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How signatures affect expected return and volatility:

a rough model under transaction cost

Luu Hoang Duc ∗, Jürgen Jost †

Abstract

We develop a general mathematical framework, based on rough path theory, a recent im-
portant extension of the classical Itô calculus, that can incorporate the empirically observed
nonlinear mean-variance relation of the logarithmic return in a systematic manner. Thus, we
propose a stock price model driven by a Hölder continuous noise, understood in the sense of a
rough differential equation. This model offers the possibility of additional noises hidden in the
signatures of rough paths, hence supporting the idea of mixture of a standard Brownian noise
and another source of long memory noise (a fractional Brownian motion for instance), and en-
abling to account for the multi-scaling phenomenon in financial data. The no-arbitrage principle
is then satisfied under the assumption of transaction costs as long as the driving noise is a sticky
process. We also discuss the potential risk of model uncertainty where the ambiguity comes from
the signatures of rough paths. Our models are supported by empirical evidence from financial
data.

Keywords: stock price, expected return, volatility, noise, rough path theory, rough differential
equations, no-arbitrage, risk.

1 Introduction

It is well-known that the original Samuelson stock model [35],

dSt = µStdt+ σStdBt, (1.1)

for a stock price St at time t with growth factor µ, volatility σ and a stochastic integral in the sense
of Itô with respect to a standard Brownian motion Bt, does not reproduce certain rather universal
features of empirical stock price data (the so-called stylized facts); hence many modifications have
been suggested ever since. First, the Hull and White model [24] suggests that the growth factor
and the volatility should be time-dependent, leading to models of the form

dSt = µtStdt+ σtStdWt, (1.2)

where σt satisfies a stochastic differential equation

d log σt = k(θ − log σt)dt+ γdW ′t (1.3)
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with parameters k, θ, γ and another Brownian motionW ′t , with an instantaneous correlation dWtdW
′
t =

ρdt with a parameter ρ ∈ [0, 1] between the two different Brownian motions. The Heston model
[22] proposes that σ2

t follows a Cox-Ingersoll-Ross equation

d(σ2
t ) = k

[
θ − (σ2

t )
]
dt+ λσtdW

′
t (1.4)

where k, θ, λ > 0 are parameters, and the two Brownian motions again possess an instantaneous
correlation dWtdW

′
t = ρdt with ρ ∈ [0, 1].

Still, the stock model (1.2) does not account for certain memory effects in logSt. This seems
to require a more radical solution than simply making the coefficients time dependent, but keeping
standard Brownian motion as the underlying stochastic process. This issue was raised already very
early in [28], which suggested that the standard Brownian motion in (1.2) should be generalized to
self similar processes, including fractional motions BH , i.e., a family of centered Gaussian processes
BH = {BH(t)}, t ∈ R or R+ with continuous sample paths and covariance function

RH(s, t) = 1
2(t2H + s2H − |t− s|2H), ∀t, s ∈ R.

In [11], ordinary Brownian motion is replaced by fractional Brownian motion in the model (1.3) for
the variance σt, resulting in

d log σt = k(θ − log σt)dt+ γdBH
t . (1.5)

In order to obtain a process with long memory, a Hurst exponent H > 1
2 is needed. Recent

empirical studies [4], [18] however showed that if we assume the model (1.5), the log-volatility
behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1 at any
reasonable time scale, and thus, we do not have a long memory process. This observation motivates
a study in [5] on a regularity structure for rough volatility, in which the authors suggest a more
general dynamic model of the form

dSt
St

= f(Zt)(ρdWt +
√

1− ρ2dW ′t)

Zt = z +

∫ t

0
K(s, t)v(Zs)ds+

∫ t

0
K(s, t)u(Zs)dWs, (1.6)

where K is the kernel and f, u, v are sufficiently smooth functions.

Another important issue is the multi-scaling phenomenon in financial data, which shows that the
generalized Hurst exponent varies depending on the time scale (see e.g. [3], [13], [2], [7], [8]). The
multi-scaling issue can be explained either by considering a random time change of the Brownian
noise Bt through the time change process It, i.e. Xt = BIt for all t ≥ 0 (see [2]); or by assuming
that the noise Xt has the form

Xh(t) =

b t
h
c∑

k=1

eωh(k)
(
BH

(k+1)h −B
H
kh

)
(1.7)

for some Hurst exponent H ≥ 1
2 , ωh(·) ∼ N (0, λ2 log(Lh )) with the intermittency parameter λ and

the autocorrelation length L, and the time scale h such that ωh(k) are correlated upto the distance
L, i.e.

Cov(ωh(k1), ωh(k2)) = λ2ρh(|k1 − k2|), ρh(|k1 − k2|) =

{
L

(|k1−k2|+1)h for |k1 − k2| ≤ L
h − 1

1 otherwise
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(see [3] and [8]).
Studies in [13] and [7] (see also our computations in Subsection 4.1) reveal that the log return of
stock indices (for instance Nasdaq, Dow Jones, SP500) or various exchange rates has the Hurst
exponents ranging from 0.4 to 0.7 in some period, hence making it unclear whether or not the noise
should have long memory, and why the Hurst exponents often look smaller than 1

2 for data quoted
on timescales of minutes to hours but increase to values significantly larger than 1

2 for daily to
monthly quoted data. It is generally agreed, however, that the Hurst exponent for the log return
of the stock price is always bigger than 1

4 .
Of course, one can introduce models with many parameters, in order to match the empirical

data. Our approach is different. We want to develop a general mathematical framework within
which the observed phenomena find a conceptual explanation. In fact, the basic and robust relation
that emerges from our numerical investigation of a wide range of stocks and other indices is that
when we plot the daily mean-variance relation of the logarithmic return, we find a parabola shaped
curve as a lower envelope. In particular, the relation is not linear, as basic models suggest, and the
nonlinearity exhibits a clear structure. This asks for a systematic explanation. The mathematical
theory we shall draw upon for that purpose is rough path theory [27], [17], [16], a new and very
powerful mathematical approach to stochastic processes. The theory can handle rather general
driving noises in a systematic manner. The key idea consists in directly incorporating higher order
information about the noise to define certain integrals in an algebraic manner.

Thus, we propose a new model using rough path theory, which covers all well-known cases and
phenomena. That is, we do not interpret the stochastic integral in (1.2) in the sense of Itô, but in the
pathwise sense of a rough integral [21]. In that framework, the information from the driving path
xt = Bt(ω) is not enough and additional information of a rough path x = (x,X1,X2) is required.
A rough path approach needs more information than just a driving noise. This is an advantage in
our context because it naturally allows for the incorporation of additional sources of noise. It turns
out that the theory can be formulated in a unified manner and the data can be matched with a
mixture of at most three such noises.

The no-arbitrage principle has been viewed as the fundamental requirement for a model to
satisfy the efficient market hypothesis (EMH). For models based on standard Brownian motion,
this is usually not a problem. When the stochastic noise in the asset price model comes from
fractional Brownian motions, which display the long rang dependence observed in empirical data,
it has however been shown, e.g. in [34] or in [9] that the model allows for arbitrage. A model in [30]
using the Skorohod-Wick-Itô integral shows that the existence of arbitrage can be avoided. Another
solution to this arbitrage problem comes from [10], [26], [29, Chapter 5, pp. 305-306] which assumes
that the noise is the mixture of a standard Brownian noise B and a fractional Brownian motion
BH for H ∈ (1

2 , 1). Subsequently, the no-arbitrage statement was proved in [6] for the wider class
exp{Zt + σBt} of geometric mixed noise, where (B,F) is a standard Brownian motion and Z is an
F-adapted process independent of B.

In contrast to that approach, in this paper, we follow [19], [20] and assume transaction costs. The
reason is that a sufficient condition for no-arbitrage only requires the log-price logSt to be a sticky
process. Also, it turns out that the class of sticky processes is very large, since it contains strong
Markov processes or any stochastic process with conditional full support (CFS). The stickiness is
also studied later in [33] for a larger class of stochastic processes. The CFS criterion was extended
in [32] for a class of mixed noise Zt + Xt, where Z is an arbitrary continuous process, and X
is a process independent of Z that has CFS. This class includes also mixed forms of mutually
independent standard Brownian motions and fractional Brownian motions.

The multi-scaling phenomenon could then be explained by a rough model in Subsection 4.1,
where the Hurst exponent is computed from the linear regression method between the logarithms
of the variance and the duration. Moreover, our empirical analysis in 4.2 finds that there is a
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nonlinear mean-variance relation, which could not be explained by using the classical model (1.1)
but possibly by using the rough model. It is important to note that the model works under the
assumption on the stochasticity of the path [x, 2], which is defined from the signatures of the rough
path x = (x,X1,X2). This assumption has not been observed so far in theoretical studies for the
existing types of stochastic integrals (see Example 3.3), thus indicating a possible gap between
empirical studies and stochastic calculus applied in finance.

