On the exponential stability for a class of stochastic differential
delay equations with a fractional Brownian noise
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Abstract

We investigate the asymptotic stability of the trivial solution of a stochastic differential delay
equation which is driven by a fractional Brownian noise. Under the strong dissipative condition,
we prove the exponential stability of the trivial solution under a small intensity of noise.
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1 Introduction

In this paper, we study the asymptotic stability of the following stochastic differential delay equation
dy(t) = [Ay(t) + f(y(t —r))ldt + Cy(t)dB" (1), (1.1)

given initial function n € C([—r,0],R%), where A,C € R?*? are matrices, r is a constant delay;
f:R% - R% is a Lipschitz function, i.e.

£ (1) = fFw2)ll < Crllyr — woll, (1.2)

and satisfies f(0) = 0. B is an one-dimensional fractional Brownian motion [1] on a probability
space (£, F,P) with the Hurst index H > 1/2. Equation (1.1) is understood and solved in the
pathwise sense as a Young differential equation with delay

dy(t) = [Ay(t) + f(y(t —r))]dt + Cy(t)dw(t). (1.3)

When r = 0, system (1.1) has the non-delay form, and the exponential stability of the trivial
solution has been studied in recent papers [2-4] for Young equations. The stability problem for
the Young differential delay equation (1.1) is however still in a fancy stage and is only studied
in a few references, e.g. [5], although solutions of the Young differential equations have been well
studied, [4,6,7]. Since it is not sure how to apply the semigroup technique developed in [4] for
the delay situation, our aim in this paper is to apply the techniques developed in [3] for nondelay
equations to prove the exponential stability for the trivial solution of (1.1).

We present here a brief introduction to Young differential equations for Hoélder continuous functions
to match the delay situation (a detailed explaination can be found in [6,7]). For each 0 < a < 1,
denote by C%([a, b], R?) the space of Holder continuous functions on [a, b] equipped with the norm

”uHoo,oz,[a,b] = HuHoo,[a,b] + |”u|”a,[a,b]
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where || - [, [q,5 1S the sup norm of continuous functions on [a, b] and

o Ju(t) —u(s)||
ofab] " agiiggb (t—s)>

Jlul

We also introduce the space

0. dy._ a NI [u(t) = u(s)ll _
C”*([a,b],R?) := {u e C*([a, b],R?) }lg% a;tg)g G=s)2 0}.
[t—s|<h

Given y € C#([a,b],R?) and w € C¥([a,b],R), B+ v > 1, it is well known that the Young integral
f: y(t)dw(t) exists (see [8, p. 264-265]). This integral satisfies additive property by the construction,
and the so-called Young-Loeve estimate [9, Theorem 6.8, p. 116]

| / y(u)deo(u) = y(s)w(t) = w(s)]| < Kl = s Dyl gy Ul g (14)

where

K=01-2""9"1 " #:=4+v>1 (1.5)

A result given in [10] shows that, under some regularity conditions of f, i.e. f is Lipchitz
continuous, then there exists a unique solution y(-,w,n) of (1.1) on C#([—r,T],RY) for H > 8 > 1—H
almost surely. A similar result can be found in [7]. In fact, (1.1) can be solved by induction in each
interval [kr, (k + 1)r] as a Young differential equation. Namely, given yo = n € C5([—r, 0], R?), then
(1.3) derives

dy(kr +1t) = [Ay(kr +t) + f(y((k — 1)r +t))]dt + Cy(kr + t)dOy,w(t), Vte [0,r].

The solution of (1.3) can be written by induction in the explicit form as yo(-) = n(-) € C? and

y(kr +t) = O(t, Oppw)y(kr) —l—/o D(t — 8, Okrrsw) f(y((k — 1)r + s))ds, t € [0,7] (1.6)

for all £ > 1, where ®(¢,z) is the matrix solution of the linear Young differential equation
dz(t) = Az(t)dt + Cz(t)dw(t) (1.7)

and satisfies ®(0,w) = Id.

