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Abstract

A link stream is a sequence of timed edges, that are objects of the form (I, uv)
where uv is an edge and I a time interval. We give a generic approach to devise
fixed parameter tractable algorithms for link stream edition problems and exemplify
on two particular problems: sparse split and bi-sparse split edition.

A link stream is sparse split if there exist interval I and vertex subset A such that
it consists exactly in {(I, uv) : u,v € A}. A link stream is bi-sparse split if there exist
consecutive intervals I, J and vertex subsets A, B such that it consists exactly in
{(I,wv) 1 u,v € A\B}U{(J,uv) : u,v € B\A}YU{(IUJ,uwv) : u,v € ANB}. Problem
sparse split (resp. bi-sparse split) link stream edition asks to transform an arbitrary
link stream into a sparse split (resp. bi-sparse split) link stream by performing at
most some given number of modifications on its timed edges. From a structural point
of view, sparse split link streams are equivalent to graphs. We show that a known
result on graph edition [F. Hiiffner, C. Komusiewicz, and A. Nichterlein, WADS,
2015], which is based on a greedy pruning approach, can be directly adapted to
give a fixed parameter tractable algorithm for sparse split link stream edition. Bi-
sparse split link streams are intrinsically different from graphs. After remarking that
the class of bi-sparse split link streams fails an important structural property for
the previously mentioned greedy paradigm to operate on them, we devise a loose
version of it and obtain a fixed parameter tractable algorithm for bi-sparse split
link stream edition. Finally, we revisit and generalise the algorithmic framework to
flexibly adapt it to a broad class of edition problems.
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1 Introduction

Problem SPARSESPLITGRAPHEDITION [7,11,10] consists, given a graph G and
an integer k, in transforming G into a single clique plus isolated vertices after
at most k edition operations (i.e., edge additions and removals). This problem
and its variants have applications in data mining and machine learning [7]
and in particular in the correlation clustering problem [1] and the detection
of core/periphery structures in networks [3]. This problem has been shown
to be NP-complete, with a kernelisation algorithm producing a linear vertex
kernel [11,10].

On the other hand, interactions over time, such as phone calls, computer
communications, physical proximity between individuals, shopping, and so
on, have been studied for a long time and have been captured in the link
stream framework [12]. Intuitively, a link stream is a sequence of pairs of the
form (I, uv) where uv is an edge (in the sense of classical loopless undirected
simple graphs) and [ a time interval.

A link stream is sparse split if there exist interval I and vertex subset A
such that it consists exactly in {(/,uv) : u,v € A}. In this paper, we ad-
dress the problem of edge-editing an arbitrary link stream in order to obtain
a sparse split link stream. As already said, the equivalent graph problem has
been shown to have implications in data mining and machine learning. More-
over, maximal cliques in link streams have been defined and studied, and
have been shown to be also relevant for data mining and shedding intuition
on the structure of social interactions [?] and 1P traffic [?]. The correspond-
ing SPARSESPLITLINKSTREAMEDITION problem therefore has applications in
data mining and in particular to the problems requiring to take into account
the spatio-temporal structure of data, rather than just its structural aspects.

We show that it is possible to generalise the greedy paradigm developed in [10]
for link streams. As a byproduct we give a linear vertex kernelization al-
gorithm for a constrained variant of sparse split link stream edition. This
result further implies a fixed parameter tractable algorithm for SPARSES-
PLITLINKSTREAMEDITION. However, note from a structural point of view
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that sparse split link streams are equivalent to classical graphs. Our gener-
alization therefore very closely resembles the solution developed in [10] for
graphs. We accordingly raise the question of editing link streams into a target
class of link streams that is intrinsically different from a graph.

A simple extension of sparse split link streams to a class of non graph-equivalent
link streams lies in the notion of bi-sparse split link streams, i.e., a stream for
which there exist consecutive intervals I, J and vertex subsets A, B such that
the link stream consists exactly in {(I,uv) : u,v € A\ B} U{(J,uv) : u,v €
B\ A} U{(I U Jyuv) : u,v € AN B}. Unfortunately, the greedy approach
cannot be directly extended to bi-sparse split link stream edition. We cope
with the inconvenience by devising new kernelization procedures which result
in similar performance as with sparse split edition. On the way to do this we
revisit and generalize all our techniques so that they can be flexibly adapted
to fit into many link stream edition situations. We exemplify our generic prop-
erties by confronting them to a list of edition problems in Fig. 1 at the end of
the paper.

Our manuscript is organised as follows. Section 2 introduces generic properties
of link streams and builds the basis for the rest of the paper. In particular,
we explicit a sufficient condition to be verified on a given class of link streams
so that some greedy algorithms can become kernelization algorithms for the
edition problem associated to that class. Then, in Section 3, we show that the
class of sparse split link streams satisfies this sufficient condition, which, as a
direct consequence, provides a kernelization algorithm for sparse split edition.
In Section 4, we extend the result to bi-sparse split link streams. We then close
the paper by summing up our algorithmic ideas and confronting them to a list
of edition problems. We also give in the same section concluding remarks and
open questions for further investigation.

2 A general framework for Link Stream Edition

Graphs in this paper are simple, undirected and loopless. When, and only
when, two vertices v and v are distinct, we denote an edge between u and
v indifferently by uwv = vu = {u,v}. We denote the set of all such pairs by
V @ V. A link stream L is a triple L = (T,V, E) where T is an interval, V" a
finite set of vertices, and £ C T x V ® V. In this paper we focus on the case
where links exist for a continuous duration of time, i.e., there exist intervals
la,b] and vertices u,v such that V¢ € [a,b], (t,uv) € E. For all uv € V@V,
we call Z,, the set of maximal such intervals. In the remaining, we consider
only these intervals and we suppose that E is given in the form of interval
edges: E = {(I,uv) :uwv € V@V NI € T,,}. Moreover, we suppose that Z,,
is finite for every edge uv, and, consequently that E is finite. Note that, by
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Fig. 1. Addition operations: (left) addition; (center) extension; (right) merging.
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Fig. 2. Deletion operations: (left) deletion; (right) shortening.

construction, edges defined in this way satisfy the non-overlapping property:
(I,uv) € EA(Jyuw) € EANIT # J = INJ = 0. The size of link stream
L is denoted by |L| = n + m where n = |V| and m = |EF|, with F given in
interval edges form. We also denote T'(L) =T, V(L) =V and E(L) = E. The
elements of E are called timed edges.

Link stream L is sparse split if there exist interval I and vertex subset A
such that E(L) = {(I,uv) : ww € A® A}. Link stream L is bi-sparse split if
there exist consecutive time intervals I, J, and vertex subsets A, B such that
E(L) ={(I,u) :uwv € (A\ B)® (A\ B)} U{(J,uv) : wv € (B\ A) ® (B\
A)PU{(I U Jyuv) : wv € (AN B)® (AN B)}. Note that being sparse split
implies being bi-sparse split (where B = 0)).