Finally, we show in Section 5 by a simple example that the well-known negative effect of the
variance on the expected log-return can indeed come from the path [x, 2]. Since [x, 2] might be
stochastic, it leads to the potential appearance of an additional noise which increases the variance
of the log-return. We therefore raise the problem of the model risk, in which the volatility increases
from stock model ambiguity, and the uncertainty comes from the signatures of the driving rough
paths.

2 Rough differential equations

2.1 ν ∈ (1
2
, 1): Young integrals

We first give a brief introduction to Young integrals. For a compact time interval I ⊂ R, define
∆2(I) := {(s, t) : s, t ∈ I, s ≤ t}. Let C(I,Rd) denote the space of all continuous paths y : I → Rd
equipped with the sup-norm ‖ · ‖∞,I given by ‖y‖∞,I = supt∈I ‖yt‖, where ‖ · ‖ is the Euclidean
norm in Rd. We write ys,t := yt − ys. For 0 < α < 1, we denote by Cα(I,Rd) the space of Hölder
continuous functions with exponent α on I equipped with the norm

‖y‖α,I := ‖ymin I‖+ |||y|||α,I = ‖y(a)‖+ sup
s<t∈I

‖ys,t‖
(t− s)α

,

For y ∈ Cα(I,Rm ⊗ Rd) and x ∈ Cν(I,Rm) with α + ν > 1, the Young integral
∫
I ytdxt can be

defined as ∫
I
ysdxs := lim

|Π|→0

∑
[u,v]∈Π

yuxu,v, (2.1)

where the limit is taken over all finite partitions Π = {min I = t0 < t1 < · · · < tn = max I} of I
with |Π| := max

[u,v]∈Π
|v − u| (see [38, p. 264–265]). This integral satisfies the additivity property by

construction, as well as the so-called Young-Loeve estimate [17, Theorem 6.8, p. 116]∥∥∥∫ t

s
yudxu − ysxs,t

∥∥∥ ≤ K(α, ν)|t− s|α+ν |||y|||α,[s,t] |||x|||ν,[s,t] , (2.2)

for all [s, t] ⊂ I, where
K(α, ν) := (1− 21−α−ν)−1. (2.3)

2.2 ν ∈ (1
4
, 1

3
]: Rough paths

The basic theory of rough paths covers the case ν > 1
3 , because in that case, one only needs X1 to

control the path, see [21], [16]. Since we shall also need smaller values of ν, we present here the
theory for ν ∈ (1

4 ,
1
3 ], which also requires X2 for the control. For that purpose, we introduce the

construction of the integral using rough paths for the case y, x ∈ Cα(I) when α ∈ (1
4 , ν). To do that,

we first need to introduce the concept of rough paths. Following [27] and [16], a path x ∈ Cα(I,Rm)
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can be lifted to a rough path x = (x,X1,X2) with

X1 ∈ C2α
2 (∆2(I),Rm ⊗ Rm) := {X : sup

s<t

‖Xs,t‖
|t− s|2α

<∞},

X2 ∈ C3α
2 (∆2(I),Rm ⊗ Rm ⊗ Rm) := {X : sup

s<t

‖Xs,t‖
|t− s|3α

<∞},

which satisfies Chen’s relation, i.e.

X1
s,t = X1

s,u + X1
u,t + xs,u ⊗ xu,t, X2

s,t = X2
s,u + X2

u,t + xs,u ⊗ X1
u,t + X1

s,u ⊗ xu,t, (2.4)

for all min I ≤ s ≤ u ≤ t ≤ max I. As such X1,X2 should be viewed as postulating the value of the
quantity ∫ t

s
xs,r ⊗ dxr := X1

s,t,

∫ t

s

∫ u

s
xs,r ⊗ dxr ⊗ dxu := X2

s,t, (2.5)

where the right hand side is taken as a definition for the left hand side, so that
∫
⊗dx is written

only symbolically. To illustrate the concepts, let us review below well-known situations for m = 1,
where the tensor ⊗ simply denotes the ordinary multiplication between real numbers.

Example 2.1 1. When x is a realization of a standard Brownian motion Bt, we can choose
X1,X2 to be realizations of stochastic processes of the form

X1
s,t(·) :=

∫ t

s
Bs,udBu, X2

s,t(·) :=

∫ t

s

∫ u

s
Bs,rdBrdBu, ∀0 ≤ s ≤ t ≤ T,

where the integrals
∫ t
s Bs,udBu,

∫ t
s X

1
s,udBu are understood in the Itô sense. It is easy to show

that

X1
s,t(·) =

1

2
B2
s,t(·)−

1

2
(t− s), X2

s,t(·) =
1

6
B3
s,t(·)−

1

2
(t− s)Bs,t(·), ∀0 ≤ s ≤ t ≤ T. (2.6)

Hence, in the pathwise sense, it is easy to check from (2.6) that x = (x,X1,X2) satisfies Chen’s
relation (2.4).

2. For a more complex process where X is a local martingale, for instance Xt =
∫ t

0 asdBs, we
define the stochastic integrals

∫
ydX as the integral w.r.t. the local martingale X [15, Section

2.5]. As such, we could apply the Ito formula [15, Section 2.8, p.64]

f(Xt)− f(Xs) =

∫ t

s
f ′(Xu)dXu +

1

2

∫ t

s
f ′′(Xu)d〈X〉u

for any function f ∈ C2, where 〈X〉t is the quadratic variance process, to compute explicitly

X1
s,t :=

∫ t

s
Xs,udXu =

1

2
X2
s,t−

1

2

(
〈X〉t−〈X〉s

)
, X2

s,t :=

∫ t

s
X1
s,udXu =

1

6
X3
s,t−

1

2
Xs,t

(
〈X〉t−〈X〉s

)
.

In particular if Xt =
∫ t

0 asdBs, then 〈X〉t =
∫ t

0 a
2
udu.
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3. When X = BH is a fractional Brownian motion which is not a semi-martingale [34], we can
not apply the classical Ito calculus, but define the stochastic integral

∫
yδBH in the sense

of Skorohod-Wick-Itô by using the Wick product as in [30, Chapter 5]. Then by using the
Wick-Itô formula [30] for the Skorohod-Wick-Itô integral

f(BH
t )− f(BH

s ) =

∫ t

s
Hu2H−1f ′′(BH

u )du+

∫ t

s
f ′(BH

u )δBH
u (2.7)

for any function f ∈ C2, we can compute explicitly

X1
s,t :=

∫ t

s
BH
s,uδB

H
u =

1

2
(BH

s,t)
2−1

2

(
t2H−s2H

)
, X2

s,t :=

∫ t

s
X1
s,uδB

H
u =

1

6
(BH

s,t)
3−1

2

(
t2H−s2H

)
BH
s,t.

In general, the signatures X1,X2 could also be defined for a scalar centered Gaussian process
of the form Xt =

∫ t
0 K(t, s)dBs where B is a standard Brownian motion, and K(t, s) is a

square integrable kernel. In particular, using the Itô-type formula

f(Xt)− f(Xs) =

∫ t

s
f ′(Xu)δXu +

1

2

∫ t

s
f ′′(Xu)dRu (2.8)

for any function f ∈ C2, where Ru = E(Xu)2 =
∫ s

0 K
2(s, u)du and the stochastic integral∫

δX can be computed as the limit of Riemann sums defined w.r.t. the Wick product [1]. As

such X1
s,t :=

∫ t
s Xs,uδXu,X2

s,t :=
∫ t
s X

1
s,uδXu can be computed explicitly. The reader is also

referred to [16, Chapter 10] for a detailed construction of X1,X2 of a higher dimensional X
with mutually independent components.

4. Next, consider a stochastic process X for which almost surely all realizations belong to a
Hölder space Cν for some ν > 1

2 . Then X1
s,t :=

∫ t
s Xs,uδXu,X2

s,t :=
∫ t
s X

1
s,uδXu are well defined

as Young integrals introduced in Subsection 3.1. Using the chain-rule formula that

f(Xt)− f(Xs) =

∫ t

s
f ′(Xu)δXu (2.9)

for any function f ∈ C1, X1,X2 can be computed explicitly as

X1
s,t =

1

2
x2
s,t, X2

s,t =
1

6
x3
s,t.

