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Abstract. Many factors govern the relationship between migration of species individuals among
multizone environment, and their distribution over time. In order to understand the effect of species
densities on the migration, we propose a general discrete model for migration of many competing
species over multizones. We prove that under some assumptions the migration tactics of species lead
to an exponentially quick convergence of the system to a stable distribution. Because the number of
stable distribution forms is very large, we provide a characterization of the initial conditions under
which the system converges to each distribution. At the end, we give a method to calculate the
probability of reaching each stable distribution form, applied to the case of three species on three
zones.
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1 Introduction

An important issue in ecology is to understand the effects of the tactics that individuals may adopt at
the population and community levels. Individuals migrate because the food is limited, they compete
with others, environmental conditions are not good for them (weather, natural calamity,etc) and
so on. This leads to various portraits of distribution of species over the environment.

There was also a lot of interest in the relationship between migration of species individuals among
multizone environment and distribution species. One of the most common and simple theoretical
explanation for effects of individuals’ migration on the species distribution is ideal free distribution
(IFD) theory. The theory states that the number of individuals that will aggregate (or else clump)
in various zones is proportional to the amount of resources available in each. In IFD theory, we
accept the prediction that the distribution of individuals on mltizone environment will minimize
resource competition and maximize fitness ([7, 6, 24, 9, 10]).
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Some recent investigations studied another factor leading to individuals’ migration and also
showed the link between the migration and the species distribution over multizone environment.
These investigations showed that when migrations of individuals do not depend on species densities,
i.e. migration of species over zones is characterized by numbers which are called constant migration
rates, then species distribution over a given zone is proportional to migration rate of the species to
that zone ([2, 13, 14, 15]). When migration of individuals depend on species densities then species
distribution over a given zone can be represented as a function of species densities. Dependence
of individuals’ migration on species densities were obviously explained and well presented in the
previous studies ([2, 17, 18, 1, 5, 12, 11]). In these studies, the authors assumed that individuals
of one species (a prey or an inferior competitor) are likely to leave the patch if there are too many
individuals of the others (a predator or a superior competitor, respectively). In this case, one
species tried to avoid the other species and this led to the fact that the species (prey or a inferior
competitor) distribution over a zone depends on the density of the other species (a predator or a
superior competitor, respectively). However, in these previous models, only two species and two
zones were considered. There were very few studies involving three species and three zones (see [3]).
This study only concerned to independence of migration of individuals on species densities. The
aim of this work is to take into account dependence of migration of individuals on species densities
in a multi competing species system.

We propose a discrete model approach: time is discrete, and density is continuous. We consider
the general case: there are p competing species for territory among m zones. At each time step,
we examine the picture in each zone, and then aggregate the zones to get the whole picture. We
assume that over each zone individual of a species try to avoid the others species in the sense that
if the density of the species is smaller than those of the others then their individuals are likely to
leave that zone. The raised question is “what is the stable distribution of the p species among m
zones?” There is no simple answer to this question. We show in this paper that it depends on
migration tactics of individuals as well as the initial distribution of species.

As a first attempt, we are interested in the effects of individuals’ migration on the distribution of
species over zones, we therefore do not take into account the demographic process. We try to keep
important assumptions and predictions of ideal free distribution system, such as: all individuals
are competitively equal, so they are all equally able to forage and choose the destination zones to
move; individuals are free to move to the chosen zones. However, this can be violated by dominant
individuals within a species who may keep a weaker individual from reaching the destination zone. A
population of individuals will distribute themselves equally among zones with the same probability.
Moreover, in order to carry out the analysis for this general case, we have other following assumption:
species have constant amount of individuals. Although this assumption is quite strong, we think it
is reasonable because in many models [3, 19] when considering multi time scales, authors usually
distinguish two time scales: the fast time scale for the migration dynamics and the slow time scale
for the demographic dynamics. So in the fast time scale, we may assume that species have constant
amount of individuals.

With these assumptions, individuals can move continuously, but it is surprising that the system
will alwways converge to a stable distribution. The stable distribution here is understood as the
set of densities of species in each zone. It is worth noting that in the density stability, there may
still be migration of some individuals, although they do not change the picture of density because
for the same species on the same zone, there will be individuals coming and individuals going. Our
analyzes are based on detailed combinatorial calculations. It also helps us to determine the number
of all possible stable distributions, and most importantly, to prove that the system will converge in
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a very short time, in an exponential way.
One of the next big issues is how to compute the probability for the system reaching a given

stable distribution. This is a complex problem, requiring a lot of calculations. At the and of this
paper, we will show this problem for the model of three species and three zones, the calculations
are based on calculation of simplexes.

The paper is organized as follows. Section 2 is dedicated to a presentation of the model. Section
3 analyzes all possible stabe configuration forms of the model and Section 4 proves that the model
will converge exponentially to one of these stable configurations. In Section 5, we will accurately
calculate the probability for the system reaching a given stable configuration. Finally, Section 6
is about a short discussion and conclusion. Further, we give two appendices on the probability
computation and simulation.

2 Presentation of the model

The system evolves in discrete time and continuous space. We consider the case of p species
S = {1, . . . , p} and m zones Z = {1, . . .m}. We call configuration at time t a distribution of the
individuals of each species into the m zones, composed of a density nqi(t) of individuals of species
q ∈ S in zone i ∈ Z at time t, such that for every species q ∈ S we have

∑
i∈Z nqi(t) = 1. Formally,

a configuration is determined by its density matrix:

n(t) =

n11 . . . n1m

...
...

np1 . . . npm

 .

If there is no ambiguity, we will usually omit the dependency on the time t and simply denote n
instead of n(t). The set of configurations is denoted by C. To describe the dynamics of the system,
we introduce some definitions as follows.

Definition 1. In a configuration, a species dominates a zone when its density in this zone is strictly
greater than the densities of all other species in this zone. Formally, let us denote q DOM(t) i when
for all q′ ∈ S \ {q} we have nqi(t) > nq′i(t), and q DOM(t) i otherwise.

Definition 2. The evolution rule is that if a species dominates a zone at time t then those indi-
viduals stay into this zone in the next time step (t+ ∆t), and if a species does not dominate a zone
then in the next time step they split evenly into the m− 1 other zones.

For a configuration c(t) at time t, we denote by c(t+ k∆t) the configuration obtained from c(t)
after k time steps.

Definition 3. A stable configuration is a configuration such that its density matrix does not change
over time (though individuals may move).

Definitions are illustrated on Figure 1.

3 Stable configurations

In this section, we study the form of stable configurations. We will describe them explicitly (The-
orem 1), then calculate the number of possible stable configuration forms (Corollary 1).
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
0.9 0.1 0 0 0
0.08 0.35 0.21 0.35 0
0.8 0.16 0 0 0.04
0.3 0.2 0.2 0.3 0


n(t)


0.925 0 0.025 0.025 0.025

0 0.37 0.23 0.38 0.02
0.04 0.2 0.24 0.24 0.28
0.175 0.2 0.2 0.175 0.25


n(t+ ∆t)

1 0 0 0 0
0 0.495 0 0.505 0
0 0 0.48 0 0.52

0.2 0.2 0.2 0.2 0.2


lim
k→∞

n(t+ k∆t)

Figure 1: Example of evolution step with p = 4 species and m = 5 zones, from n(t) to n(t + ∆t)
(top). Dominating species are underlined, we have 1 DOM(t) 1, 2 DOM(t) 2, 2 DOM(t) 3, 2 DOM(t) 4 and
3 DOM(t) 5. Asymptotically, n(t) converges to a stable configuration (bottom).

Lemma 1. In a stable configuration, if a species appears but does not dominate a zone, then its
density in each zone is equal to 1

m .

Proof. Let s be a stable configuration and let n = (nqi) be the density matrix of s. Let s′ be
the configuration obtain form s after a time step, and let n′ = (n′qi) be the density matrix of s′.
Because s is a stable configuration then s′ = s and n′ = n.

Without loss of generality, we can suppose that species 1 appears but does not dominate zone
1. Then the individuals of species 1 in zone 1 will move to all other m − 1 zones in the next time
step, therefore n′1i > 0 for all i 6= 1. This implies that n1i 6= 0 for all i ∈ Z. Let T ⊂ Z be the set
of zones that species 1 does not dominate. Now let n1j be the maximal of all n1i for i ∈ T . After
one time step, we have n′1j =

∑
i∈T\{1}

1
m−1n1i ≤

∑
i∈T\{1}

1
m−1n1j ≤ (m− 1) 1

m−1n1j = n1j .