Given a link stream L, an edition operation over L is either an addition op-
eration or a deletion operation, which are defined as follows. An addition
operation over L transforms L into L', where T'(L') = T'(L), V(L") = V(L),
E(L’) satisfies the non-overlapping property, and F(L') is modified in one of
the three following ways (cf. Figure 1):

e add (/,uv): there are interval I and vertices u,v such that F(L') = E(L)U
{(Z,u)};

e extend from (J,uv) € E(L) to (I,uv): there are intervals I, J and vertices
u,v such that J C I, I'\ J is a non-empty interval, and E(L') = (E(L) \

{(J,uv)}) U{(T,uv)};

e merge (J,uv) € E(L) and (K,uv) € E(L) into (I,uv): there are intervals
I, J, K and vertices u,v such that J C I, K CI, JNK = (), min [ = min J,
max [ = max K, and E(L') = (E(L)\ {(,w), (K, uw)}) U{(I,uv)}.

A deletion operation over L transforms L into L', where T(L') = T(L),
V(L) = V(L), and E(L') is modified in one of the two following ways (cf.
Figure 1):

o delete (I,uv) € E(L): there are interval I and vertices u,v such that
E(L) = E(L) \{(I, uv)};

e shorten (I,uv) € E(L) downto (J,uv): there are intervals I, J and vertices
u,v such that J C I, I'\ J is a non-empty interval, and E(L') = (E(L) \



{(I,uv)}) U{(J,uv)}.

Notice that there exists a third deletion operation, that is the opposite of
merge. However, we do not address it in this paper, as it is not relevant with
respect to the problems we consider.

We omit the formal argument for the following property’s correctness, which
is straightforward.

Property 1 On input two link streams L and L' it is possible to compute
in polynomaial time the minimum number of edition operations transforming
L into L'. It is also possible to compute such a smallest series of edition
operations transforming L into L' in polynomial time.

Proof: Computing F(L)AFE(L) is polynomial. O
Given a class L of link streams, we consider the following decision problem.

L-LINKSTREAMEDITION (£-LSE):

INPUT: L a link stream and £ € N an integer.
QUESTION: Is there a series of at most k consecutive edition operations trans-
forming L into L’ such that L' € L7

By SS-LSE and BiSS-LSE, we refer to problem £-LINKSTREAMEDITION when
L is the class of sparse split link streams and when £ is the class of bi-sparse
split link streams, respectively.

A sparse split graph consists in a clique and isolated vertices. The sparse
split graph edition problem asks to transform an input graph into a sparse
split graph by performing at most a given number of edge graph editions.
An edge graph edition is either the addition of a non-existing edge or the
removal of an existing edge. Basically, it follows from the N P-completeness of
sparse split graph edition [11] that SS-LSE and BiSS-LSE are N P-complete.
Formally however, problem SS-LSE does not exactly encompass sparse split
graph edition: although any target sparse split link stream is structurally
equivalent to a sparse split graph (i.e. at the end of the edition, we obtain
essentially the same thing), an arbitrary input link stream to the link stream
edition problem might have nothing to do with any input of the graph edition
problem. We consequently need to prove the following property. However, the
proof is very procedural.

Property 2 Both SPARSESPLITLINKSTREAMEDITION (SS-LSE) and BIS-
PARSESPLITLINKSTREAMEDITION (BiSS-LSE) are N P-complete.

Proof: SS-LSE and BiSS-LSE are in NP because the membership testing
problem is trivially polynomial for both classes of sparse split and bi-sparse



split link streams. The only thing we will prove is the N P-completeness of
SS-LSE, because it implies that of BiSS-LSE. We do this using the N P-
completeness of sparse split graph edition [11], with the following direct reduc-
tion. Let (G, k) be an instance of sparse split graph edition. We first compute
link stream L based on graph G as follows: V(L) = V(G), T(L) = [0, 0], and
E(L)={(T(L),uw) : uwv € E(G)}. We then return instance (L, k) of SS-LSE.
Here, the size of L clearly satisfies |L| = O(|G|) and L can trivially be com-
puted from G in polynomial time. We now need to prove that the answer to
SS-LSE on (L, k) is positive if and only if the answer to sparse split graph
edition on (G, k) is positive. Since L is essentially defined based on G, it is
straightforward to check that the condition is sufficient, namely that: if the
answer to sparse split graph edition on (G, k) is positive, then the answer to
SS-LSE on (L, k) is positive.

In order to prove that the condition is necessary, suppose that the answer
to SS-LSE on input (L, k) is positive. Then, there exists a sparse split link
stream which can be obtained after at most k edition operations on L. Let L’/
be a sparse split link stream that has been obtained from L after a minimum
number of edition operations (hence, this number must be at most k). By
definition of edition operations on link streams, we have T(L') = T(L) and
V(L) = V(L). Now, the main property here is that: since |T'(L)] = 1 =
|T(L')|, every edition operation transforming L into L’ can only be of the
form (add, I, uv) or (delete, I, uv); there cannot be neither merging, shortening
nor extension. Since L’ is a sparse split link stream, there exists A C V(L)
such that F(L') = {(T(L),uv) : wwv € A ® A}. Define now G’ such that
V(G") = V(L) and E(G') = A® A. Note that, as with G’, graph G also
satisfies V(G) = V(L). Then, by performing on G similar edition operations
as on L, we can obtain G’ from G after the same number of graph edition
operations as the number of operations needed to transform L into L’. Hence,
the answer to sparse split graph edition on input (G, k) is positive. a

We consider the parameterized version of £-LSE where integer &£ becomes the
parameter and no longer belongs to the input, in the sense of [8,9,6].

PARAMETERIZED-L-LINKSTREAMEDITION:

INPUT: L a link stream.

PARAMETER: k € N an integer.

QUESTION: Is there a series of at most k consecutive edition operations trans-
forming L into L’ such that L' € L7

The parameterized version of LSE is fized parameter tractable (FPT) if there
exist a computable function f : N — N, a constant ¢ € N and an algorithm
A such that on any input L with parameter k, algorithm A correctly answers
problem LSE in O(f (k) x |L|¢) worst case time. In the remaining of this section,
we give generic ideas for designing a FPT algorithm A for LSE. The overall



goal of the paper is to prove that:

Main Result 1
The parameterized versions of SPARSESPLIT-LINKSTREAMEDITION and
BISPARSESPLIT-LINKSTREAMEDITION are fixed parameter tractable.

Proof:  follows from Property 3 below and subsequent Main Result 2. a

2.1 Graph likeness

A link stream L is said to be graph-like if there are time instants a < w
of T(L) such that every timed edge (I,uv) € E(L) satisfies I C [a,w], plus
the fact that either min/ = « or max /] = w (or both). We stress that both
classes of sparse split link streams and bi-sparse split link streams are graph-
like. Graph-likeness is very useful to reduce a link stream edition instance to
(mostly) a graph edition instance. This is done through a boxed version of
link stream edition problems.

When a timed edge (I, uv) satisfies I C [ov, w], plus the fact that either min I =
a or max] = w (or both), we say that (I,uv) is («,w)-graph like. A link
stream which only contains timed edges that are boxed by « and w is said to
be (o, w)-graph like.

(a, w)-L-LINKSTREAMEDITION:

INPUT: L a link stream and k € N an integer.
QUESTION: Is there a series of at most k consecutive edition operations trans-
forming L into L' € L that is (o, w)-graph like?

By parameterized version of (a,w)-L-LSE, we refer to the one where integer
k becomes the parameter and no longer belongs to the input, as above.

