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Abstract. We present a global version of the �ojasiewicz inequality on comparing the rate

of growth of two polynomial functions in the case the mapping de�ned by these functions is

(Newton) non-degenerate at in�nity. In addition, we show that the condition of non-degeneracy

at in�nity is generic in the sense that it holds in an open and dense semi-algebraic set of the

entire space of input data.

1. Introduction

Let K be a compact semi-algebraic subset of Rn and let g, h : K → R be continuous semi-

algebraic functions such that the zero set of g is contained in the zero set of h. Then the

information concerning the rate of growth of g and h is given by the following �ojasiewicz

inequality: there exist constants c > 0 and α > 0 such that for any x ∈ K, we have

|g(x)|α ≥ c|h(x)|.

Note that if K is not compact, the �ojasiewicz inequality does not always hold (see Exam-

ple 3.1 below). Recently, several versions of the �ojasiewicz inequality have been studied for a

special case where h is the distance function to the zero set of g, see [8, 9, 10, 11, 12, 13, 23, 24].

However, the study of the �ojasiewicz inequality on comparing the rate of growth of two arbi-

trary semi-algebraic functions on non-compact semi-algebraic sets is barely developed (cf. [30]).

We would like to point out that the �ojasiewicz inequality and its variants play an important

role in many branches of mathematics. For example, �ojasiewicz inequalities are very useful

in the study of continuous regular functions, a branch of Algebraic Geometry, which has been
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actively developed recently, see [18, 28] for pioneering works and [29] for a survey. Also, �o-

jasiewicz inequalities, together with Nullstellensätze, are crucial tools for the study of the ring

of (bounded) continuous semi-algebraic functions on a semi-algebraic set, see [15, 16, 17].

The purpose of this work is to show that for almost all pairs of polynomial functions, a

variant of the �ojasiewicz inequality holds on the entire space. Namely, with the de�nitions

given in Section 2, the following statements hold.

(i) Let (g, h) : Rn → R2 be a polynomial map, which is non-degenerate at in�nity. Suppose

that g is convenient and that the zero set of g is contained in the zero set of h, then there

exist some constants c > 0, α > 0, and β > 0 such that

|g(x)|α + |g(x)|β ≥ c|h(x)| for all x ∈ Rn.

(ii) The condition of non-degeneracy at in�nity is generic in the sense that it holds in an open

and dense semi-algebraic set of the entire space of input data.

Note that unlike the case where h is the distance function to the zero set of g, estimating the

exponents α and β in the �rst statement is still a delicate problem.

The paper is organized as follows. Section 2 presents some preliminary results from Semi-

algebraic Geometry; the condition of non-degeneracy at in�nity will be also given there. Sec-

tion 3 proves the existence of the global �ojasiewicz-type inequality for polynomial maps which

are non-degenerate at in�nity. Finally, in Section 4, it is shown that the property of being

non-degenerate at in�nity is generic.

2. Preliminaries

We begin by giving some necessary de�nitions and notational conventions. Let Rn denote

the Euclidean space of dimension n and R∗ := R\{0}. The corresponding inner product (resp.,
norm) in Rn is de�ned by 〈x, y〉 for any x, y ∈ Rn (resp., ‖x‖ :=

√
〈x, x〉 for any x ∈ Rn). The

closure of a set A is denoted by A. Given a nonempty set J ⊂ {1, . . . , n}, we de�ne

RJ := {x ∈ Rn : xj = 0, for all j 6∈ J}.

We denote by Z+ the set of non-negative integer numbers. If κ = (κ1, . . . , κn) ∈ Zn+, we denote
by xκ the monomial xκ1

1 · · ·xκnn .

2.1. Semi-algebraic geometry. In this subsection, we recall some notions and results of

semi-algebraic geometry, which can be found in [1, 2, 3, 5, 33].

De�nition 2.1. (i) A subset of Rn is called semi-algebraic if it is a �nite union of sets of the

form

{x ∈ Rn : fi(x) = 0, i = 1, . . . , k; fi(x) > 0, i = k + 1, . . . , p}

where all fi are polynomials.
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(ii) Let A ⊂ Rn and B ⊂ Rp be semi-algebraic sets. A map F : A → B is said to be semi-

algebraic if its graph

{(x, y) ∈ A×B : y = F (x)}
is a semi-algebraic subset of Rn × Rp.

A major fact concerning the class of semi-algebraic sets is the following Tarski�Seidenberg

Theorem.

Theorem 2.1. The image of a semi-algebraic set by a semi-algebraic map is semi-algebraic.

Moreover, semi-algebraic sets and functions enjoy a number of remarkable properties:

(i) The class of semi-algebraic sets is closed with respect to Boolean operators; a Cartesian

product of semi-algebraic sets is a semi-algebraic set;

(ii) The closure and the interior of a semi-algebraic set is a semi-algebraic set;

(iii) A composition of semi-algebraic maps is a semi-algebraic map;

(iv) The inverse image of a semi-algebraic set under a semi-algebraic map is a semi-algebraic

set;

(v) If A is a semi-algebraic set, then the distance function

dist(·, A) : Rn → R, x 7→ dist(x,A) := inf{‖x− a‖ : a ∈ A},

is also semi-algebraic.

Remark 2.1. As an immediate consequence of Theorem 2.1, we get the semi-algebraicity of

any set of the form {x ∈ A : ∃y ∈ B, (x, y) ∈ C}, provided that A,B, and C are semi-

algebraic sets. It follows also that the set {x ∈ A : ∀y ∈ B, (x, y) ∈ C} is semi-algebraic since

its complement is the union of the complement of A and the set {x ∈ A : ∃y ∈ B, (x, y) 6∈ C}.
Thus, if we have a �nite collection of semi-algebraic sets, then any set obtained from them with

the help of a �nite chain of quanti�ers is also semi-algebraic.

Lemma 2.1 (Curve Selection Lemma). Let A ⊂ Rn be a semi-algebraic set, and x∗ ∈ A \ A.
Then there exists an analytic semi-algebraic curve

ϕ : (−ε, ε)→ Rn

with ϕ(0) = x∗ and with ϕ(t) ∈ A for t ∈ (0, ε).

Next we give a version of Curve Selection Lemma which will be used in the proof of Theo-

rem 3.1.

Lemma 2.2 (Curve Selection Lemma at in�nity). Let A ⊂ Rn be a semi-algebraic set, and let

f := (f1, . . . , fp) : Rn → Rp be a semi-algebraic map. Assume that there exists a sequence {x`}
such that x` ∈ A, liml→∞ ‖x`‖ = ∞ and liml→∞ f(x`) = y ∈ (R)p, where R := R ∪ {±∞}.
Then there exists an analytic semi-algebraic curve ϕ : (0, ε) → Rn such that ϕ(t) ∈ A for all

t ∈ (0, ε), limt→0 ‖ϕ(t)‖ =∞, and limt→0 f(ϕ(t)) = y.
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Lemma 2.3 (Growth Dichotomy Lemma). Let f : (0, ε)→ R be a semi-algebraic function with

f(t) 6= 0 for all t ∈ (0, ε). Then there exist constants c 6= 0 and q ∈ Q such that f(t) = ctq+o(tq)

as t→ 0+.

2.2. The (semi-algebraic) transversality theorem with parameters. Let P,X and Y

be some C∞ manifolds of �nite dimension, S be a C∞ sub-manifold of Y , and F : X → Y be

a C∞ map. Denote by dxF : TxX → TF (x)Y , the di�erential of F at x, where TxX and TF (x)Y

are, respectively, the tangent space of X at x and the tangent space of Y at F (x).

De�nition 2.2. The map F is said to be transverse to the sub-manifold S, abbreviated by

F t S, if either F (X) ∩ S = ∅ or for each x ∈ F−1(S), we have

dxF (TxX) + TF (x)S = TF (x)Y.

Remark 2.2. If dimX ≥ dimY and S = {s}, then F t S if and only if either F−1(s) = ∅ or
rankdxF = dimY for all x ∈ F−1(s). In the case dimX < dimY , then F t S if and only if

F−1(S) = ∅.

The following result [21, 22] will be useful in the study of the genericity of the condition of

non-degeneracy at in�nity.

Theorem 2.2 (Transversality Theorem with parameters). Let F : P ×X → Y be a C∞ map.

For each p ∈ P, consider the map Fp : X → Y de�ned by Fp(x) := F (p, x). If F t S, then the

set

Q := {p ∈ P : Fp t S}
is open and dense in P. Moreover, if P,X, Y, and S are semi-algebraic sets and if F is a

semi-algebraic map, then Q is also semi-algebraic.

