dominant and elements on the main diagonal of this matrix to be negative (this is called
NSDD). The authors then show the asymptotic stability of the trivial solution to a nonlinear mixed-order fractional system linearized
along its equilibrium point such that its linear part is NSDD. Two numerical example is given to illustrate the effectiveness of the
results over existing ones in the literature.

1 Introduction

Fractional calculus, i.e. calculus of integrals and derivatives of arbi-
trary orders, is a fascinating field of mathematics borne out of the
traditional definitions of calculus integral and derivative operators.
There are sufficient studies to show that fractional-order differen-
tial equations are suitable for capturing many complex phenomena
in science and engineering, particularly when describing memory
and hereditary properties of dynamical processes (for examples, see
[1]-[5]). One of the most important topics in the qualitative theory
of fractional-order differential equations is the study of the asymp-
totic behaviors of their solutions. This topic has received significant
research attention in the literature (for examples, see [8]-[15] and the
references therein).

In this paper we discuss on mixed-order fractional systems. They
arise, for example, the Basset equation (it describes the forces that
occur when a spherical particle sinks in a incompressible viscous
fluid, see [16]), the Bagley–Torvik equation (this equation performs
the motion of a rigid plate immersed in a Newtonian fluid, see [17])
and a general FitzHugh-Nagumo neuronal model which expresses
a biological neuron’s spiking behavior, see [18]. Recently, linear
mixed-order fractional systems are used to formulate a model of
national economies in a study of commonwealth countries which
cannot be simply divided into clear groups of independent and
dependent variables, see [19].

In contrast to systems having a fractional derivative term, the
research on asymptotic behavior of solutions to mixed-order frac-
tional systems is still in its early phase. So far, only some results
on these systems are available. By using Laplace transform, in [20,
Theorem 1], the authors proposed a criterion based on a characteris-
tic equation to test global attractivity of mixed-order linear fractional
systems. However, the criterion is not suitable for dealing with
systems of high dimensions and irrational fractional orders. Mixed-
order linear fractional systems with rational fractional derivatives
were discussed in [21, Theorem 4]. By exploiting the monotonic and
the asymptotic properties of constant delay systems by virtue of the
positivity, and comparing trajectory of time-varying delay systems
with that of constant delay systems, [22, Theorem 2] proved that
asymptotic stability of mixed-order positive fractional systems is not
sensitive to the magnitude of delays. The existence and uniqueness
of solutions to general mixed-order fractional systems was consid-
ered in [23, Theorem 2.3]. The authors also derived a criterion based
on the spectrum of the matrix of coefficients to test global attrac-
tivity of the trivial solution to mixed-order fractional upper-triangle

systems. In [25], the authors derived a sufficient condition for the
stability of the trivial solutions to mixed-order fractional systems,
see [25, Theorem 4]. However, there are limitations in the works
mentioned above. In particular, it is not easy to check the attractivity
criteria presented in [20, 21] because they lead to finding solutions
to fractional-order characteristic polynomials, a task which is very
complicated for systems with high dimension, and impossible for
systems with irrational fractional derivatives. Whereas, the result
[25, Theorem 4] is elegant but it is too hard to compute the con-
tractive coefficient γ in this theorem (see [25, condition (14), pp.
6]).

From the above analysis we find that studying asymptotic prop-
erties of fixed-order fractional systems is a complicated task. In our
view, it is still a long way from being able to find a general and effi-
cient criterion that characterizes their stability even in the linear case.
Our aim is to propose simple and explicit theorems proving asymp-
totic stability of the trivial solution to a special class of systems with
multi fractional orders.

Let the linear systems on the interval [0,∞)

CDαi
0+xi(t) =

d∑
j=1

aijxj(t), i = 1, . . . , d, (1)

where αi ∈ (0, 1], coefficients aij ∈ R, i, j = 1, . . . , d, and the
Caputo differential operator of order αi is defined by

CDαi
0+x(t) = J1−αiDx(t)

with the classical derivative D and the Riemann-Liouville integral
operator

J1−αix(t) =
1

Γ(1− αi)

∫ t
0
(t− τ)−αix(τ) dτ,

see e.g. [2].
The first our contribution is to show that if the matrix of coeffi-

cients (aij)1≤i,j≤d is strictly diagonally dominant and the entries
on its main diagonal are negative then this system is globally attrac-
tive. To do this we focus on elements on the main diagonal. Due
to their role in determining asymptotic behavior of the solutions, we
consider (1) as a diagonal system and the ones out-off the main diag-
onal as perturbed terms. Then applying the variation of constants
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formula and properties of real Mittag-Leffler functions, we calcu-
late clearly the contractive coefficient of a Lyapunov–Perron type
operator associated with the system which guarantees its stability.