Denote by Cα(I) ⊂ Cα ⊕ C2α
2 ⊕ C3α

2 the set of all rough paths in I, then Cα is a closed set but not
a linear space, equipped with the rough path semi-norm

|||x|||α,I := |||x|||α,I +
∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α,∆2(I)

+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α,∆2(I)

<∞. (2.10)

In general, we will assume that x is a realization of X, where X(ω) : I → Rm,X1(ω) : I × I →
Rm ⊗ Rm and X2(ω) : I × I → Rm ⊗ Rm are stochastic processes that satisfy Chen’s relation (2.4)
and

E‖Xs,t‖ ≤ C|t− s|ν , E‖X1
s,t‖ ≤ C|t− s|2ν , E‖X2

s,t‖ ≤ C|t− s|3ν ,∀s, t ∈ I (2.11)

for some generic constant C. Then, due to the Kolmogorov criterion for rough paths [17, Appendix
A.3] for all α ∈ (1

3 , ν) there are an ω-wise version of (x,X1,X2) and random variables Kα,K1
α,K2

α,
such that, ω-wise speaking, for all s, t ∈ I,

‖xs,t‖ ≤ Kα|t− s|α, ‖X1
s,t‖ ≤ K1

α|t− s|2α, ‖X2
s,t‖ ≤ K2

α|t− s|3α.
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In particular, for every α ∈ (1
4 , ν) we have (x,X1,X2) ∈ Cα. Moreover, we could choose 1

4 < α
smaller such that

x ∈ C0,α(I) := {x ∈ Cα : lim
δ→0

sup
0<t−s<δ

‖xs,t‖
|t− s|α

= 0},

X1 ∈ C0,2α(∆2(I)) := {X ∈ C2α(∆2(I)) : lim
δ→0

sup
0<t−s<δ

‖Xs,t‖
|t− s|2α

= 0}, (2.12)

X2 ∈ C0,3α(∆2(I)) := {X ∈ C3α(∆2(I)) : lim
δ→0

sup
0<t−s<δ

‖Xs,t‖
|t− s|3α

= 0}.

Then Cα(I) ⊂ C0,α(I) ⊕ C0,2α(∆2(I)) ⊕ C0,3α(∆2(I)) is separable due to the separability of the
spaces C0,α(I), C0,2α(∆2(I)) and C0,3α(∆2(I)) [17, Subsection 5.3.3].

Rough integrals for controlled paths

We are now able to define rough integrals of the form
∫
ydx for controlling rough paths y, as

presented by Gubinelli in [21], but for the case 1
3 > α > 1

4 . Namely, a path y ∈ Cα(I,Rm ⊗ Rd)
is controlled by (x,X1) if there exists a tube (y′, y′′, Ry, Ry

′
) with y′ ∈ Cα(I,Rm ⊗ Rm ⊗ Rd), y′′ ∈

C2α(I,Rm ⊗ Rm ⊗ Rm ⊗ Rd), Ry ∈ C3α(∆2(I),Rm ⊗ Rd), Ry′ ∈ C2α(∆2(I),Rm ⊗ Rd) such that

y′s,t = y′′s ⊗ xs,t +Ry
′

s,t, ys,t = y′s ⊗ xs,t + y′′s ⊗ X1
s,t +Rys,t, ∀min I ≤ s ≤ t ≤ max I. (2.13)

y′, y′′ are called respectively the first and the second Gubinelli derivative of y. It is easy to prove
that Gubinelli derivatives are uniquely defined as long as x is truly rough, i.e. x ∈ Cα \C2α so that

lim sup
t↓s

‖xs,t‖
|t− s|2α

=∞,

(see also [16, Proposition 6.4]). According to [16, Theorem 6.6 & Exercise 6.14], almost surely, all
realizations of a standard Brownian motion B or a fractional Brownian motion BH for H ∈ (1

3 ,
1
2 ]

are truly rough, for any α ∈ (1
4 ,

1
2).

The space Dα(x,X1)(I) of all paths y controlled by (x,X1) becomes a Banach space equipped with the
norm

‖y‖x,2α,I := ‖ymin I‖+ ‖y′min I‖+ ‖y′′min I‖+ |||y|||x,α,I , where

|||y|||x,α,I :=
∣∣∣∣∣∣y′′∣∣∣∣∣∣

α,I
+
∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣

2α,I
+ |||Ry|||3α,I ,

where we omit the value space for simplicity of presentation. Now fixing a rough path x and for
any y ∈ Dα(x,X1)(I), we define a function F ∈ Cα(∆2(I),Rd) by

Fs,t := ys ⊗ xs,t + y′s ⊗ X1
s,t + y′′s ⊗ X2

s,t.

It then follows from (2.13) that

Fs,t − Fs,u − Fu,t
= ys ⊗ xs,t + y′s ⊗ X1

s,t + y′′s ⊗ X2
s,t −

(
ys ⊗ xs,u + y′s ⊗ X1

s,u + y′′s ⊗ X2
s,u

)
−
(
yu ⊗ xu,t + y′u ⊗ X1

u,t + y′′u ⊗ X2
u,t

)
= −ys,u ⊗ xu,t + y′s ⊗ (X1

s,t − X1
s,u − X1

u,t)− y′s,u ⊗ X1
u,t + y′′s ⊗ (X2

s,t − X2
s,u − X2

u,t)− y′′s,u ⊗ X2
u,t

= −(y′s ⊗ xs,u + y′′s ⊗ X1
s,u +Rys,u)⊗ xu,t + y′s ⊗ xs,u ⊗ xu,t −

(
y′′s ⊗ xs,u +Ry

′
s,u

)
⊗ X1

u,t

+y′′s ⊗
(
xs,u ⊗ X1

u,t + X1
s,u ⊗ xu,t

)
− y′′s,u ⊗ X2

u,t

= −Rys,u ⊗ xu,t −Ry
′
s,u ⊗ X1

u,t − y′′s,u ⊗ X2
u,t, ∀min I ≤ s ≤ u ≤ t ≤ max I.
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As a result,

‖Fs,t − Fs,u − Fu,t‖ ≤ ‖Rys,u ⊗ xu,t‖+ ‖Ry′s,u ⊗ X1
u,t‖+ ‖y′′s,u ⊗ X2

u,t‖

≤ |t− s|4α
(
|||Ry|||3α |||x|||α +

∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣
2α

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+
∣∣∣∣∣∣y′′∣∣∣∣∣∣

α

∣∣∣∣∣∣X2
∣∣∣∣∣∣

3α

)
.

Therefore F belongs to the space

Cα,4α2 (I) :=
{
F ∈ Cα(∆2(I)) : Ft,t = 0 and

|||δF |||4α,I := sup
min I≤s≤u≤t≤max I

‖Fs,t − Fs,u − Fu,t‖
|t− s|4α

<∞
}
.

Thanks to the sewing lemma (see [12], [16, Lemma 4.2]), the integral
∫ t
s yudxu can be defined as∫ t

s
yudxu := lim

|Π|→0

∑
[u,v]∈Π

[yu ⊗ xu,v + y′u ⊗ X1
u,v + y′′u ⊗ X2

u,v] (2.14)

where the limit is taken over all finite partitions Π of I with |Π| := max
[u,v]∈Π

|v−u| (see [21]). Moreover,

there exists a constant Cα = Cα,|I| > 1 with |I| := max I −min I, such that∥∥∥∫ t

s
yudxu − ys ⊗ xs,t + y′s ⊗ X1

s,t + y′′s ⊗ X2
s,t

∥∥∥
≤ Cα(|I|)|t− s|4α

(
|||Ry|||3α |||x|||α +

∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣
2α

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+
∣∣∣∣∣∣y′′∣∣∣∣∣∣

α

∣∣∣∣∣∣X2
∣∣∣∣∣∣

2α

)
. (2.15)

where we will simply write |||x|||α ,
∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α
,
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α

regardless of whether the domain is I or ∆2(I).

Remark 2.2 In case ν ∈ (1
3 ,

1
2 ], the appearance of X2 can be neglected and we go back to the

integral theory for controlling rough paths in [21]. Namely, the x ∈ Cν would then be lifted
to a rough path of the form x = (x,X1), where X1 ∈ C2ν satisfies (2.4) and (2.5). For α ∈
(1

3 , ν), a path y ∈ Cα(I,Rm ⊗ Rd) is controlled by (x,X1) if there exists a tube (y′, Ry) with
y′ ∈ Cα(I,Rm ⊗ Rm ⊗ Rd), Ry ∈ C3α(∆2(I),Rm ⊗ Rd) such that

ys,t = y′s ⊗ xs,t +Rys,t, ∀min I ≤ s ≤ t ≤ max I. (2.16)

A similar construction using the sewing lemma leads to the definition of the integral
∫ t
s yudxu as∫ t

s
yudxu := lim

|Π|→0

∑
[u,v]∈Π

[yu ⊗ xu,v + y′u ⊗ X1
u,v] (2.17)

where the limit is taken over all finite partitions Π of I with |Π| := max
[u,v]∈Π

|v − u|. Moreover, there

exists a constant Cα = Cα,|I| > 1 with |I| := max I −min I, such that∥∥∥∫ t

s
yudxu − ys ⊗ xs,t + y′s ⊗ X1

s,t

∥∥∥ ≤ Cα(|I|)|t− s|3α
(
|||Ry|||3α |||x|||α +

∣∣∣∣∣∣y′∣∣∣∣∣∣
α

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α

)
. (2.18)
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2.3 Rough differential equations

For simplicity of the presentation, from now on, we set m = 1 and consider the rough differential
equation

dyt = Aytdt+ Cytdxt, ∀t ∈ [a, T ], ya ∈ Rd, (2.19)

on any interval [a, T ], where A ∈ Rd×d and C ∈ Rd×d. Equation (2.19) is understood in the integral
form

yt = ya +

∫ t

a
Ayudu+

∫ t

a
Cyudxu, t ∈ [a, T ], (2.20)

where the second integral is understood as the rough integral in the Gubinelli sense, with ⊗ being
the ordinary multiplication between two matrices (in particular between a matrix and a vector). The
following theorem asserts the existence and uniqueness of the solution of a linear rough differential
equation in the Gubinelli sense. Note that the same conclusion holds for general dimension m if
the solution is understood in the sense of Friz-Victoir, see [17, Section 10.7].