Proof. The proof of openness and density of Q is done in [21, 22]. The method used also permits

to prove that Q is semi-algebraic if P,X, Y, S and F are semi-algebraic. �

2.3. Newton polyhedra and non-degeneracy conditions.

2.3.1. Newton polyhedra. Let f : Rn → R be a polynomial function. Suppose that f is written

as f =
∑

κ cκx
κ. Then the support of f, denoted by supp(f), is de�ned as the set of those

κ ∈ Zn+ such that cκ 6= 0. The Newton polyhedron (at in�nity) of f , denoted by Γ(f), is de�ned

as the convex hull in Rn of the set supp(f). The polynomial f is said to be convenient if Γ(f)

intersects each coordinate axis in a point di�erent from the origin 0 in Rn, that is, if for any

j ∈ {1, . . . , n} there exists some κj > 0 such that κje
j ∈ Γ(f), where {e1, . . . , en} denotes the

canonical basis in Rn. For each (closed) face ∆ of Γ(f), we will denote by f∆ the polynomial∑
κ∈∆ cκx

κ; if ∆ ∩ supp(f) = ∅ we let f∆ := 0.

Given a nonzero vector q ∈ Rn, we de�ne

d(q,Γ(f)) := min{〈q, κ〉 : κ ∈ Γ(f)},

∆(q,Γ(f)) := {κ ∈ Γ(f) : 〈q, κ〉 = d(q,Γ(f))}.
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By de�nition, for each nonzero vector q ∈ Rn, ∆(q,Γ(f)) is a closed face of Γ(f). Conversely, if

∆ is a closed face of Γ(f) then there exists a nonzero vector1 q ∈ Rn such that ∆ = ∆(q,Γ(f)).

The dimension of a face ∆ is de�ned to be the minimum of the dimensions of the a�ne subspaces

containing ∆. The faces of Γ of dimension 0 are called the vertices of Γ.

Remark 2.3. The following statements follow immediately from de�nitions:

(i) We have Γ(f) ∩ RJ = Γ(f |RJ ) for all nonempty subset J of {1, . . . , n}.
(ii) Let ∆ := ∆(q,Γ(f)) for some nonzero vector q := (q1, . . . , qn) ∈ Rn. By de�nition,

f∆ =
∑

κ∈∆ cκx
κ is a weighted homogeneous polynomial of type (q, d := d(q,Γ(f))), i.e., we

have for all t > 0 and all x ∈ Rn,

f∆(tq1x1, . . . , t
qnxn) = tdf∆(x1, . . . , xn).

This implies the Euler relation

n∑
j=1

qjxj
∂f∆

∂xj
(x) = d · f∆(x).

In particular, if d 6= 0 and ∇f∆(x) = 0, then f∆(x) = 0.

2.3.2. Non-degeneracy conditions. In [26] (see also [27]), Khovanskii introduced a condition

of non-degeneracy of complex analytic maps F : (Cn, 0) → (Cp, 0) in terms of the Newton

polyhedra of the component functions of F. This notion has been applied extensively to the

study of several questions concerning isolated complete intersection singularities (see for in-

stance [4, 7, 20, 32]). We will apply this condition for real polynomial maps. First we need to

introduce some notation.

De�nition 2.3. Let F := (f1, . . . , fp) : Rn → Rp, 1 ≤ p ≤ n, be a polynomial map.

(i) The map F is said to be Khovanskii non-degenerate at in�nity if for any vector q ∈ Rn

with d(q,Γ(fi)) < 0 for i = 1, . . . , p, the set

{x ∈ (R∗)n : fi,∆i
(x) = 0 for i = 1, . . . , p}

is a reduced smooth complete intersection variety in the torus (R∗)n, i.e., the system of

gradient vectors ∇fi,∆i
(x) for i = 1, . . . , p, is R-linearly independent on this variety, where

∆i := ∆(q,Γ(fi)).

(ii) The map F is said to be non-degenerate at in�nity if for each ascending q-tuple I :=

(i1, . . . , iq) of integers from the set {1, . . . , p}, the polynomial map Rn → Rq, x 7→
(fi1(x), . . . , fiq(x)), is Khovanskii non-degenerate at in�nity.

Remark 2.4. By de�nition, the map F is Khovanskii non-degenerate at in�nity if and only if

for all q ∈ Rn with d(q,Γ(fi)) < 0 for i = 1, . . . , p and for all x ∈ (R∗)n with fi,∆i
(x) = 0 for

1Since Γ(f) is an integer polyhedron, we can assume that all the coordinates of q are rational numbers.
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i = 1, . . . , p we have

rank


x1

∂f1,∆1

∂x1
(x) · · · xn

∂f1,∆1

∂xn
(x)

... · · · ...

x1
∂fp,∆p
∂x1

(x) · · · xn
∂fp,∆p
∂xn

(x)

 = p.

The map F is non-degenerate at in�nity if and only if for all q ∈ Rn with d(q,Γ(fi)) < 0 for

i = 1, . . . , p, and for all x ∈ (R∗)n, we have

rank


x1

∂f1,∆1

∂x1
(x) · · · xn

∂f1,∆1

∂xn
(x) f1,∆1(x) 0

... · · · ...
. . .

x1
∂fp,∆p
∂x1

(x) · · · xn
∂fp,∆p
∂xn

(x) 0 fp,∆p(x)

 = p.

3. �ojasiewicz inequalities

The main result of this section is the following global �ojasiewicz inequality on comparing

the rate of growth of two polynomial functions.

Theorem 3.1. Let (g, h) : Rn → R2 be a polynomial map, which is non-degenerate at in�nity.

If g is convenient and g−1(0) ⊂ h−1(0), then there exist some constants c > 0, α > 0, and β > 0

such that

|g(x)|α + |g(x)|β ≥ c|h(x)| for all x ∈ Rn.

Note that we do not suppose the polynomial h to be convenient. On the other hand, the

assumption that the polynomial g is convenient cannot be dropped as shown in the following

example.

Example 3.1. Consider the polynomial map

(g, h) : R2 → R2, (x1, x2) 7→
(
(x2

1 − 1)2 + (x1x2 − 1)2, (x2
1 − 1)2 + (x2

2 − 1)2
)
.

Clearly, (g, h) is non-degenerate at in�nity, g is not convenient, and g−1(0) ⊂ h−1(0). Further-

more, we have

lim
k→∞

g
(1

k
, k
)

= 1 and lim
k→∞

h
(1

k
, k
)

= +∞,

and so there are no constants c > 0, α > 0, and β > 0 such that

|g(x)|α + |g(x)|β ≥ c|h(x)| for all x = (x1, x2) ∈ R2.

The following simple example shows that the exponents α and β in Theorem 3.1 are di�erent

in general.

Example 3.2. Consider the polynomial map

(g, h) : R2 → R2, (x1, x2) 7→
(
x2

1 + x4
2, x

2
1 + x2

2

)
.
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Clearly, (g, h) is non-degenerate at in�nity, g is convenient, and g−1(0) ⊂ h−1(0). Furthermore,

it is not hard to see that there are no constants c > 0 and α > 0 such that

|g(x)|α ≥ c|h(x)| for all x = (x1, x2) ∈ R2.

On the other hand, it holds that

|g(x)|
1
2 + |g(x)| ≥ |h(x)| for all x = (x1, x2) ∈ R2.

To prove Theorem 3.1, we �rst need the following de�nition.

De�nition 3.1. Given a polynomial function f : Rn → R and a smooth semi-algebraic manifold

X ⊂ Rn we let

K̃∞(f |X) :=

{
t ∈ R :

{
∃{xk} ⊂ X, s.t. ‖xk‖ → +∞, f(xk)→ t,

and ‖∇(f |X)(xk)‖ → 0

}
.

We also set

K0(f |X) := {t ∈ R : ∃x ∈ X with f(x) = t and ∇(f |X)(x) = 0}

which is the set of critical values of the restriction f |X . Note that, by Sard's theorem, K0(f |X)

is a �nite subset of R.
If X = Rn, we write K̃∞(f) and K0(f) instead of K̃∞(f |Rn) and K0(f |Rn), respectively.

Lemma 3.1. Let (g, h) : Rn → R2 be a polynomial map, which is non-degenerate at in�nity. If

g is convenient, then K̃∞(g) = ∅ and K̃∞(g|{h=r}) = ∅ for 0 < |r| � 1 and for |r| � 1.