Next, by the linearized method, we also obtain a result on asymp-
totic stability (in the Lyapunov sense) of the trivial solution to a non-
linear mixed-order fractional system linearized along its equilibrium
point

CDαi
0+xi(t) =

d∑
j=1

aijxj(t) + fi(x(t)), i = 1, . . . , d, (2)

where the matrix (aij)1≤i,j≤d satisfies two conditions as men-
tioned above, and the nonlinear function f = (f1, . . . , fd) : Rd →
Rd describes a small perturbation satisfying:

(i) f is continuous;
(ii) f(0) = 0;
(iii) f is Lipschitz continuous in a neighborhood of the origin and

lim
r→0

`f (r) = 0,

in which

`f (r) := sup
x,y∈BRd (0,r)

‖f(x)− f(y)‖
‖x− y‖ (3)

with ‖ · ‖ is a norm in Rd and BRd := {x ∈ Rd : ‖x‖ ≤ r}.

Notation. We denote by N the set of all natural numbers, R the
set of all real numbers, R≥0 the set of nonnegative real numbers
and C the set of complex numbers. Let Rd be the d-dimensional
Euclidean space endowed with a norm ‖ · ‖. Due to the fact that
every norm in Rd are equivalent, hence without loss of general-
ity, in this paper we only use the max norm, that is, for any x =
(x1, . . . , xd) ∈ Rd we mean ‖x‖ = max{|x1|, . . . , |xd|}. The set
C([0,∞),Rd) is the space of continuous functions from [0,∞)

to Rd, and
(
C∞(Rd), ‖ · ‖∞

)
⊂ C([0,∞),Rd) is the space of

all continuous functions ξ : [0,∞)→ Rd which are bounded on
[0,∞), i.e.,

‖ξ‖∞ := sup
t≥0
‖ξ(t)‖ <∞.

It is well known that
(
C∞(Rd), ‖ · ‖∞

)
is a Banach space.

2 Main result

Consider the system (1). For convenience, we use the notation

CDα̂0+x(t) :=


CDα1

0+
. . .

CDαd
0+

x(t) =


CDα1

0+x1(t)
...

CDαd
0+xd(t)


and A = (ai,j)1≤i,j≤d ∈ Rd×d. Then this system is rewritten in
the form

CDα̂0+x(t) = Ax(t). (4)

Assume that the matrix A satisfies two conditions:

(C1) A is a strictly diagonally dominant matrix, i.e. |aii| >∑
1≤j≤d,j 6=i |aij | for 1 ≤ i ≤ d; and

(C2) the entries on the main diagonal of this matrix are negative, i.e.
aii < 0 for 1 ≤ i ≤ d.

Our main result is to prove global attractivity of (4), i.e. showing that
its every non-trivial solution converge to the origin at the infinity.
This is stated in the following theorem.

Theorem 1 (Global attractivity of mixed-order linear fractional sys-
tems). Consider the system (4) with the matrix A satisfies the con-
ditions (C1) and (C2). Then for any x0 ∈ Rd, the solution ϕ(·, x0)
of (4) which starts from x0 converges to the origin.

To prove this theorem we need some estimates concerning Mittag-
Leffler functions. For any β, γ > 0, a function Eβ,γ(·) : C→ C
defined by

Eβ,γ(z) :=

∞∑
k=0

zk

Γ(βk + γ)
, z ∈ C,

with Γ(·) is the Gamma function, is called the Mittag-Leffler
function, see e.g. [26, Chapters 3–4].

Lemma 1. For an arbitrary integer p ≥ 1, β ∈ (0, 1) and γ is an
arbitrary complex number, the following statement holds. For z ∈
{λ ∈ C : απ/2 < |arg(λ)| ≤ π}, we have

Eβ,γ(z) = −
p∑
k=1

z−k

Γ(γ − βk)
+O(|z|−1−p),

when |z| → ∞.

Proof: See [4, Theorem 1.4, pp. 33]. �

Lemma 2. Let 0 < β ≤ 1 and λ > 0. Then the following statements
hold:

(i) The function Eβ(−λtβ) is strictly decreasing on [0,∞) and

lim
t→∞

Eβ(−λtβ) = 0.

(ii) ∫ t
0
τβ−1Eβ,β(−λτβ) dτ = tβEβ,β+1(−λtβ)

for all t > 0.
(iii) ∫∞

0
τβ−1Eβ,β(−λτβ) dτ =

1

λ
.