The equality holds if and only if T = Z and n1i = n1j , for all i ∈ Z. This implies that n1i = 1
m

for all i ∈ Z.

Theorem 1. A stable configuration is of the following form: there are p−k, k ∈ {0}∪{2, 3, 4, . . . , p},
species that appear in all m zones with the density of each species in each zone equal to 1

m . And
the other k species dominate m zones (one species can dominate many zones).

Proof. Let s be a stable configuration and let n = (nqi) be the density matrix of s. Using Lemma 1,
we know that if a species appears but does not dominate a zone then its density in every zone is 1

m .
Let p− k be the number of such species. Without loss of generality, we suppose that these species
are {k + 1, . . . , p}. The k other species do not belong to this set, which means that species i with
i ≤ k dominates in all zones where it appears.

If k is equal to 0 or 1, every species appear in every zone with density 1
m . This is a very special

stable configuration, where there is no domination, therefore the case k = 1 is impossible
If k = p, each zone contains only one species and the density of species in their zone is ≤ 1.
Now, let us consider the case when 2 ≤ k ≤ p − 1. Then in each zone, species k + 1, . . . , p

appear with density 1
m , beside there is one dominant species with density greater than 1

m . Note
that one species q can dominate different zones, let say `q zones, where 1 ≤ `q ≤ p − 1. And we
have `1 + `2 + . . .+ `k = m.

4



Corollary 1. The number of stable configuration forms is equal to the number of partitions of m
in which the number of parts is from 2 to p, plus the configuration with every densities equal to 1

m .

Proof. According to the previous theorem, apart from the very special case k = 0, a stable config-
uration form is determined by p − k, the number of dominated species, and by `i the number of
zones the species q dominates, with 1 ≤ q ≤ k. Because we are interested in the form of stable con-
figurations, then the order of species does not matter, and we can suppose that `1 ≥ `2 ≥ . . . ≥ `k.
Then the form of a stable configuration is determined by a non inscreasing sequence (`1, . . . , `k),
such that 2 ≤ k ≤ p− 1 and that `1 + `2 + . . . `k = m. This sequence is nothing but a partition of
m in k parts.

Note that in the case k = p, a stable configuration form corresponds to a partition of m in p
parts. Then the number of stable configuration forms is equal to the number of partitions of m
with the number of parts less than or equal to p.

4 Convergence time

In Subsection 4.2 we prove that the repartition of dominances remains fixed after one iteration
(Lemma 4), and as a consequence the evolution converges exponentially quickly to a stable config-
uration of the form described in Theorem 1 (Theorem 3). However, when cases of equality among
densities appear the behavior may never converge, but this bears upon an infinitesimal subset of
configurations that we will therefore ignore, as developed in Subsection 4.1.

4.1 Ignoring cases of equalities

In the sequel we will ignore cases of equality, because they appear with probability zero if we take
a uniform random initial configuration with densities in R. Recall that C denotes the set of all
configurations with densities in R, and let us denote C∗ the set of configurations such that the
density of two species in a zone are equal at some time during the evolution. Formally,

C∗ = {c ∈ C | ∃ k ∈ N, p ∈ S, q ∈ S, i ∈ Z : npi(t+ k∆t) = nqi(t+ k∆t)}

with n the density matrix of c.
Intuitively, if we consider the set C which is uncountable (continuous space of densities in

[0; 1] ⊂ R) then a case of equality in C∗ corresponds to the restriction of an uncountably large
degree of liberty to a countable one, hence the following result.

Theorem 2. |C
∗|
|C| = 0.

Proof. A uniform random initial configuration is given by a density matrix, i.e. for each species q ∈
S one has to choose non-negative nqi for all i ∈ Z, such that

∑
i∈Z nqi(t) = 1. For each species this

corresponds to choosing xq1, xq2, . . . , xq(m−1) ∈ [0; 1] uniformly, with xq1 < xq2 < · · · < xq(m−1),
and setting nq1 = xq1, nq2 = xq2 − xq1, nq3 = xq3 − xq2, . . . , nq(m−1) = xq(m−1) − xq(m−2) and
nqm = 1 − xq(m−1). Now if a case of equality appears during some evolution step, it corresponds
to having a linear combination of densities, with rational coefficients (given by the evolution rule),
such that two densities are equal. This corresponds to restricting an uncountable degree of liberty
within [0; 1] to a countable subset of [0; 1], which has null measure.
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Ignoring cases of equality is important regarding convergence, because there are configurations
in C which do not converge. For example, with p = 3 and m = 2, we have the following ultimately
periodic evolution (with period 2):1 0

0 1
0 1

→
1 0

1 0
1 0

→
0 1

0 1
0 1

→
1 0

1 0
1 0

→
0 1

0 1
0 1

→ . . . .

However, this cannot happen for configurations of C \C∗, they all converge to a stable configuration,
as we will see in the next subsection.

4.2 Exponential convergence

Definition 4. Let c and c′ be two configurations with density matrices n and n′, respectively. The
distance between the two configurations is defined by (uniform norm)

d(c, c′) = max
i∈Z
q∈S

{
|nqi − n′qi|

}
.

Definition 5. Starting from a configuration c(t), we say that the system converges to a stable
configuration s if

∀ ε > 0,∃ k(ε) ∈ N,∀ k > k(ε) : d(c(t+ k∆t), s) < ε.

Moreover, if k(ε) in O
(
log2

(
1
ε

))
we say that the systems exponentially converges to s.

We consider only configurations of C \ C∗, therefore each zone is dominated by exactly one
species.

Definition 6. A repartition of dominances is the association of a dominant species to each zone.
Let us denote Dq(t) (resp. Dq(t)) the set of zones where species q dominates (resp. does not domi-
nate) at time t.

Recall that according to the evolution rule we have

q DOM(t) i =⇒ nqi(t+ ∆t) = nqi(t) + 1
m−1

∑
j∈Dq(t)\{i}

nqj(t)

and q DOM(t) i =⇒ nqi(t+ ∆t) = 1
m−1

∑
j∈Dq(t)\{i}

nqj(t)

and when i ∈ Dq(t+ ∆t), by considering separately Dq(t+ ∆t) ∩ Dq(t) and Dq(t+ ∆t) ∩ Dq(t), we
get that after two time steps nqi(t+ 2 ∆t) equals

1

m− 1

 ∑
j∈Dq(t+∆t)∩Dq(t)\{i}

nqj(t) +
1

m− 1

∑
j∈Dq(t+∆t)\{i}

∑
k∈Dq(t)\{j}

nqk(t)

 . (1)

We begin with three straightforward facts.

Fact 1. One species q ∈ S cannot dominate all zones.
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Proof. Otherwise
∑
i∈Z nqi >

∑
i∈Z nri = 1 for any other species r ∈ S, but the densities of one

species in all zones sum to one, a contradiction.

Fact 2. If q DOM(t) i then nqi(t+ ∆t) ≤ 1
m−1 .

Proof. In this case nqi(t + ∆t) = 1
m−1

∑
j∈Dq(t)\{i} nqj(t) ≤ 1

m−1 since the densities of one species
in all zones sum to one.

Fact 3. If q DOM(t) i for some zone i, then nqh(t + ∆t) ≥ 1
m−1 and q DOM(t+ ∆t)h with h =

arg maxk∈Dq(t) nqk(t).

Proof. If q DOM(t) i then h is well defined, q DOM(t)h, and

nqh(t+ ∆t) = nqh(t) + 1
m−1

∑
j∈Dq(t)

nqj(t)

= 1
m−1 + nqh(t)− 1

m−1

∑
j∈Dq(t)

nqj(t)

but thanks to the maximaly of h and Fact 1 we have
∑
j∈Dq(t) nqj(t) ≤ (m − 1)nqh(t). With the

above development this gives the first part of the result, and the second part comes from Fact 2.

The following lemma is an important observation in order to prove Lemma 4.

Lemma 2. If a species does not dominate a zone for two consecutive time steps, then it will never
dominate it: q DOM(t) i and q DOM(t+ ∆t) i implies q DOM(t+ 2 ∆t) i.

Proof. We split the proof into two cases, depending on whether Dq(t) = ∅ or not.

