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Abstract

In this paper, we prove Bohr inequality and Paley-Wiener type theorem for functions with

value in Banach spaces.
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1. Introduction.

The relations between properties of functions and their spectrum (the support of their

Fourier transform) are interested for many mathematicians. The classical results such as
inequalities of Bernstein, Bohr, Nikol’skii, Paley-Wiener theorem, etc. ([1], [2], [3], [4]) belong

to this direction. In this paper we provide Bohr inequality and Paley-Wiener type theorem
for functions with value in Banach spaces. Note that the mentioned classical results were

stated for usual Lp- functions.
We recall Bohr inequality ([2]):

Let 1 ≤ p ≤ ∞, f ∈ Cm(R), % > 0, suppf̂ ∩ (−%, %) = ∅ and Dmf ∈ Lp(R). Then f ∈ Lp(R)
and

‖f‖p ≤ %−mKm‖Dmf‖p,

where the Favard constants Km are best possible when p = 1 and defined as follows

Km = 8(2π)−(m+1)
∞
∑

j=0

((−1)j(2j + 1))−(m+1).

The Favard constants have the following properties

1 = K0 ≤ K2 < ... <
4

π
< ... < K3 ≤ K1 =

π

2
.

The initial Bohr inequality was proved for p = ∞ and generalized in [5], [6].
The Paley-Wiener theorem was proved first for L2-functions and has many generalizations

(see, for example, [7]- [18]).
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Notations. Let f ∈ L1(R) and f̂ = Ff be its Fourier transform

f̂(ζ) =
1√
2π

∫ +∞

−∞
e−ixζf(x)dx,

and f̌ = F−1f be its inverse Fourier transform

f̌(ζ) =
1√
2π

∫ +∞

−∞
eixζf(x)dx.

Let (X, ‖.‖X) denote a complex Banach space and L(X) = BC(R → X) be the set of all

X-value bounded continuous functions f : R → X. For a given function f ∈ BC(R → X),
we define ‖f‖L(X) = sup{‖f(t)‖X : t ∈ R}. Then (L(X), ‖.‖L(X)) itself is a Banach space. We
define the derivative Df of f ∈ L(X), as usual,

Df(s) = lim
h→0

f(s+ h) − f(s)

h
,

and Dmf is the derivative of order m of f . The convolution ϕ ∗ f of f with a Schwartz

function is defined as follows

ϕ ∗ f(s) =

∫ +∞

−∞
ϕ(s− t)f(t)dt.

The Beurling spectrum Spec(f) of a function f ∈ L(X) is defined by

Spec(f) = {ζ ∈ R : ∀ε > 0, ∃ϕ ∈ S(R) : suppϕ̂ ⊂ (ζ − ε, ζ + ε), ϕ ∗ f 6= 0}.

Note that, Spec(f) is always a closed subset of R. Let K ⊂ R and ε > 0. We put K(ε) :=
{ζ ∈ C : ∃x ∈ K : |x − ζ| < ε}, which is the ε− neighborhood in C of K and Kε := {ζ ∈
R : ∃x ∈ K : |x− ζ| < ε}, Z+ = {0, 1, 2, ...}.

Let P (x) be a polynomial. The differential operator P (D) is obtained from P (x) by

substituting x→ D = −i∂/∂x,

2. Bohr inequality for functions with value in Banach spaces

Now, we state the Bohr inequality for functions with value in Banach spaces.

Theorem 2.1. Let ∆ > 1, % > 0, (Dmf)∞m=0 ⊂ L(X), Spec(f) ⊂ [−∆%,∆%] and Spec(f) ∩
(−%, %) = ∅. Then there exists a constant C > 0 independent of f,m, % such that

‖Dmf‖L(X) ≥ C%m‖f‖L(X). (1)

To obtain the theorem, we need the following results.

Lemma 2.2 (Young inequality for Banach spaces). Let f ∈ L(X), and ϕ ∈ S(R).

Then ϕ ∗ f ∈ L(X) and

‖ϕ ∗ f‖L(X) ≤ ‖f‖L(X)‖ϕ‖L1.
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Proof. We see that

‖ϕ ∗ f‖L(X) = sup
t∈R

‖
∫ +∞

−∞
ϕ(s− t)f(t)dt‖X ≤ sup

t∈R

∫ +∞

−∞
‖ϕ(s− t)f(t)‖Xdt

≤ ‖f‖L(X) sup
t∈R

∫ +∞

−∞
|ϕ(s− t)|dt = ‖f‖L(X)‖ϕ‖L1,

which completes the proof.