Proof. For simplicity of notation, we write f1 and f2 instead of g and h, respectively. Note that

the proof for K̃∞(f1) = ∅ can be found in [10, Theorem 1]; since we will use some facts from

the proof (and for the sake of completeness), we include the proof of this statement here. By

contradiction, suppose that there exists a sequence {xk}k∈N ⊂ Rn and a value y ∈ R such that

lim
k→∞
‖xk‖ =∞, lim

k→∞
f1(xk) = y, and lim

k→∞
‖∇f1(xk)‖ = 0.

By Lemma 2.2, there exists an analytic curve ϕ : (0, ε)→ Rn, t 7→ (ϕ1(t), . . . , ϕn(t)), such that

(a1) limt→0 ‖ϕ(t)‖ =∞;

(a2) limt→0 f1(ϕ(t)) = y; and

(a3) limt→0 ‖∇f1(ϕ(t))‖ = 0.

Let J := {j : ϕj 6≡ 0}. By Condition (a1), J 6= ∅. By Lemma 2.3, for each j ∈ J, we can

expand the coordinate functions ϕj as follows

ϕj(t) = x0
j t
qj + higher order terms in t,

where x0
j 6= 0 and qj ∈ Q. From Condition (a1), we get minj∈J qj < 0.
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Let q := (q1, . . . , qn) ∈ Rn, where qj := M for j 6∈ J with M being su�ciently large and

satisfying

M > max

{∑
j∈J

qjκj : κ ∈ Γ(f1)

}
.

Let d1 be the minimal value of the linear function
∑n

j=1 qjκj on Γ(f1) and let ∆1 be the maximal

face of Γ(f1) (maximal with respect to the inclusion of faces) where the linear function takes

this value, i.e.,

d1 := d(q,Γ(f1)) and ∆1 := ∆(q,Γ(f1)).

Recall that RJ := {κ := (κ1, κ2, . . . , κn) ∈ Rn : κj = 0 for j 6∈ J}. Since f1 is convenient,

the restriction f1|RJ is not constant, and so Γ(f1) ∩ RJ = Γ(f1|RJ ) is nonempty and di�erent

from {0}. Furthermore, by de�nition of the vector q, one has

d1 = d(q,Γ(f1|RJ )) and ∆1 = ∆(q,Γ(f1|RJ )) ⊂ RJ .

In particular, for each j 6∈ J, the polynomial f1,∆1 does not depend on the variable xj. A direct

calculation shows that

f1(ϕ(t)) = f1,∆1(x0)td1 + higher order terms in t,

where x0 := (x0
1, . . . , x

0
n) with x0

j = 1 for j 6∈ J. It is easy to see that d1 ≤ qj∗ := minj∈J qj. In

fact, since f1 is convenient, for any j = 1, . . . , n, there exists a natural number mj ≥ 1 such

that mje
j ∈ Γ(f1). (Recall that {e1, . . . , en} denotes the canonical basic in Rn.) As qj∗ < 0, it

is clear that

d1 ≤ qj∗mj∗ ≤ qj∗ < 0.

Now, by Condition (a2), we have f1,∆1(x0) = 0.

On the other hand, for j ∈ J , we have
∂f1

∂xj
(ϕ(t)) =

∂f1,∆1

∂xj
(x0)td1−qj + higher order terms in t.

Since d1 ≤ minj∈J qj, it follows from (a3) that
∂f1,∆1

∂xj
(x0) = 0 for all j ∈ J. So this, together with

f1,∆1(x0) = 0, implies that f1 is not Khovanskii non-degenerate at in�nity. By de�nition, the

polynomial map (f1, f2) is not non-degenerate at in�nity, which contradicts our assumption.

Now we will show that K̃∞(f1|{f2=r}) = ∅ for 0 < |r| � 1 and for |r| � 1.

For 0 < |r| � 1 or |r| � 1, in view of Sard's theorem, we can make the following assumptions

without loss of generality:

(i) r 6∈ K0(f2,∆2) for any face ∆2 of Γ(f2);

(ii) If the set X := {x ∈ (R∗)n : f1,∆1(x) = 0,∇f1,∆1(x) 6= 0} is not empty2 for some face

∆1 of Γ(f1), then r 6∈ K0(f2,∆2|X) for any face ∆2 of Γ(f2).

2Clearly, if the set X is not empty, then it is a semi-algebraic smooth manifold in Rn.
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For contradiction, suppose that K̃∞(f1|{f2=r}) 6= ∅ for some 0 < |r| � 1 or |r| � 1, i.e., there

exists a sequence {xk}k∈N ⊂ Rn and a value y ∈ R such that

lim
k→∞
‖xk‖ =∞, lim

k→∞
f1(xk) = y, f2(xk) = r, and lim

k→∞
‖∇(f1|{f2=r})(x

k)‖ = 0.

By de�nition, there exists a sequence λk ∈ R such that for all k ≥ 1, we have

∇(f1|{f2=r})(x
k) = ∇f1(xk)− λk∇f2(xk).

By Lemma 2.2, there exists an analytic curve ϕ(t) := (ϕ1(t), . . . , ϕn(t)) and an analytic function

λ(t) with 0 < t� 1 such that

(b1) limt→0 ‖ϕ(t)‖ =∞;

(b2) limt→0 f1(ϕ(t)) = y;

(b3) f2(ϕ(t)) = r; and

(b4) limt→0 ‖∇f1(ϕ(t))− λ(t)∇f2(ϕ(t))‖ = 0.

Let J := {j : ϕj 6≡ 0} 6= ∅ and for each j ∈ J, expand ϕj as follows

ϕj(t) = x0
j t
qj + higher order terms in t,

where x0
j 6= 0 and qj ∈ Q. Let q := (q1, . . . , qn) ∈ Rn, where qj := M for j 6∈ J with M being

su�ciently large and satisfying

M > max
i=1,2

{∑
j∈J

qjκj : κ ∈ Γ(fi)

}
.

For each i = 1, 2, let di be the minimal value of the linear function
∑n

j=1 qjκj on Γ(fi) and

let ∆i be the maximal face of Γ(fi) (maximal with respect to the inclusion of faces) where the

linear function takes this value, i.e.,

di := d(q,Γ(fi)) and ∆i := ∆(q,Γ(fi)).

Since f1 is convenient, the restriction f1|RJ is not constant. Furthermore, we also have the

restriction f2|RJ is not constant. In fact, if this is not the case, then it follows from (b4) that

lim
t→0

∂f1

∂xj
(ϕ(t)) = 0 for all j ∈ J.

Replacing f1 by the restriction f1|RJ and repeating the previous arguments, we can see that f1

is not Khovanskii non-degenerate at in�nity. By de�nition, then the polynomial map (f1, f2) is

not non-degenerate at in�nity, which contradicts our assumption.

Therefore, the restriction of fi, i = 1, 2, on RJ is not constant, and so Γ(fi) ∩ RJ = Γ(fi|RJ )

is nonempty and di�erent from {0}. Furthermore, by de�nition of the vector q, one has

di = d(q,Γ(fi|RJ )) and ∆i = ∆(q,Γ(fi|RJ )) ⊂ RJ .

In particular, for each j 6∈ J, the polynomial fi,∆i
does not depend on the variable xj.
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By a similar argument as above, we also obtain d1 ≤ qj∗ := minj∈J qj < 0 and f1,∆1(x0) = 0,

where x0 := (x0
1, . . . , x

0
n) with x0

j = 1 for j 6∈ J. Observe that for all j 6∈ J, the polynomials f1,∆1

and f2,∆2 do not depend on xj, so

∂f1,∆1

∂xj
(x0) =

∂f2,∆2

∂xj
(x0) = 0.

Note that λ(t) 6≡ 0, since otherwise y ∈ K̃∞(f1) = ∅, a contradiction. Hence, we can expand

the coordinate λ(t) in terms of t as

λ(t) = λ0tθ + higher order terms in t,

where λ0 6= 0 and θ ∈ Q. There are three cases to be considered.

Case 1: d1 < d2 + θ. For each j ∈ J , we have

∂f1

∂xj
(ϕ(t))− λ(t)

∂f2

∂xj
(ϕ(t)) =

∂f1,∆1

∂xj
(x0)td1−qj + higher order terms in t.

Since d1 ≤ qj∗ , in view of (b4), we have
∂f1,∆1

∂xj
(x0) = 0 for all j ∈ J. As f1,∆1(x0) = 0, it implies

that f1 is not Khovanskii non-degenerate at in�nity. By de�nition, then the polynomial map

(f1, f2) is not non-degenerate at in�nity, which contradicts our assumption.