Theorem 2.3 (Existence and uniqueness of the solution) There exists a unique solution of
equation (2.19) on any interval I.

Proof: The proofs for the cases ν ∈ (1
2 , 1) and ν ∈ (1

3 ,
1
2 ] are provided in [38] and [14]

respectively, hence we only need a proof for the case ν ∈ (1
4 ,

1
3 ]. Fix an α ∈ (1

4 , ν), we first prove the
existence and uniqueness of the solution for some small interval [a, T ] such that T − a < 1, which
will be clarified later. Define the Itô-Lyons map

G(y)t := ya +

∫ t

a
Ayudu+

∫ t

a
Cyudxu, t ∈ [a, T ].

Also denote by D2α
x (ya, Cya) the set of paths y controlled by (x,X1) in [a, T ] with initial values ya

and y′a = Cya, y
′′ = C2ya fixed. Observe from (2.15) that if y is controlled by (x,X1) then so is

G(y) with G(y)′s = Cys, G(y)′′s = Cy′s. For this reason, the following mapping is well defined

M : D2α
x (ya, Cya, C

2ya)→ D2α
x (ya, Cya, C

2ya), M(y)t := (G(y)t, Cyt, Cy
′
t).

Similar to [21] we are going to estimate |||M(y)|||x,α = |||Cy′|||α+
∣∣∣∣∣∣RCy∣∣∣∣∣∣

2α
+
∣∣∣∣∣∣RG(y)

∣∣∣∣∣∣
3α

using |||y|||x,α =

|||y′′|||α +
∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣

2α
+ |||Ry|||3α. It follows from (2.13) that

∣∣∣∣∣∣Cy′∣∣∣∣∣∣
α
≤ ‖C‖

∣∣∣∣∣∣y′∣∣∣∣∣∣
α
≤ ‖C‖

(
‖y′′‖∞ |||x|||α + (T − a)α

∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣
2α

)
≤ ‖C‖ |||x|||α ‖y

′′
a‖+ ‖C‖(T − a)α |||x|||α

∣∣∣∣∣∣y′′∣∣∣∣∣∣
α

+ ‖C‖(T − a)α
∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣

2α

≤ ‖C‖
(
|||x|||α + (T − a)1−3α

)(
‖y′′a‖+ |||y|||x,α

)
On the other hand, ‖RCys,t ‖ ≤ ‖Cy′′‖‖X1

s,t‖+ ‖CRys,t‖, which results in∣∣∣∣∣∣RCy∣∣∣∣∣∣
2α
≤ ‖C‖‖y′′‖∞

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+ ‖C‖(T − a)α |||Ry|||3α

≤ ‖C‖
∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α
‖y′′a‖+ ‖C‖(T − a)α

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α

∣∣∣∣∣∣y′′∣∣∣∣∣∣
α

+ ‖C‖(T − a)α |||Ry|||3α
≤ ‖C‖

( ∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+ (T − a)1−3α

)(
‖y′′a‖+ |||y|||x,α

)
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Meanwhile

‖RG(y)
s,t ‖ ≤

∥∥∥∫ t

s
Ayudu

∥∥∥+
∥∥∥∫ t

s
Cyudxu − Cysxs,t − Cy′sX1

s,t

∥∥∥
≤ ‖A‖|t− s|‖y‖∞,[s,t] + ‖C‖‖y′′‖∞,[s,t]|X2

s,t|

+Cα(T − a)|t− s|4α‖C‖
(
|||x|||α |||R

y|||3α +
∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α

∣∣∣∣∣∣∣∣∣Ry′∣∣∣∣∣∣∣∣∣
2α

+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α

∣∣∣∣∣∣y′′∣∣∣∣∣∣
α

)
≤ ‖A‖|t− s|‖y‖∞,[s,t] + ‖C‖‖y′′a‖‖X2

s,t‖+ ‖C‖(t− s)α
∣∣∣∣∣∣y′′∣∣∣∣∣∣

α
‖X2

s,t‖

+Cα(T − a)|t− s|4α‖C‖
(
|||x|||α +

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α

)
|||y|||x,α

where we can choose T − a < 1 so that Cα can be bounded from above by Cα(1). In addition

‖y‖∞,[s,t] ≤ ‖ya‖+ ‖y′a‖(T − a)α |||x|||α + ‖y′′a‖(T − a)2α
∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α

+ (T − a)3α |||Ry|||2α ,

thus it follows that∣∣∣∣∣∣∣∣∣RG(y)
∣∣∣∣∣∣∣∣∣

3α

≤ ‖A‖
[
(T − a)1−3α‖ya‖+ (T − a)1−2α |||x|||α ‖y

′
a‖+ (T − a)1−α ∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α
‖y′′a‖+ (T − a) |||Ry|||3α

]
+‖C‖

∣∣∣∣∣∣X2
∣∣∣∣∣∣

3α

(
‖y′′a‖+ (T − a)α

∣∣∣∣∣∣y′′∣∣∣∣∣∣
α

)
+ Cα‖C‖(T − a)α

(
|||x|||α +

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α

)
|||y|||x,α

≤ (‖A‖+ Cα(1)‖C‖)
(
|T − a|1−3α + |||x|||α +

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α
+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α

)(
‖ya‖+ ‖y′a‖+ ‖y′′a‖+ |||y|||x,α

)
Altogether, we have just proved that there exists a constant K = K(‖A‖, ‖C‖, Cα(1)) > 1 such that

|||M(y)|||x,α ≤ K
(
|T − a|1−3α + |||x|||α,[a,T ] +

∣∣∣∣∣∣X1
∣∣∣∣∣∣

2α,[a,T ]
+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α,[a,T ]

)
‖y‖x,α,[a,T ], (2.21)

where we choose, for a given µ < 1, a time T = T (a) satisfying

(T − a)1−3α + |||x|||α,[a,T ] +
∣∣∣∣∣∣X1

∣∣∣∣∣∣
2α,[a,T ]

+
∣∣∣∣∣∣X2

∣∣∣∣∣∣
3α,[a,T ]

=
µ

K
< 1.

Therefore, if we restrict to the compact set

B :=
{

(y, y′) ∈ Dαx (ya, Cya, C
2ya)| |||y|||x,α ≤

µ

1− µ
(1 + ‖C‖+ ‖C‖2)‖ya‖

}
then

|||M(y)|||x,α ≤ µ‖y‖x,α ≤
( µ2

1− µ
+ µ

)
(1 + ‖C‖+ ‖C‖2)‖ya‖ ≤

µ

1− µ
(1 + ‖C‖+ ‖C‖2)‖ya‖,

which proves that M : B → B. In addition, for any two paths y and ȳ ∈ B, by a computation
similar to (2.21), we get

|||M(y)−M(ȳ)|||x,α ≤ µ |||y − ȳ|||x,α ,

which shows that M is a contraction on B. This proves the existence of a solution on [a, T ]. Next,
for any two solutions with the same initial conditions (ya, Cya, C

2ya), by the same computation as
in (2.21), we get

|||y − ȳ|||x,α ≤ µ |||y − ȳ|||x,α
which, together with µ < 1, proves the uniqueness of the solution of (2.19) on [a, T ].
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Finally, we construct the greedy time sequence (2.22)

τ0 = min I, τi+1 := inf
{
t > τi : (t− τi)1−3α + |||x|||α,[τi,t] =

µ

K

}
∧max I, (2.22)

and putting NI,α(x) := sup{i ∈ N : τi ≤ max I}, we deduce from the fact

µ

K
< |τi+1 − τi|ν−α

(
1 + |||x|||ν,I

)
that

NI,α(x) <
[K
µ

(1 + |||x|||ν,I)
] 1
ν−α

+ 1.

Therefore, we can extend and prove the existence of the unique solution on any interval I. It is easy
to see that the solution yt depends linearly on the initial ya, hence there exists a solution matrix
Φ(t, a,x) of equation (2.20).

Corollary 2.4 Assume A,C : [0, T ] → Rd×d, A· is Lebesgue integrable on [0, T ] and there exists
α ∈ (1

3 , ν) such that C· ∈ Cα([0, T ],Rd×d). Assume further that C· is controlled by x in the sense of
(2.16) in Remark 2.2. Then there exists a unique solution of the time dependent rough differential
equation

dyt = Atytdt+ Ctytdxt, y0 ∈ Rd. (2.23)

Proof: Note that the solution candidate y of (2.23) should be found in the class of continuous
paths that are controlled by x, hence C·y· is also controlled by x. We will omit the details of the
proof, as it proceeds analogously to that of Theorem 2.3.