Case Dq(t) = ∅. We claim that nqi(t + 2 ∆t) is either smaller than nqi(t) or than nqi(t + ∆t).
Then, let r (resp. s) be the species dominating zone i at time t (resp. t + ∆t). When a species
dominates a zone its density obviously increases in that zone, hence

nqi(t+ 2 ∆t) ≤ nqi(t) < nri(t) ≤ nri(t+ ∆t) ≤ nsi(t+ ∆t) ≤ nsi(t+ 2 ∆t)
or nqi(t+ 2 ∆t) ≤ nqi(t+ ∆t) < nsi(t+ ∆t) ≤ nsi(t+ 2 ∆t)

i.e. q DOM(t+ 2 ∆t) i. Let us now prove the claim. Given that nqi(t + 2 ∆t) is upper bounded by
the case Dq(t+ ∆t) = ∅, from Equation (1) we have

nqi(t+ 2 ∆t) ≤ 1
(m−1)2

∑
j∈Z\{i}

∑
k∈Z\{j}

nqk(t)

= 1
(m−1)2

[
(m− 1)nqi(t) + (m− 2)

∑
j∈Z\{i}

nqj(t)

]

= 1
m−1 nqi(t) + m−2

m−1

(
1

m−1

∑
j∈Z\{i}

nqj(t)

)
= 1

m−1 nqi(t) + m−2
m−1 nqi(t+ ∆t).

So nqi(t+ 2 ∆t) is either smaller than nqi(t) or than nqi(t+ ∆t).
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Case Dq(t) 6= ∅. If Dq(t) 6= ∅ then, letting h = arg maxk∈Dq(t) nqk(t) and applying Fact 3 gives
h ∈ Dq(t+ ∆t) and nqh(t + ∆t) ≥ 1

m−1 . We begin with the same development as in the case
Dq(t) = ∅, and keep track of the additional terms. Starting again from Equation (1) we have

nqi(t+ 2 ∆t) =
1

m− 1

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t)︸ ︷︷ ︸
a

+

[
1

(m−1)2

∑
j∈Z\{i}

∑
k∈Z\{j}

nqk(t)

]

+ 1
(m−1)2

−|m− Dq(t+ ∆t)|︸ ︷︷ ︸
b

+
∑

j∈Dq(t+∆t)

nqj(t)︸ ︷︷ ︸
c

−|Dq(t+ ∆t)− 1|
∑

j∈Dq(t)

nqj(t)︸ ︷︷ ︸
d

+
∑

j∈Dq(t)∩Dq(t+∆t)

nqj(t)︸ ︷︷ ︸
e

 .

We can merge some terms as follows,

a− b

(m− 1)2
− d

(m− 1)2
= − 1

m− 1

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t)−
|m− Dq(t+ ∆t)|

(m− 1)2

∑
j∈Dq(t)

nqj(t)

c

(m− 1)2
+

e

(m− 1)2
=

1

(m− 1)2
− 1

(m− 1)2

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t)

which leads to

nqi(t+ 2 ∆t) =
[

1
m−1nqi(t) + m−2

m−1nqi(t+ ∆t)
]

+ 1
(m−1)2 − 1

m−1

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t)

− |Dq(t+∆t)|
(m−1)2

∑
j∈Dq(t)

nqj(t)− 1
(m−1)2

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t).

Now, if the sum of terms appart from the square bracket is smaller than zero then we are done as
in the case Dq(t) = ∅. So we suppose the contrary in order to reach a contradiction, i.e.,∑

j∈Dq(t)∩Dq(t+∆t)

nqj(t) + 1
m−1

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t)

< 1
m−1 −

|Dq(t+∆t)|
m−1 + |Dq(t+∆t)|

m−1

∑
j∈Dq(t)

nqj(t)

≤ 1
m−1

∑
j∈Dq(t)

nqj(t) + |Dq(t+∆t)|−1
m−1

∑
j∈Dq(t)

nqj(t)− |Dq(t+∆t)|−1
m−1

≤ 1
m−1

∑
j∈Dq(t)

nqj(t).

Forgetting one more term on the left side leads to

(m− 1)
∑

j∈Dq(t)∩Dq(t+∆t)

nqj(t) <
∑

j∈Dq(t)

nqj(t) =
∑

j∈Dq(t)∩Dq(t+∆t)

nqj(t) +
∑

j∈Dq(t)∩Dq(t+∆t)

nqj(t)
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and therefore
(m− 2)

∑
j∈Dq(t)∩Dq(t+∆t)

nqj(t) <
∑

j∈Dq(t)∩Dq(t+∆t)

nqj(t).

Let us show that this is impossible.

• Since h ∈ Dq(t) ∩ Dq(t+ ∆t) we have (m− 2)nqh(t) smaller or equal to the left hand side.

• With g = arg maxj∈Dq(t)∩Dq(t+∆t) nqj(t) the zone maximizing the density of species q among
the zones where q DOM(t) j and q DOM(t+ ∆t) j, we obtain that the right hand side is smaller
or equal to |Dq(t)∩ Dq(t+ ∆t)|nqg(t) which in turn is smaller or equal to (m− 2)nqg(t) since
at least zones i and j do not belong to Dq(t) ∩ Dq(t+ ∆t).

We conclude that nqh(t) < nqg(t), a contradiction to the definition of h as arg maxk∈Dq(t) nqk(t)
because g ∈ Dq(t).

From Lemma 2 above we also deduce the following.

Lemma 3. If a species dominates a zone for two consecutive time steps, then it will dominate it
forever: q DOM(t) i and q DOM(t+ ∆t) i implies q DOM(t+ 2 ∆t) i.

The next result is stronger than Lemmas 2 and 3. It is the key observation in the proof of
Theorem 3.

Lemma 4. Starting from any initial configuration, the repartition of dominances remains fixed
after one iteration: q DOM(t+ ∆t) i implies q DOM(t+ k∆t) i for all k ≥ 1.

Proof. Let us first prove the lemma when the number of zones is m = 1 or m = 2. When m = 1
the dynamic is trivial, no species dominate zone 1 (nq1(t + k∆t) = 1 for all q ∈ S and all k ∈ N),
and the configuration does not belong to C \ C∗ (though the lemma holds). When m = 2, each
species dominates at most one zone (for a species cannot dominate all zones by Fact 1), hence
if q DOM(t) i then all the individuals of species q from the other zone are moving to zone i, which
implies nqi(t + ∆t) = 1 and q dominates zone i at time t + ∆t and forever (recall that there is no
case of equality among densities, we are in C \ C∗), i.e., the lemma holds.

Now, when m ≥ 3, from Lemma 2, our only chance to contradict the lemma is for two species
to alternate dominance in one zone. For convenience with the notations, let us suppose, without
loss of generality, that

q DOM(t) 1 and r DOM(t+ ∆t) 1.

We will prove that
nq1(t+ 2 ∆t) < nr1(t+ 2 ∆t) (2)

therefore q DOM(t+ 2 ∆t) 1, and it implies r DOM(t+ 2 ∆t) 1 by Lemma 2 applied to each species
s 6= r (at t+ ∆t and t+ 2 ∆t for species q, and at t and t+ ∆t for others). The lemma follows by
induction. We have

nq1(t+ 2 ∆t) = 1
m−1

∑
i∈Dq(t+∆t)\{1}

nqi(t+ ∆t).

nr1(t+ 2 ∆t) = nr1(t+ ∆t) + 1
m−1

∑
j∈Dr(t+∆t)\{1}

nrj(t+ ∆t).

We establish a case disjunction on zones through three claims (proofs are postponed), and then
deduce Inequality (2).
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Claim 1. If q DOM(t) i and s DOM(t+ ∆t) i for some species s /∈ {q, r}, then nqi(t + ∆t) < nr1(t +
∆t) + nri(t+ ∆t).

Claim 2. If q DOM(t) i and r DOM(t+ ∆t) i, then nqi(t+ ∆t) ≤ nr1(t+ ∆t) + 1
m−1 nq1(t).

Claim 3. If q DOM(t) i then nqi(t+ ∆t) < nr1(t+ ∆t)− nq1(t).