Property 3 Let L be a class of graph-like link streams. If the parameterized
version of (a,w)-L-LSE is fized parameter tractable for all a,w € T, then the
parameterized version of L-LSFE is fixed parameter tractable.

Proof: On input (L, k) of L-LSE we are asked to transform arbitrarily given
link stream L into a link stream of £ (using at most k operations). Let L' € £
be any target link stream into which we wish to transform L. Since L' € L
is graph-like, there exist o/ and w’ such that any timed edge of L' is (¢/,w’)-
graph like. Although we do not know in advance the values of o/ and W', we
can find them by an exhaustive search because there are only a polynomial
number of possibilities for them. Indeed, we have:

o Let Ext(L) ={t e T|3(I,uv) € E(L)s.t.t =minl Vt=max/}.



e Assume that o/ ¢ Ext(L), we will prove that there exists another solu-
tion that can be reach from L with at most k& operations such that the
corresponding « value belongs to Fxt(L).

e Suppose there exists by = max{t € T|3(/,uv) € E(L) ANt =minl At < /}.
Then, for every timed edge | = ([¢/, €], uv) € L', there are only three edition
operations that can create [: add, extend or shorten (and not merge nor
delete). If [ was the result of an addition operation, then we can instead add
([bo, €'], uv) for the same cost. If [ was the result of an extension operation,
then we can instead extend further to ([bg,€'], uv) for the same cost. If
was the result of an shortening operation, by definition of by, before the
shortening, [ began at either by or strictly before by. Then, we can either
leave it unchanged, or shorten it less to obtain ([bg, €'], uv) for the same cost.

e Else, by does not exists, we define by = min{t € T|3(I,uv) € E(L) ANt =
min/ At > o'}, and process in a symmetric manner.

e Finally, we process similarly for w'.

Then, we can w.l.o.g. assume that o/, w’ € Ext(L). Accordingly, in order to
obtain an FPT algorithm for £-LSE it is sufficient to loop through all the
O(|E(L)|?) possible values of o/,w’ € Ext(L) and solve (o/,w)-L-LSE using
any FPT algorithm for the latter problem. O

The parameterized version of (a,w)-L-LSE has a kernel if there exist a com-
putable function f : N — N and a polynomial time algorithm A which takes
as input an instance (L, k) of (a,w)-L-LSE and produces an instance (L', k)
such that: &' < k; |L'| < f(k); and (L, k") yields a positive answer for («, w)-
L-LSE if and only if (L, k) yields a positive answer for (o, w)-L-LSE. In this
case, algorithm A is called a kernelization algorithm for (o, w)-L-LSE. Having
a kernel implies being fixed parameter tractable [8].

In Sections 3 and 4, we depict the details of our approach and will prove the
following result. When combined with Property 3, they imply Main Result 1
as a direct consequence.

Main Result 2
The parameterized version of (o, w)-SPARSESPLIT-LINKSTREAMEDITION has
a linear vertex kernel.

Proof:  follows from Theorem 2 (Section 3) and Theorem 3 (Section 4). O

We say that an algorithm is safe with respect to («,w)-L-LSE if on input
(L, k) it produces in polynomial time an instance (L', k’) such that &’ < k and
that (L, k') yields a positive answer for (a, w)-£L-LSE if and only if (L, k) yields
a positive answer for (o, w)-L-LSE. One popular way to obtain kernelization
algorithms is the successive applications of safe algorithms, in such a way that
it leads to an instance of sufficiently small size, for instance polynomial or
linear in the value of the parameter.



As artificial terminal cases, let NEGATIVE be a link stream not belonging to
L, and POSITIVE be a link stream belonging to £. This way, (NEGATIVE, 0)
and (POSITIVE, 0) are trivial negative and positive instances of (o, w)-L-LSE,
respectively.

Procedure 1 On input instance (L, k) of (o, w)-L-LSE, remove from L every
timed edge ([, uv) with

{min I, max I'} N {o,w} =0,
and decrease k with the number of such timed edges.

Lemma 1 Procedure 1 is safe with respect to (o, w)-L-LSE.

Proof: We proceed by exhaustive case analysis. Let (L', k") be the output of
Procedure 1. If (L', k') yields a positive answer to («,w)-L-LSE, it is then
trivial to prove that (L, k) yields a positive answer to («,w)-L-LSE: Proce-
dure 1 minimally transforms L into L’; from that point, we use &’ operations
to transform L’ into some L” € L with all the desired properties; the total
number of operations cannot exceed k by minimality of the transformation of
L into L'; hence, with at most k operations, we can also transform L into L”,
which is known to own all the desired properties.

Suppose now that (L,k) yields a positive answer to («,w)-L-LSE and let
L" € L be (o, w)-graph like which can be obtained from L after k editions. In
what follows we will try to permute the k edition operations transforming L
into L” in such a way that they will first transform L into L', and only then,
they will complete the transformation by transforming L’ into L”. Let (I, uv)
be a timed edge of L such that {min/, max I} N {o,w} = . We distinguish
two cases: either ([o,w|,uv) belongs to L” or not. In the latter case, (I, uv)
needs to be removed from L on the way to L”; we can then do that removal
first among the edition operations transforming L to L”. In the former case,
(I,uv) needs to be transformed into ([, w|, uv) and for this transformation we
need to use at least two edition operations in any case (extend twice; extend
then shorten; shorten then extend; add then remove; remove then add; and so
on). Hence, we can replace the two corresponding operations with: first remove
(I, uv) then add ([a, w], uv); the first of these two operations can be done at
the beginning, and the second at the end of the operations transforming L
into L”. We have just argued that L can first be transformed into L', then L’/
can be transformed into L”, using in total the same number, which is at most
k, of edition operations. Moreover, the number of timed edges of L of the form
(I,uv) where {min I, max I} N {«,w} = () is exactly the minimum number of
operations needed to transform L into L’. Besides, this number corresponds
to k— k', by definition of Procedure 1. We just have proved that (L', k') yields
a positive answer to (o, w)-L-LSE. O



2.2 Greedy edition

In the sequel we revisit and generalize the notion of neighbourhood reconstruc-
tion in Ref. [10] so that they can apply to a broad scope of edition problems.
We employ the following generic formalism for a later use in Procedure 2. Its
essence can be seen as a formalization of the greedy approach on link streams.
A vertex u of a link stream L is said to be isolated if every timed edge (I, vw)
of E(L) satisfies u # v and u # w.

Definition 1 (o-greedy editable link streams) Given an integer o, a class
L of link streams is said to be o-greedy (o, w)-editable if there exists an algo-
rithm A, called o-greedy (o, w)-edition algorithm for £, which on input (L, u)
with L being an arbitrary link stream and u a vertex of V' (L), produces in
polynomial time a set of link streams A(L,u) satisfying the following three
conditions.

o A(L,u)C L.

e cvery link stream in A(L,u) is (o, w)-graph like.

e for every integer k, we have the following property: if (there exists a series
of k edition operations, among which at most ¢ involving u, transforming
L into I’ € L in such a way that L’ is («,w)-graph like and that u is not
isolated in L' ) then (there exists a series of k edition operations, among
which ¢ involving u, transforming L into L' € A(L,u) in such a way that u
is not isolated in L' )

Essentially, A(L, u) would be a class of link streams that can be obtained from
L after local modifications around vertex u. For that local behaviour of A we
qualify it as greedy. We note furthermore that |A(L, u)| is polynomial in the
size of L because A terminates in polynomial time. If a link stream edition
problem admits such an algorithm A, we show in the sequel a straightforward
safe procedure in order to kernelize the problem. One illustration is given in
Section 3 with Property 4.