3 Rough model of stock prices

3.1 Rough stock model

We start with a rough differential equation version of the Black-Scholes model (1.1) for the financial
asset price St > 0 at time t,

dSt = µStdt+ σStdxt, (3.1)

where µ, σ ∈ R are model parameters. Equation (3.1) is understood in the pathwise sense as the
integral form

St = St0 +

∫ t

t0

µSudu+

∫ t

t0

σSudxu, (3.2)

where x ∈ Cν([0, T ],R) for ν > 1
4 is the driving path, which is lifted to a rough path x = (x,X1,X2),

and the second integral is understood as a rough integral defined in Gubinelli’s sense for controlled
rough paths as presented in Section 2. Fortunately in the scalar case (m = 1) we have the following
result.

Lemma 3.1 Assume ν ∈ (1
4 ,

1
3 ] and define

[x, 2]s,t := x2
s,t − 2X1

s,t,

[x, 3]s,t := x3
s,t − 3xs,tX1

s,t + 3X2
s,t. (3.3)

Then [x, 2], [x, 3] satisfy the additivity condition, i.e.

[x, 2]s,t = [x, 2]s,u + [x, 2]u,t; [x, 3]s,t = [x, 3]s,u + [x, 3]u,t, ∀s ≤ u ≤ t; (3.4)

hence they can be defined by [x, 2]s,t = [x, 2]0,t− [x, 2]0,s, [x, 3]s,t = [x, 3]0,t− [x, 3]0,s, where [x, 2]0,· ∈
C2ν , [x, 3]0,· ∈ C3ν are Hölder continuous paths. In case ν ∈ (1

3 ,
1
2 ] , the conclusions still hold for

[x, 2].
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Proof: The first equality in (3.4) is trivial due to the property of X1. To prove the second one,
we use the Chen relation (2.4) for X2 and the first equality in (3.4) to obtain

[x, 3]s,t − [x, 3]s,u − [x, 3]u,t

=
(
x3
s,t − x3

s,u − x3
u,t

)
− 3
(
xs,tX1

s,t − xs,uX1
s,u − xu,tX1

u,t

)
+ 3
(
X2
s,t − X2

s,u − X2
u,t

)
= 3x2

s,uxu,t + 3xs,ux
2
u,t − 3

(
xs,tX1

s,t − xs,uX1
s,u − xu,tX1

u,t

)
+ 3
(
xs,uX1

u,t + xu,tX1
s,u

)
= 3

{
xs,uxu,txs,t − xs,tX1

s,t + (xs,u + xu,t)
(
X1
s,u + X1

u,t

)}
= 3xs,t

(
xs,uxu,t − X1

s,t + X1
s,u + X1

u,t

)
= 0.

Remark 3.2 1. As a consequence, X1,X2 can be defined formally based on [x, 2], [x, 3] as follows

X1
s,t =

∫ t

s
xs,udxu :=

1

2
x2
s,t −

1

2
[x, 2]s,t,

X2
s,t =

∫ t

s
X1
s,udxu := xs,tX1

s,t −
1

3
x3
s,t +

1

3
[x, 3]s,t =

1

6
x3
s,t −

1

2
xs,t[x, 2]s,t +

1

3
[x, 3]s,t,(3.5)

for all 0 ≤ s ≤ t ≤ T , where the integrals in (3.5) are written symbolically.

2. For ν ∈ (1
5 ,

1
4 ], we could use the same procedure to define X3

s,t which satisfies

X3
s,t − X3

s,u − X3
u,t = xs,uX2

u,t + X1
s,uX1

u,t + X2
s,uxu,t.

Based on that, if we define

[x, 4]s,t := x4
s,t − 4x2

s,tX1
s,t + 2(X1

s,t)
2 + 4xs,tX2

s,t − 4X3
s,t,

then it is also easy to prove that [x, 4] satisfies the additivity condition and hence is a C4ν-
Hölder continuous path. Moreover, X3 can be defined based on x, [x, 2], [x, 3], [x, 4].

3. The additivity condition can still hold for x of higher dimension, provided that the components
of x are mutually independent. For example, for m = 2 and x = (x(1), x(2)) where x(1), x(2)

are independent scalar Gaussian noises, we define

xs,t ⊗ xs,t =

(
x

(1)
s,t ⊗ x

(1)
s,t x

(1)
s,t ⊗ x

(2)
s,t

x
(2)
s,t ⊗ x

(1)
s,t x

(2)
s,t ⊗ x

(2)
s,t

)
and X1

s,t =

(∫ t
s x

(1)
s,u ⊗ dx(1)

u

∫ t
s x

(1)
s,u ⊗ dx(2)

u∫ t
s x

(2)
s,u ⊗ dx(1)

u

∫ t
s x

(2)
s,u ⊗ dx(2)

u

)

where the integrals
∫ t
s x

(1)
s,u ⊗ dx(2)

u and
∫ t
s x

(2)
s,u ⊗ dx(1)

u of two independent Gaussian processes
can be defined as the limit in L2 of the Riemann sum (see e.g. [16, Chapter 10]), while∫ t
s x

(1)
s,u ⊗ dx(1)

u and
∫ t
s x

(2)
s,u ⊗ dx(2)

u are defined symbolically as in the scalar case. Since the
stochastic integral for independent Gaussian processes satisfies the rule of integration by parts,
it is easy to check that ∫ t

s
x(1)
s,u ⊗ dx(2)

u +

∫ t

s
x(2)
s,u ⊗ dx(1)

u = x
(1)
s,t ⊗ x

(2)
s,t

henceforth

[x, 2]s,t := xs,t ⊗ xs,t − 2SymX1
s,t =

(
[x(1), 2]s,t 0

0 [x(2), 2]s,t

)
and the additivity condition of [x, 2] follows directly. The arguments for the additivity of [x, 3]
are similar.
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Example 3.3 Returning to Example 2.1, we choose [x, 3]s,t ≡ 0 for all 0 ≤ s ≤ t ≤ T and choose
[x, 2] as follows

[x, 2]s,t :=


t− s if Xt = Bt

〈X〉t − 〈X〉s if Xt is a local martiangle∫ t
0 K(t, u)2du−

∫ s
0 K(s, u)2du if Xt =

∫ t
0 K(t, s)dBs

0 if X· ∈ Cν , ν > 1
2

. (3.6)

In particular, for a mixture Xt = ρBt +
√

1− ρ2Ξt for a constant ρ ∈ [−1, 1] and a process Ξ· ∈ Cν
with ν > 1

2 , by using formulae (2.6), (2.9) for the Stratonovich stochastic integral
∫
dB and the

Young integral
∫
δΞ respectively, we can compute explicitly

[x, 2]s,t, [x, 3]s,t ≡ 0.

Note that in all considered cases, [x, 2] is non-random and [x, 3] ≡ 0. We therefore raise a question:
Does there exist a stochastic process X and a type of stochastic integral, such that X1,X2 can be
defined and either [x, 2] is truly stochastic or [x, 3] 6= 0?

Theorem 3.4 The solution of equation (3.1) can be written explicitly in the form St = eYt where

Ya,b =


µ(b− a) + σxa,b if ν ∈ (1

2 , 1),

µ(b− a) + σxa,b − σ2

2 [x, 2]a,b if ν ∈ (1
3 ,

1
2 ],

µ(b− a) + σxa,b − σ2

2 [x, 2]a,b + σ3

3 [x, 3]a,b if ν ∈ (1
4 ,

1
3 ]

(3.7)

for all 0 ≤ a ≤ b ≤ T .

Proof: The proof follows directly from Theorem 2.3 for d = 1. Since the cases are similar,
it suffices to prove the result for the most difficult case ν ∈ (1

4 ,
1
3 ]. In fact, since zero is the trivial

solution of (3.1), it follows from the existence and uniqueness theorem that St 6= 0 for all t ≥ s
whenever Ss 6= 0. That implies St > 0 for all t ≥ s whenever Ss > 0. Now applying the Taylor
expansion for the function Yt = V (St) = logSt, we obtain from the fact y ∈ Cν that

logSt = logSs +
1

Ss
Ss,t −

1

2S2
s

S2
s,t +

1

3S3
s

S3
s,t +O(|t− s|4α), (3.8)

for 0 < t − s < h small enough on [0, T ]. On the other hand, the discretized scheme for equation
(3.1) using S′s = σSs, S

′′
s = σ2Ss and (2.15) yields

Ss,t = µSs(t− s) + σSsxs,t + σ2SsX1
s,t + σ3SsX2

s,t +O(|t− s|4α), (3.9)

for all |t − s| < h on [0, T ]. Combining (3.8) and (3.9), and using the fact that x ∈ Cα,X1 ∈
C2α,X2 ∈ C3α, we obtain

log
St
Ss

=
(
µ(t− s) + σxs,t + σ2X1

s,t + σ3X2
s,t +O(|t− s|4α)

)
−1

2

(
µ(t− s) + σxs,t + σ2X1

s,t + σ3X2
s,t +O(|t− s|4α)