Due to [11, Remark 2.3] ®(-,0,.w)y(kr) € C5([0,r],R?). Hence (1.6) implies that y(kr + -) €
CA([0,7],RY). By induction, one can prove that y(-) € C?([—r,T],R%) for all T > —r. As a result,
y:(+) belongs to CA([—r, 0], R?) for all ¢ > 0.

2 Exponential stability

In this section we would like to study the exponential stability of the zero solution of (1.1). We
will work with the canonical space (2, F,P,0) of fBm as introduced in [6]. Namely, for fixed
1/2 </ < H, denote by C¥'(R,R) the space of all paths w which belong to C*'(I,R) for all closed
interval I C R and receive value 0 at time 0. Then (Q, F,P,6) is the induced space on C¥ (R, R) of
(Co(R,R), B,P,0) where (Cp(R,R) is the space of all continuous paths w on R such that w(0) = 0,
B is the Borel —o algebra generated by the compact open topology, P is the Wiener measure on B
generated by a fractional Brownian motion and 6 is the Wiener shift define by 6;w(-) = w(t+-)—w(:).
Note that the Wiener shift is ergodic due to [12]. It is proved in [6] that equation (1.1) then generates



a so-called random dynamical system ¢ : Ry x (Q, F,P,0) x CO3([—r,0],RY) — C%8([-r,0], R?)
given by

@(tﬂdﬂ?)(s) = y(t + vavn)a vt € R-‘r?s € [—T, 0]7("') € 9777 € C[)’ﬁ([_ra 0]7Rd)

From now on, we fix v € (1/2,7/) and 8 € (1—v,v). It is known that B (w)]}, 4 € C*([a,b],R), Vw €
Qand E ‘HBHH‘T[G 18 bounded for all [a,b] C R and m > 0 (see for instance [5]).
To obtain the main results we need the following lemmas.

Lemma 2.1 Assume that for fired T, y € C?(]0,T),R%) satisfies

Whsan < M0 =)' + (b= 0) ol gy ] [+ 0 — @) Iyllg oy | (2.1)

for all0 < a <b<T, in which M, L are constants. Then
1 1 y 1+
Wlis oz < L2V (M) T (1 LTI T mwnn,m,ﬂ) , (2:2)

in which a V b := max{a, b}.
Proof: Fix p = ﬁ, we construct a sequence {t;} such that tp = 0 and
tipr =inf{t > t; | (¢ —t) + (¢ = )" lwll, 1, 4 = 1}

Since | lwll, .01 = leolly .0 | < M@l e for all &, <t < ¢ (see [7, p. 316]) and w € COV(I,R) for all
closed interval I, | lwll, 1, ¢ — Il | < lwll, 1) — 0 as #” — ¢ (see [9, Corollary 5.31, p. 96]).
It follows that for given ¢; the function f(¢) = (t —t;) + (¢ — ;)" [|wl|, [, 4 18 continuous on [t;, +00).
Moreover, f is strictly increasing, f(¢;) = 0 and lims, 1 f(t) = +00. Therefore, there exists t;11
such that

(tivr — ) + (i — )" wll g, 4,007 = 1 (2.3)
Assign N :=sup{n | t, < T} < oco.
Fori=0,..,N —1, (2.3) leads to

p= (i = 1) |t =)™+ Ml g0y | < i =) (T + olyo) -

This implies
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It follows that

1
Tlflz_i_ w v
v ST( ||| V,[O,T]> | -
"

By the asumption, for 0 <¢ < N — 1 we have

Ills 1, 0,0 < M| (tia — )P + (tigr — )77 ’”wmu,[ti,tﬂ-l]] [L (b1 = 1) lyllg 1,0

or

ML _ _
s 000 < T35 [T+ T Mo |




We also have
ML

Bv[thT] S 1 _M'u

Iy (718 4 78 ool .1 |-

Because [0, 7] C UN 3 [ti, tir1] U [t, T] and Holder norm is of the superadditivity, we obtain

N-1

Wlopr < 3 Iy

=0

(N+1)

A

B,ltitit1] +lly B,ltn,T]

IN

ML (7a-p  qo-s
1= Mu [T + TP lwll,, 4, } - (2.5)