Given a o-greedy (o, w)-editable class £ of link streams, we show in Lemma 2
that the following algorithm is safe.

Procedure 2 On input instance (L, k) of (o, w)-L-LSE, where L is o-greedy
(cv,w)-editable, let A be a o-greedy (a,w)-edition algorithm for £, we process
as follows. For every vertex u € V(L), compute A(L, u) by calling A on input
(L,u). Then, for every link stream L' € A(L,u), if there exists a series of k
edition operations transforming L into L', then return (POSITIVE,0). After
all looping processes, if we still have not returned anything yet, then return
original input (L, k).
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Lemma 2 For every o-greedy (o, w)-editable class L of link streams, Proce-
dure 2 is safe with respect to (a,w)-L-LSE.

Proof: On input (L, k) Procedure 2 returns either (POSITIVE,0) or (L, k).
Hence, the output value for the parameter is at most k. As for complexity
issues, after producing A(L,u), which is in polynomial time by definition of
A, Procedure 2 does in total 3,y (1) |A(L, u)| checks whether there exists a
series of k edition operations transforming L into some given L’. Because both
L and L' in each case are known, each checking process can be done in polyno-
mial time, cf. Property 1. By definition of greedy edition, >>,cv (1) [A(L, u)| is
polynomial in the size of L. Therefore, Procedure 2 terminates in polynomial
time.

Now, suppose that (L, k) yields a positive answer to («,w)-L-LSE. Since Pro-
cedure 2 only returns either (POSITIVE, 0) or (L, k), which both yield positive
answer to (o, w)-L-LSE, we have indeed that the input instance and the out-
putted instance of Procedure 2 yield the same answer to («,w)-£-LSE.

On the other hand, suppose that (L, k) yields a negative answer to (o, w)-L-
LSE. Here, if Procedure 2 returns (L, k) then everything is fine and there is no
more thing to prove. Let us suppose by contradiction that Procedure 2 returns
(PosITIVE, 0). This return instruction must have been done when examining
some u € V(L) and some L' € A(L,u). By definition of the return instruction
in Procedure 2, L' can be obtained from L after k edition operations. By
definition of A(L,u), L" is (o, w)-graph like. Furthermore, since A(L,u) C L,
we have L' € L. But then, L' would be a certificate that (L, k) yields a positive
answer to («,w)-L-LSE. Contradiction. 0

The main advantage of greedy edition lies rather in the following property.

Lemma 3 Let L be a o-greedy (o, w)-editable class of link streams. Then, on
input (L, k) Procedure 2 outputs (L, k) (and not (POSITIVE,0)) if and only
if the following property holds. If L' € L is (a,w)-graph like, and L' can be
obtained from L after at most k edition operations, then, for every verter u
of V(L), either u is an isolated vertex in L' or there must be at least o + 1
edition operations involving u on the way from L to L'.

Proof: By definition of Procedure 2, when the output of the procedure is
(L, k) (and not (POSITIVE, 0)), the following property must fail: (there exists
a series of k edition operations, among which ¢ involving u, transforming
L into L' € A(L,u) in such a way that u is not isolated in L'). Then, by

definition of o-greedy (o, w)-edition algorithm .4, the following property must
fail: (there exists a series of k edition operations, among which ¢ involving wu,
transforming L into L' € £ in such a way that L’ is (o, w)-graph like and that
u is not isolated in L’). Now, let L' € L be (a,w)-graph like, and L’ can be
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obtained from L after at most k edition operations. According to the failure
of the previous property, for every vertex u of V(L), the only possibilities left
for u are: either u is an isolated vertex in L’; or there must be at least o + 1
edition operations involving u on the way from L to L'. O

2.8  Hereditary link streams and isolation

A class £ of link streams is hereditary if it is closed under vertex deletion
and under addition of isolated vertex. Obviously, both classes of sparse split
link streams and of bi-sparse split link streams are hereditary. We can now
conclude by the following formalism. The (open) neighbourhood of u in L is
defined as Ny (u) = {v € V(L) : 3(I,uww) € E(L)}. Besides, we define 0%, as
the minimum number of edition operations required to remove all timed edges
between u and v from L, that is, to transform L into L' where V(L) = V(L’),
T(L) = T(L'), and E(L') = E(L) \ {({,uv) : I C T(L)}. We also define
(Dil = Zv;ﬁu ®£v

Procedure 3 On input instance (L, k) of (a,w)-L-LSE, initialize (L', k)
with (L', k") + (L, k). For every vertex u € V(L) such that 0% < o, isolate
then remove u, that is, perform (L', k') < (L",k'—0L"), where V(L") = V(L')\
{u}, T(L") =T(L') and E(L") = E(L')\{({,uw) : I CT(L')ANv e V(L)}.
At the end of the process, return (L', k).

Lemma 4 Let L be a hereditary and o-greedy (o, w)-editable class of graph-
like link streams. Let (Lo, ko) be an arbitrary instance of («,w)-L-LSE. Apply
Procedure 2 and let (L, k) be the output. Then, on input instance (L, k), Pro-
cedure 3 is safe with respect to (o, w)-L-LSE.

Proof:  Let (L', k") be the output of Procedure 3. Clearly, Procedure 3 runs
in polynomial time and can only decrease the value of the parameter, that is,
we have k' < k.

Suppose that (L', k') yields a positive answer to (a,w)-L-LSE, that is, there
exists L” € L which is (a,w)-graph like and which can be obtained from
L’ after at most k' edition operations. Now, for every u € V(L) such that
0L < 7, add a new isolated vertex to L”, and obtain L". By heredity, L € L.
Furthermore, it is clear that L" is («, w)-graph like. Here, the important point
is that we have constructed L in such a way that: as far as L is concerned,
and after we isolate every vertex u in L such that 0% < o, then we can
mimic the &’ operations transforming L' into L” in order to transform the
remaining of L into L” with &’ similar operations. Hence, we have that L"
can be obtained from L after isolating every u with 0% < o, plus &’ edition
operations. Finally, by definition of (L', k") in Procedure 3, the total number
of these edition operations is exactly k. Hence, in this case the input instance
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(L, k) of Procedure 3 yields a positive answer to (o, w)-L-LSE.

Suppose now that (L, k) yields a positive answer to («,w)-L-LSE, that is,
there exists L” € £ which is (o, w)-graph like and which can be obtained from
L after at most k edition operations. Then, by Lemma 3, for every vertex u
of V(L), either u is an isolated vertex in L” or there must be at least o + 1
edition operations involving u on the way from L to L”. Let u € V(L) such
that 0L < o (which implies that u is isolated in L). If  is an isolated vertex
in L” then the minimum number of edition operations to isolate u from input
instance L, which is 0L, is indeed what we have use in Procedure 3 as long as u
is concerned. If u is not an isolated vertex in L” then we know there are at least
o+ 1 edition operations required in order to transform the neighbourhood of u
in L into the neighbourhood of w in L”. However, let us consider L, the link
stream that is obtained by removing u from L”. Firstly, L is (a,w)-graph
like. Secondly, L” belongs to £ because of heredity. Lastly, as long as u is
concerned, we can obtain L from L’ by at most the same edition operations
as obtaining L” from L. Basically, the fact that L can be transformed into
L" by k edition operations guarantees that L’ can be transformed into L
by at most k" edition operations. Therefore, the outputted instance (L', k") of
Procedure 3 yields a positive answer to (o, w)-L-LSE. O

Procedure 4 On input instance (L, k) of (o, w)-L-LSE, if |V(L)| > C%’; then
we output (NEGATIVE, 0). Otherwise, we output (L, k).