Lemma 2.3. Let ∆ > 2, (Dmf)∞m=0 ⊂ L(X), Spec(f) ⊂ [−∆,∆] and Spec(f) ∩ (−1, 1) = ∅.
Then there exists a constant C > 0 independent of f,m such that

‖Dmf‖L(X) ≥ C‖f‖L(X). (2)

Proof. Put K := [−∆,−1] ∪ [1,∆] and

>(ζ) =

{

C1e
1

ζ2−1 if |ζ| < 1,

0 if |ζ| ≥ 1,

where C1 is chosen such that
∫

R
>(ζ)dζ = 1. We define the sequence of functions (φm(ζ))m∈N

via the formula

φm(ζ) = (1K3/(4m)
∗ >1/(4m))(ζ),

where

>1/(4m)(ζ) = 4m>(4mζ).

Then >1/(4m)(ζ) = 0 for all ζ 6∈ [−1/(4m), 1/(4m)],
∫

R
>1/(4m)(ζ)dζ = 1. Hence, for all

m ∈ N we have φm(ζ) ∈ C∞(R), and

φm(ζ) = 1 ∀ζ ∈ K1/(2m), φm(ζ) = 0 ∀ζ /∈ K1/m. (3)

So, it follows from Spec(f) ⊂ K that

f = (2π)−1/2(Dmf) ∗ F−1(φm(−ζ)(−iζ)m) (4)

= (2π)−1/2(Dmf) ∗ F (φm(ζ)/(iζ)m).

Therefore, since (4) and Lemma 2.2, we have f ∈ L(X) and the following estimate

‖f‖L(X) ≤ (2π)−1/2‖Dmf‖L(X)‖F (φm(ζ)/ζm)‖L1. (5)

Therefore, since 0 < ‖F (φm(ζ)/ζm)‖L1 < ∞ for all m = 1, 2, 3, we conclude ‖Dmf‖L(X) ≥
C‖f‖L(X) for all m = 1, 2, 3. So, to complete the proof, it is sufficient to prove (2) only for
m ≥ 4. To do that, we define

km := 1 +
1

m
, gm(ζ) = φm(kmζ),Φm(ζ) = φm(ζ) − gm(ζ).

Hence,

(F (gm(ζ)/ζm))(x) = (km)m(F (φm(kmζ)/(kmζ)
m)(x) = (km)m−1(F (φm(ζ)/ζm))(x/km).
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So,

∥

∥

∥
F (gm(ζ)/ζm)

∥

∥

∥

L1
= km

m

∥

∥

∥
F (φm(ζ)/ζm)

∥

∥

∥

L1
.

Then it follows from (km)m = (1 + 1
m )m ≥ 2 that

∥

∥

∥
F (gm(ζ)/ζm)

∥

∥

∥

L1
≥ 2

∥

∥

∥
F (φm(ζ)/ζm)

∥

∥

∥

L1
.

Therefore, since Φm(ζ) = φm(ζ) − gm(ζ) we get

∥

∥

∥
F (Φm(ζ)/ζm)

∥

∥

∥

L1
≥

∥

∥

∥
F (gm(ζ)/ζm)

∥

∥

∥

L1
−

∥

∥

∥
F (φm(ζ)/ζm)

∥

∥

∥

L1
(6)

≥
∥

∥

∥
F (φm(ζ)/ζm)

∥

∥

∥

L1
.

From (5)-(6) we obtain

‖f‖L(X) ≤ (2π)−1/2‖Dmf‖L(X)‖F (Φm(ζ)/ζm)‖L1. (7)

Now, we will estimate‖F (Φm(ζ)/ζm)‖L1. To do that, we put C2 = max{‖>(j)‖L1, j ≤ 3}.
Since >1/(4m)(x) = 4m>(4mx), we obtain >(j)

1/(4m)(x) = (4m)j+1>(j)(4mx) and then

‖>(j)
1/(4m)

‖L1 = (4m)j‖>(j)‖L1 ≤ C2(4m)j, ∀j ≤ 3.