Combining this with (2.4) we get

T + Jlwll,, 0,1y

lolsoy < 2ML[1+7( )] [+ T Yl o

n
< LM (2;4); T+ Rl )] [T+ T Bl

IN

LV @I [ (T4 T ol oy )] [T+ T Mol

1 v v 1
< LV EMTT T+ T wl, o0 + T+ T ol o)™ (26)

Using the following inequalities

P +p—1>px, YV >0,p>1, (2.7)
and
(a4 b)P < (aP 4+ W) max{1,2P1}, Va,b,p > 0, (2.8)
we have
1
PR VAR S Al 5] s ) 1 y 1
Wlsgom < LIv@MPHT] P b (T ll o)
1+2 141
< LIV EMETP AT + T ol o0)* +1]
1, 1 v 1+1
< L2V 4M)teTF <1 LT Tl meu,—’[—O’jT}) . (2.9)
The proof is completed. O

The following lemma is a Holder-version of [3, Corrolary 3.5], which facilitates the proof of the
stability of the delay system.

Lemma 2.2 Assuming that in (1.7) A is negative definite, i.e. there exists constant hy > 0 such
that

{y, Ay) < —holly|?*, vy e R". (2.10)
Then for all 0 < s <t < r, the following inequalities hold
(@) 2t w)ll < exp{—hot + [|C[[tQ(r,w) + 2KG||C|]}, (2.11)
(it) ([t = s, 0sw)|| < exp{—ho(t — s) + [|C[|(t — 5)Q(r,w) + 2K G| C][}, (2.12)
where
141
G = (max{2,8||AH, 16K||CH}) (2.13)
and (14+2KG), s
v(l+ = v+l v 242
QUt,w) 1= 2K G [T ol + 7 Bl o + 2 Bl oy | (2.14)



Proof: (i) In the proof of [3, Theorem 3.4], we obtain

g [0(t.) < —hot + | [ (o), Cyts))dats)
< —hot + [CI lgo (1 + 268yl ).
in which y(t) = Hgg’zg” satisfies

Apply Lemma 2.1 for M = 2||A|| V 4K||C|| and L = 1, we get
_ 1 1+
Il o < G2 (1484 897 uf 5, ).
Therefore, for 0 <t <r

log [0t ) < —hat + [l el g [1+2G(1+ 87 047 ol )]

< —hot + [l Il o [14+2KG + 2K G S + 2K G w17 |
< —hot+ (14 2KG)[Cl¢" ol o,
+2KGCI ol o (t1+v+t1+” lll )
ol + 5 -
< —hot+ (1+2KG)|C| T
FRKGCI Tellygog (45 + 04 Jll )
< —hot +2KG|C||

v(l1+2KG 1 s+l v
+2KG\CHt[(2KG) ol oy + % Teolhgogy + 2 oty ]

This implies (2.11).
(15) For 0 <s<t<r,

[B(t = 5,00)[ < exp{ —holt = s) + [CII(t — $)QUt — 5,0) + 2K G| C] .

On the other hand

lw(u+ s) — w(v+ )
0 =
Psloors = 28 Tt 9) @t 9P

o) — w (@)l _

= sup o]

s<v<u<lt ’u -

As a result Q(t — s,0,w) < Q(r,w), which proves (2.12).

< @A VAKIC[(E = )7 + (¢ = 57 foll g | 1+ (¢ = ) Dllg g |- Vs <t

[

To state our main result, let us introduce a Gronwall-Bellman type estimation, see the proof

n [13].