Lemma 5 Let L be a hereditary and o-greedy (o, w)-editable class of graph-
like link streams. Let (Lo, ko) be an arbitrary instance of (o, w)-L-LSE. Itera-
tively apply (Procedure 2 then Procedure 3) until the output is constant, and
let (L,k) be that output. Then, on input instance (L, k), Procedure 4 is safe
with respect to (a,w)-L-LSE.

Proof: Let (L', k") be the output of Procedure 4. Clearly, Procedure 4 runs
in polynomial time and can only decrease the value of the parameter, that is,
we have k' < k.

First, remark that Procedure 4 outputs (NEGATIVE, 0) if and only if the value
of (L', k') yields a negative answer to (o, w)-L-LSE: indeed, L’ will then only
contain vertices where, for each of them, we must spend at least o + 1 edition
operations involving the vertex; but also L’ will then have a lot of vertices,

/ . o . .

namely |V(L)] > % However, with only &’ edition operations, since each
. . . / .

can only involve two vertices, we cannot involve more than iikl vertices when

each of them needs to be involved at least c+1 times. Hence, when Procedure 4
outputs (NEGATIVE, 0), the value of (L, k') yields a negative answer to (o, w)-
LLSE. Tt is consequently sufficient to prove that (L, k) and (L', k) yield the
same answer to (a,w)-L-LSE. O
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Theorem 1 Let L be a hereditary and o-greedy (o, w)-editable class of graph-
like link streams. First apply Procedure 1. Then, iteratively apply (Procedure 2
then Procedure 3) until the output is constant. Finally apply Procedure 4. This
process results in a kernelization algorithm for (o, w)-L-LSE. Moreover, the
number of vertices in the kernel is linear in the parameter.

Proof: By Lemmas 1, 2, 4, and 5, the procedure given in the statement is
safe. The only thing left to prove is that the size of the output (L', k") of the
procedure is bounded by a function of &’. This is clearly the case if the output of
Procedure 2 is (POSITIVE, 0), or the output of Procedure 4 is (NEGATIVE, 0).

Otherwise, let (L, k) be the output obtained at the end of the iteration of (Pro-
cedure 2 and Procedure 3). Note that (L, k) is also the input of Procedure 4.
Since Procedure 4 does not return (NEGATIVE, 0), we have that |V (L)| < C%’i,
and that (L, k) = (L', k).

Finally, after Procedure 1, the maximum number of possible edges is obtained
if there are two timed edges for each pair of vertices (u,v): one involving «
and one involving w. Therefore, |E(L")| = O(|V(L)[?). O

3 Sparse Split Link Stream Edition

In order to show that sparse split link stream edition is fixed parameter
tractable, cf. Main Results 1 and 2, the only thing left to show is:

Property 4 The class L of sparse split link streams is a hereditary and o-
greedy (o, w)-editable class of graph-like link streams.

Proof: Graph-likeness and heredity are clearly true. The only thing to prove
is about greedy edition. For this we design algorithm A, which we prove to be
a o-greedy («,w)-edition algorithm. On input (L, u) with L being an arbitrary
link stream and u a vertex of L, we define the set A(L,u) of sparse split link
streams as follows. Let us consider Ny (u). With at most o edition operations
involving u, there are only a polynomial number of possibilities of transforming
Np(u) into a neighbourhood of u with exclusively timed edges of the form
([, w], uv) for some v € V(L). We denote all these possibilities by N,(u) =
{N C V(L) : N is the neighbourhood of u with exclusively timed edges of the
form ([o, w], uv) after at most o edition operations involving u from original
link stream L}. We note Ny[u] = {N U{u}: N € Ny(u)}. We then define
A(L,u) ={L': V(LY =V(L)ANT(L') =T(L) N E(L') = {([a, w],vw) : vw €
A® A} ANA € N,ul}.

We have that:
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o A(L,u) is composed of a polynomial number! of sparse split link streams

e A(L,u) can trivially be computed in polynomial time.

e cvery link stream in A(L,u) is (a,w)-graph like.

e finally, let k£ be an arbitrary integer and suppose that the following property
holds: (there exists a series of k£ edition operations, among which ¢ involving
u, transforming L into L’ € £ in such a way that L’ is (a, w)-graph like and
that v is not isolated in L’/ ) Let L' be defined as in the statement. We will
show that L' € A(L,u). Let us consider Np/[u] = Np/(u) U {u}. Since L’ is
(a, w)-graph like and by definition of N,[u] we have that Ni/[u] € N,[u].
Hence, {([o, w],vw) : vw € Np/[u] @ Np/[u]} € E(L'). What’s more, L' € L,
that is, L’ is sparse split. Hence, there exist time interval I and vertex
subset A such that (L") = {({,vw) : vw € A® A}. Therefore I = [, w]. A
second consequence is that Np.[u] € A. We will show that they are equal.
Suppose there exists some vertex v € A\ Np/[u]. Then, v # u and v is a
neighbour of v in L’ (by definition of L’ being sparse split). In other words,
v € Np/[u], which is a contradiction. Therefore, Np/[u] = A and A € N, [u].
We have just proved that L' € A(L,u). As a consequence, the following
property holds: (there exists a series of k£ edition operations, among which
o involving u, transforming L into L' € A(L,u) in such a way that u is not
isolated in L’ )

We conclude that A is a o-greedy («, w)-edition algorithm for sparse split link
streams. O

Theorem 2 The parameterized version of (a,w)-SS-LSE has a linear vertex
kernel.

Proof: follows from Property 4 and Theorem 1. a
Corollary 1 The parameterized version of SS-LSFE is fized parameter tractable.

Proof: follows from Property 3 and Theorem 2. a

4 Bi-Sparse Split Link Stream Edition

Unfortunately, the class of bi-sparse split link streams does not seem to be
o-greedy editable, for any integer o. We cope with this inconvenience by two
main ideas. First we use a loose version of greedy editing (cf. Procedure 7).
Second, we must control the behaviour of high degree vertices: we remark that
when a vertex has a degree higher than the parameter k, then it cannot be

1 There are at most ('V(L(T)‘fl) choices of N € Ny (u). Once A = N U{u} is chosen,
L' is entirely defined.
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isolated in any link stream that can be obtained after k£ edition operations
on L. Hence, that vertex must belong to one of the two clique-like vertex
sets in any bi-sparse split link stream. Formally, we implement our ideas by
considering the following version of BiSS-LSE, that we call BiSS-LSE with
VIP vertices.

Vir-BI1SS-LSE:

INPUT: L a link stream, k € N, and X, Y C V(L) vertex subsets called VIP.

