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Abstract

The divisor theory for graph was introduced by Baker and Norine
in a study of the interaction between algebraic curves theory and graph
theory. Baker then formulated the Brill-Noether conjecture for graph
on the existence of a divisor whose degree and rank satisfies a certain
condition. Since then, this conjecture has attracted many researchers
and it has been proved for some special classes of graphs. We prove the
validity of this conjecture for cactus graphs. Our proof, based on the
Chip Firing Game theory, explicitly construct the divisor mentioned
in the conjecture.

Keywords: Brill – Noether conjecture, cactus graph, chip firing game,
cycle, rank of divisor on graph.

1 Introduction

In 2007, Baker and Norine developed research on the interplay between Rie-
mann surfaces and graphs by introducing the concept of divisor on graph
and proving the discrete version of the Riemann-Roch theorem on the rank
of divisor [3]. Then Baker formulated the Brill-Noether theorem on algebraic
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curves into a conjecture for graphs [2]. This conjecture is still open, and at-
tracts many researchers [1, 6, 7, 8, 13, 16]. Before presenting these theorem
and conjecture, we will give an explicit definition of the rank of divisor on
graph.

In this whole paper, all considered graphs are (multiple) undirected con-
nected graphs without loops. Let G = (V,E) be a graph. We always denote
by n the number of vertices and by m the number of edges of G. The genus
of G is the quantity g = m−n+ 1. For a subset U of V , we denote by G(U)
the subgraph of G induced by U . The number of edges between u and v is
denoted by e(u, v).

A divisors D on G is a function D : V → Z (or can be considered as a
vector D ∈ ZV ). The degree of D is deg(D) =

∑
v∈V D(v). A divisor D is

called effective, and written D ≥ 0, if D(v) ≥ 0 for all v ∈ V (by convention,
the vector zero is written 0). The group of divisors of G - denoted by Div(G)
- is the set of all divisors on G, and it is a free abelian group on V with respect
to the pointwise addition. The basic vector εv is defined by: εv(v) = 1 and
εv(u) = 0 for all u 6= v.

The Laplacian matrix ∆G of graph G, where the coordinates are indexed
by V × V , is defined by:

∆G(u, v) =

{
deg(u) if u = v,
−e(u, v) if u 6= v.

We write ∆G(v) the row vector indexed by vertex v of the graph. Note
that

∑
v∈V ∆G(v) = 0.

The linear equivalence is a relation on Div(G) defined by: D ∼ E if there
exists x ∈ ZV such that E = D − x∆G.

If D is linearly equivalent with an effective divisor E, we say that D
is L-effective. It is clear that the L-effectiveness is an invariance of linear
equivalence classes. For a divisor D, the linear system associated to D is the
set |D| of all effective divisors linearly equivalent to D:

|D| = {E ∈ Div(G) : E ≥ 0, E ∼ D}.

Formally, the definition of the rank of divisor can be written as follows.

Definition 1. [3] For a divisor D ∈ Div(G), the rank of D, denoted by
r(D), is equal to

• −1 if D is not L-effective,
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• the largest integer r such that for any effective divisor λ of degree r the
divisor D − λ is L-effective.

In some cases when there is different graphs, to precise the graph G, one
write DG instead of D, rG instead of r and LG-effective instead of L-effective.

The problem of divisor on graph can also be considered in the context of
the Chip Firing Game (CFG) theory [4, 5, 11]. For instance, (in a general
sense) in the CFG on a given graph G, a configuration is a distribution of
chips on vertices, and the firing of a vertex v consists of moving one chip from
v along each of its edges. Each divisor D can be considered as a configuration
of CFG in which D(v) is the number (possibly negative) of chips at v. And
the substraction of ∆v from D corresponds to the firing of the vertex v on D.
Similarly, the linear equivalence between two divisors D and E corresponds
to the existence of a firing sequence from D to E.

Baker and Norine proved the following Riemann Roch theorem for graph
(see [3] and also [9] for a proof of this theorem).

Theorem 1. [3] Let G be a graph. Let κ be the divisor such that κ(v) =
deg(v)− 2 for all v ∈ V . Then any divisor D satisfies:

r(D)− r(κ−D) = deg(D)− g + 1,

where g being the genus of G.

And the the Brill-Noether conjecture on graphs can be stated as follows.
The Brill–Noether conjecture for graphs [2] Fix integers g, r, d ≥ 0,

and set ρ(g, r, d) = g − (r + 1)(g − d+ r). Then

• If ρ(g, r, d) ≥ 0 then every graph of genus g has a divisor D with the
rank r(D) = r and deg(D) ≤ d.

• If ρ(g, r, d) < 0 then there exists a graph of genus g for which there is
no divisor with r(D) = r and deg(D) ≤ d.

The second part of this conjecture has been proved to be correct in [2]
while the first part is still open so far. Even in a special case when r = 1,
the problem is also unresolved, and considered separately under the name
”Gonality conjecture”.