Proposition 2.3 Let typ € R,0 < tg < oo,c >0 and a : [to,T] — Ry be locally integrable. Assume
r >0, and 7 : [to,T) — R4 is a measurable function such that to —r <t —7(t),to <t <T. If

x:[to—r,T)— Ry is Borel measurable and locally bounded such that

z(t) <c+ /t a(u)x(u —7)du, to <t <T, (2.15)

to

5



then .
x(t) < Kexp {/ ’y(s)ds}, to <t<T, (2.16)

to

where the function vy : [to—r,T) — Ry is locally integrable, and satisfies the characteristic inequality

a(t) exp{ - /t;(t) ’y(s)ds} <Ay(t), to <t <T, (2.17)
and
K := max {cexp { /t : y(u)du}, to—?}gggto exp { /S ' y(u)du}} . (2.18)

When a and 7 are constant functions, we get the following corollary

Corollary 2.4 Letto € Ritg < T < o0, and ¢,a,7 > 0. Ify: [to— 7,T) — Ry is Borel measurable
and locally bounded such that

t
y(t) < c+/ ay(u — 7)du, tg <t <T, (2.19)
to
then
y(t) < Ke'710) 4y <t < T, (2.20)

where the nonnegative number v satisfies the inequality

a<~velm, (2.21)
and
K = max{cew, sup y(s)eV(tO*S)}. (2.22)
to—r<s<tp

Our first main result can be formulated as follows.

Theorem 2.5 Assume A is negative definite, i.e. there exists a hg > 0 such that

(y, Ay) < —holly[|*. (2.23)

hgr
and Cy < %6_%. Then there exists € > 0 such that if |C|| < e the trivial solution of system (1.1)
is forward exponentially stable almost surely, i.e. for any solution y of (1.1) we have

. 1
lim sup  10g [0, 50) 0] < 0 (2.24)

t—o00

for almost surely all the realizations w.

Proof: ~ First, we fix w,n and denote by y(t), t € [—r,oc0) the solution of (1.3). Since the
assumption of the function f, it follows that

IF @I < Crliyll. (2.25)
Due to (1.6), (2.11), (2.12) and (2.25), for all ¢ € [0, ]
ly(kr + )| < exp{—hot + [|C[tQ(r, Oxrw) + 2K G| C||} ||y (kr)]|
+C /Ot exp{—ho(t — s) + [|C[|(t — 5)Q(r, Or,w) + 2KG||C| }y(kr + s — r)]||ds.
(2.26)



For each k£ € N is fixed. Put

2 (t) = |ly(kr + t)|| exp{hot — [|CtQ(r, Oprw)}, t € [—1,7]. (2.27)
We have
t
) < 2ROy k)| + eQKG”C”Cf/O exp{hos — ||C||sQ(r, Ox,w) Hly(kr + s — 7)||ds
t
< KOy (kr) || + Cf exp{hor — [|C|IrQ(r, Orw) + 2KGIIC‘H}/ 2" (s —r)ds. (2.28)
0

hgor

By the assumption C'y < %e‘ 2, there exists 1 > 0 such that Cy < % exp{—% —2KGe1}. Then
for ||C|| < &1

h h ho hor
Cyexp{hor + 2KG||C|} < ?Oexp {gr +2KG(|C| - 51)} < 306 el
One can choose v € (0, %) not depending on k£ and w such that
Cyexplhor — |C||rQ(r, Oprw) + 2K G| C||} < Cpexplhor +2KG||C|} < ve'".
Combining this with Corollary 2.4 we have for each ¢ € [0, r]
() < Mye™, or [ly(hr + DI| < Myexp{—hot + 11 + [CI1Q(r, Ow)},  (229)

where

My, = max { 72K CICN |y 1) | sup lly(kr -+ s}l exp{hos =33 = [ClsQ(r O)} p. (230)
se[—r,0

Next, we introduce the function
pi(t) = Myexp{—hot + vt + | C|[tQ(r, Op,)}
then |ly(kr + t)|| < p*(t) for all t € [0,r] and
p(r) = My exp{—hor + 7 + | C|lrQ(r, Ox,)}.
Next we will prove that
My < P (r) exp{yr + | CllrQ(r, 61rw) + 2K GO }. (2.31)
Firstly, by the definition of M} and (2.29), for s € [—r,0],

ly(kr + s)| exp{hos — ys = |C[|sQ(r, Orrw) }
< ly((k = 1Dr + s+ 1)l exp{ho(s +7) —v(s + )} exp{—hor + 77 + [|C[rQ(r, Orw) }
< ly((k = D)r + s")[ exp{hos’ — vs'} exp{—hor + 7 + ||C|IrQ(r, Ogyw) }
< My exp{[[ClrQ(r, O(x—1yrw)} exp{—=hor + yr + [ ClrQ(r, )}, (2.32)

in which 0 < s4+r=s" <r.
On the other hand,

My exp{—hor + 7 + [|C|lrQ(r, 0 _1),w)} = ()



then

[sup] lly(ks + r)|| exp{hos — vs — ||C||sQ(r, Oxrw)s} < pk_l(r)eHCHrQ(r’e’”‘“). (2.33)
—r,0