Starting from nq1(t+ 2∆t),

• developing the case disjunction,

• relaxing the condition on the third term (which preserves the inequality as densities are non-
negative),

• then applying Claims 1, 2 and 3 to their respective case,

• and finally reorganizing the sum:

– factorize at most m−1 terms nr1(t+∆t) since the three sums represent a case disjunction
in i ∈ Z,

– cancel terms nq1(t) with at most m − 1 positive terms (with factor 1
m−1 ) and at least

one negative term by Fact 1,

we obtain Inequality (2) as follows.

nq1(t+ 2∆t)

=
1

m− 1

∑
i∈Dq(t+∆t)\{1}

nqi(t+ ∆t)

=
1

m− 1

( ∑
i∈Dq(t+∆t)\{1}

q DOM(t) i
s DOM(t+∆t) i
s/∈{q,r}

nqi(t+ ∆t) +
∑

i∈Dq(t+∆t)\{1}
q DOM(t) i

r DOM(t+∆t) i

nqi(t+ ∆t) +
∑

i∈Dq(t+∆t)\{1}
q DOM(t) i

nqi(t+ ∆t)
)

≤ 1

m− 1

( ∑
i∈Dq(t+∆t)\{1}

q DOM(t) i
s DOM(t+∆t) i
s/∈{q,r}

nqi(t+ ∆t) +
∑

i∈Dq(t+∆t)\{1}
q DOM(t) i

r DOM(t+∆t) i

nqi(t+ ∆t) +
∑
i∈Z

q DOM(t) i

nqi(t+ ∆t)
)

<
1

m− 1

( ∑
i∈Dq(t+∆t)\{1}

q DOM(t) i
s DOM(t+∆t) i
s/∈{q,r}

(nri(t+ ∆t) + nr1(t+ ∆t))

+
∑

i∈Dq(t+∆t)\{1}
q DOM(t) i

r DOM(t+∆t) i

(nr1(t+ ∆t) +
1

m− 1
nq1(t))

+
∑
i∈Z

q DOM(t) i

(nr1(t+ ∆t)− nq1(t))
)
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≤ nr1(t+ ∆t) +
1

m− 1

∑
i∈Dq(t+∆t)\{1}

q DOM(t) i
s DOM(t+∆t) i
s/∈{q,r}

nri(t+ ∆t)

≤ nr1(t+ 2∆t)

Proof of Claim 1. Our hypothesis are

q DOM(t) 1 q DOM(t) i

r DOM(t+ ∆t) 1 s DOM(t+ ∆t) i r 6= s.

In this case, nqi(t + ∆t) < nsi(t + ∆t), so let us concentrate on upper bounding nsi(t + ∆t) by
nr1(t+ ∆t) + nri(t+ ∆t), which proves the claim. In order to ease the developments below, let us
present and illustrate some notations, regarding what happens from time t to t+ ∆t.

x = 1
m−1

∑
j∈Dq(t) nqj(t) : What q receives in zones 1 and i.

y = 1
m−1

∑
j∈Dr(t)\{1,i} nrj(t) : What r receives in common into zones 1 and i.

b1 = 1
m−1 nr1(t) : What r in zone 1 gives to zone i.

bi = 1
m−1 nri(t) : What r in zone i gives to zone 1.

z = 1
m−1

∑
j∈Ds(t)\{1,i} nsj(t) : What s receives in common into zones 1 and i.

c1 = 1
m−1 ns1(t) : What s in zone 1 gives to zone i.

ci = 1
m−1 nsi(t) : What s in zone i gives to zone 1.

nq1

m
a
x
n
q
1
(t

)
+
x

nr1

y

bi

nqi

m
a
x
n
q
i
(t

)
+
x

nri

y

b1

Situation at
time t+ ∆t

?

On the last graphic, the highlighted ? is the quantity we are interested in, nsi(t+∆t)−nr1(t+∆t),
and we will demonstrate that it is smaller than nri(t + ∆t), thus proving the Claim. Our goal is
therefore to show that

(y + b1)− (z + c1) + (y + bi) > 0.

Since r DOM(t+ ∆t) 1 and q DOM(t) 1, we can upper bound c1 with

nr1(t+ ∆t) > nq1(t+ ∆t) = nq1(t) + x > ns1(t) + x = (m− 1) c1 + x

⇐⇒
1

m− 1
(y + bi − x) > c1. (3)

11



Similarly, we can upper bound bi with

1

m− 1
(z + c1 − x) > bi (4)

which is useful to lower bound y, as r DOM(t+ ∆t) 1 and from Inequality (4) we have

y +
1

m− 1
(z + c1 − x) > y + bi = nr1(t+ ∆t) > ns1(t+ ∆t) = z + ci

⇐⇒

y >
m− 2

m− 1
z + ci −

1

m− 1
c1 +

1

m− 1
x. (5)

We are now ready to develop the quantity of interest, from Inequalities (5) and then (3).

y + b1 + y + bi − z − c1 > b1 + bi + y + ci +
1

m− 1
x− 1

m− 1
(z + c1)− c1

>
m− 2

m− 1
(y + bi)−

1

m− 1
(z + c1) +

[
b1 + ci +

2

m− 1
x

]
(6)

In order to prove that the formula of Inequality (6) is positive, we perform a case disjunction.

• If m ≥ 4, then the bracketed part is positive, and the other part is negative only if (y+ bi) =
nr1(t+ ∆t) is at least twice smaller than (z+ c1) = nsi(t+ ∆t). Let us demonstrate that this
is impossible.

r DOM(t+ ∆t) 1 =⇒ y + bi > z + ci > z (7)

r DOM(t+ ∆t) 1 =⇒ y + bi > nq1(t+ ∆t) ≥ nq1(t) (8)

q DOM(t) 1 =⇒ nq1(t) > (m− 1) c1 ≥ c1 (9)

Inequalities (7),(8) and then (9) imply that 2 (y + bi) > z + nq1(t) > z + c1, therefore the
formula of Inequality (6) is positive.

• If m = 3, then the hypothesis are impossible to fulfill, which does not alter the conclusions of
Lemma 4. Indeed, all individuals of species q in zone j /∈ {1, i} (i.e. Z \ {1, i} = {j}) are on
the go (because q cannot dominate all zones, Fact 1), and no individual of species q is going
to zone j. Consequently nqj(t+ ∆) = 0 and it follows that in one of the two zones 1 or i, the
density of species q is greater than 1

2 . However, it is not possible for another species that does
not dominate at time t (neither r nor s) to have a density above 1

2 at time t+ ∆t, therefore
q cannot lose dominancy in both zones 1 and i.

Proof of Claim 2. We use the same notations for y, b1 and bi as in the proof of Claim 1.

q DOM(t) 1 q DOM(t) i

r DOM(t+ ∆t) 1 r DOM(t+ ∆t) i

nq1

m
a
x
n
q
1
(t

)
+
x

nr1

y

bi

nqi

m
a
x
n
q
i
(t

)
+
x

nri

y

b1

Situation at
time t+ ∆t

?
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It follows that

nqi(t+ ∆t)− nr1(t+ ∆t) < nri(t+ ∆t)− nr1(t+ ∆t) ≤ b1 =
1

m− 1
nr1(t) <

1

m− 1
nq1(t).

Proof of Claim 3. Recall that q DOM(t) 1 and r DOM(t+ ∆t) 1. If q DOM(t) i then

nqi(t+ ∆t) =
1

m− 1

∑
j∈Dq(t)\{i}

nqj(t)

≤ 1

m− 1

∑
j∈Dq(t)

nqj(t)

= nq1(t+ ∆t)− nq1(t)

< nr1(t+ ∆t)− nq1(t).

Thanks to Lemma 4 we can straightforwardly deduce the exponential converge to a stable
configuration.

Theorem 3. Starting from any initial configuration in C \ C∗, the system converges exponentially
to a stable configuration of the form described in Theorem 1.

Proof. From Lemma 4, after one iteration the repartition of dominances remains fixed. Let us
denote by n the density matrix of the configuration obtained after one time step, and let us denote
t that time. Let qi ∈ S be the species dominating zone i ∈ Z at time t (and forever), i.e.
Dq(t) = {i | q = qi}. Then the system converges exponentially to the configuration of density
matrix m such that

mqi =


1
m if {i | q = qi} = ∅
0 if q 6= qi and {i | q = qi} 6= ∅
nqii + 1

u

∑
j /∈{i|q=qi}

nqj if q = qi

with u = |{i | q = qi}| the number of zones dominated by q, by Fact 1 we have 1 ≤ u ≤ m − 1.
Indeed, for each time step k ∈ N and each species q ∈ S, we have the following case disjunction.