Therefore,

‖φ(j)
m ‖L∞ = ‖(1K3/(4m)

∗ >(j)
1/(4m))‖L∞ ≤

∥

∥

∥
>(j)

1/(4m)

∥

∥

∥

L1
≤ (4m)jC2, ∀j ≤ 3. (8)

If |ζ| < 1 − (3/m) then |ζ| < |kmζ| < 1 − (1/m), combining this and (3) we have φm(ζ) =

φm(kmζ) = 0, which implies Φm(ζ) = φm(ζ)− φm(kmζ) = 0.
If |ζ| > ∆ + 1/m then |kmζ| > |ζ| > ∆ + 1/m, combining this and (3) we have φm(ζ) =

φm(kmζ) = 0, which implies Φm(ζ) = 0.
If 1 < |ζ| < ∆−(∆− 1

2)/m then 1 < |ζ| < |kmζ| < ∆+1/(2m) and then φm(ζ) = φm(kmζ) =
1, which implies Φm(ζ) = 0.

From these we have

suppΦm ⊂ {ζ : |ζ| ∈ [1− (3/m), 1]∪ [∆− (∆− 1

2
)/m,∆ + 1/m]. (9)

So, for ζ ∈ suppΦm we get |ζ| ≤ 2∆ and then

∣

∣

∣
ζ − kmζ

∣

∣

∣
=

∣

∣

∣

ζ

m

∣

∣

∣
≤ 2∆

m
. (10)

From (8) and (10) we have the following estimate for ζ ∈ suppΦm

∣

∣Φm(ζ)
∣

∣ =
∣

∣φm(ζ) − gm(ζ)
∣

∣ =
∣

∣φm(ζ) − φ(kmζ)
∣

∣ (11)

≤ |ζ − kmζ|.‖φ
′

m‖L∞ ≤ 2∆

m
4mC2 = 8∆C2,

∣

∣Φ
′

m(ζ)
∣

∣ =
∣

∣φ
′

m(ζ)− g
′

m(ζ)
∣

∣ =
∣

∣φ
′

m(ζ)− kmφ
′

m(kmζ)
∣

∣ (12)
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≤
∣

∣φ
′

m(ζ)− φ
′

m(kmζ)
∣

∣ +
∣

∣(1− km)φ
′

m(kmζ)
∣

∣

≤
∣

∣ζ − kmζ
∣

∣.‖φ′′

m‖L∞ +
∣

∣1 − km

∣

∣.‖φ′

m‖L∞

≤ 2∆

m
(4m)2C2 +

∣

∣1 − km

∣

∣4mC2 ≤ 36∆mC2,

and

∣

∣Φ
′′

m(ζ)
∣

∣ =
∣

∣φ
′′

m(ζ) − g
′′

m(ζ)
∣

∣ =
∣

∣φ
′′

m(ζ) − k2
mφ

′′

m(kmζ)
∣

∣ (13)

≤
∣

∣φ
′′

m(ζ) − φ
′′

m(kmζ)
∣

∣ +
∣

∣(1− k2
m)φ

′′

m(kmζ)
∣

∣

≤
∣

∣ζ − kmζ
∣

∣.‖φ′′′

m‖L∞ +
∣

∣1 − k2
m

∣

∣.‖φ′′

m‖L∞

≤ 2∆

m
(4m)3C2 +

∣

∣1− k2
m

∣

∣(4m)2C2 ≤ 560∆m2C2.

Put Λm(x) = (F (Φm(ζ)/ζm))(x). Then

Λm(x) =
1√
2π

∫

R

e−ixζΦm(ζ)/ζmdζ.

Therefore, since (9), we have

sup
x∈R

∣

∣

∣
Λm(x)

∣

∣

∣
≤ 1√

2π

∫

R

∣

∣

∣
Φm(ζ)/ζm

∣

∣

∣
dζ =

1√
2π

∫

ζ∈suppΦm

∣

∣

∣
Φm(ζ)/ζm

∣

∣

∣
dζ

and it follows from (11) that

sup
x∈R

∣

∣

∣
Λm(x)

∣

∣

∣
≤ 8∆

m
√

2π
sup
ζ∈R

∣

∣

∣
Φm(ζ)

∣

∣

∣
(1− 3

m
)−m ≤ (8∆)2e4C2

m
√

2π
:=

C3

m
. (14)