)2

+
1

3

(
µ(t− s) + σxs,t + σ2X1

s,t + σ3X2
s,t +O(|t− s|4α)

)3

= µ(t− s) + σxs,t − σ2
[1

2
x2
s,t − X1

s,t

]
+ σ3

[1

3
x3
s,t − xs,tX1

s,t + X2
s,t

]
+O(|t− s|4α)

= µ(t− s) + σxs,t −
σ2

2
[x, 2]s,t +

σ3

3
[x, 3]s,t +O(|t− s|4α)

13



for all |t − s| < h on [0, T ]. Now for any 0 ≤ a < b ≤ T , by discretizing the interval [a, b] into
sub-intervals of length h = b−a

N with end points a = t0 < t1 < . . . < tN = b and using (3.4), we
obtain

Ya,b = log
Sb
Sa

=
N−1∑
i=0

log
Sti+1

Sti

=

N−1∑
i=0

(
µ(ti+1 − ti) + σxti,ti+1 −

σ2

2
[x, 2]ti,ti+1 +

σ3

3
[x, 3]ti,ti+1 +O(h4α)

)
= µ(b− a) + σxa,b −

σ2

2
[x, 2]a,b +

σ3

3
[x, 3]a,b +O(h4α)N

= µ(b− a) + σxa,b −
σ2

2
[x, 2]a,b +

σ3

3
[x, 3]a,b + (b− a)O(h4α−1). (3.10)

Letting h → 0 and using the fact that α > 1
4 , the discretized equation (3.10) proves the logarithm

form of (3.7).

Corollary 3.5 Assume that µ : [0, T ] → R is Lebesgue integrable and there exists α ∈ (1
3 , ν) such

that σ· ∈ C([0, T ],R) and σ is controlled by x in the sense of (2.16) of Remark 2.2. Then the time
dependent rough differential equation

dSt = µtStdt+ σtStdxt (3.11)

could be solved explicitly as St = eYt where

Ys,t =

∫ t

s
µudu−

1

2

∫ t

s
σud[x, 2]u +

∫ t

s
σudxu, (3.12)

where the second integral in (3.12) is a Young integral (2.1) while the third integral is understood
as a rough integral (2.17).

Proof: The proof uses similar estimates as in the proof of Theorem 3.4, hence will be omitted
here.

Remark 3.6 Theorem 3.4 shows that the stock model (3.1) is the most general model so far,
since the driving noise can be constructed as the linear combination of x, [x, 2], [x, 3] which are not
necessarily of Gaussian type, and are not necessarily mutually independent. This matches with the
empirical evidence that the log-return does not follow a normal distribution and can have a heavy
tail. Moreover, the long memory effect can also be explained given that [x, 2], [x, 3] are Hölder
continuous of order 2ν, 3ν > 1

2 .
Let us review some special cases.

• If x is a realization of a standard Brownian motion B, we go back to solve the classical model
(1.1) using Itô calculus, so that the log-price has the form

Ys,t =
(
µ− σ2

2

)
(t− s) + σBs,t.

That corresponds to [x, 2]a,b = (b− a), [x, 3] ≡ 0.

14



• Also, if we choose x to be a realization of a fractional Brownian motion BH for H ∈ (1
2 , 1),

we go back to the model dSt = µStdt+σStδB
H
t with the Skorohod-Wick-Itô integral

∫
yδBH

proposed in [30] as discussed in Example 2.1(iii), hence the solution is solved explicitly [31] as

Ys,t = µ(t− s)− σ2

2
(t2H − s2H) + σBH

s,t; (3.13)

henceforth [x, 2]a,b := (b2H − a2H), [x, 3]a,b := 0.

• Additionally, if Xt ∈ Cν for ν > 1
2 , then by solving the Young equation dSt = µStdt+σStdXt,

we obtain the explicit solution
Ys,t = µ(t− s) + σxs,t; (3.14)

in this case [x, 2] = [x, 3] ≡ 0.

Similarly, by assigning Xt := ρBt +
√

1− ρ2ξt for ρ ∈ [−1, 1], we go back to the mixed noise
model

St = Ss +

∫ t

s
µSudu+

∫ t

s
σρSudBu +

∫ t

s
σ
√

1− ρ2Sudξu, (3.15)

where the first stochastic integral is understood in the Stratonovich sense, and the second
stochastic integral is understood in the pathwise sense as a Young integral, due to the fact
that ξ ∈ C2ν with 2ν > 1

2 , see e.g. [29, Chapter 5]. The explicit solution of equation (3.15) is
given by

Ys,t = µ(t− s) + σρBs,t + σ
√

1− ρ2ξs,t, ∀0 ≤ s ≤ t ≤ T, (3.16)

which corresponds to [x, 2]s,t, [x, 3]s,t ≡ 0. We emphasize here however that, in (3.16) the
effect of mixed noises is only linear in σ which comes from the noise xa,b, but in general higher
order terms of σ could come from [x, 2], [x, 3] as in (3.7).

3.2 No arbitrage under transaction costs

Motivated by the discussions in Remark 3.6 on different types of stochastic integrals as well as
Example 3.3, we propose the following additional hypotheses in this section.

Hypothesis A [x, 2], [x, 3] are Hölder continuous paths of the form

[x, 2]s,t = αs,t + ξs,t, [x, 3]s,t = βs,t + γs,t, (3.17)

for all s, t ∈ [0, T ], where α, β : R→ R are deterministic functions of bounded variation; and

Hypothesis B x, ξ, γ are realizations of mutually independent stationary stochastic processes
Xt,Ξt,Γt on a probability space (Ω,F , (Ft)t∈[0,T ],P) which are Ft-adapted and satisfy

EXs,t = EΞs,t = EΓs,t = 0, ∀0 ≤ s ≤ t, (3.18)

and such that almost surely all realizations of X,Ξ,Γ belong to the Hölder space Cν , C2ν , C3ν re-
spectively for some constant ν ∈ (1

4 ,
1
2).

It is important to note that from Hypothesis A, the pathwise integral
∫
ydx for controlling rough

paths y w.r.t. x of the form

ys,t = y′sxs,t +
1

2
y′′s (x2

s,t − ξs,t) +Rys,t, y′s,t = y′′sxs,t +Ry
′

s,t
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can be computed as∫ t

s
yudxu = lim

|Π|→0

∑
[u,v]∈Π

[
yuxu,v +

1

2
y′u(x2

u,v − ξu,v) +
1

6
y′′u(x3

u,v − 3xu,vξu,v + 2γu,v)
]

+

∫ t

s

1

3
y′′udβu −

∫ t

s

1

2
y′udαu,

where the limit is taken on all the finite partitions Π of I with |Π| := max
[u,v]∈Π

|v − u|, and the last

two integrals are understood in the Riemann-Stieltjes sense for functions α, β of bounded variation.
Then the logarithm price process Yt := logSt can be written explicitly in the pathwise sense as

Ys,t =
[
µ(t− s)− σ2

2
αs,t +

σ3

3
βs,t

]
+ σXs,t −

σ2

2
Ξs,t +

σ3

3
Γs,t, ∀s, t ∈ [0, T ]. (3.19)

To avoid the no arbitrage problem we follow [19] to consider a realistic assumption on transaction
costs. Namely, consider the model with a riskless asset price process At and a risky asset price
process (St)t∈[0,T ] on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), where the filtration Ft satisfies
the usual assumptions of right continuity and saturatedness and St is a càdlàg (right continuous with
left limits) path, strictly positive almost surely, adapted and quasi-left continuous w.r.t. Ft. An
investor trades in the risky asset according to the strategy (θt)t∈[0,T ], which represents the number
of shares held at time t, and each unit traded in the risky asset generates a transaction cost of k
units, which is charged to the riskless asset account. Consider a simple strategy θ which requires a
finite number of transactions at stopping times (τi)

n
i=1, then θ =

∑n
i=1 θi1]τi−1,τi] for some random

variables (θi)
n
i=1, where θi is Fτi− measurable, and θ0 = 0 conventionally. The liquidation value of

a portfolio with zero initial capital is

Vt(θ) =

n∑
i=1

θi(Sτi∧t − Sτi−1∧t)− k
∑
τi≤t

Sτi |θi − θi−1| − kSt|θt|. (3.20)

This discrete model is then proved to converge to the following continuous model

Vt(θ) = 〈θ, S〉t − k
∫

[0,t]
Sud‖θ‖u − kSt|θt|, (3.21)

where ‖θ‖t is the total variation of θ on [0, t] and 〈θ, S〉t is a certain type of pathwise integral.
According to [19], a strategy θ is admissible if Vt(θ) ≥ −M a.s. for some M > 0 and for all
t > 0. It is called an arbitrage opportunity on [0, T ] if it is admissible with VT (θ) ≥ 0 a.s. and
P(VT (θ) > 0) > 0. A market is arbitrage free on [0, T ] if, for all admissible strategies θ, VT (θ) ≥ 0
a.s. only if VT (θ) = 0 a.s. The market is arbitrage free with transaction costs k if St satisfies the
condition that for all stopping times τ such that P(τ < T ) > 0, we have

P
(

sup
t∈[τ,T ]

∣∣∣Sτ
St
− 1
∣∣∣ < k, τ < T

)
> 0. (3.22)

Condition (3.22) is satisfied when the asset logarithm price process Yt is sticky w.r.t. the filtration
Ft, i.e. for all ε, T > 0 and all stopping times τ such that P(τ < T ) > 0, one has

P( sup
t∈[τ,T ]

|Yτ − Yt| < ε, τ < T ) > 0 (3.23)

According to [19], any strong Markov process, i.e. for every finite Fτ -stopping time τ , under the
conditional law P(·|Xτ = y), the process (Xτ+t)t≥0 is independent of Fτ and has the law Py, is
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sticky. Another sticky class consists of adapted stochastic processes w.r.t. filtration (Ft)t∈[0,T ] that
have conditional full support (CFS), i.e.