• If species q dominates no zone (such that {i | q = qi} = ∅), then for every zone i ∈ Z we have

1

m
− nqi(t+ (k + 1)∆t) =

1

m
− 1

m− 1

∑
j∈Z\{i}

nqj(t+ k∆t)

=
1

m
− 1

m− 1
(1− nqi(t+ k∆t))

=
1

m− 1
(− 1

m
+ nqi(t+ k∆t))

that is, the density of q in every zone convergence exponentially to 1
m .
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• If species q dominates some zone (such that {i | q = qi} 6= ∅), then let us consider the total
density outside the dominated zones:∑

j /∈{i|q=qi}

nqj(t+ (k + 1)∆t) =
∑

j /∈{i|q=qi}

1

m− 1

∑
`/∈{i|q=qi}\{j}

nq`(t+ k∆t)

=
p− u− 1

m− 1

∑
j /∈{i|q=qi}

nqj(t+ ∆t).

As a consequence, for all i /∈ {i | q = qi} we have an exponential convergence to density zero,
i.e. to mqi. Regarding i ∈ {i | q = qi}, we have

nqi(t+ (k + 1)∆t) = nqi(t+ ∆t) +
1

m− 1

∑
j /∈{i|q=qi}

nqj(t+ ∆t)

that is, the density gained from time t+ k∆t to time t+ (k + 1)∆t does not depend on i. In
other terms, all such i receive the same amount of density from Z \ {i | q = qi}. Since we
have just seen that the density in zones Z \ {i | q = qi} tend exponentially to zero, it implies
that the quantity ∑

j /∈{i|q=qi}

nqj(t+ (k + 1)∆t)

is shared uniformly among {i | q = qi}, at an exponential rate. The number of such zones i
is precisely u, therefore we deduce that nqi converges exponentially to mqi.

Remark that the configuration of density matrix m is in accordance with Theorem 1.

5 Probabilities for the stable configurations in the case of 3
species and 3 zones

In this section we push the analysis of the dynamics a step forward in the case p = m = 3, by
computing analytically and checking numerically the probabilities to converge to each form of stable
configurations. In this case there are only two forms of stable configurations, as was already proved
in [21]. We reproduce the result, with S = {A,B,C} and Z = {1, 2, 3}.
Definition 7. We call a one-each configuration, denoted by cOE, a configuration such that each
zone contains only one species.

Definition 8. We call a one-two configuration, denoted by cOT , a configuration such that one
species is of density 1 in one zone, another species dominates and is split in the two other zones,
and the last species is evenly split into the 3 zones with a density 1/3 in each.

Theorem 4 ([21]). Let c be a configuration. Without loss of generality, one can suppose that

nA1 = max
i∈Z
q∈S

{nqi} and nB3 = max
q∈S
{nq3}.

Then the system exponentially converges to a cOT if c satisfies one of the following conditions,
otherwise the system exponentially converges to a cOE.
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1. nB2 = max
q∈S
{nq2} and nB2 + nB1

2 > nC1+nC3

2 and nB3 + nB1

2 > nC1+nC2

2

2. nA2 = max
q∈S
{nq2} and nA2 + nA3

2 > nC1+nC3

2

We are going to determine the probabilities, given a uniformly chosen configuration, to converge
to the stable configurations cOE and cOT according to Theorem 4, and validate the result via
numerical simulations. Let us first introduce some definitions.

Definition 9. We denote by BC the set of possible configurations at the beginning.

Definition 10. We denote by BCOE the set of possible configurations at the beginning such that the
system converges to cOE, and by pOE the probability that a uniformly chosen configuration among
BC belongs to BCOE.

Definition 11. We denote by BCOT the set of possible configurations at the beginning such that the
system converges to cOT , and by pOT the probability that a uniformly chosen configuration among
BC belongs to BCOT .

According to Theorem 4 we have

pOE + pOT = 1. (10)

Theorem 5. pOT = 1
16200

√
3
(

18
√

3 + 2491
√

1
3

)
≈ 0.1571 and pOE = 1− pOT ≈ 0.8429.

Proof. We will express the sets BC, BCOE and BCOT within the 9-dimensional coordinate space
OnA1,nA2,nA3,nB1,nB2,nB3,nC1,nC2,nC3

. Since nq1 + nq2 + nq3 = 1 for each of the three species q ∈ S,
the set of initial configurations, BC, is a 6-dimensional object in this coordinate space. The sets
BCOE and BCOT , which are subsets of BC, are also 6-dimensional. In order to compute the
probability for stable configurations, we will compare the 6-dimensional volumes of BCOE and
BCOT to that of BC, in this 9-dimensional space.

Let us first argue that it corresponds to the desired uniform probability distribution among BC.
Let Vol6(·) denote the 6-volume of an object, that is,

pOE =
Vol6(BCOE)

Vol6(BC)
and pOT =

Vol6(BCOT )

Vol6(BC)
. (11)

For each species q ∈ S, we have nq1 +nq2 +nq3 = 1. A uniform initial configuration corresponds to
choosing independently for each of the three species a uniform initial repartition of its individuals
into the three zones. This uniform repartition in its turn corresponds to choosing uniformly a point
within the equilateral triangle whose vertices are expressed in the coordinate system Onq1,nq2,nq3 as
(1, 0, 0) (0, 1, 0) (0, 0, 1). Indeed, it satisfies that the probability distributions for nq1, nq2 and nq3 are
all equal, with an expectation of 1

3 . In order to uniformly choose such a point, one can for example
pick two independent random numbers r1 and r2 uniformly in [0, 1] and then set nq1 = 1 − √r1,
nq2 =

√
r1 (1− r2) and nq3 =

√
r1 r2.

The 6-volume of BC within the 9-dimensional space is easy to compute: for each species we

consider the area (2-dimensional volume) of the equilateral triangle of size
√

2, which is
√

3
2 , and BC

is the 6-dimensional object formed by the Cartesian product of these three 2-dimensional objects,
and its 6-volume is therefore

Vol6(BC) =

(√
3

2

)3

=
3
√

3

8
. (12)
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We now concentrates on calculating Vol6(BCOT ) from Theorem 4. Let us first state clearly the
symmetries involved by considering

nA1 = max
i∈Z
q∈S

{nqi} and nB3 = max
q∈S
{nq3}.

We consider that nA1 = maxi∈Z∧q∈S{nqi}, there are 9 symmetric and independent (not intersect-
ing) cases. Then, either (the two cases are independent):

• Species A dominates another zone. Let say species A dominates zone 2, there are 2 symmetric
and independent cases (because species A cannot dominate the three zones by Fact 1). Since
species A cannot dominate the three zones, the last zone is dominated by species B or C. Let
say species B dominates zone 3, there are 2 symmetric and independent cases. Let us denote
by BC1

OT the set of initial configurations satisfying those conditions.

• Species A does not dominate another zone. Then, either (the two cases are independent):

– One species dominates the two other zones. Let say it is species B, there are 2 symmetric
and independent cases. Let us denote by BC2

OT the set of initial configurations satisfying
those conditions.

– Each species dominates one zone, in this case the configuration always converges to a
cOE .

Finally we have BCOT = BC1
OT ∪BC2

OT and BC1
OT ∩BC2

OT = ∅, but most interestingly

Vol6(BCOT ) = 9×
(
4× Vol6(BC1

OT ) + 2× Vol6(BC2
OT )

)
. (13)

We will now compute the 6-volumes of BC1
OT and BC2

OT , which are respectively defined by
systems (I) and (II) as follows:

(I)



0 ≤ nqi ≤ 1 for all q ∈ S and i ∈ Z

nq1 + nq2 + nq3 = 1 for all q ∈ S

nA1 = max
i∈Z
q∈S

{nqi}

nA2 = max
q∈S
{nq2}

nB3 = max
q∈S
{nq3}

nA2 +
nA3

2
>
nC1 + nC3

2

(II)



0 ≤ nqi ≤ 1 for all q ∈ S and i ∈ Z

nq1 + nq2 + nq3 = 1 for all q ∈ S

nA1 = max
i∈Z
q∈S

{nqi}

nB2 = max
q∈S
{nq2}

nB3 = max
q∈S
{nq3}

nB2 +
nB1

2
>
nC1 + nC3

2

nB3 +
nB1

2
>
nC1 + nC2

2

where the two first lines of each system corresponds to the conditions (implicit so far) that BC1
OT

and BC2
OT are subsets of BC.

Seen as 6-dimensional objects embedded in a 9-dimensional space, the two sets BC1
OT and

BC2
OT are convex polytopes. Indeed, BC is a convex polytope as it is the Cartesian product of

three equilateral triangles, and the additional restrictions defining BC1
OT and BC2

OT are all made
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of inequalities corresponding to the exclusion of half-spaces. Starting from the convex polytope
BC and excluding half-spaces preserves the convexity of the polytope, hence BC1

OT and BC2
OT are

convex polytopes.
We proceed in two steps to compute the volume of a convex polytope (the same technic will

be applied to BC1
OT and BC2

OT ): first triangulate the polytope into simplexes, and then sum the
volume of simplexes.