On the other hand, we have

∣

∣x2Λm(x)
∣

∣ =
1√
2π

∣

∣

∣

∫

R

e−ixζ (Φm(ζ)m(m+ 1)/ζm+2 + Φ
′

m(ζ)2m/ζm+1 + Φ
′′

m(ζ)/ζm)dζ
∣

∣

∣

≤ 1√
2π

∫

R

∣

∣

∣
e−ixζ (Φm(ζ)m(m+ 1)/ζm+2 + Φ

′

m(ζ)2m/ζm+1 + Φ
′′

m(ζ)/ζm)dζ
∣

∣

∣
dζ

and then

sup
x∈R

∣

∣x2Λm(x)
∣

∣ ≤ 1√
2π

[

∫

ζ∈suppΦm

|Φm(ζ)m(m+ 1)/ζm+2 + Φ
′

(ζ)2m/ζm+1 + Φ
′′

(ζ)/ζm|dζ

≤ 8∆

m
√

2π

[

sup
ζ∈R

|Φ(ζ)|m(m+ 1)(1− 3

m
)−m+

sup
ζ∈R

|Φ′

(ζ)|2m(1− 3

m
)−(m+1) + sup

ζ∈R

|Φ′′

(ζ)|(1− 3

m
)−m

]

.

(15)

So, since (11)-(15), we get

sup
x∈R

∣

∣x2Λm(x)
∣

∣ ≤ 8∆

m
√

2π

[

8∆C2m(m+ 1)e4 + 36∆mC22me
4 + 560∆m2C2e

4
]

(16)
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≤ C4m.

Using (14) and (16) and

‖Λm‖L1 =

∫

|x|≤m

|Λm(x)|dx+

∫

|x|≥m

|Λm(x)|dx ≤ 2m sup
x∈R

|Λm(x)|+ 4

m
sup
x∈R

|x2Λm(x)|,

we obtain that

‖F (Φm(x)xm)‖L1 = ‖Λm‖L1 ≤ 2m
C3

m
+

4

m
C4m := C5. (17)

From (7) and (17) we have
‖f‖L(X) ≤ ‖Dmf‖L(X)/C.

The proof is complete.

Proof (Proof of Theorem 2.1). Put

g(x) = f(
x

%
).

Then it follows from Spec(f) ∩ (−%, %) = ∅, Spec(f) ⊂ (−∆%,∆%) that Spec(g) ∩ (−1, 1) =

∅, Spec(f) ⊂ (−∆,∆) ⊂ (−2∆, 2∆). Applying Lemma 2.3, we have

‖Dmg‖L(X) ≥ C‖g‖L(X). (18)

Since g(x) = f(x
% ), we have

‖g‖L(X) = ‖f‖L(X), ‖Dmg‖L(X) = %−m‖Dmf‖L(X).

Hence, it follows from (18) that

%−m‖Dmf‖L(X) ≥ C‖f‖L(X).

Hence,
‖Dmf‖L(X) ≥ C%m‖f‖L(X).

The proof is complete.

3. Paley-Wiener theorem for functions with value in Banach spaces

3.1. Paley-Wiener theorem for arbitrary compact

Theorem 3.1. Let f ∈ L(X) and K be an arbitrary compact set in R. Then Spec(f) ⊂ K if
and only if for any δ > 0 there exists a constant Cδ <∞ such that

‖P (D)f‖L(X) ≤ Cδ‖f‖L(X) sup
x∈K(δ)

|P (x)| (19)

for all polynomials with complex coefficients P (x).

To obtain the theorem, we need the following results.

6



Lemma 3.2. [19] Let f ∈ L(X), and ϕ, ψ ∈ S(R). Assume that ϕ̂ = 0 on Spec(f), and

ψ̂ = 1 on Spec(f). Then ϕ ∗ f = 0 and ψ ∗ f = f .

In [20], author derives a radial spectral formula.

Lemma 3.3. Let f ∈ L(X). Asume that Spec(f) is the compact set. Then there always

exists the following limit

lim
m→∞

‖Pm(D)f‖1/m
L(X)

and

lim
m→∞

‖Pm(D)f‖1/m
L(X) = sup{|P (ζ)| : ζ ∈ Spec(f)}.

Proof (Proof of Theorem 3.1). Necessity. We choose a function ϑ(ζ) ∈ C∞
0 (R) such

that ϑ(ζ) = 1 if ζ ∈ Kδ/4 and ϑ(ζ) = 0 if ζ /∈ Kδ/2. Then it follows from Spec(f) ⊂ K and

Lemma 3.2 that
P (D)f = (2π)−1/2f ∗ F−1(ϑ(ζ)P (ζ)).