QUESTION: Is there a series of at most k edition operations transforming L
into L’ such that there exist consecutive time intervals I, J, and vertex subsets
A D X, BDY suchthat E(L) = {({,uv) : uv € (A\B)®(A\ B)}U{(J,uv) :
w € (B\A)® (B\ A)}U{({U Juv) :uv e (ANB)® (AN B)}?

Clearly, solving BiSS-LSE on input (L, k) is equivalent to solving VIP-BiSS-
LSE on input (L, k,(,D). As before, we consider the following boxed version
of BiSS-LSE, where I and J are two given consecutive time intervals.

Vip-(1, J)-B1SS-LSE:

INPUT: L a link stream, & € N, and X,Y C V(L) vertex subsets called VIP.
QUESTION: Is there a series of at most k edition operations transforming
L into L' such that there exist vertex subsets A O X, B D Y such that
E(L) ={(I,w) :uv € (A\B)® (A\ B)} U{(J,uwv) : uv € (B\ A) ® (B \
A U{(I U Juv) :uv € (ANB)® (AN DB)}?

Procedure 5 (Pruning the VIPs) On input instance (L, k, X, Y") of VIP-
(1, J)-BiSS-LSE, we will modify (X,Y’), not (L, k). We initialize (X', Y")

(X,Y) and process as follows. For every vertex u € V(L) such that Ny (u) >
2% k:

e if after k£ edition operations u cannot be isolated on the interval I, then
perform X' < X' U {u}.

o if after k£ edition operations u cannot be isolated on the interval J, then
perform Y’ < Y’ U {u}.

At the end of the looping process, return instance (L, k, X', Y”).

The two following lemmas are clearly true.

Lemma 6 Procedure 5 is safe with respect to VIP-(I,J)-BiSS-LSE.

Lemma 7 Any output (L', k', X", Y") of Procedure 5 satisfies: for every u €
V(L) \ (X'UY"), we have [N/ (u) \ (X' UY")| <2 x K.

As with Procedure 1, we first restrict our instance to the targetted time in-
tervals (I, .J).
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Procedure 6 On input instance (L,k, X,Y) of VIP-(I,J)-BiSS-LSE, re-
move from L every timed edge (K, uv) with

{min K, max K} N {min I, max I = min J, max J} = 0,
and decrease k with the number of such timed edges.

Lemma 8 Procedure 6 is safe with respect to VIP-(I,J)-BiSS-LSE.

Proof: Straightforward by an exhaustive case analysis, similarly as what was
done for Lemma 1. a

Let us now present our loose version of greedy edition for BiSS-LSE. Let
(L, k, X,Y) be an instance of VIP-(I, J)-BiSS-LSE. For every pair of distinct
vertices u,v € V(L) \ (X UY'), we will define the following set A(L, X, Y, u,v)
of bi-sparse split link streams. Let us consider N (u). With at most ¢ edition
operations involving u, there are only a polynomial number of possibilities of
transforming Ny (u) into a neighbourhood of u with exclusively timed edges
of the form (I, uw) for some w € V(L). Among these possibilities, we rule out
those which do not contain all vertices from X. We denote all the remaining
possibilities by N, x (u) = {N : X C N C V(L) A N is the neighbourhood
of u with exclusively timed edges of the form (I, uw) after at most o edition
operations involving w from original link stream L}. We note N, x [u] =
{NU{u}: N € N, x(u)}. Similarly, we define N,y ;[v]. We then define
AL, X, Y,u,v) = {L : V(L') = V(L) NT(L') = T(L) N E(L') = {(I, st) :
st € (A\B)®(A\B)}U{(J,st):st € (B\A)®@(B\A)}U{(IUJ st):ste
(ANB)® (ANB)} NA € N, x1[ul A B € N,y s[v]}.

Procedure 7 On input instance (L,k, X,Y) of VIP-(I, J)-BiSS-LSE, we
process as follows. For every pair of distinct vertices u,v € V(L) \ (X UY),
we compute the above defined set A(L, X, Y, u,v). Then, for every link stream
L' e A(L, X,Y,u,v), if there exists a series of k edition operations transform-
ing L into L, then return (POSITIVE, 0, (), #). After all looping processes, if we
still have not returned anything yet, then return original input (L, k, X,Y).

Lemma 9 Procedure 7 is safe with respect to VIP-(I,J)-BiSS-LSE.

Proof: Oninput (L, k, X,Y") Procedure 7 returns either (POSITIVE, 0, ), ) or
(L,k, X,Y). Hence, the output value for the parameter is at most k. As for
complexity issues, after producing A(L, X,Y,u), which is in polynomial time
by definition of A, Procedure 7 does in total 3>, ,ev o) (xuy) AL, X, Y, u, v)|
checks whether there exists a series of k edition operations transforming L into
some given L’. Because both L and L’ in each case are known, each check-
ing process can be done in polynomial time, cf. Property 1. By definition of
A(L, X, Y, u,v), this set has at most ('V(I;)‘_l) X ('V(LU)‘_1> members. Hence,
Suwevnxuy) AL, X, Y, u,v)| is polynomial in the size of L. Therefore, Pro-
cedure 7 terminates in polynomial time.
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Now, suppose that (L, k, X,Y) yields a positive answer to VIP-(I, J)-BiSS-
LSE. Since Procedure 7 only returns either (POSITIVE, 0, ), () or (L, k, X,Y),
which both yield positive answer to VIP-(/, J)-BiSS-LSE, we have indeed that

the input instance and the outputted instance of Procedure 7 yield the same
answer to VIP-(I, J)-BiSS-LSE.

On the other hand, suppose that (L, k, X,Y") yields a negative answer to VIP-
(1, J)-BiSS-LSE. Here, if Procedure 7 returns (L, k, X,Y’) then everything is
fine and there is no more thing to prove. Let us suppose by contradiction that
Procedure 7 returns (POSITIVE, 0, ), (). This return instruction must have
been done when examining some pair of distinct vertices u,v € V(L) \ (X U
Y) and some L' € A(L,X,Y,u,v). By definition of the return instruction
in Procedure 7, L' can be obtained from L after k edition operations. By
definition of A(L, X,Y,u,v), L' is a bi-sparse split link stream with timed
edges exclusively of the form (I, st) or (J,st), where the “clique” at time
interval I, resp. J, include all vertices from X, resp. Y. But then, L’ would be
a certificate that (L, k, X,Y") yields a positive answer to VIP-(1, J)-BiSS-LSE.
Contradiction. O

Among the vertices in the set V(L) \ (XUY') we will distinguish two categories:
those having a degree of at least o + 1 and the other ones. Let S, denote the
former ones, and n, their number: S, = {u € V(L)\(XUY) : [Np(u)| > o+1}
and n, = [S,|.

Now let L and L’ be two arbitrary link streams. We note S:=Y = {u € S,
there are at most o edition operations involving u on the way from L to L'}.
Notice that vertices in SL~%" are not isolated in L.

L—L" _ |SL—>L’|
o .

Finally, we note n

Lemma 10 Let (L, k, X,Y) be an output of the successive application of Pro-
cedure 5 then Procedure 6. On input (L, k, X, Y") Procedure 7 outputs (L, k, X,Y")
(and not (POSITIVE, 0,0, D)) if and only if the following property holds. If L is
a certificate that (L, k, X,Y") yields a positive answer to VIP-(1, J)-BiSS-LSE,
and if there exists u € V(L) \ (X UY) such that u is not isolated in L' and
there have been at most o edition operations involving u on the way from L to
L', then nk7 <2 x k40 + 1.