The triangulation of convex polytopes is done via the contributive software sagemath which
makes use of the TOPCOM package ([23, 22]). It returns the sets of vertices (the convex polytope
is the convex hull of the set of vertices) and simplexes among these vertices, as described in Tables 1
and 2 of Appendix A, in the coordinate system OnA1,nA2,nA3,nB1,nB2,nB3,nC1,nC2,nC3

. Note that the
simplexes are 6-dimensional, hence defined as the convex hull of 7 vertices.

Now, it remains to compute the 6-volume of each simplex and add them. We follow a method
of exact calculation that makes use of the Gramian (see for example [8] Chapter IX, or [4] for a
succint review). Let us explain how to compute the 6-volume of the simplex s =<0,1,2,3,4,7,11>
of BC1

OT , the same procedure is then used to compute the volume of the other simplexes.
The simplex s has 7 vertices given by the set of 9-dimensional row vectors<v0,v1,v2,v3,v4,v7,v11>

where v0 = (2/3,1/3,0,1/3,0,2/3,2/3,1/3,0), v1 = (1/2,1/2,0,1/2,0,1/2,1/2,0,1/2), etc. Let w1 =
v1 − v0, w2 = v2 − v0, . . . , w5 = v7 − v0, w6 = v11 − v0 and let W be the 6 by 9 matrix whose rows
are the row vectors wi for 1 ≤ j ≤ 6. The Gram determinant formula states that

Vol6(s) =

√
|Det(W tW )|

6!
=

1

21600

√
1

3

where tW is the transpose of W . Table 3 of Appendix A presents the results of those 6-volume
computations for all the simplexes of BC1

OT and BC2
OT in the same order as they are presented in

Table 2. The totals are

Vol6(BC1
OT ) =

1861

2073600

√
1

3
and Vol6(BC2

OT ) =
1

14400

√
3 +

2701

345600

√
1

3
.

From Equation (13) we therefore deduce that

Vol6(BCOT ) =
1

800

√
3 +

2491

14400

√
1

3
,

and the statement follows from Equations (10), (11) and (12):

pOT =
1

16200

√
3

(
18
√

3 + 2491

√
1

3

)
≈ 0.157098765432099.

Let us now proceed to a validation of Theorem 5 via numerical simulations. We ran 1 000 000
simulations from uniform random configurations using a C program. An initial configuration is
uniformly chosen by picking 6 random variables rA1, rA2, rB1, rB2, rC1, rC2 uniformly in the real
interval [0, 1] and setting

nA1 = 1−√rA1, nA2 =
√
rA1 (1− rA2), nA3 =

√
rA1 rA2,

nB1 = 1−√rB1, nB2 =
√
rB1 (1− rB2), nB3 =

√
rB1 rB2,

nC1 = 1−√rC1, nC2 =
√
rC1 (1− rC2), nC3 =

√
rC1 rC2.
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The program, which performs three evolution steps before classifying the configuration according
to the repartition of dominancies (which is enough from Lemma 4), gave the following output:

pOE ≈ 0.843560 (837 835 occurrences)
pOT ≈ 0.156440 (155 378 occurrences)

Over the 1 000 000 runs, 6 787 cases (0.6787%) were discard because a case of equality has been
encountered. This is due to computer’s finite precision of real numbers, amplified by the fact that
there is often two zones where the proportion of two species both tend to 0 exponentially quickly
(when the configuration converges to a cOE). A random subset of 1 000 initial configurations that
where taken in this experiment is presented on Figure 2 of Appendix B.

The process of choosing independently random uniform configurations is a Bernoulli process,
with a probability of success p = pOE ≈ 0.8429 given by Theorem 5. We can easily perform a
Pearson’s chi-squared test of the result we encountered ([20]).

χ2 =
(837 835− 993 213 p)

2

993 213 p
+

(155 378− 993 213 (1− p))2

993 213 (1− p) ≈ 3.2574

This χ2 value corresponds to the following one-sided p-value (again from [20]):

p-value =

∫ ∞
χ

e−
1
2 x

2

x dx∫ ∞
0

e−
1
2 x

2
x dx

≈ 0.1962.

It means that the odds are 5.0973 to 1 against the fact that the result of the simulation deviates
from the expected theoretical result of Theorem 5 only by chance, which is satisfying.

6 Conclusion

We have demonstrated the convergence of the general model with many species across multiple
zones. Moreover, we also analyzed the forms of all possible stable configurations. If the number of
species and the number of zones are small, these forms can be described quite explicitly. However,
if there numbers slightly increase, the number of stable configurations will exponentially increase
because it is based on the number of partitions of integer. Determining the probabilities for the
system reaching a given form stable configuration will thus explode combinatorial calculations as
well. With the help of calculation on simplexes, we have computed these probabilities in the
case of three species and three zones. Moreover, we also performed a simulation to illustrate these
computations (see appendices). In the case the number of species or of zones are greater than three,
we think that one can also investigate these computation of probabilities, but one need stronger
calculation tools.

Acknowledgments This work was partially supported by the Vietnam National Foundation
for Science ans Technology Development (NAFOSTED) under the grant number 101.99-2016.16,
the Vietnam Institute for Advanced Study in Mathematics (VIASM), the Young Researcher project
ANR-18-CE40-0002-01 “FANs”, the project ECOS-CONICYT C16E01 and the project STIC Am-
Sud CoDANet 19-STIC-03 (Campus France 43478PD).

18



References

[1] E. Abdllaoui, P. Auger, B.W. Kooi, R. Bravo de la Parra and R. Mchich. Effects of density-
dependent migrations on stability of a two-patch predator-prey model. Mathematical Bio-
sciences, 210(1):335-354, 2007.

[2] P. Auger, R. Bravo de la Parra, C. Poggiale, E. Sanchez and T. Nguyen-Huu. Aggregation
of variables and applications to population dynamics. P. Magal, S. Ruan (Eds.), Structured
Population Models in Biology and Epidemiology, Lecture Notes in Mathematics, Vol. 1936,
Mathematical Biosciences Subseries. Springer, Berlin,, pages 209–263 , 2008.

[3] P. Auger and E. Benoit. A prey-predator model in a multi-patch environment with different
time scales. Journal of Biological Systems, pages 187–197 , 1993.

[4] N. R. Barth. The Gramian and k-volume in n-space: Some classical results in linear algebra.
Journal of Young Investigators, 1999.

[5] K. Dao-Duc, P. Auger and T. Nguyen-Huu. Predator density dependent prey dispersal in a
patchy environment with a refuge for the prey. South African Journal of Science, pages 180–
184 , 2008.

[6] H. Dreisig. Ideal free distributions of nectar foraging bumblebees. Oikos, 72(2), 161-172, 1995.

[7] S. Fretwell. Populations in a Seasonal Environment. Princeton, NJ: Princeton University Press,
1972.

[8] F.R. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, 1959.

[9] R. Graeme, and S. Humphries. Multiple ideal free distributions of unequal competitors. Evolu-
tionary Ecology Research. 1(5): 635-640, 1999.

[10] J.G. Godin and M.H.A. Keenleyside.Foraging on patchily distributed prey by a chichlid fish
(Teleostei Cichlidae): a test of the ideal free distribution theory. Animal Beaviour 32: 120-131,
1984.

[11] L. Kr̃ivan, R. Cressman and C. Schneider, The ideal free distribution: A review and synthesis
of the game-theoretic perspective. Theoretical Population Biology, Volume 73, Issue 3, 2008,
Pages 403-425, ISSN 0040-5809, https://doi.org/10.1016/j.tpb.2007.12.009.

[12] R. Mchich, P. Auger and J- C. Poggiale. Effect of predator density dependent dispersal of prey
on stability of a predator-prey system. Mathematical Biosciences, 343-356 , 2007.

[13] D. Nguyen-Ngoc, A. Drogoul and P. Auger.Methodological Steps and Issues When Deriving
Individual-Based Models from Equation-Based Models: A Case Study in Population Dynamics.
Proceeding in PRIMA2008, LNAI 5357, 2008, 295-306.

[14] D. Nguyen-Ngoc, R. Bravo de la Parra, M. A. Zavala and P. Auger. Competition and species
coexistence in a metapopulation model: Can fast asymmetric migration reverse the outcome of
competition in a homogeneous environment. Journal of Theoretical Biology, 266, 2010, 256-263.