Therefore, by Lemma 2.2 we have

∥

∥P (D)f
∥

∥

L(X)
≤ (2π)−1/2

∥

∥f
∥

∥

L(X)

∥

∥F−1
(

ϑ(ζ)P (ζ)
)
∥

∥

L1

= (2π)−1/2
∥

∥f
∥

∥

L(X)

∥

∥F
(

ϑ(ζ)P (ζ)
)
∥

∥

L1= (2π)−1/2
∥

∥f
∥

∥

L(X)

∥

∥Ψ
∥

∥

L1,

where

Ψ(x) :=
(

F
(

ϑ(ζ)P (ζ)
))

(x).

Then it follows from
∫

R

∣

∣Ψ(x)
∣

∣dx ≤ π sup
x∈R

|(1 + x2)Ψ(x)|,

that

∥

∥P (D)f
∥

∥

L(X)
≤ (2π)1−1/2

∥

∥f
∥

∥

L(X)
sup
x∈R

|(1 + x2)Ψ(x)|. (20)

For β ∈ {0, 1, 2} we get the following estimate

sup
x∈R

|xβΨ(x)| = (2π)−1/2 sup
x∈R

∣

∣

∣

∫

R

e−ixζDβ
(

ϑ(ζ)P (ζ)
)

dζ
∣

∣

∣

= (2π)−1/2 sup
x∈R

∣

∣

∣

∫

ζ∈Kδ/2

e−ixζDβ
(

ϑ(ζ)P (ζ)
)

dζ
∣

∣

∣

≤ (2π)−1/2

∫

ζ∈Kδ/2

∣

∣

∣
Dβ

(

ϑ(ζ)P (ζ)
)

∣

∣

∣
dζ.

Then it follows from the Leibniz rule that

sup
x∈R

|xβΨ(x)| ≤ (2π)−1/2

∫

ζ∈Kδ/2

∣

∣

∣

∑

γ≤β

β!

γ!(β− γ)!
Dγϑ(ζ)Dβ−γP (ζ)

∣

∣

∣
dζ (21)

≤ (2π)−1/2
∑

γ≤β

( β!

γ!(β − γ)!
sup

x∈Kδ/2

|Dβ−γP (x)|
∫

ζ∈Kδ/2

|Dγϑ(ζ)|dζ
)

7



≤ (2π)−1/2 max
θ≤2

sup
x∈Kδ/2

|DθP (x)|
∑

γ≤β

( β!

γ!(β− γ)!

∫

ζ∈Kδ/2

|Dγϑ(ζ)|dζ
)

.

Because the derivatives of the analytic function P (x) can be estimated in Kδ/2 by the maxi-
mum of the modulus in K(δ), there exists a constant Aδ independent of f, P (x) such that

sup
x∈Kδ/2

|DθP (x)| ≤ Aδ sup
x∈K(δ)

|P (x)|, ∀θ ∈ Z+, θ ≤ 2. (22)

From (21) - (22), we have

sup
x∈R

|xβΨ(x)| ≤ (2π)−1/2
∑

γ≤β

( β!

γ!(β − γ)!
Aδ sup

x∈K(δ)

|P (x)|
∫

ζ∈Kδ/2

|Dγϑ(ζ)|dζ
)

(23)

≤ (2π)−1/222nAδC sup
x∈K(δ)

|P (x)|,

where C := max
γ≤2

∫

ζ∈Kδ/2

|Dγϑ(ζ)|dζ. Then it follows from (23) that

∫

R

∣

∣Ψ(x)
∣

∣dx ≤ Cδ sup
x∈K(δ)

|P (x)|, (24)

where Cδ independent of f, P (x). From (20) and (24) we obtain (19) .

Sufficiency. Assume (19) is true, we need to prove Spec(f) ⊂ K. Indeed, assume the
contrary that there exists % ∈ Spec(f) and % 6∈ K. We construct a polynomial G(x) =

t− (x− %)2, where t = supx∈K(x− %)2. Then applying (19) for P (x) = Gm(x), we get for all
m ∈ Z+

‖Gm(D)f‖L(X) ≤ Cδ‖f‖L(X) sup
x∈K(δ)

|Gm(x)|,

which gives
lim

m→∞
(‖Gm(D)f‖L(X))

1/m ≤ sup
x∈K(δ)

|G(x)|.