Proof: We have in particular that L' is a bi-sparse split link stream. Let A
and B be such that E(L') = {(I,st): st € (A\ B) @ (A\ B)} U{(J,st) : st €
(B\A)®@ (B\A)}U{({UJ,st):st e (ANB)® (AN B)}. Since u is not
isolated in L', u € (AUB) \ (X UY). W.lo.g. suppose that u € A.

If SE=L" is an empty set, then n% 7% = 0, and there is no more thing to show.

We assume the contrary and let v € SE~%. By definition, Nz (v) > o+ 1 and
there are at most o edition operations involving v on the way from L to L'.
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Hence, v cannot be isolated in L'. Now, if v € B\ (XUY"), we have in particular
that v # wu; moreover, Procedure 7 would have returned (POSITIVE, 0, (), ()
when examining A(L, X, Y, u,v). Hence, v € A\ (X UY"). We have just proved
that SE7F C A\ (X UY).

Finally, since (L, k, X,Y) is an output of Procedure 5, by Lemma 7, and by
the fact u ¢ X UY', we have |Np(u) \ (X UY)| < 2 x k. Besides, we know that
there are at most o edition operations involving u on the way from L to L'
Hence, |[Np/(u)\ (X UY)| <2xk+o0. Since L' is a bi-sparse split link stream,
we have that u € SE7L. Hence, u € A\ (X UY), and A = Np/(u) U {u}.
Therefore, [A\ (X UY)|<2xk+o+1.

Since S¥7E C A\ (X UY), we have that nt=Y" <2 x k+ o + 1. O

Procedure 8 On input instance (L, k, X,Y") of VIP-(/, J)-BiSS-LSE, if n, >
%’; + 2 x k + o + 1 then output (NEGATIVE, 0, (), ). Otherwise, initialize
(L', k') < (L, k). For every vertex u € V(L) \ (X UY) such that 0% < o,
isolate then remove u, that is, perform (L, k') < (L", k' —0L"), where V(L") =
V(L) \A{u}, T(L") =T(L') and E(L") = E(L') \ {({,uw) : I CT(L')Av €
V(L')}. At the end of the process, return (L', k', X,Y).

Lemma 11 Let (L, k, X,Y) be an output of the successive application of Pro-
cedures 5, 6 then 7. On input (L, k, X,Y) Procedure 8 is safe with respect to
VIP-(1,J)-BiSS-LSE.

Proof: 1In fact, the situation is very similar to what was done in Procedure 3 in
the previous section. We merely adapt the proof of previous Lemma 4 so that
it fits the new formalism. We stress that the adaptation is very procedural.

Let (L', k', X,Y) be the output of Procedure 8. Clearly, Procedure 8 runs in
polynomial time and can only decrease the value of the parameter, that is, we
have &' < k.

Suppose that (L', k', X,Y) yields a positive answer to VIP-(I, J)-BiSS-LSE,
that is, there exists a bi-sparse split link stream L” such that L” is made of
exclusively timed edges over one of the three time intervals I, J, and I U J;
and such that L” can be obtained from L’ after at most &" edition operations.
Now, for every u € V(L) such that 0Z < o, add a new isolated vertex to L”,
and obtain L". By heredity, L" is bi-sparse split. Furthermore, it is clear that
L" is made of exclusively timed edges over one of the three time intervals I,
J, and I U J. Here, the important point is that we have constructed L"” in
such a way that: as far as L is concerned, and after we isolate every vertex
w in L such that (Dﬁ < o, then we can mimic the k' operations transforming
L' into L” in order to transform the remaining of L into L"” with k' similar
operations. Hence, we have that L” can be obtained from L after isolating
every u with 0L < o, plus ¥ edition operations. Finally, by definition of
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(L', k") in Procedure 8, the total number of these edition operations is exactly
k. Hence, in this case the input instance (L, k, X,Y") of Procedure 8 yields a
positive answer to VIP-(/, J)-BiSS-LSE.

Suppose now that (L,k, X,Y) yields a positive answer to VIP-(I, J)-BiSS-
LSE, that is, there exists a bi-sparse split link stream L” such that L” is made
of exclusively timed edges over one of the three time intervals I, J, and T U J;
and such that L” can be obtained from L after at most k edition operations.
Then, by Lemma 10, for every vertex u of V(L), either u is an isolated vertex
in L” or there must be at least o + 1 edition operations involving u on the way
from L to L”. Let u € V(L) such that 0% < ¢ (which implies that u is isolated
in L'). If u is an isolated vertex in L” then the minimum number of edition
operations to isolate u from input instance L, which is 0L, is indeed what
we have use in Procedure 8 as long as wu is concerned. If u is not an isolated
vertex in L” then we know there are at least o + 1 edition operations required
in order to transform the neighbourhood of w in L into the neighbourhood
of u in L”. However, let us consider L, the link stream that is obtained by
removing u from L”. Firstly, L" is made of exclusively timed edges over one of
the three time intervals I, J, and I U.J. Secondly, L" is bi-sparse split because
of heredity. Lastly, as long as u is concerned, we can obtain L" from L’ by at
most the same edition operations as obtaining L” from L. Basically, the fact
that L can be transformed into L” by k edition operations guarantees that
L' can be transformed into L” by at most k' edition operations. Therefore,
the outputted instance (L', k', X,Y") of Procedure 8 yields a positive answer
to VIP-(I, J)-BiSS-LSE. O

Procedure 9 Oninput instance (L, k, X,Y") of VIP-(1, J)-BiSS-LSE, if |V (L)\
(XUY)| > % then we output (NEGATIVE, 0, (), ). Otherwise, we output

(L, k, X,Y).

Lemma 12 Let (Lo, ko, Xo, Yo) be an arbitrary instance of VIP-(1,.J)-BiSS-
LSE. First apply Procedure 5 and Procedure 6. Then, iteratively apply (Pro-
cedure 7 then Procedure 8) until the output is constant, and let (L,k, X,Y)
be that output. Then, on input instance (L,k, X,Y), Procedure 9 is safe with

respect to VIP-(I,J)-BiSS-LSE.

Proof:  For any solution L’ to a positive instance (L, k, X,Y") of VIP-(1, J)-
BiSS-LSE, let T' = S, \ S¥7*. By Lemma 10, |T| > n, —(2x k-+0c+1). Hence,
if Procedure 9 returns (NEGATIVE, 0, (), ), then |T| > % By definition, for
any member u € T', we need to spend at least o+1 edition operations involving
u. Therefore, with only k operations we cannot succeed in transforming L into

L'. Hence the result.