Case 2: d1 > d2 + θ. For each j ∈ J , we have

∂f1

∂xj
(ϕ(t))− λ(t)

∂f2

∂xj
(ϕ(t)) = −λ0∂f2,∆2

∂xj
(x0)td2+θ−qj + higher order terms in t.

From d2 + θ < d1 ≤ qj∗ and (b4), we get
∂f2,∆2

∂xj
(x0) = 0 for all j ∈ J. On the other hand, a

simple calculation shows that

f2(ϕ(t)) = f2,∆2(x0)td2 + higher order terms in t.

If d2 < 0 then it follows from (b3) that f2,∆2(x0) = 0 and so f2 is not Khovanskii non-degenerate

at in�nity; hence, by de�nition, the polynomial map (f1, f2) is not non-degenerate at in�nity,

which contradicts our assumption. If d2 = 0, we have f2,∆2(x0) = r and so r ∈ K0(f2,∆2), a

contradiction. Finally, if d2 > 0, then r = 0, which contradicts the assumption |r| > 0.

Case 3: d1 = d2 + θ. For each j ∈ J , we have

∂f1

∂xj
(ϕ(t))− λ(t)

∂f2

∂xj
(ϕ(t)) =

(
∂f1,∆1

∂xj
(x0)− λ0∂f2,∆2

∂xj
(x0)

)
td1−qj + · · · ,

where the dots stand for the higher-order terms in t. Since d1 ≤ minj∈J qj < 0, it follows from

(b4) that

∂f1,∆1

∂xj
(x0)− λ0∂f2,∆2

∂xj
(x0) = 0 for all j ∈ J.
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Observe that
∂f1,∆1

∂xj
(x0) 6= 0 for some j ∈ J since otherwise, we get a contradiction by repeating

the arguments in Case 1. Hence the set

X := {x ∈ (R∗)n : f1,∆1(x) = 0,∇f1,∆1(x) 6= 0}

is a nonempty semi-algebraic smooth manifold in Rn. Moreover, x0 is a critical point of f2,∆2|X .
Finally, by a similar argument as Case 2, we can see that either d2 < 0 and f2,∆2(x0) = 0 which

contradicts the assumption that the polynomial map (f1, f2) is Khovanskii non-degenerate at

in�nity, or d2 = 0 and f2,∆2(x0) = r which contradicts the assumption r 6∈ K0(f2,∆2|X), or

d2 > 0 and r = 0, which contradicts the assumption |r| > 0. �

The following de�nition is inspired by that proposed in [9].

De�nition 3.2. Let g, h : Rn → R be polynomial functions. A sequence {xk}k∈N ⊂ Rn with

‖xk‖ → +∞ is said to be

(i) a sequence of the �rst type if g(xk)→ 0 and |h(xk)| ≥ δ for some δ > 0;

(ii) a sequence of the second type if the sequence {g(xk)} is bounded and |h(xk)| → +∞.

Lemma 3.2. Let g, h : Rn → R be polynomial functions such that g−1(0) ⊂ h−1(0) and K̃∞(g) =

∅. Then following two statements hold:

(i) If K̃∞(g|{h=r}) = ∅ for all |r| > 0 su�ciently small, then there are no sequences of the

�rst type.

(ii) If K̃∞(g|{h=r}) = ∅ for all |r| su�ciently large, then there are no sequences of the second

type.

Proof. (i) By contradiction, assume that there exists a real number δ > 0 and a sequence

xk ∈ Rn, with ‖xk‖ → +∞, such that

g(xk)→ 0 and |h(xk)| ≥ δ.

Then |g(xk)| > 0 since g−1(0) ⊂ h−1(0). By Sard's theorem, the set of critical values of h is a

�nite subset of R. So we can choose δ > 0 su�ciently small so that each of the level sets h−1(±δ)
is either empty or a smooth manifold. Furthermore, by the assumptions, we can suppose that

K̃∞(g|{h=±δ}) = ∅.
Let X := {x ∈ Rn : |h(x)| ≥ δ}. We have

0 = inf
x∈X
|g(x)| < |g(xk)| for all k.

Applying the Ekeland variational principle [14] to the function

X → R, x 7→ |g(x)|,
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with data ε := |g(xk)| > 0 and λ := ‖xk‖
2

> 0, there is a point yk in X such that the following

inequalities hold

|g(yk)| ≤ |g(xk)|,

‖yk − xk‖ ≤ λ,

|g(yk)| ≤ |g(x)|+ ε

λ
‖x− yk‖ for all x ∈ X.

We deduce easily that limk→∞ ‖yk‖ = +∞ and limk→∞ g(yk) = 0. Furthermore, since g−1(0) ⊂
h−1(0) and |h(yk)| ≥ δ > 0, we have g(yk) 6= 0 for all k. Passing a subsequence and replacing g

(resp., h) by −g (resp., −h) if necessary, we may assume that for all k the following conditions

hold: g(yk) > 0 and either h(yk) > δ or h(yk) = δ. By continuity, g and h are positive in some

open neighborhood of yk. In particular, we have for all x near yk,

|g(x)| = g(x) and |h(x)| = h(x).

Hence yk is a local minimizer of the function

{x ∈ Rn : h(x) ≥ δ} → R, x 7→ g(x) +
ε

λ
‖x− yk‖.

Observe that h−1(δ) is a smooth manifold. Therefore, by Lagrange's multipliers theorem, there

exists µk ≤ 0 with µk(h(yk)− δ) = 0 such that

0 ∈ ∂
(
g(·) +

ε

λ
(‖ · −yk‖)

)
(yk) + µk∇h(yk).

This implies that

0 ∈ ∇g(yk) + µk∇h(yk) +
ε

λ
Bn,

where Bn stands for the unit closed ball in Rn. Consequently, we get

‖∇g(yk) + µk∇h(yk)‖ ≤ ε

λ
=

2|g(xk)|
‖xk‖

.

By letting k tend to in�nity, we obtain

lim
k→∞
‖yk‖ = +∞, lim

k→∞
g(yk) = 0, and lim

k→∞
‖∇g(yk) + µk∇h(yk)‖ = 0.

Note that if h(yk) > δ then µk = 0. Therefore, either 0 ∈ K̃∞(g) or 0 ∈ K̃∞(g|{h=δ}), and a

contradiction follows.

(ii) Suppose for contradiction that there exists a sequence xk ∈ Rn, with ‖xk‖ → +∞ such

that the sequence {g(xk)} is bounded and |h(xk)| → +∞. Then |g(xk)| > 0 from our assumption

g−1(0) ⊂ h−1(0). By Sard's theorem, the set of critical values of h is a �nite subset of R. So we

can choose M > 0 su�ciently large so that each of the level sets h−1(±M) is either empty or a

smooth manifold. Furthermore, by the assumptions, we can suppose that K̃∞(g|{h=±M}) = ∅.
Let X := {x ∈ Rn : |h(x)| ≥M}. We have for all k su�ciently large,

inf
x∈X
|g(x)| ≤ |g(xk)|.
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By applying the Ekeland variational principle [14] to the function X → R, x 7→ |g(x)|, with data
ε := |g(xk)| > 0 and λ := ‖xk‖

2
> 0, we get a point yk in X satisfying the following inequalities

|g(yk)| ≤ |g(xk)|,

‖yk − xk‖ ≤ λ,

|g(yk)| ≤ |g(x)|+ ε

λ
‖x− yk‖ for all x ∈ X.

We deduce easily that

‖xk‖
2

≤ ‖yk‖ ≤ 3‖xk‖
2

,

which yields limk→∞ ‖yk‖ = +∞.
Similarly to (i), for k large enough, we can assume that h(yk) ≥ M > 0 and g(yk) > 0 from

the assumption that g−1(0) ⊂ h−1(0). Hence, by repeating arguments similar to (i), we have

‖∇g(yk) + µk∇h(yk)‖ ≤ ε

λ
=

2|g(xk)|
‖xk‖

for some µk ≤ 0 with µk(h(yk)−M) = 0. Hence,

lim
k→∞
‖∇g(yk) + µk∇h(yk)‖ = 0.