Proof: (i) The proof is obtained directly from the completely mono-
tonic property of the Mittag-Leffler function, see e.g. [26, Proposi-
tion 3.23, pp. 47] and Lemma 1.
(ii) See [4, Formula (1.99), pp. 24].
(iii) From (ii), we obtain

0 ≤
∫ t
0
τβ−1Eβ,β(−λτβ) dτ = tβEβ,β+1(−λtβ), ∀t > 0.

On the other hand by virtue of Lemma 1, for p = 1, we have

Eβ,β+1(z) =
1

zΓ(1)
+O(

1

|z|2
)

=
1

z
+O(

1

|z|2
)

as z ∈ {λ ∈ C : απ/2 < |arg(λ)| ≤ π} and |z| → ∞. Let z =
−λtβ (λ > 0), then

Eβ,β+1(−λtβ) =
1

λtβ
+O(

1

λ2t2β
)

as t→∞. Hence,

lim
t→∞

tβEβ,β+1(−λtβ) =
1

λ
.
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This implies that∫∞
0
τβ−1Eβ,β(−λτβ) dτ = lim

t→∞
tβEβ,β+1(−λtβ) =

1

λ
,

which completes the proof. �

Proof of Theorem 1: Due to the existence and uniqueness of solu-
tions to the system (4), if x0 = 0, we have ϕ(t, 0) = 0 for all
t ≥ 0. Hence, to complete the proof of this theorem we only study
non-trivial solutions. For any x0 ∈ Rd \ {0}, let

ε :=
‖x0‖

1−max1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

. (5)

In the space C([0,R),Rd), we denote the ball with the radius ε
centered at the origin by BC∞(0, ε), i.e.

BC∞(0, ε) := {ξ ∈ C([0,∞),Rd) : ‖ξ‖∞ ≤ ε}.

Next, we establish a Lyapunov–Perron type operator on BC∞(0, ε)
as follows. For any ξ ∈ BC∞(0, ε) let

(Tx0ξ)(t) = ((Tx0ξ)1(t), . . . , (Tx0ξ)d(t)), t ≥ 0,

where for i ∈ {1, . . . , d}

(Tx0ξ)i(t) :=Eαi(aiit
αi)x0i +

∫ t
0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)∑

1≤j≤d,j 6=i
aijξj(τ) dτ.

First, we show that Tx0(BC∞(0, ε)) ⊂ BC∞(0, ε). Indeed, for any
t > 0, we obtain the following estimates

|(Tx0ξ)i(t)| ≤ Eαi(aiit
αi)|x0i |+

∫ t
0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)∑

1≤j≤d,j 6=i
|aij ||ξj(τ)| dτ

≤ ‖x0‖+ ‖ξ‖∞
∫ t
0
ταi−1Eαi,αi(aiiτ

αi) dτ∑
1≤j≤d,j 6=i

|aij |

≤ ‖x0‖+ ‖ξ‖∞
∫∞
0
ταi−1Eαi,αi(aiiτ

αi) dτ∑
1≤j≤d,j 6=i

|aij |

This together (5) and Lemma 2(iii) implies

(Tx0ξ)i(t) ≤ ε

(
1− max

1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

)

+ max
1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

ε

= ε, ∀i ∈ {1, · · · , d}.

Hence, ‖Tx0ξ‖∞ ≤ ε for all ξ ∈ BC∞(0, ε). Furthermore, it is
easy to show that this operator is contractive with the coefficient
of contraction as max1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii| . From Banach fixed

point theorem, Tx0 has a unique fixed point ξ∗ in BC∞(0, ε). It

is worth noting that from [23, Theorem 2.3], the system (4) with
the initial condition x(0) = x0 has a unique solution. Moreover,
by applying the variation of constants formula as in [24, Lemma
3.1] for each component of (4), this solution must be a fixed point
of the operator Tx0 . Thus for any x0 ∈ Rd \ {0}, the system (4)
has a unique solution as the fixed point ξ∗. This solution belongs
to the ball BC∞(0, ε). Finally, we show that limt→∞ ξ∗(t) = 0.
Let a = lim supt→∞ ‖ξ∗(t)‖. Assume that a > 0. Let T0 > 0 is a
constant such that

‖ξ∗(t)‖ ≤ aM

p
, ∀t ≥ T0, (6)

where p := max1≤i≤d

∑
1≤j≤d,j 6=i |aij |
|aii|

< 1 and p < M < 1.