Secondly,

efyr+2KGHC||||y(kT)” _ 677’+2KGHCH||y((k o 1)’!“ —i—T‘)” < pk—l(r)efyr—i-QKGHCH'

Hence
My < p"H(r)exp{yr + | CllrQ(r, Orw) + 2K G| C|}. (2.34)
This implies
pF(r) = Myexp{—hor +r + ||C|rQ(r, Ofrw)}
< pHr) exp{—hor + 2yr + 2||C||rQ(r, Orw) + 2KG||C||}
k
< p°(r) [] exp{=hor + 2yr + 2||C|IrQ(r, 0;,w) + 2K G||C||}

Jj=1
1k
— 0 _ _ - .
= p’(r)exp { [ (ho — 27)r + QHCHrk jg_l Q(r,8,w) + ZKGHCH} k} (2.35)
Applying Birkhoff ergodic theorem

k
. 2 Clr
lim { = (ho = 29)r + 2KG||C]| + = ;Q(“ 0jn0)}

= —(ho — 29)r + 2KG||C|| 4+ 2||C||rE[Q(r,w)] =: =\ (2.36)

holds for almost all w. Choose

(ho — 27)r }

€ = min {617 2KG + 2rE[Q(r,w)]

Then A > 0 provided that ||C|| < e. Moreover, p°(r) = Mg exp{—hor +~yr+ ||C||rQ(r,w)}, in which

My = maX{@”’%KGOI!n(O)I!, sup ||n(s)[| exp{hos —vs — \CHSQ(W)}}

se|—r,0

IA

I9llse oy exp {37 + 1C1Q(r,w) + 2KG|C] }.
Hence
P(r) < Illoc (o exp {297 + 2| ClIrQ(r, w) + 2K GCl }.

Hence when k is large enough, (2.36) deduce

k
| Nk
— (ho = 2)r + 2KG|C + 2| Cllr - >~ QL ejrw)]k <= (2.37)

j=1

As a result
— Ak

pk(r) <pP(r)e2 .
On the other hand, it is obvious that, for any 0 <t <r

lylr + 1) < p*(t) < "7k (r) < e % 001,



Therefore

) 1
lim sup — 1og [|yt[|oo,[—r0] < —A/2 (2.38)
t—o0 t

Moreover, for any 0 < t1 < to <7,

IN

IN

IN

IN

Hy<k”r + t27w 77) - y(kr + t17w777)H
H( (t2, Oprw) ¢’(t1,9krw))y(k7‘awﬂ7)H

+ /ttz Dty — 5, 0, 0) [ (y(kr + 5 = 7,c0,17))ds
1

t1
+] / (®(t2 = 5, 001r0) = B(t1 = 5, 0s1100) ) f(yhr + 5 — r,00,1))ds
0
[ (b2, Oprw) — P(t1, Oxrw)|[[[y (kr, w, n)|

to
e / 10 (82 — 5, B r) [y (kr + 5 — vy, ) ds

t1
t1
+Cf/ [D(t2 — 8, 0s1hrw) — @(t1 — 8, Osir) |||y (kr + s — 7, w, ) ||ds
0
(t2 — t1)" [y (kr + - w,0)lloo,(or0) 1R (:, Oprw)
+(t2 — t1)Crlly(kr + -0, m) oo —r 0] 127 (5 0k o, 0,1 |2 (-5 Okr) | o, 0.1
t1
+Cfllykr 4w, Moo frg /