On the other hand, since the sequence {g(xk)} is bounded, so is the sequence {g(yk)}. Hence,
by passing to a subsequence if necessary, we may assume that there exists the limit t :=

limk→∞ g(yk). Note that if h(yk) > M then µk = 0. Therefore, either t ∈ K̃∞(g) or t ∈
K̃∞(g|{h=M}), which is a contradiction. �

Lemma 3.3. Let g, h : Rn → R be polynomial functions such that g−1(0) ⊂ h−1(0). The follow-

ing two conditions are equivalent:

(i) there are no sequences of the �rst and second types.

(ii) there exist some constants c > 0, α > 0, and β > 0 such that

|g(x)|α + |g(x)|β ≥ c|h(x)| for all x ∈ Rn.

Proof. (Cf. [25, Theorem 3.4]).

(ii) ⇒ (i): The implication is straightforward.

(i) ⇒ (ii): We assume that h 6≡ 0, otherwise the implication is trivial. We only consider

the case where g−1(0) 6= ∅; the case g−1(0) = ∅ follows similarly. Then for each t ≥ 0, the

set {x ∈ Rn : |g(x)| = t} is non-empty. This, together with condition (i), implies that the

(semi-algebraic) function µ : [0,+∞)→ R given by

µ(t) := sup
|g(x)|=t

|h(x)|
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is well-de�ned. Furthermore, it is not hard to see that µ(0) = 0, µ(t) > 0 for all t > 0 small

enough and µ(t)→ +∞ as t→ +∞. By Lemma 2.3, we can write

µ(t) = atα + o(tα) as t→ 0+,

µ(t) = btβ + o(tβ) as t→ +∞

for some constants a 6= 0, b 6= 0, α ≥ 0 and β > 0. Therefore, we can �nd constants c1 > 0, c2 >

0, δ > 0 and r > 0 with δ � 1� r such that the following inequalities hold

|g(x)|α ≥ c1|h(x)| for 0 < |g(x)| ≤ δ,

|g(x)|β ≥ c2|h(x)| for |g(x)| ≥ R.

By assumption, we may assume that α > 0 so that the �rst inequality holds for |g(x)| ≤ δ.

Furthermore, we also may assume α ≤ 1 ≤ β because δ is su�ciently small and r is su�ciently

large.

On the other hand, it follows easily from condition (i) that there exists a constant M > 0

such that for all x ∈ Rn with δ ≤ |g(x)| ≤ R we have |h(x)| ≤M and hence

|g(x)|α + |g(x)|β ≥ δα + δβ =
δα + δβ

M
M ≥ δα + δβ

M
|h(x)|.

Letting c := min{c1, c2,
δα+δβ

M
}, we get the desired conclusion. �

We now are in position to �nish the proof of Theorem 3.1.

Proof of Theorem 3.1. This is a direct consequence of Lemmas 3.1, 3.2, and 3.3. �

The following corollary is inspired by the results in [16].

Corollary 3.1. Under the assumptions of Theorem 3.1, there exist a positive integer N and a

continuous semi-algebraic function f : Rn → R such that hN = gf.

Proof. Clearly, if infx∈Rn |g(x)| > 0 then the integer N := 1 and the function f := h
g
have the

desired property. So assume that infx∈Rn |g(x)| = 0. By observing the proof of Lemma 3.3, we

can �nd positive constants α and δ with α ≤ 1 such that

|g(x)|α ≥ c|h(x)| for |g(x)| ≤ δ.

Let ` :=
[

1
α

]
+ 1 > 1

α
≥ 1. It is easy to see that the (semi-algebraic) function f0 : Rn → R

de�ned by

f0(x) :=


h2`(x)
g2(x)

if g(x) 6= 0,

0 otherwise

is continuous. Since f0g
2 = h2`, we deduce that the integer N := 2` and the function f := f0g

have the desired property. �
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4. Genericity of non-degenerate at infinity polynomial maps

In this section we show the genericity of the condition of non-degeneracy at in�nity for

real polynomial maps; actually, we will prove a strong result of this (see Theorem 4.1 below).

Note that the genericity of the condition of non-degeneracy for complex polynomial maps has

been given in [27] (the case p = 1) and in [26, Theorem (Resolution of Singularities)] and [32,

Corollary 3.2.1] (the case p ≥ 1).

For simplicity, we introduce some notation here for this section. Let Γ := (Γ1, . . . ,Γp) with

each Γi being a Newton polyhedron in Rn
+ and 1 ≤ p ≤ n. Let

F := {∆ := (∆1, . . . ,∆p) : ∃q ∈ Rn s.t. ∆i = ∆(q,Γi) for all i}.

(Recall that ∆(q,Γi) := argminκ∈Γi
〈q, κ〉.) Clearly, F is a �nite set as the number of faces of a

polyhedron is �nite.

For each i = 1, . . . , p, denote by mi := #(Γi ∩ Zn)-the cardinal number of the set Γi ∩ Zn.
For any c := (c1, . . . , cp) ∈ Rm1 × · · · × Rmp where ci = (ci,κ)κ∈Γi∩Zn , denote

fi(x, ci) :=
∑

κ∈Γi∩Zn
ci,κx

κ ∈ R[x].

For each nonempty set I := {i1, . . . , iq} ⊂ {1, . . . , p} and ∆ := (∆1, . . . ,∆p) ∈ F , we let

FI,∆(x, c) := (fi1,∆i1
(x, ci1), . . . , fiq ,∆iq

(x, ciq)),

xDFI,∆(x, c) :=

(
xj
∂fi,∆i

∂xj
(x, ci)

)
i∈I, j=1,...,n

and

DI(∆) :=

 (c1, . . . , cp) :


ci = (ci,κ)κ∈Γi∩Zn ∈ Rmi , Γ(fi(x, ci)) = Γi for i = 1, . . . , p,

if x ∈ (R∗)n and if FI,∆(x, c) = 0, then

rank(xDFI,∆(x, c)) = #I

 .

The main result of this section is as follows.

Theorem 4.1. The set ∩I,∆DI(∆) is an open and dense semi-algebraic set in Rm1×· · ·×Rmp ,

where the intersection is taken over all nonempty sets I ⊂ {1, . . . , p} and all ∆ ∈ F .

Proof. Observe that the number of subsets of {1, . . . , p} is �nite, F is a �nite set, and a �nite

intersection of open dense semi-algebraic sets is open dense semi-algebraic. Now the desired

conclusion follows immediately from Propositions 4.1 and 4.2 below. �

Proposition 4.1. For each nonempty set I ⊂ {1, . . . , p}, the set ∩∆∈FDI(∆) is open and

semi-algebraic.

Proof. (Cf. [31, Appendix]; see also [6, Proposition 3.1]). Let I be a nonempty subset of

{1, . . . , p}. By renumbering, we may assume that I = {1, . . . , q} for some q ≤ p. By de�nition,
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for any (∆1, . . . ,∆p) ∈ F we have

DI(∆1, . . . ,∆p) = DI(∆1, . . . ,∆q)×X

where X := {(cq+1, . . . , cp) : Γ(fi(x, ci)) = Γi for i = q + 1, . . . , p}. Observe that X is an

open (and dense) semi-algebraic subset of Rmq+1 × · · · × Rmp and that X does not depend on

the polyhedra Γi, i = 1, . . . , q. Hence, it su�ces to show that ∩(∆1,...,∆q)DI(∆1, . . . ,∆q) is an

open semi-algebraic subset of Rm1 × · · · ×Rmq . In other words, we can assume that q = p, i.e.,

I = {1, . . . , p}.
Consider the projection

π : Rn × Rm1 × · · · × Rmp → Rm1 × · · · × Rmp , (x, c1, . . . , cp) 7→ (c1, . . . , cp),

and the union V ∗ := ∪∆∈FV (∆) where

V (∆) :=

 (x, c1, . . . , cp) :


x ∈ (R∗)n, ci = (ci,κ)κ∈Γi∩Zn ∈ Rmi ,

Γ(fi(x, ci)) = Γi, fi,∆i
(x, ci) = 0 for i = 1, . . . , p,

rank(xDFI,∆(x, c)) < p

 .

By de�nition, W := π(V ∗) is the complement of ∩∆∈FDI(∆) in the set

{(c1, . . . , cp) : ci = (ci,κ)κ∈Γi∩Zn ∈ Rmi , Γ(fi(x, ci)) = Γi for i = 1, . . . , p}.

Observe that the latter set is an open dense semi-algebraic subset of Rm1 × · · · ×Rmp . In light

of Theorem 2.1, W is a semi-algebraic set, and so is ∩∆∈FDI(∆). Furthermore, showing that

∩∆∈FDI(∆) is an open set means to prove that W is a closed set.