From the presentation of ξ∗, for each i ∈ {1, . . . , d}, we have

lim sup
t→∞

|ξ∗i (t)| ≤ lim sup
t→∞

Eαi(aiit
α)|x0i |

+ lim sup
t→∞

∫T0

0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)∑

1≤j≤d,j 6=i
|aijξ∗j (τ)| dτ

+ lim sup
t→∞

∫ t
T0

(t− τ)αi−1Eαi,αi(aii(t− τ)αi)∑
1≤j≤d,j 6=i

|aijξ∗j (τ)| dτ.

Due to Lemma 2,

lim sup
t→∞

Eαi(aiit
α)|x0i | = 0

and

lim sup
t→∞

∫T0

0
(t− τ)αi−1Eαi,αi(aii(t− τ)αi)

∑
1≤j≤d,j 6=i

|aijξ∗j (τ)| dτ

≤ lim sup
t→∞

∫ t
t−T0

ταi−1Eαi,αi(aiiτ
αi) dτ∑

1≤j≤d,j 6=i
|aij | max

t∈[0,T0]
‖ξ∗(t)‖

= 0.

Moreover, from Lemma 2(iii) and (6), we have

lim sup
t→∞

∫ t
T0

(t− τ)αi−1Eαi,αi(aii(t− τ)αi)
∑

1≤j≤d,j 6=i
|aijξ∗j (τ)| dτ

≤
∫∞
0
tαiEαi,αi(aiit

αi) dt
aM

p

∑
1≤j≤d,j 6=i

|aij |

= aM.

Hence,

0 < a = lim sup
t→∞

‖ξ∗(t)‖ ≤ aM < a,

a contradiction. This implies that

lim sup
t→∞

‖ξ∗(t)‖ = a = 0.

The proof is complete. �
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Remark 1. Unlike the approach considered in [20, Theorem 1] and
[21, Theorem 4], our method does not use any characteristic poly-
nomial equation to analyze asymmetrical behavior of solutions. Our
result is independent of fractional orders of the system and depends
only on its matrix of coefficients A. It is clear that our condition is
very easy and computationally simple to check, as well as it can deal
with mix-order fractional systems of high dimensions and irrational
fractional derivatives.

Remark 2. Consider the system (4). For any non-singular matrix
T ∈ Rd×d, in general, we have CDα̂0+Tx(t) 6= TCDα̂0+x(t).
Hence, the matrix transformation technique (which is used in the
commensurate caseα1 = α2 = · · · = αd, see [9, Section 3.1]) does
not hold for mixed-order fractional systems (the non-commensurate
case). In our opinion, the qualitative theory of mixed-order frac-
tional systems is still in its infancy. In particular, the question about
the relationship between stability of systems and the spectrum of the
linearization of the “vector fields" is still open.

Example 1. Consider the mixed order fractional system on the
interval (0,∞)

{
CDα1

0+x1(t) = −2x1(t) + x2(t),
CDα2

0+x2(t) = −2x1(t)− 3x2(t),
(7)

where α1, α2 ∈ (0, 1] are rational number and α1 ≤ α2. For this

system, we can easily obtain matrix A, where A =

(
−2 1
−2 −3

)
.

It is easy to see that matrix A satisfies all the conditions stated in
Theorem 1, and hence we immediately conclude that the system (7)
is globally attractive.

In the following discussion, we compare our result to existing
ones in the literature. Suppose that α1 = p1

q1
and α2 = p2

q2
with

p1, p2, q1, q2 ∈ N and gcd(p1, q1) = gcd(p2, q2) = 1. According
to [20, Theorem 1], in order to test the global attractivity of (7),
we have to solve the following characteristic equation

sα1+α2 + 3sα1 + 2sα2 + 8 = 0 (8)

and check whether all the solutions s of (5) satisfy the condition

| arg (s)| > π

2
.

While, if we apply the condition presented in [21, Theorem 4], we
have to compute all the solutions to the equation

sm(α1+α2) + 3smα1 + 2smα2 + 8 = 0 (9)

and check the following condition for all the solutions s of (9)

| arg (s)| > π

2m

wherem = lcm(q1, q2). The above tasks are computationally inten-
sive especially for systems with high dimension, i.e. d is a large
number. Moreover, for the case where the fractional orders α1 and
α2 in the system (7) are irrational, the approaches presented in [20,
Theorem 1] and [21, Theorem 4] do not work. Also, we cannot apply
the condition presented in [23, Theorem 3.1] to check the global
attractivity of (7) because the matrix A is not in the triangle form.
On the other hand, due to the fact that matrix A is not Metzler, fol-
lowing [22, Theorem 1], this system is not positive. Thus we can not
use the criterion [22, Theorem 2] to investigate this example. More-
over, according to [25, Theorem 4], to prove the global attractivity

of solutions to (7), we have to compute explicitly the coefficient

S(2, α2, α1) = sup
t≥0

∫ t
0
(t− s)α2−1Eα2,α2(−2(t− s)α2)

(s+ 1)−α1(t+ 1)α1 ds

and show that

max{S(2, α2, α1), S(2, α1, α1)} < 1,

which is not an easy task to do.
The above discussion shows the advantages of our result over

existing ones in the literature. Our result as stated in Theorem 1 is
very easy to apply as we can immediately establish the system (7) is
globally attractive.