19



[15] D. Nguyen-Ngoc, T.H. D. Phan, A. Nguyen-Thi-Ngoc, A. Drogoul and J-D. Zucker. Disk
graph-based model: a graph theoretical approach for linking agent-based models and dynamical
systems. IEEE RIVF International Conference on Computing and Communication Technolo-
gies, Research, Innovation, and Vision for the Future (RIVF). 2010.

[16] D. Nguyen-Ngoc, P. Taillandier, A. Drogoul and P. Auger. Inferring equation-based models from
agent-based models: a case study in competition dynamics. Proceeding in PRIMA Conference,
India, 183-190, 2010.

[17] D. Nguyen-Ngoc, T. Nguyen-Huu and Pierre Auger. Effects of refuges and density dependent
dispersal on interspecific competition dynamics. International Journal of Bifurcation and Chaos,
1250029, 22(2), 2012.

[18] D. Nguyen-Ngoc, T. Nguyen-Huu and P. Auger. Effects of fast density dependent dispersal on
pre-emptive competition dynamics. Ecological Complexity, 26-33,10, 2012.

[19] De La Parra, R. B., Arino, O., Sánchez, E. and Auger. P. A model for an age-structured
population with two time scales. Mathematical and Computer Modelling 31, pages 17–26,
2000.

[20] K. Pearson. On the criterion that a given system of deviations from the probable in the case of
a correlated system of variables is such that it can be reasonably supposed to have arisen from
random sampling. Philosophical Magazine Series 5, 50 (302): 157-175, 1900.

[21] K. Perrot, D. Nguyen-Ngoc, and H. D. Phan. Effects of Migration of Three Competing Species
on Their Distributions in Multizone Environment. Proceedings of RIVF’2013, IEEE, pages
227–232, 2013.

[22] J. Rambau. TOPCOM: Triangulations of Point Configurations and Oriented Matroids. Math-
ematical Software—ICMS 2002, World Scientific, 330-340, 2002.

[23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.7), 2019.
https://www.sagemath.org.

[24] W.J. Sutherland, C.R. Townsend and J.M. Patmore. A test of the ideal free distribution with
unequal competitors. Behavioral Ecology and Sociobiology, 23 (1): 51-53, 1988.

A Polytopes and simplexes for probability calculations

Tables 1, 2 and 3.

B Validation of Theorem 5 via numerical simulations

Figure 2.
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Polytope BC1
OT BC2

OT

Vertices 0:(2/3,1/3,0,1/3,0,2/3,2/3,1/3,0)

1:(1/2,1/2,0,1/2,0,1/2,1/2,0,1/2)

2:(1/2,1/2,0,1/2,0,1/2,1/2,1/2,0)

3:(2/5,1/5,2/5,2/5,1/5,2/5,2/5,1/5,2/5)

4:(1/2,1/2,0,0,1/2,1/2,1/2,0,1/2)

5:(2/3,1/3,0,0,1/3,2/3,2/3,1/3,0)

6:(1/2,1/2,0,0,1/2,1/2,1/2,1/2,0)

7:(2/3,1/3,0,2/3,0,1/3,2/3,1/3,0)

8:(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3)

9:(2/3,1/3,0,2/3,1/3,0,2/3,1/3,0)

10:(1/2,1/2,0,1/2,1/2,0,1/2,1/2,0)

11:(2/3,1/3,0,0,1/3,2/3,0,1/3,2/3)

12:(1/2,1/2,0,1/2,0,1/2,0,1/2,1/2)

13:(1/2,1/2,0,0,1/2,1/2,0,1/2,1/2)

14:(2/3,1/3,0,1/3,0,2/3,0,1/3,2/3)

15:(2/3,1/3,0,2/3,0,1/3,1/3,1/3,1/3)

16:(1/2,1/4,1/4,1/2,0,1/2,1/4,1/4,1/2)

17:(1/2,1/4,1/4,1/2,0,1/2,1/2,1/4,1/4)

0:(1/2,0,1/2,0,1/2,1/2,1/2,0,1/2)

1:(1/2,0,1/2,0,1/2,1/2,1/2,1/2,0)

2:(1/2,1/2,0,0,1/2,1/2,1/2,1/2,0)

3:(1/2,1/2,0,0,1/2,1/2,1/2,0,1/2)

4:(2/5,1/5,2/5,2/5,1/5,2/5,2/5,1/5,2/5)

5:(2/3,0,1/3,0,1/3,2/3,2/3,1/3,0)

6:(2/3,1/3,0,0,1/3,2/3,2/3,1/3,0)

7:(1,0,0,1,0,0,1,0,0)

8:(1,0,0,0,1/2,1/2,1,0,0)

9:(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3)

10:(2/3,1/3,0,0,2/3,1/3,2/3,0,1/3)

11:(2/3,0,1/3,0,2/3,1/3,2/3,0,1/3)

12:(2/5,2/5,1/5,2/5,2/5,1/5,2/5,2/5,1/5)

13:(2/3,1/3,0,0,1/3,2/3,0,1/3,2/3)

14:(1,0,0,0,1/2,1/2,1/2,0,1/2)

15:(1,0,0,0,2/3,1/3,2/3,0,1/3)

16:(1/2,1/2,0,1/4,1/2,1/4,1/4,1/2,1/4)

17:(1,0,0,0,1/3,2/3,2/3,1/3,0)

18:(1,0,0,0,2/3,1/3,0,2/3,1/3)

19:(1,0,0,0,1/3,2/3,0,1/3,2/3)

20:(2/3,1/3,0,0,2/3,1/3,0,2/3,1/3)

21:(1/2,1/2,0,0,1/2,1/2,0,1/2,1/2)

22:(2/3,0,1/3,0,2/3,1/3,0,2/3,1/3)

23:(2/3,0,1/3,0,1/3,2/3,0,1/3,2/3)

24:(1/2,0,1/2,0,1/2,1/2,0,1/2,1/2)

25:(1/2,0,1/2,1/4,1/4,1/2,1/4,1/4,1/2)

26:(1,0,0,0,1/2,1/2,1/2,1/2,0)

27:(1/2,0,1/2,1/4,1/4,1/2,1/2,1/4,1/4)

28:(1/2,1/2,0,1/4,1/2,1/4,1/2,1/4,1/4)