Assume by contradiction that W properly contains W, i.e., we can take a point (c0
1, . . . , c

0
p) ∈

W \W. By de�nition, then (c0
1, . . . , c

0
p) ∈ π(V (∆)) for some ∆ := (∆1, . . . ,∆p) ∈ F . In view of

Lemma 2.1, there exists a real analytic curve (ϕ(t), c1(t), . . . , cp(t)) ∈ V (∆) de�ned on a small

enough interval (0, ε) such that limt→0 ci(t) = c0
i , i = 1, . . . , p. Let us expand ϕj(t), j = 1, . . . , n,

and ci(t), i = 1, . . . , p, in terms of the parameter, say

ϕj(t) = x0
j t
qj + higher order terms in t,

ci(t) = c0
i + higher order terms in t,

where x0
j 6= 0 and qj ∈ Q. Let q := (q1, . . . , qn) and

∆̃i := ∆(q,∆i) for all i = 1, . . . , p.

We have ∆̃ := (∆̃1, . . . , ∆̃p) ∈ F . In fact, if q = 0, then ∆̃ = ∆ and there is nothing to prove.

So, assume that q 6= 0. By de�nition, we can �nd a vector q0 ∈ Rn such that ∆i = ∆(q0,Γi)

for all i. If ∆i = Γi for all i, then it is clear that ∆̃ ∈ F . Otherwise, we have q0 6= 0 and

I ′ := {i ∈ {1, . . . , p} : ∆i 6= Γi} 6= ∅. Then for each i ∈ I ′, there exists εi > 0 such that for

any q̃ with ‖q̃ − q0‖ ≤ εi it holds that

∆(q̃,Γi) ⊂ ∆(q0,Γi) = ∆i.
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Set ε := mini∈I′ εi > 0 and q̃ := q0 + ε q
‖q‖ . Clearly ∆(q̃,Γi) ⊂ ∆i. Hence ∆(q̃,Γi) = ∆(q̃,∆i).

Moreover, for any κ ∈ ∆i, we have

〈q̃, κ〉 = 〈q0, κ〉+
ε

‖q‖
〈q, κ〉 ≥ di +

ε

‖q‖
d̃i,

where we put di := minκ′∈Γi〈q0, κ′〉 and d̃i := minκ′∈∆i
〈q, κ′〉. Observe that the equality happens

if and only if κ ∈ ∆̃i, which yields ∆̃i = ∆(q̃,∆i). Therefore ∆̃i = ∆(q̃,Γi) and so ∆̃ ∈ F .
On the other hand, a simple calculation shows that

fi,∆i
(ϕ(t), ci(t)) = fi,∆̃i

(x0, c0
i )t

di + higher order terms in t,

ϕj(t)
∂fi,∆i

∂xj
(ϕ(t), ci(t)) = x0

j

∂fi,∆̃i

∂xj
(x0, c0

i )t
di + higher order terms in t,

where x0 := (x0
1, . . . , x

0
n) ∈ (R∗)n. As (ϕ(t), c1(t), . . . , cp(t)) ∈ V (∆) for all t ∈ (0, ε), we

get easily that (x0, c0
1, . . . , c

0
p) ∈ V (∆̃) ⊂ V ∗. Thus (c0

1, . . . , c
0
p) ∈ W, which contradicts the

assumption (c0
1, . . . , c

0
p) ∈ W \W. �

Proposition 4.2. For each nonempty set I ⊂ {1, . . . , p} and each ∆ ∈ F , DI(∆) contains an

open dense semi-algebraic set in Rm1 × · · · × Rmp .

Proof. As in the proof of Proposition 4.1, we may assume that I = {1, . . . , p}. Furthermore,

observe that for any (c1, . . . , cp) ∈ DI(∆), all those ci,κ, with κ ∈ (Γi∩Zn)\∆i and i = 1, . . . , p,

can be replaced by any nonzero real numbers and the resulting (c1, . . . , cp) still belongs to

DI(∆). Consequently, without loss of generality, we may assume that ∆i = Γi for all i. In other

words, we need to show that the set

DI(Γ) =

 (c1, . . . , cp) :


ci = (ci,κ)κ∈Γi∩Zn ∈ Rmi , Γ(fi(x, ci)) = Γi for i = 1, . . . , p,

if x ∈ (R∗)n and if F (x, c) = 0, then

rank(xDF (x, c)) = p

 ,

contains an open dense semi-algebraic set in Rm1 × · · · × Rmp , where we put

F (x, c) := (f1(x, c1), . . . , fp(x, cp)),

xDF (x, c) :=

(
xj
∂fi
∂xj

(x, ci)

)
i=1,...,p, j=1,...,n

.

It is clear that if there exists an index i0 such that mi0 = 1 (i.e., fi0(x, ci0) is a monomial),

then {fi0(x, ci0) = 0} ⊂ {x1 · · ·xn = 0} for ci0 6= 0; hence (R∗)m1 × · · · × (R∗)mp ⊂ DI(Γ) and

the problem is trivial. So in what follows we will assume that mi > 1 for every i = 1, . . . , p.

Let Γ1 + · · ·+ Γp be the Minkowski sum and set d := dim(Γ1 + · · ·+ Γp). By [19, Exercises of

page 48], there exist q1, . . . , qn ∈ Zn, with det(q1, . . . , qn) = 1, and d1, . . . , dn−d ∈ R such that

the set Γ1 + · · ·+ Γp is contained in the a�ne space

L := {κ ∈ Rn : 〈qj, κ〉 = dj, j = 1, . . . , n− d}.

We need the following lemma.
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Lemma 4.1. For each i ∈ {1, . . . , p} there exist dij, j = 1, . . . , n− p, such that Γi ⊂ Li, where

Li := {κ ∈ Rn : 〈qj, κ〉 = dij, j = 1, . . . , n− d},

i.e., Γi is contained in an a�ne space which is parallel to L.

Proof. For each index i = 1, . . . , p, choose κi ∈ Γi. Fix an index i and set dij := 〈qj, κi〉 for
j = 1, . . . , n−d. Take any κ ∈ Γi with κ 6= κi. By de�nition, γ :=

∑p
k=1 κ

k and γ′ := γ+(κ−κi)
belong to the set Γ1 + · · ·+ Γp. We have for all j = 1, . . . , n− d,

〈qj, κ− κi〉 = 〈qj, γ′ − γ〉 = 〈qj, γ′〉 − 〈qj, γ〉 = dj − dj = 0,

and so 〈qj, κ〉 = 〈qj, κi〉 = dij. Consequently, κ ∈ Li. The lemma is proved. �

For each j = 1, . . . , n, let us write qj := (qj1, . . . , qjn) and set A := (qij)i,j=1,...,n. Consider the

following change of coordinates
x1 = uq11

1 . . . u
q(n−d)1
n−d . . . uqn1

n ,
...

...
...

xn = uq1n1 . . . u
q(n−d)n
n−d . . . uqnnn .

(1)

It follows from Lemma 4.1 that for each κ ∈ Γi ∩ Zn, we have Aκ = (di1, . . . , di(n−d), γκ), for

some γκ ∈ Zd. So in the system of coordinates u1, . . . , un, the polynomial fi(x, ci) has the form

udi11 . . . u
di(n−d)
n−d

∑
κ∈Γi∩Zn

ci,κu
′γκ ∈ R[u], (2)

where u′ = (un−d+1, . . . , un). Set

gi(u
′, ci) =

∑
κ∈Γi∩Zn

ci,κu
′γκ ∈ R[u′]. (3)

Since A is an integer matrix and det(A) = 1, the monomial map (1) admits a unique monomial

inverse map, given by A−1. Hence the system f1(x, c1) = · · · = fp(x, cp) = 0 has solutions in

(R∗)n if and only if the system g1(u′, c1) = · · · = gp(u
′, cp) = 0 has solutions in (R∗)d. There are

two cases to consider:

Case 1: d < p. Consider the semi-algebraic map

G : (R∗)d × Rm1 × · · · × Rmp → Rp, (u′, c1, . . . , cp) 7→ (g1(u′, c1), . . . , gp(u
′, cp)).

For i = 1, . . . , p, let κi ∈ Γi ∩ Zn. Then the Jacobian matrix DG of G contains the following

diagonal matrix

∂G

∂(c1,κ1 , . . . , cp,κp)
=

u
′γκ1 0

. . .

0 u′γκp

 ,

which has rank p because of u′ ∈ (R∗)d. Hence DG is of rank p, which yields G t {0} (in Rp).