Letting δ → 0, we obtain

lim
m→∞

(‖Gm(D)f‖L(X))
1/m ≤ sup

x∈K
|G(x)|. (25)

Then it follows from Lemma 3.3 that
∣

∣G(%)
∣

∣≤ sup
x∈K

|G(x)|

and then
t = |G(%)| ≤ sup

x∈K
(t− (x− %)2).

This is a contradiction. So, Spec(f) ⊂ K. The proof is complete.

It follows from Lemma 3.3 that, if f ∈ L(X) and Spec(f) ⊂ K then for any δ > 0 there
exists a constant CP,δ,f <∞ (CP,δ,f depends on P , δ and f) such that

‖Pm(D)f‖L(X) ≤ CP,δ,f‖f‖L(X) sup
x∈K(δ)

|Pm(x)| ∀m ∈ N

while by Theorem 3.1 we have the stronger result that for any δ > 0 there exists a constant

Cδ <∞ (independent of P,m, f) such that

‖Pm(D)f‖L(X) ≤ Cδ‖f‖L(X) sup
x∈K(δ)

|Pm(x)|.
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3.2. Paley-Wiener theorem for the sets generated by polynomials

Let P (x) be a polynomial with real coefficients. We put

Q(P )r := {x ∈ R : |P (x)| ≤ r} for r > 0

and Q(P )r is called the set generated by P (x) repect to r. Clearly, for a, b ∈ R, a ≤ b;α > 0
then (a, a+ α) ∪ (b, b+ α) is the set generated by polynomial.

Theorem 3.4. Let f ∈ L(X) and P (x) be a polynomial. Then Spec(f) ⊂ Q(P )r := K if

and only if for any δ > 0 there exists a constant Cδ <∞ independent of f,m such that

‖Pm(D)f‖L(X) ≤ Cδ‖f‖L(X)(r + δ)m. (26)

for all m ∈ Z+.

Proof. Necessity. The necessity is follows from Theorem 3.1.
Sufficiency. Assume the contrary that there exists σ ∈ Spec(f) and σ 6∈ K. Combining

σ /∈ K and K = {x ∈ R : |P (x)| ≤ r}, we have

|P (σ)| > r.

Using (26), we obtain

lim
m→∞

(

‖Pm(D)f‖L(X)

)1/m
≤ r + δ. (27)

Applying Lemma 3.3, we have

lim
m→∞

(

‖Pm(D)f‖L(X)

)1/m
≥ |P (σ)|. (28)

From (27) and (28), we get |P (σ)| ≤ r + δ. Letting δ → 0, we obtain |P (σ)| ≤ r. This is a
contradiction. So, Spec(f) ⊂ K.

The proof is complete.

Since Theorem 3.4 we get the following corollary:

Corollary 1. Let r > 0 and f ∈ L(X). Then Spec(f) ⊂ [−r, r] if and only if for any δ > 0
there exists a constant Cδ <∞ such that

‖Dmf‖L(X) ≤ Cδ(r + δ)m‖f‖L(X)

for all m ∈ Z+.

In general, for a, b ∈ R, a < b then (a, b) is the set generated by polynomial P (x) = x− a+b
2

respect to b−a
2 . Then Spec(f) ⊂ [a, b] if and only if for any δ > 0 there exists a constant

Cδ <∞ such that

‖(x− a+ b

2
)m(D)f‖L(X) ≤ Cδ(

b− a

2
+ δ)m‖f‖L(X)

for all m ∈ Z+.
Moreover, for a, b ∈ R, a < b;α > 0 then (a, a+α)∪(b, b+α) is the set generated by polynomial
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P (x) = x2−(a+b+α)x+ab+
(a+b)α

2 respect to r =
(b−a)α

2 . Then Spec(f) ⊂ (a, a+α)∪(b, b+α)
if and only if for any δ > 0 there exists a constant Cδ <∞ such that

‖Pm(D)f‖L(X) ≤ Cδ(
(b− a)α

2
+ δ)m‖f‖L(X)

for all m ∈ Z+. Consequently, for 0 < a < b and Spec(f) ⊂ (a, b)∪ (−b,−a) if and only if for
any δ > 0 there exists a constant Cδ <∞ such that

‖(x2 − a2 + b2

2
)m(D)f‖L(X) ≤ Cδ(

b2 − a2

2
+ δ)m‖f‖L(X)

for all m ∈ Z+.
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