Finally, we consider the nonlinear mixed-order fractional system
(2). This system can be rewritten as

CDα̂0+x(t) = Ax(t) + f(x(t)). (10)

Suppose that f = (f1, . . . , fd)) is continuous on Rd and Lipschitz
continuous in a neighborhood of the origin and

f(0) = 0 and lim
r→0

`f (r) = 0, (11)

where `f (r) is the Lipschitz coefficient defined in (3). We recall the
notions of stability of the trivial solution to (10).

Definition 1. (i) The trivial solution to (10) is called stable if for
any ε > 0 there exists δ = δ(ε) > 0 such that for every ‖x0‖ < δ
the solution ϕ(t, x0) exists on [0,∞) and satisfies

‖ϕ(t, x0)‖ < ε, ∀t ≥ 0.

(ii) The trivial solution is called asymptotically stable if it is sta-
ble and there exists δ̂ > 0 such that limt→∞ ϕ(t, x0) = 0 whenever
‖x0‖ < δ̂.

Using the approach as in Theorem 1 and arguments as in the proof
of [9, Theorem 3.1], we can obtain the following result.

Theorem 2 (Linearized stability of nonlinear mixed-order fractional
systems). Consider the system (10). Assume that the matrix A sat-
isfies the conditions (C1) and (C2), and the function f is Lipschitz
continuous in a neighborhood of the origin such that the condition
(11) holds. Then the trivial solution of this system is asymptotically
stable.

Remark 3. Consider the mixed order fractional system

CDα̂0+x(t) = Ax(t) + f(t, x(t)), t ≥ 0, (12)

where A satisfies the conditions (C1), (C2) and f : [0,∞)× Rd →
Rd is continuous, f(t, 0) = 0 for all t ≥ 0 and

‖f(t, x)− f(t, y)‖ ≤ K(t)‖x− y‖, ∀x, y ∈ Rd, t ≥ 0,

with K : [0,∞)→ R≥0. In addition, one of the following assump-
tions holds:

(K1) for any 1 ≤ i ≤ d,

sup
t≥0

∫ t
0
(t− τ)αiEαi,αi(−aii(t− τ)αi)K(τ)dτ

<
aii −

∑
1≤j≤d,j 6=i |aij |
aii

;
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(K2) there exists ε > 0 small enough such that

K(t) ≤ ε, ∀t ≥ 0;

(K3) limt→∞K(t) = 0.

Then basing on the approach as in the proof of Theorem 2 and
Theorem 7 in [27], we see that the trivial solution of (12) is also
asymptotic stable.

Remark 4. Because every norm in Rd is equivalent, the global
attractivity of (4) and the asymptotic stability of the trivial solution
to (10) do not depend on the norm endowed in this space.

Example 2. Consider the mixed fractional order nonlinear system

CDα̂0+x(t) = Ax(t) + f(x(t)), t ≥ 0, (13)

where α̂ = (0.5, 0.75),

A =

−3 1 1
0 −2 1
1 1 −5


and

f(x) =

 5x21 − 3x22
x32 + x43

2x21 + x22 + |x3|1.5


for all x = (x1, x2, x3)T ∈ R3. In this case A satisfies (C1), (C2)
and the function f satisfies (11). Thus, by Theorem 2, the trivial solu-
tion of (13) is asymptotic stable. Let ϕ(·, 0.05) is the solution to (13)
which starts from 0.05 at t = 0. The trajectory of this solution is
described in Figure.

3 Conclusion

In this study, we have studied asymptotic properties of mixed-order
fractional systems. We have derived a condition for global attractiv-
ity of mixed-order linear fractional systems. The condition is very
easy to check, requiring the system’s matrix to be strictly diagonally
dominant and its diagonal elements to be negative. The proposed
condition offers some advantages over exiting results as it can deal
with mixed-order fractional systems of high dimension and irrational
fractional orders. Finally, we have presented a linearized stability
theorem which ensures asymptotic stability of the trivial solution
to a nonlinear mixed-order fractional system linearized along its
equilibrium point.
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