By Theorem 2.2, the set

P1 := {c := (c1, . . . , cp) ∈ Rm1 × · · · × Rmp : G(·, c) t {0}}
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is an open dense semi-algebraic set in Rm1×· · ·×Rmp . Since d < p, the map G(·, c) : (R∗)d → Rp

is transverse to {0} if and only if ImG(·, c) ∩ {0} = ∅. We deduce, for each c ∈ P1, that

{G(·, c) = 0} ∩ (R∗)d = ∅, and hence {F (·, c) = 0} ∩ (R∗)n = ∅. This implies that P1 ⊂ DI(Γ).

Case 2: d ≥ p. We �rst remark that we may assume that d = n. In fact, suppose that d < n

and �x c := (c1, . . . , cp). Under the change of coordinates (1), the polynomials fi(x, ci) ∈
R[x] and gi(u

′, ci) ∈ R[u′] have the forms (2) and (3), respectively. Recall that F (x, c) =

(f1(x, c1), . . . , fp(x, cp)) and G(u′, c) = (g1(u′, c1), . . . , gp(u
′, cp)). We have seen that F (x, c) = 0

has solutions in (R∗)n if and only if G(u′, c) = 0 has solutions in (R∗)d.
For any κ ∈ Zn, let κ = (κ1, . . . , κn). By a direct calculation, in the system of coordinates

u1, . . . , un, the matrix xDF (x, c) has the form(
udi11 . . . u

di(n−d)
n−d

∑
κ∈Γi∩Zn

κlci,κu
′γκ

)
i=1,...,p, l=1,...,n

. (4)

Furthermore, let u′DG(u′, c) denote the matrix(
u′j
∂gi
∂u′j

(u′, ci)

)
i=1,...,p, j=n−d+1,...,n

then we can see that

u′DG(u′, c) =

( ∑
κ∈Γi∩Zn

(
n∑
l=1

qj,lκl

)
ci,κu

′γκ

)
i=1,...,p, j=n−d+1,...,n

.

Observe that the columns of u′DG(u′, c) are linear combinations of the columns of the matrix( ∑
κ∈Γi∩Zn

κlci,κu
′γκ

)
i=1,...,p, l=1,...,n

,

which has the same rank as the matrix in (4) for any u ∈ (R∗)n. As the monomial map (1)

admits a unique monomial inverse map, consequently, we have

{x ∈ (R∗)n : F (x, c) = 0 and rank(xDF (x, c)) < p} 6= ∅

if and only if

{u′ ∈ (R∗)d : G(u′, c) = 0 and rank(u′DG(u′, c)) < p} 6= ∅.

But G(u′, c) is a polynomial map in d variables, therefore, the problem is reduced to the case

d = n.

From now on, we assume that d = n. For each i = 1, . . . , p, let vi1, . . . , viri be the vertices of

Γi. Note that ri > 1 for every i by the assumption mi > 1. Let

wij := vij − viri for j = 1, . . . , ri − 1.

Lemma 4.2. We have

rank{w11, . . . , w1(r1−1), . . . , wp1, . . . , wp(rp−1)} = dim(Γ1 + · · ·+ Γp).
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Proof. Let a, b be two arbitrary points of Γ1 + · · ·+ Γp. There exist a
i, bi ∈ Γi, i = 1, . . . , p, such

that

a = a1 + · · ·+ ap,

b = b1 + · · ·+ bp.

Observe that

ai =

ri∑
j=1

λijv
ij, with λij ≥ 0 and

ri∑
j=1

λij = 1,

bi =

ri∑
j=1

µijv
ij, with µij ≥ 0 and

ri∑
j=1

µij = 1.

Hence

bi − ai =

ri∑
j=1

(µij − λij)vij =

ri−1∑
j=1

(µij − λij)vij + (µiri − λiri)viri

=

ri−1∑
j=1

(µij − λij)vij −
ri−1∑
j=1

(µij − λij)viri

=

ri−1∑
j=1

(µij − λij)wij.

Consequently, b − a =
∑p

i=1(bi − ai) is a linear combination of vectors wij. Since a, b can be

chosen arbitrarily, the lemma follows. �

Now we will prove Proposition 4.2 (Case 2 with d = n) by induction on p, the number of

polynomials. In what follows, ci,j stands for the coe�cient of the monomial xv
ij
in fi(x, ci).

Firstly, let p = 1 and consider the semi-algebraic map

Φ: (R∗)n × Rm1 → Rn+1, (x, c1) 7→
(
x1
∂f1

∂x1

(x, c1), . . . , xn
∂f1

∂xn
(x, c1), f1(x, c1)

)
.

The Jacobian matrix DΦ of Φ contains the following matrix

∂Φ

∂(c1,1, . . . , c1,r1)
=

(
xv

11
v11 · · · xv

1(r1−1)
v1(r1−1) xv

1r1v1r1

xv
11 · · · xv

1(r1−1)
xv

1r1

)
,

where v1j (j = 1, . . . , r1) are written as column vectors. The rank of
∂Φ

∂(c1,1, . . . , c1,r1)
is equal

to the rank of the following matrix

M1 :=

(
v11 · · · v1(r1−1) v1r1

1 · · · 1 1

)
.
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By some linear operations on the columns of M1, we obtain the following matrix with the same

rank

M2 :=

(
v11 − v1r1 · · · v1(r1−1) − v1r1 v1r1

0 · · · 0 1

)
=

(
w11 · · · w1(r1−1) v1r1

0 · · · 0 1

)
.

In light of Lemma 4.2, we know that

rank{w11, . . . , w1(r1−1)} = dim Γ1 = d = n.

Hence rankM2 = n + 1, and so rank(DΦ) = n + 1. Consequently Φ t {0} (in Rn+1). By

Theorem 2.2, the set

P2 := {c1 ∈ Rm1 : Φ(·, c1) t {0}}

is an open dense semi-algebraic set in Rm1 . Observe that the map Φ(·, c1) : (R∗)n → Rn+1 is

transversal to {0} if and only if ImΦ(·, c1) ∩ {0} = ∅. Hence, for c1 ∈ P2, we have {Φ(·, c1) =

0} = ∅. Consequently, P2 ⊂ DI(Γ), which completes the proof for the case p = 1.

Now assume that p > 1. By induction, for each l = 1, . . . , p, the set DI\{l}(Γ) contains an

open dense semi-algebraic set Ul in Rm × · · · × Rmp . Consider the semi-algebraic map

Ψ: (R∗)n × (U1 ∩ · · · ∩ Up)× (Rp − {0}) → Rn × Rp,

(x, c1, . . . , cp, λ) 7→
( p∑
i=1

λix∇fi(x, ci), f1(x, c1), . . . , fp(x, cp)
)
,

where, for simplicity of notation, we let

x∇fi(x, ci) :=
(
x1
∂fi
∂x1

(x, ci), . . . , xn
∂fi
∂xn

(x, ci)
)
.

Note that if (x, c, λ) ∈ Ψ−1(0), then λ1 · · ·λp 6= 0. In fact, if λl = 0 for some l, then∑
i 6=l λix∇fi(x, ci) = 0, which contradicts the fact that

(c1, . . . , cp) ∈ U1 ∩ · · · ∩ Up ⊂ Ul ⊂ DI\{l}(Γ).

The Jacobian matrix DΨ of Ψ contains the matrix

M3 :=
∂Ψ

∂[(c1,1, . . . , c1,r1), . . . , (cp,1, . . . , cp,rp)]
=
(
A · · · B

)
,

where

A :=


λ1x

v11
v11 · · · λ1x

v1(r1−1)
v1(r1−1) λ1x

v1r1v1r1

xv
11 · · · xv

1(r1−1)
xv

1r1

0 · · · 0 0
... · · · ...

...

0 · · · 0 0

 ,
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and

B :=


λpx

vp1vp1 · · · λpx
vp(rp−1)

vp(rp−1) λpx
vprpvprp

0 · · · 0 0

0 · · · 0 0
... · · · ...

...

xv
p1 · · · xv

p(rp−1)
xv

prp

 .

Here, vij are written as column vectors.

If (x, c, λ) ∈ Ψ−1(0), we know that λix
vij 6= 0 for i = 1, . . . , p, and j = 1, . . . , ri. Hence, M3

has the same rank with the matrix

M4 :=


v11 · · · v1(r1−1) v1r1 · · · vp1 · · · vp(rp−1) vprp

1 · · · 1 1 · · · 0 · · · 0 0

0 · · · 0 0 · · · 0 · · · 0 0
... · · · ...