Table 1: Set of vertices of BC1
OT and BC2

OT .
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Polytope BC1
OT BC2

OT

Simplexes <0,1,2,3,4,7,11>

<0,1,2,3,7,11,12>

<0,1,2,3,7,12,16>

<0,1,2,3,7,16,17>

<0,1,3,7,11,12,14>

<0,1,3,7,12,14,16>

<0,2,3,4,5,7,11>

<1,2,3,4,7,8,11>

<1,2,3,7,8,11,12>

<1,2,4,7,8,9,11>

<1,2,4,8,9,10,11>

<1,2,4,8,10,11,12>

<1,2,7,8,9,11,12>

<1,2,8,9,10,11,12>

<1,3,4,7,8,9,11>

<1,3,7,8,9,11,12>

<1,3,7,9,11,12,14>

<1,3,7,9,12,14,15>

<1,3,7,12,14,15,16>

<2,3,4,5,6,7,11>

<2,3,4,6,7,8,11>

<2,4,6,7,8,9,11>

<2,4,6,8,9,10,11>

<2,4,6,8,10,11,12>

<3,4,5,6,7,9,11>

<3,4,6,7,8,9,11>

<4,6,8,10,11,12,13>

<0,1,2,4,5,7,13>

<0,1,2,4,7,9,13>

<0,1,2,5,7,8,13>

<0,1,2,7,8,10,13>

<0,1,2,7,9,10,13>

<0,1,2,9,10,13,16>

<0,1,2,9,13,16,20>

<0,1,2,9,13,20,21>

<0,1,2,10,13,16,18>

<0,1,2,10,16,18,20>

<0,1,2,13,16,18,20>

<0,1,4,5,7,13,18>

<0,1,4,5,7,18,19>

<0,1,4,5,7,19,23>

<0,1,4,5,7,23,25>

<0,1,4,5,7,25,27>

<0,1,4,5,13,18,19>

<0,1,4,5,13,19,23>

<0,1,4,7,9,13,18>

<0,1,4,7,9,18,22>

<0,1,4,7,18,19,22>

<0,1,4,7,19,22,23>

<0,1,4,7,22,23,24>

<0,1,4,7,23,24,25>

<0,1,4,9,13,18,22>

<0,1,4,9,13,22,23>

<0,1,4,9,22,23,24>

<0,1,4,13,18,19,22>

<0,1,4,13,19,22,23>

<0,1,5,7,8,13,14>

<0,1,5,7,13,14,18>

<0,1,7,8,10,11,13>

<0,1,7,8,11,13,14>

<0,1,7,9,10,11,13>

<0,1,7,9,11,13,18>

<0,1,7,9,11,18,22>

<0,1,7,11,13,14,18>

<0,1,9,10,11,13,16>

<0,1,9,11,13,16,18>

<0,1,9,11,16,18,20>

<0,1,9,11,18,20,22>

<0,1,9,13,16,18,20>

<0,1,9,13,18,20,22>

<0,1,9,13,20,21,22>

<0,1,9,13,21,22,23>

<0,1,9,21,22,23,24>

<0,1,10,11,13,16,18>

<0,1,10,11,16,18,20>

<0,2,3,4,5,7,13>

<0,2,3,4,7,9,13>

<0,2,3,5,7,8,13>

<0,2,3,7,8,10,13>

<0,2,3,7,9,10,13>

<0,2,3,9,10,13,16>

<0,2,3,9,13,16,20>

<0,2,3,9,13,20,21>

<0,2,3,10,13,16,18>

<0,2,3,10,16,18,20>

<0,2,3,13,16,18,20>

<0,3,7,8,10,13,14>

<0,4,5,7,13,18,19>

<0,5,7,13,14,18,19>

<0,7,8,10,11,13,14>

<1,2,5,7,8,13,17>

<1,2,7,8,10,13,14>

<1,2,7,8,10,14,15>

<1,2,7,8,13,14,17>

<1,2,7,8,14,15,17>

<1,2,7,8,15,17,18>

<1,2,7,8,17,18,26>

<1,2,7,9,10,12,13>

<1,2,7,10,12,13,14>

<1,2,7,10,12,14,15>

<1,2,7,12,13,14,15>

<1,2,7,12,13,15,16>

<1,2,7,13,14,15,17>

<1,2,7,13,15,16,17>

<1,2,7,15,16,17,18>

<1,2,9,10,12,13,16>

<1,2,10,12,13,14,15>

<1,2,10,12,13,15,16>

<1,2,10,13,15,16,18>

<1,2,13,15,16,17,18>

<1,5,7,8,13,14,17>

<1,5,7,13,14,17,18>

<1,7,8,10,11,13,14>

<1,7,8,10,11,14,15>

<1,7,9,10,11,12,13>

<1,7,9,11,12,13,18>

<1,7,9,11,12,18,22>

<1,7,10,11,12,13,14>

<1,7,10,11,12,14,15>

<1,7,11,12,13,14,18>

<1,7,11,12,14,15,18>

<1,7,12,13,14,15,18>

<1,7,12,13,15,16,18>

<1,7,13,14,15,17,18>

<1,7,13,15,16,17,18>

<1,9,10,11,12,13,16>

<1,9,11,12,13,16,18>

<1,9,11,12,16,18,20>

<1,9,11,12,18,20,22>

<1,10,11,12,13,14,15>

<1,10,11,12,13,15,16>

<1,10,11,13,15,16,18>

<1,11,12,13,14,15,18>

<1,11,12,13,15,16,18>

<2,3,4,5,6,7,13>

<2,3,5,6,7,8,13>

<2,3,7,9,10,12,13>

<2,3,7,10,12,13,16>

<2,3,7,10,12,16,28>

<2,3,9,10,12,13,16>

<2,3,9,13,16,20,21>

<2,5,6,7,8,13,17>

<2,7,10,12,13,14,15>

<2,7,10,12,13,15,16>

<5,7,13,14,17,18,19>

Table 2: Triangulation of BC1
OT and BC2

OT .
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Polytope BC1
OT BC2

OT

Simplexes
6-volumes

1
21600

√
1/3

1
43200

√
1/3

1
115200

√
1/3

1
230400

√
1/3

1
32400

√
1/3

1
86400

√
1/3

1
32400

√
1/3

1
43200

√
1/3

1
43200

√
1/3

1
25920

√
1/3

1
17280

√
1/3

1
23040

√
1/3

1
25920

√
1/3

1
17280

√
1/3

1
32400

√
1/3

1
32400

√
1/3

1
32400

√
1/3

1
64800

√
1/3

1
172800

√
1/3

1
21600

√
1/3

1
43200

√
1/3

1
25920

√
1/3

1
17280

√
1/3

1
23040

√
1/3

1
16200

√
1/3

1
32400

√
1/3

1
23040

√
1/3

1
7200

√
1/3

1
14400

√
1/3

1
5760

√
1/3

1
5760

√
1/3

1
8640

√
1/3

1
69120

√
1/3

1
69120

√
1/3

1
34560

√
1/3

1
69120

√
1/3

1
34560

√
1/3

1
23040

√
1/3

1
21600

√
1/3

1
14400

√
1/3

1
21600

√
1/3

1
28800

√
1/3

1
230400

√
3

1
21600

√
1/3

1
32400

√
1/3

1
10800

√
1/3

1
21600

√
1/3

1
14400

√
1/3

1
14400

√
1/3

1
28800

√
1/3

1
115200

√
3

1
32400

√
1/3

1
64800

√
1/3

1
86400

√
1/3

1
21600

√
1/3

1
21600

√
1/3

1
11520

√
1/3

1
17280

√
1/3

1
8640

√
1/3

1
11520

√
1/3

1
12960

√
1/3

1
6480

√
1/3

1
12960

√
1/3

1
8640

√
1/3

1
103680

√
1/3

1
51840

√
1/3

1
103680

√
1/3

1
38880

√
1/3

1
34560

√
1/3

1
25920

√
1/3

1
51840

√
1/3

1
51840

√
1/3

1
34560

√
1/3

1
103680

√
1/3

1
51840

√
1/3

1
7200

√
1/3

1
14400

√
1/3

1
5760

√
1/3

1
5760

√
1/3

1
8640

√
1/3

1
69120

√
1/3

1
69120

√
1/3

1
34560

√
1/3

1
69120

√
1/3

1
34560

√
1/3

1
23040

√
1/3

1
11520

√
1/3

1
5400

√
1/3

1
4320

√
1/3

1
17280

√
1/3

1
8640

√
1/3

1
11520

√
1/3

1
11520

√
1/3

1
11520

√
1/3

1
11520

√
1/3

1
8640

√
1/3

1
11520

√
1/3

1
10800

√
1/3

1
14400

√
1/3

1
14400

√
1/3

1
28800

√
1/3

1
28800

√
3

1
17280

√
1/3

1
5760

√
1/3

1
8640

√
1/3

1
86400

√
1/3

1
43200

√
1/3

1
28800

√
1/3

1
17280

√
1/3

7
51840

√
1/3

1
17280

√
1/3

1
25920

√
1/3

1
17280

√
1/3

1
17280

√
1/3

1
16200

√
1/3

1
8100

√
1/3

1
16200

√
1/3

1
21600

√
1/3

1
21600

√
1/3

1
10800

√
1/3

1
10800

√
1/3

1
21600

√
1/3

1
7200

√
1/3

1
6480

√
1/3

1
2160

√
1/3

1
129600

√
1/3

1
64800

√
1/3

1
129600

√
1/3

1
48600

√
1/3

1
64800

√
1/3

1
43200

√
1/3

1
25920

√
1/3

1
32400

√
1/3

1
21600

√
1/3

1
10800

√
1/3

1
8640

√
1/3

1
21600

√
1/3

1
57600

√
3

1
230400

√
3

1
172800

√
1/3

1
69120

√
1/3

1
12960

√
1/3

1
43200

√
1/3

1
14400

√
1/3

1
6480

√
1/3

Table 3: 6-volumes of the 6-dimensional simplexes described in Table 2.
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Zone 2

Zone 1

Zone 3species A Zone 2

Zone 1

Zone 3species B Zone 2

Zone 1

Zone 3species C

× ×

×

×

×

××

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
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Figure 2: Graphical representation of a random subset of approximately 1 000 initial configurations
over the 993 213 that where taken for the simulations. It’s aimed at visually confirming (or at
least not disapproving) that the initial configurations are randomly and uniformly chosen. Dots
(respectively crosses) are configurations that had converged to a cOE (respectively cOT ).
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