First, remark that, at the last instruction, Procedure 8 outputs (NEGATIVE, 0, 0, (})
if and only if the value of (L', k', X,Y) yields a negative answer to VIP-
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(I, J)-BiSS-LSE: indeed, a part from VIP vertices in X and Y, L’ will then
only contain vertices where, for each of them, we must spend at least o + 1
edition operations involving the vertex; moreover we have in this case that

V(L) \ (XUY)| > ix—fll However, with only £’ edition operations, since
2%k’

each can only involve two vertices, we cannot involve more than 7% vertices
when each of them needs to be involved at least o + 1 times. Hence, when
Procedure 8 outputs (NEGATIVE, 0, ), #) in the last instruction, the value of
(L', K',X,Y) yields a negative answer to VIP-(/,.J)-BiSS-LSE. It is conse-
quently sufficient to prove that (L, k, X,Y) and (L', k', X,Y) yield the same
answer to VIP-(I, J)-BiSS-LSE. O

Corollary 2 Let (L,k,X,Y) be an arbitrary instance of VIP-(I,J)-BiSS-
LSE. First apply Procedure 5. Then, apply Procedure 6. Then, iteratively ap-
ply (Procedure 7 then Procedure 8) until the output is constant. Finally apply
Procedure 9. This process results in a kernelization algorithm for VIP-(I,J)-
BiSS-LSE. Moreover, the number of vertices in the kernel is linear in the
parameter.

Proof: By Lemmas 6, 8, 9, 11, and 12, the procedure given in the statement
is safe. The only thing left to prove is that the size of the output (L', k', X', Y”)
of the procedure is bounded by a function of &’. This is clearly the case if the
output of Procedure 7 is (POSITIVE, 0, (), }), or the output of Procedure 9 is
(NEGATIVE, 0, 0, ().

Otherwise, let (L, k, X,Y") be the output obtained at the end of the iteration
of (Procedure 7 and Procedure 8). Note that (L, k, X,Y) is also the input of

Procedure 9. Since Procedure 9 does not return (NEGATIVE, 0, ), ), we have
that V(L) \ (X UY)| < £ and that (L, k, X,Y) = (L',K, X", Y").

o+1?

Finally, after Procedure 6, the maximum number of possible edges is obtained
if there are three timed edges for each pair of vertices (u,v): one involving
min /, one involving max/ = min.J and one involving max.. Therefore,

|E(L)] = O(V(L)).

We have proved the following result:

Theorem 3 The parameterized version of VIP-(I,J)-BiSS-LSE has a lin-
ear vertex kernel. The parameterized version of BiSS-LSE is fixed parameter
tractable.
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Link stream class || Graph-like | Greedy editable Edition complexity
1-1-Sparse-Split Yes Yes Boxed kernel ()
d-1-Sparse-Split Yes Yes Probable boxed kernel (2)
d-1-Cluster Yes Yes Probable boxed kernel (2)
*_1-Sparse-Split Yes Unlikely Possible FPT )
*_1-Cluster Yes Unlikely Possible FPT ()
1-2-Sparse-Split Yes Unlikely Boxed kernel ()
1-k-Sparse-Split No Unlikely Boxed kernel (10%5)
d-k-Sparse-Split No Unlikely Probable boxed kernel (2)
d-k-Cluster No Unlikely Probable boxed kernel (?)
*_k-Sparse-Split No Unlikely Possible FPT )
*_-Cluster No Unlikely Possible FPT (3)
-*_Sparse-Split No Unlikely 7 (4)
d-*-Cluster No Unlikely ? (4)
*_*_Sparse-Split No Unlikely ? (4)
**_Cluster No Unlikely 7 (4
Table 1

Classification of some link stream editing problems.

5 Conclusion and Perspectives

We gave generic ideas to solve parameterized versions of edition problems
on link streams, that is, to edit an arbitrary given link stream by local edge
editions into a link stream belonging to some given class of link streams.
In particular, we proved that both sparse split and bi-sparse split link stream
edition problems are fixed parameter tractable. Our approach relies on proving
that a constrained version of the problem, which is defined by a target time
interval, admits a linear vertex kernel.

We believe that our technique can be generalized to solve a broad class of
parameterized edition problems on link streams.

5.1 FEaxtension - Multiple “time intervals”

A link stream may be seen as a finite series of graphs. Indeed, if (¢;)y is the
ordered series of timestamps at which at least one timed edge begins or ends,
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we can build the series of graph (Gy)x as follows: two vertices are connected
in Gy if and only if they are linked between ¢, and ¢;,,. The sparse split link
stream class consists of graph equivalent link streams, i.e. their representation
as a series of graphs is a single graph. However, we can define new classes with
no such restriction. From now on, we shall say that a link stream verifies a
certain property (for instance being sparse-split) if and only if all of its graphs
verify the same property. We shall call number of time intervals in a link
stream the number of graphs in its series of graphs.

5.2  Problem Denomination

We give here a classification of different problems in this category. Each prob-
lem is characterized by two prefixes and a stem.

The first prefix describes the maximum number of cliques allowed.

e d- The maximum number of cliques of size > 2 allowed is d
e * Any number of cliques of size > 2 allowed

The second prefix describes the maximum number of time intervals.

e -k- The maximum number of neighbouring intervals is &, that is: 3(;):c(o 4,
E(L) C {([ti, tj],uv) :u,v e V(L) N0 <i < j <k}

e - Any number of neighbouring intervals, that is: 3k, 3(t;)icpor, (L) C
{(Iti, tj],uv) cu,v € V(L) N0 <i < j <k}

The stem describes whether or not we count isolated vertices when counting
cliques.

e -Sparse-Split On each interval, the link stream is a clique (or d cliques) plus
isolated vertices
e -Cluster On each interval, the link stream is a set of disjoint cliques

Table 1 presents the resulting classes, whether they are graph-like and indi-
cations on the fact that they would be greedy editable or not. In the table,
we also give indication of the complexity of the corresponding edition prob-
lem. N.B.: O our results; 1) true by a straightforward generalization of
Property 3 and Section 4; ) probably true, e.g. by a careful extension of our
approach; ) possibly true, e.g. by adapting techniques given in [4,13] to our
approach; 4 open, we strongly believe that dealing with the time dimension
is the trickier task when trying to solve this kind of problems.
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5.8 Other perspectives

Our work opens the way to several other interesting research directions.

First, other problems from graph theory have natural equivalent in link streams.
For instance, the notion of temporal matching [2] or separators in link streams
(called in this case temporal graphs) [?] have already been studied. There is
no doubt that other notions such as for instance Steiner trees or clique-width
have meaningful equivalents in link streams, and assessing whether existing
algorithms can be easily extended, or if other procedures have to be designed,
is a promising and fruitful direction.

The problems we studied in this paper have direct applications in several data
mining problems. Therefore, we believe that it is important to be able to
apply our kernelization algorithms to real-world datasets, in order to be able
to transform them into sparse split or bi-sparse split link streams.

The preliminary work we have done so far shows that the main hurdle in doing
so does not lie in obtaining the solution once we have a kernel, but from finding
the correct o and w values for doing so. Indeed, an exhaustive search leads to
applying our kernelization procedures for all pairs of relevant time instants,
which is infeasible in practice, even for relatively small datasets. Finding small
sets of candidate values for a and w is therefore a crucial concern.

Another concern in dealing with real-world datasets is that in general, we do
not have any precise constraint for the number of desired editions k, but are
instead interested in finding the minimum k such that it is possible to trans-
form a given link stream into a sparse split or bi-sparse split one. Therefore, a
natural direction would be to design approximation algorithms for this prob-
lem, where the goal would be to transform a given link stream into a sparse
split or bi-sparse split one with a number of editions that is within a constant
factor of the optimal. This kind of approach has already been successfully
addressed for the problem of matching [2] and we believe that it is also very
promising in our case.
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