∀t ∈ [0, T ), (P-a.s.) ∀ω ∈ Ω : supp
(

law
[
(Xu)u∈[t,T ]|Ft

]
(ω)
)

= CXt(ω)([t, T ], I), (3.24)

where Cη([t, T ], I) is the space of continuous functions f ∈ C([t, T ], I) taking values in an open
interval I ⊂ R such that f(t) = η, and we regard law

[
(Xu)u∈[t,T ]|Ft

]
as a regular conditional law (a

random Borel probability measure) on C([t, T ], I) [25, pp. 106-107]. Furthermore, any stochastic
process with CFS is proved in [20, Theorem 1.2] to admit an ε-consistent pricing system for all ε > 0,
i.e. there exists a pair (S̃, P̃ ) where P̃ is an equivalent probability w.r.t. P and S̃ is a P̃ -martingale
(adapted to Ft) such that

1

1 + ε
≤ S̃t
St
≤ 1 + ε, ∀t ∈ [0, T ].

We therefore need another assumption.

Hypothesis C Either Xt,Ξt,Γt are all strong Markov processes, or X has CFS in the sense of
(3.24).

Theorem 3.7 Under Hypotheses A, B, C and the situation of transaction costs k, the logarithm
price process Yt in (3.19) is sticky. Hence St is arbitrage free under transaction costs k on any
interval [0, T ].

Proof: In case X,Ξ,Γ are strong Markov processes, the stickiness follows from [19, Proposition
3.1]. For a more general case, we could apply the method in [20], [32]; in particular the CFS criterion
was proved in [32, Theorem 3.3] for an extended class of mixed noises Zt+Xt, where Z is an arbitrary
continuous process and X is the adapted process with CFS and independent of Z.

Remark 3.8 (Towards a time dependent rough model) Let us consider the case ν > 1
3 and

the time dependent model (3.12)

Ys,t =

∫ t

s
µudu−

1

2

∫ t

s
σud[x, 2]u +

∫ t

s
σudxu,

where σ· is a Ft- adapted stochastic process that is independent of X,Ξ and σt 6= 0 for all t ∈ [0, T ]
almost surely. We need to impose the condition for X so that Yt is sticky. In this case the process
Γ in Hypotheses A and B could be neglected. The conclusion on stickiness of Yt should then hold if
X,Ξ are strong Markov processes, as seen in Theorem 3.7. However, in order to prove that Y has
CFS once X has CFS, we need to modify the CFS condition in Hypothesis C to match with the
rough integral

∫ t
s σudxu.

To do that, observe from Hypothesis B that for a fixed α ∈ (1
3 , ν) almost all trajectories of X belong

to the separable space C0,α([0, T ],R) as in (2.12). Since

Ys,t =

∫ t

s
µudu−

1

2

∫ t

s
σud[x, 2]u + lim

|Π|→0

∑
[u,v]∈Π

[σuxu,v +
1

2
σ′ux

2
u,v]−

1

2

∫ t

s
σ′ud[x, 2]u

=

∫ t

s
µudu−

1

2

∫ t

s

(
σu + σ′u

)
d[x, 2]u + lim

|Π|→0

∑
[u,v]∈Π

[σuxu,v +
1

2
σ′ux

2
u,v],

we should define the CFS condition for X in terms of Hölder spaces as

∀t ∈ [0, T ), (P-a.s.) ∀ω ∈ Ω : supp
(

law
[
(Xu)u∈[t,T ]|Ft

]
(ω)
)

= C0,α
Xt(ω)([t, T ], I), (3.25)
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In this situation, we expect to prove that: If X has CFS on [0, T ] in the sense of (3.25), then so
does the process κ· =

∫ ·
0 σudxu. The proof is similar to [20, Lemma 4.5] (see also [32, Theorem

3.3]), except the estimates w.r.t. the supremum norms should be replaced by the estimates with
α-Hölder norms. In particular, one important task in the proof is to approximate κ by a function
f ∈ C1([0, T ],R) so that∫ t

s
σudxu − fs,t =

∫ t

s
σudxu −

∫ t

s
σud

(∫ u

s

f ′r
σr
dr
)

=

∫ t

s
σud

(
xu −

∫ u

s

f ′r
σr
dr
)

where all the integrals could be understood in the rough sense. As such the norm ‖κ− f‖α,[t,T ] can
be estimated using (2.18).
Note that for σ· to be a piecewise constant function, we go back to model (3.19) without β,Γ, hence
there is no need to use the α-Hölder norm but only the supremum norm, and Theorem 3.7 can be
applied to obtain the CFS in the sense of (3.24) for Y .

4 Some empirical evidence

4.1 Estimating Hurst exponents

Table 1 shows how the Hurst exponents vary w.r.t. different time scales h, for h = 1 corresponding
to daily quotes, by using the rescale range test [R/S] with minimal size of 20 to avoid numerical
error in estimating linear regression [13]. As seen in Tables 1,2,3, the Hurst exponents for daily,
weekly and monthly data are still smaller than 2

3 , implying that there is no effect of the third noise
Γ for a Hurst exponent H3 >

3
4 . On the other hand, the Hurst exponents are bigger but very close

to 0.5 for a time scale h� 1 (minute quotes), implying that the effect of standard Brownian motion
dominates Xt = Bt and thus H1 = 1

2 .
Tables 2 and 3 show the results for the same data but for different methods of computing the fractal
dimension, namely using spectral analysis and the Higuchi method [23]. We see that quite often
the spectral method gives Hurst exponents smaller than 1

2 for smaller time-scales. In contrast, the
Higuchi method gives quite stable results which are comparable with the rescale range method in
Table 1.

In addition, our numerical computations, in Table 5 and Figure 1 with data from stock index
SP500 for different timescales, show a non-linear dependence of the variance on the time duration,

Var Yt,t+τ = σ2τ2H ⇔ log
(

Var Yt,t+τ

)
= 2H log τ + 2 log σ, (4.1)

where 1 > H > 0 for all data of timescales from minute to monthly quotes. Moreover, H seems to
depend increasingly on time scale h. Relation (4.1) is tested by choosing τ = 2k, k = 0, . . . ,m where
m = log2

N
100 and N is the length of the data. The variance Var Yt,t+τ can be computed based on

the sequence {Yiτ,(i+1)τ} with length no less than 100 to neglect potential noises from small data.
It is not clear how this nonlinearity can arise from the time dependent model (1.2) with addi-

tional assumptions on the stationarity of the processes µt and σt. However, we can give a simple
explanation for the numerical results in Table 4 and Figure 1 by using model (3.7). Indeed, we
can simply assume that [x, 2]s,t is a realization of a stochastic process Ξ and let β,Γ ≡ 0. Then it
follows from (3.19) that

Yt,t+h = µh− σ2

2
αt,t+h + σXt,t+h −

σ2

2
Ξt,t+h, (4.2)

18



1M 5M 15M 30M 1H 4H Daily Weekly Monthly

Sp500 0.5158 0.5103 0.5234 0.5218 0.5201 0.5278 0.5613 0.5816 0.6105

Dow Jones 0.5199 0.5177 0.5301 0.5410 0.5437 0.5534 0.5764 0.5952 0.5990

Nasdaq100 0.5177 0.5193 0.5245 0.5256 0.5324 0.5490 0.5694 0.6069 0.6305

Table 1: Hurst exponents for different time scales using [R/S] analysis. Data source: Dukascopy
Bank SA

1M 5M 15M 30M 1H 4H Daily Weekly Monthly

Sp500 0.4898 0.4911 0.4969 0.4879 0.4838 0.4818 0.5649 0.6006 0.5284

Dow Jones 0.4937 0.4952 0.5021 0.4909 0.4927 0.4951 0.5049 0.5386 0.5015

Nasdaq100 0.4907 0.4964 0.5048 0.4974 0.5031 0.4755 0.5188 0.5651 0.4649

Table 2: Hurst exponents for different time scales using Spectral analysis. Data source: Dukascopy
Bank SA