(ta — tl)ﬁHy(kr + 5w, 77)”00,[—7’,0] (- gkrw)mﬁ,[o,r]
+(ta — t1)Crlly(kr + 0, ) lloo, =012 (5 Orr) oo, 0,07 |2 (-5 Okr) [l o, 0.1]
+(t2 — 1) rCrlly(kr + - w, )l oo —r0) 127 (5 Ort) s o, 1R Okriw)ll g 0.0y - (2-39)

D(tg, Okrw)) — P(t1, HkTw))> O (s, O)w) Hds

We then obtain for k£ large enough

my(k—l—l)r H'ﬁ,[—r,o] < ||y(]€7“ + 4w, 77) ||oo,[—'r,0] |||(I)(a Hkrw)mﬁ[o,r]

—H“l_BCny(k‘T + - w, 77) Hoo,[—r,O] ||¢'_1('a ekrw)Hoo,[O,r} H(I)('7 ekTw) Hoo,[()ﬂ
+rC¢lly(kr + -0, 1) oo, (=r0] 127" (- Okrw) low, o1 1P (-5 Okrw) 5 (0.7

A(k

1) _ _
< e +h07"p0( ) 1+ Cf(rl A + T)H(I) 1('7 0]{21”("'))”00,[0,7"] ||(I)(7 Hkrw)”oo,ﬁ,[o,r]'
(2.40)

On the other hand, due to [11, Proposition 2.4], ® and ¥ := &1 satisfy

do(t,w) = A®(t,w)dt + CP(t,w)dw(t)
d¥(t,w) = —ATU(t,w)dt — CTV(t,w)dw(t).

Now, apply [4, Theorem 2.1] we get

=

1/v
19 Lr2(K+DIClwl, 0,0
18 w)loepy < I <>

1
L (K1) Ol o,
2lAlr <2> ont

N R
+ +

||q>_1('7w)||oo,[0,r] <

~
+

Ne)



Moreover for all s,t € [0,7]
1oC, gy < ALV EIC[( =)' + (= 5) 7 ol gy ] ¥
%[ 19C, )0 + (£ = )7 IO( @)l g
< (A K[t = )7 + (¢ = ) ol o | [L+ (6 = )7 Iyl g

1rR2(K+D)[ClHwll,, 0,01
: _ Al [ K+2 v,[0.7]
with L = e yCen .

Due to Lemma 2.1
1 1 141
I9(, )50, < LI2VA4[A| VAK|C|] For™? <1 + ity 4 |||ww:/,[01:'r]> ’

. . Orrwll, 10 .. .
Since lim sup;,_, o % =0, it is evident that

limsuplog ([1+ Cy(r' ™ + )07 04) o fo.1| 19, O4r) o 10 ) = O

k—00

< e MR/ for k

for all w in a set Q' with probability 1. Combining this with (2.40), y(k+l)rmg o) S

large enough. Now for ¢ € [kr, (k + 1)r]

Hells -0y < Wkl o) + W0l g gy < 2672ED1
Therefore
log ||y _r
imsup M < —=)\/4 (2.41)
t—»00 t
From (2.38) and (2.41) we obtain (2.24). The proof is completed. O

In the second main result, we prove that the trivial solution of (1.1) is also exponentially stable
almost surely but in the pullback sense.

Theorem 2.6 Under the assumptions of Theorem 2.5, there exists € > 0 such that if |C] < €
the trivial solution of system (1.1) is pullback exponentially stable almost surely with respect to the
Il - Hoo,ﬁ,[—r,o} norm, i.e.

: 1
lim sup — log [|y:(0—1w, Y0)lloo,8,[—r,0] <0,
t—oo L
for almost surely all the realizations w.