... · · · ... · · · ...
...

0 · · · 0 0 · · · 1 · · · 1 1

 .

By some linear operations on the columns of M4, we obtain

M5 :=


v11 − v1r1 · · · v1(r1−1) − v1r1 v1r1 · · · vp1 − vprp · · · vp(rp−1) − vprp vprp

0 · · · 0 1 · · · 0 · · · 0 0

0 · · · 0 0 · · · 0 · · · 0 0
... · · · ...

... · · · ... · · · ...
...

0 · · · 0 0 · · · 0 · · · 0 1



=


w11 · · · w1(r1−1) v1r1 · · · wp1 · · · wp(rp−1) vprp

0 · · · 0 1 · · · 0 · · · 0 0

0 · · · 0 0 · · · 0 · · · 0 0
... · · · ...

... · · · ... · · · ...
...

0 · · · 0 0 · · · 0 · · · 0 1

 .

Rearranging the columns of M5, we get

M6 :=


w11 · · · w1(r1−1) · · · wp1 · · · wp(rp−1) v1r1 · · · vprp

1 0

0
. . .

0 1

 .

In view of Lemma 4.2, we have

rank{w11, . . . , w1(r1−1), . . . , wp1, . . . , wp(rp−1)} = d = n.

So rankM6 = n + p on Ψ−1(0). Thus DΨ is of maximal rank on Ψ−1(0), namely Ψ t {0} (in
Rn+p). Note that U1 ∩ · · · ∩ Up is an open dense semi-algebraic set in Rm1 × · · · × Rmp . This,
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together with Theorem 2.2, implies that the set

P3 := {c ∈ U1 ∩ · · · ∩ Up : Ψ(·, c, ·) t {0}}

is open dense semi-algebraic in Rm1 × · · ·×Rmp . Since Ψ(·, c, ·) : (R∗)n× (Rp−{0})→ Rn×Rp

is a map between two manifolds of same dimension, the transversality condition implies that

Ψ(·, c, ·) is a local di�eomorphism on (Ψ(·, c, ·))−1(0) for each c ∈ P3.

Let c ∈ P3. If (Ψ(·, c, ·))−1(0) 6= ∅, there exists (x, λ) ∈ (R∗)n × (Rp − {0}) such that

Ψ(x, c, λ) = 0. Note that, for every t ∈ R \ {0}, Ψ(x, c, tλ) = 0. So Ψ(·, c, ·) is not a local

di�eomorphism at (x, λ), which is a contradiction. Hence (Ψ(·, c, ·))−1(0) = ∅. Consequently,
c ∈ DI(Γ). Therefore, P3 ⊂ DI(Γ), which ends the proof of the proposition. �

Acknowledgments. The authors wish to thank Professor Huy Vui Hà for useful discussions.

References

[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Second edition. Algorithms and

Computation in Mathematics. 10. Springer-Verlag, Berlin, 2006.

[2] R. Benedetti and J.-J. Risler. Real algebraic and semi-algebraic sets. Actualités Mathésmatiques. Hermann,

Paris, 1990.

[3] E. Bierstone and P. D. Milman. Semianalytic and subanalytic sets. Publications Mathématiques. Institut

de Hautes Études Scienti�ques, 67:5�42, 1988.

[4] C. Bivia-Ausina. Mixed newton numbers and isolated complete intersection singularities. Proc. Lond. Math.

Soc., 94(3):749�771, 2007.

[5] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry, volume 36. Springer, Berlin, 1998.

[6] Y. Chen and M. Tib r. Bifurcation values and monodromy of mixed polynomials.Math. Res. Lett., 19(1):59�

79, 2012.

[7] J. Damon. Topological invariants of µ-constant deformations of complete intersection singularities. Quart.

J. Math. Oxford, 40:139�159, 1989.

[8] S. T. Dinh, H. V. Hà, and T. S. Pha.m. Hölder-type global error bounds for non-degenerate polynomial

systems. Acta Math. Vietnam., 42(3):563�585, 2017.

[9] S. T. Dinh, H. V. Hà, and N. T. Thao. �ojasiewicz inequality for polynomial functions on non compact

domains. Internat. J. Math., 23(4):1250033 (28 pages), 2012.

[10] S. T. Dinh, H. V. Hà, N. T. Thao, and T. S. Pha.m. Global �ojasiewicz-type inequality for non-degenerate

polynomial maps. J. Math. Anal. Appl., 410(2):541�560, 2014.

[11] S. T. Dinh, K. Kurdyka, and O. L. Gal. �ojasiewicz inequality on non-compact domains and singularities

at in�nity. International Journal of Mathematics, 24(10):8 pp, 2013.

[12] S. T. Dinh, K. Kurdyka, and T. S. Pham. Global mixed �ojasiewicz inequalities and asymptotic critical

values. Annales Polonici Mathematici (accepted), 20xx.

[13] S. T. Dinh and T. S. Pha.m. �ojasiewicz-type inequalities with explicit exponents for the largest eigenvalue

function of real symmetric polynomial matrices. Internat. J. Math., 27(2):27pp, 2016.

[14] I. Ekeland. On the variational principle. J. Math. Anal. Appl., 47:324�353, 1974.

[15] J. F. Fernando. On chains of prime ideals in rings of semialgebraic functions. Q. J. Math., 65(3):893�930,

2014.

[16] J. F. Fernando and J. M. Gamboa. On �ojasiewicz's inequality and the nullstellensatz for rings of semial-

gebraic functions. J. Algebra, 399:475�488, 2014.

23



[17] J. F. Fernando and J. M. Gamboa. On the krull dimension of rings of continuous semialgebraic functions.

Rev. Mat. Iberoam., 31(3):753�766, 2015.

[18] G. Fichou, J. Huisman, F. Mangolte, and J.-P. Monnier. Fonctions régulues. J. Reine Angew. Math.,

718:103�151, 2016.

[19] W. Fulton. Introduction to toric varieties. Princeton University Press, 1993.

[20] T. Ga�ney. Integral closure of modules and whitney equisingularity. Invent. Math., 107:301�322, 1992.

[21] M. Goresky and R. MacPherson. Strati�ed Morse theory. Springer, 1988.

[22] V. Guillemin and A. Pollack. Di�erential topology. Prentice-Hall, 1974.

[23] H. V. Hà. Global Hölderian error bound for non-degenerate polynomials. SIAM J. Optim., 23(2):917�933,

2013.

[24] H. V. Hà, V. N. Hu�ynh, and T. S. Pha.m. A global version of the classical �ojasiewicz inequality. J. Math.

Anal. Appl., 421(2):1559�1572, 2015.

[25] H. V. Hà and T. S. Pha.m. Genericity in polynomial optimization, volume 3 of Series on Optimization and

Its Applications. World Scienti�c, Singapore, 2017.

[26] A. G. Khovanskii. Newton polyhedra and toroidal varieties. Funct. Anal. Appl., 11:289�296, 1978.

[27] A. G. Kouchnirenko. Polyhèdres de Newton et nombre de Milnor. Invent. Math., 32(1):1�31, 1976.

[28] W. Kucharz. Rational maps in real algebraic geometry. Adv. Geom., 9(4):517�539, 2009.

[29] W. Kucharz and K. Kurdyka. From continuous rational to regulous functions. In B. Sirakov, P. N. de

Souza, and M. Viana, editors, Proc. Int. Cong. of Math. (ICM 2018), pages 719�747, Rio de Janeiro,

Brazil, 2019.

[30] T. L. Loi. �ojasiewicz inequalities in o-minimal structures. Manuscripta Math., 150(1-2):59�72, 2016.

[31] M. Oka. On the bifurcation of the multiplicity and topology of the newton boundary. J. Math. Soc. Japan,

31(3):435�450, 1979.

[32] M. Oka. Non-degenerate complete intersection singularity. Actualités Mathématiques, Hermann, Paris,

1997.

[33] L. van den Dries and C. Miller. Geometric categories and o-minimal structures. Duke Math. J., 84:497�540,

1996.

Institute of Mathematics, VAST, 18, Hoang Quoc Viet Road, Cau Giay District 10307, Hanoi,

Vietnam

Email address: dstiep@math.ac.vn

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

Email address: fguo@dlut.edu.cn

Department of Mathematics, University of Dalat, 1 Phu Dong Thien Vuong, Dalat, Vietnam

Email address: sonpt@dlu.edu.vn

24