1M 5M 15M 30M 1H 4H Daily Weekly Monthly

Sp500 0.5202 0.5202 0.5157 0.5197 0.5181 0.5149 0.5549 0.5410 0.5483

Dow Jones 0.5198 0.5208 0.5174 0.5127 0.5161 0.5081 0.5651 0.5734 0.5655

Nasdaq100 0.5271 0.5294 0.5224 0.5185 0.5307 0.5288 0.6112 0.6490 0.6491

Table 3: Hurst exponents for different time scales using Higuchi method. Data source: Dukascopy
Bank SA

where X and Ξ are independent. As a result,

EYt,t+h = µh− σ2

2
αt,t+h, Var Yt,t+h = σ2Var Xt,t+h +

σ4

4
Var Ξt,t+h. (4.3)

Now assume further that

Var Xt,t+h = E|Xt,t+h|2 = Ch, Var Ξt,t+h = E|Ξt,t+h|2 = CHh
2H (4.4)

for some H ∈ (1
2 , 1) and constants C,CH (this assumption (4.4) will be satisfied if X = B and

Ξ = BH). Then it follows from (4.3) that

log
(

Var Yt,t+h

)
= log

(
Cσ2h+

CH
4
σ4h2H

)
≈

{
log(h) + log(Cσ2) if h� 1

2H log(h) + log(CH4 σ4) if h� 1
. (4.5)

Therefore for different time scales h ranging from 1
1440 for minute quotes to 30 for monthly quotes,

the regression coefficient for the relation between log
(

Var Yt,t+h

)
and log h in (4.5) can increase

from smaller than (but also close to) 1
2 to 2H for H > 1

2 , as observed in Table 4.

4.2 Upper-parabolic mean-variance relation of the logarithmic return

A drawback of model (1.1) is the fact that

EYt,t+h = h
(
µ− σ2

2

)
, Var Yt,t+h = σ2h,
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1M 5M 15M 30M 1H 4H Daily Weekly Monthly

σ 0.0003 0.0006 0.0010 0.0014 0.0020 0.0036 0.0121 0.0246 0.0417

H 0.4872 0.4841 0.4810 0.4832 0.4798 0.4673 0.5237 0.5663 0.6191

Table 4: Linear regression coefficients of relation (4.1) for Sp500, from minute to monthly quotes.
Data source: Dukascopy Bank SA

Figure 1: Linear regression of relation (4.1) for Sp500, from minute to monthly quotes. Data source:
Dukascopy Bank SA

which implies that the variance depends linearly and negatively on the expected return

Var Yt,t+h = 2µh− 2EYt,t+h. (4.6)

Our numerical computations with empirical data show a different picture. We collect time se-
ries {Yj}Nj=1 of 1 minute logarithmic quotes, so that the time step h is small. Then for any

set Y
(h)
k := {Ykm+i}mi=1 of daily period where k = 0 . . . [Nm ] − 1, we calculate the mean EY (h)

k =

1
m

∑m
i=1 Ykm+i,km+i+1 and its variance Var Y

(h)
k = 1

m−1

∑m−1
i=1

(
Ykm+i,km+i+1 − EY (h)

k

)2
of the 1-

minute logarithmic return during that day. Figures 2 and 3 show that, for all types of financial
asset prices from stocks and stock indices to commodities and cryptocurrencies, the set of daily
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mean-variance (EY (h)
k ,Var Y

(h)
k ) has a parabola-shaped left envelope, which cannot be explained

by model (4.6).

Figure 2: Upper-parabolic mean-variance relation (4.7) for 1-minute quotes of stock indices, com-
modities and cryptocurrencies. Data: China50, Dax, DowJones30, Euro50, Hongkong40, Nas-
daq100, Nikkei, Sp500, Uk100, Gold, Bitcoin, Etherium. Data source: Dukascopy Bank SA

While it seems to be very complicated to theoretically explain this parabolic relation using a
time dependent Itô model, our rough model under Hypotheses A-C easily accounts for that. Indeed,
consider again model (4.2) with expectation and variance computed in (4.3). By solving for σ2 in
terms of EYt,t+h and µ in the first equality and inserting it into the second equality we obtain a
parabolic relation

Var Yt,t+h = 2
Var Xt,t+h

αt,t+h

(
µh− EYt,t+h

)
+

Var Ξt,t+h
(αt,t+h)2

(
µh− EYt,t+h

)2
. (4.7)
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Figure 3: Upper-parabolic mean-variance relation (4.7) for 1-minute quotes of several stocks. Data:
Amazon, Apple, AT&T, BMW, Cisco, Coca-cola, Facebook, Goldman Sachs, Google, IBM, JP
Morgan, Visa. Data source: Dukascopy Bank SA

In particular, since σ2 = 2
αt,t+h

(
µh− EYt,t+h

)
≥ 0, it follows that

Var Yt,t+h ≥
Var Ξt,t+h
(αt,t+h)2

(
µh− EYt,t+h

)2
(4.8)

⇔ (EYt,t+h,Var Yt,t+h) lies inside parabola P :=
{

(x, y) ∈ R2 : y =
Var Ξt,t+h
(αt,t+h)2

(µh− x)2
}
,

which explains Figures 2 and 3, where the symmetry axis of the parabola P is x0 = µh ≈ 0 since
µh ≈ 0 for small time steps h (due to high frequency data of minute quotes). It is important to
note that the parameters of the parabola P depend only on the noise Ξ and are independent of X.
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Moreover, in case Ξ is non-random, Var Ξt,t+h ≡ 0 so the parabola reduces to the flat line

Var Yt,t+h = 2
Var Xt,t+h

αt,t+h

(
µh− EYt,t+h

)
which includes the special case (4.6) by assigning X := B and αs,t := t− s.

5 Risk under stock model ambiguity: Uncertainty from signatures

The rough model in Section 4 implies that there would be an additional source of noise coming from
[x, 2] that affects the asset price. To show how negative the effect of the rough path signatures on
the expected log-return could be, let us consider again model (4.2) and assign h := 1 for simplicity
and denote by Rt = log St

St−h
= Yt−1,t the log-return. It then follows from (4.2) that

Rt = Yt−1,t = µ− σ2

2
αt−1,t + σXt−1,t −

σ2

2
Ξt−1,t. (5.1)

Table 5 shows the expectation and variance of the log-return in the considered models. Observe

ERt Var Rt

Model (1.1) µ− 1
2σ

2 σ2

Model (3.13) µ− σ2

2

[
t2H − (t− 1)2H

]
σ2

Model (3.1) µ− σ2

2 αt−1,t σ2Var Xt−1,t + 1
4σ

4Var Ξt−1,t

Table 5: Comparison of expected value and variance among models.

that for model (5.1) we have additional nonlinear terms that are quartic in σ and which will be
important for our subsequent discussion. Observe from the classical model (1.1) that

ERt = µ− 1

2
VarRt. (5.2)

For the model (3.13) we get

ERt = µ− 1

2

[
t2H − (t− 1)2H

]
VarRt

which implies that

{
ERt > µ− 1

2VarRt if H < 1
2

ERt ≤ µ− 1
2VarRt if H ≥ 1

2

. (5.3)

In comparison, it follows that for the rough model

ERt ≤ µ−
1

2
VarRt ⇔

σ2

2
Var Xt−1,t +

1

8
σ4Var Ξt−1,t ≤

σ2

2
αt−1,t

⇔ Var Xt−1,t +
σ2

4
Var Ξt−1,t ≤ αt−1,t. (5.4)

In all three models, the expected return is decreasing when the variance is increasing, which matches
with classical results. The negative effect of the variance on the expected return is however very
different for all three models.
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Indeed, the variance of Rt in the classical model (1.1) or in the mixed model (3.15) is different from
that of the rough model (5.1); in fact,

Var
[
RItô
t

]
= Var

[
RWick
t

]
= σ2 ≤ Var

[
RRough
t

]
. (5.5)

Due to that reason, the information is somehow hidden in the signatures, which can increase the
uncertainty of the model and result in a bigger risk.

To see how this leads to a model risk, let us now review the strategy for selling an asset in
the portfolio, which is discussed in [36] and [37]. Assume that the growth rate µ, which depends
mainly on the intrinsic (fundamental) value, is a piecewise constant function, and that the volatility
parameter σ is unknown. According to [37], the criterion of the trading strategy is to sell the asset
when its expected value is negative. When we follow (5.2), this would mean in practice that we sell
when the variance crosses the threshold 2µ

ERt < 0⇔ 2µ < VarRt. (5.6)

When we applied the criterion (5.6) also for the Wick model for H < 1
2 or for the rough model

with Var Xt−1,t + σ2

4 Var Ξt−1,t > αt−1,t, then because the effect of the variance on the expected
return in (5.3) and (5.4) is less negative, we would sell too early. On the other hand, in the case of
H ≥ 1

2 in (5.3) for the Wick model or in the case of (5.4) for the rough model, the criterion is not
appropriate, because it underestimates the larger effect of the variance on the expected return in
(5.3) as well as in (5.4), thus we would sell too late. Failure to use the right model could therefore
create a model risk of mis-calculating the expected value, which then affects the trading strategies.
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