Proof: Fristly, we write y(t,w,n) and p*(t,w, n) to stress the dependence of y, p* in Theorem
2.5 on w and 7. The proof of this theorem follows the arguments of Theorem 2.5 with some
modifications. Namely, fix u € [kr, (k 4+ 1)r] and replace w in (2.35) by 0_,w, we obtain

k
2||C|r
pr(r 0 uw,m) < po(r,euw,n)exp{[—(ho—%)?”rHJZQ(T,eruW)+2KG!CII}k}
j=1
2||C
k

k—1
I S P(r0_jw) + 2KGHCH} ’f}

Jj=0

< P 0-uw,m)exp { | = (ho—29)r +

where
v(1+2KG)

P(r,w) = QKG[ SKC

7 v+l 2y 2t
ol g 7 Wl g + 72 Bl

10



Put

(ho —2y)r
: )] }

! .
¢~ mm {61’ 2KG + 2rE[P(r,w

and consider ||C|| < € then for almost all w

k—
. 2HCH
klggo{ — (ho — 29)r + 2KG||C| + Z r0_jw) }
]:
= —(ho — 29)r + 2KG||C|| + 2| C|[rE[P(r,w)] =: —\ < 0. (2.42)

Proof similarly to Theorem 2.5, it is easy to see
P2r,0-0,1) < e gy €50 {277 + 2 Cllr P(r, 0_10w) + 2K G| C] }.

It follows that when k is large enough,

k 1

)\’k
— (ho — 29)r + 2KG||C|| + 2||C]|r~ ZP (r, 9_]Tw)}k <= (2.43)
j =0
and ’
Ak
PO(r,0_yw,m) < e’a .
As a result , .
-k =Nk
pF(r0_uw,m) < p0(r,0_uw,m)e 2 <e i .
On the other hand, it is obvious that, for any 0 <t <r
ly(kr + ¢, 0w, )| < p"(t,0—uw. )
< PR (r, -y, m)
S €_¥+h07‘.
Also, one can choose k is greater than n(w) large enough so that
~MN(k-2) -
1y O—utw, M)l oo, [(k—2)r, (k1)) < € hor, (2.44)
Next, in the analog of (1.6), for u € [kr,(k+ 1)r] and ' =u —r
t
y(' +tw,n) = Ot 0wy, w,n) + / Dt — 5,05 w)f(y(u +5—1,w,1n))ds.
0
Therefore, for k > n(w) and u € [kr, (k + 1)r], we have
t
y +t,0_yw,m) = Ot 0_,w)y, 0_.w,n) + / Ot — 5,05 ,w)f(y(u' +5—1r,0_yw,n))ds.
0

For any 0 < 1 < to < r, by similar computations to (2.39), we obtain

||y(u, + 12, 0 ul, 77) - y(u, + 11, Q*UL‘% 77)”
< ||( @2, 0-r) = @11, 0-1) ) y(w!, 00,

to
+H / Bty — 5,05 w)f(y(u' +s—7r 0_,w,n))ds
t1
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+] / tl = 5,0,-w) = Bt = 5,05-y) ) Fy(u + 5 = 1,0 0,m))ds

< (1D (ta, O0rw) — B(t1, 0yl (e, Oyso, )

wop [ A

1

vy | " 1B(t2 — 5,05 10) — D11 — 5, 0u syl + 5 .60, ) s
< (b2 — 1) 1R, 0wl o1 19+ 00, m) oo [

+(ta — t1)Cpllyu—r(, 0—uw, M)l oo, (=0 |27 (-, 0—rw)[log, 0,11 | R (- 0—r0) | . 0,1]

+Cplmr 00, | (20 1100) = (01, 0-00)) 871 (5,6
< (b= 1) 12, 0yl o 19+ 00, 0) oo

-tz — 1) gumr (- 000, 1) lloo 01127 0=0) o 0,71 1B+ 0—10) oo fo.

(2 = 1)y (- 00|27 000 oo o1 12, =)l g0, -
Due to (2.44) it follows that

19 (s O M loe o) = N B0 m)llow ) + B9 es O—ats )5
e 1 (e, 0 p) 50
+r1 2017, 0-1) oo 0,1 12, 0-r0) | fo
FrCAl|8 (0= llooy o, 19, 0-r0)l 5.0,

Consequently,
)\/
ukr“!r‘loo ; log ||yu( ’ uw, 77)”00’57[_7'70] - _5 < O‘

That means the trivial solution of system (1.1) is pullback exponentially stable almost surely. [
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