The Gonality conjecture for graphs [2] For any graph G of genus g,
there exists a divisor D of degree b(g + 3)/2c such that the rank of D is at
least 1.
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In recent years, these two conjectures were considered for certain classes
of graphs. The Brill-Noether conjecture has been proved for graphs with
genus at most five [1]. On the other direction, this conjecture holds for
metric graphs and tropical graphs [2, 7]. Some ideas to decompose graph for
computing the rank of divisors on a graph from that of its subgraphs was
showed in [13, 16].

In this paper, we investigate this problem on the class of cactus graphs -
a connected graph in which any two simple cycles have at most one vertex
in common. Cactus graph was introduced in the 1950’s [12] and can be used
to represent models on different research domains [17, 14, 15]. Especially,
chain of loops (a special case of cactus graph) was used to study a tropical
proof of the Brill Noether theorem on curves [8]. With its treelike structure,
cactus graph is a special case of sparse graph on which several NP-hardness
problem on general graphs can be solved in polynomial time [10, 18].

We will prove that these two conjectures are correct for the class of cactus
graphs. Our idea is to construct a divisor satisfying the condition of each
conjecture. The construction is a recursive procedure on the genus of the
cactus graph in consideration.

2 Transferring chips and Gonality conjecture

We first examine the structure of cactus graphs and introduce the notion of
transferring chips. These results will helps us to prove the Gonality conjec-
ture for cactus graphs.

2.1 Cactus graph and tree of cycles

Let us first give the formal definition of cactus graph.

Definition 2. A cactus graph is a connected graph in which any two simple
cycles have at most one vertex in common.

It is evident that the number of cycles of a cactus graph is equal to its
genus.

We say that a graph G′ is equivalent to a graph G if the problem of rank
of divisor on G′ is equivalent to that on G, which means that the linearly
equivalent classes of divisors on G′ are in a bijection with that on G and this
bijection reserves the firing operation.
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First, we will show that we only need to consider cactus graphs in which
there is no common vertices of cycles.

To do that, for a cactus graph G with a vertex v belonging to k cycles
C1, C2, . . . , Ck, we will construct a graph G′ from G as follows (see Figure 1).
Creat a new vertex u, separate the cycles Ci and replace the vertex v in each
cycle Ci by a new vertex ui, then connect ui with u. By this way, each edge
uiu is a cut of G′ into Xi containing Ci and Yi = V (G′)\Xi. Consider a map
φ from Div(G′) to Div(G) which maps a divisor D′ on G′ to a divisor D on G
as follows: D(x) = D′(x) for all x 6= v and d(v) =

∑
x∈{u1,...,uk,u}D

′(x). It is

easy to check that D′ ∼ E ′ in Div(G′) if and only if φ(D′) ∼ φ(E ′) in Div(G).
On the other hand, firing v in G is equivalent to firing {u1, . . . , uk, u} in G;
firing ui in G′ is equivalent to firing Yi ∪ {ui}; finally firing u in G′ does not
change the corresponding divisor in G.

 

  

 

 

   
 

 

 

 

 
 

              

 
 

 
 

              

 

 

 

 

  

u1 

v 

C1 

C1 
C2 

C2 

C3 
 

C3 C4 

C4 

u 

u2 

u3 

u4 

Figure 1: Two equivalent graphs

After applying all the above operations if needed, from a cactus graph,
we obtain an equivalent cactus graph where there is no common vertices of
cycles. Hence from now on, we consider only cactus graph with no common
vertices of cycles.

Now we define the cycle contraction of cactus graph G the graph obtained
from G by contracting each cycle to one of its vertices (this vertex is called
the representing vertex of the cycle). It is clear that this contraction is a tree
T , called the representing tree of the graph. If a cycle (resp. vertex) of G is
represented by a leaf in T , we call it a cycle leaf (resp. vertex leaf).

By the way, we call a path of cycles (resp. star of cycles) a cactus graph
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such that its representing tree is a path (resp. star).

2.2 Rank on trees and cycles

We apply the Riemann-Roch theorem for computing the rank of divisor on
trees and cycles.

In a tree, m = n − 1, g = 0, and deg(κ) = 2(m − n) = −2. So for every
divisor D of degree non negative, we have deg(κ−D) < 0, and r(κ−D) = −1,
which implies that r(D) = deg(D).

In a cycle of n vertices Cn = {v1, . . . , vn}, m = n, g = 1 then deg(κ) = 0.
So for every divisor D of positive degree, we have deg(κ − D) < 0, and
r(κ−D) = −1, which implies that r(D) = deg(D)−1. In the case deg(D) =
0, we have r(D) = 0 if D ∼ 0 (that means D is L-effective), otherwise
r(D) = −1. We analyze this case below.

On the cycle Cn, we can write a divisorD as a vectorD = (D1, D2, . . . , Dn).
We have D ∼ 0 if and only if there exists x = (x1, x2, . . . , xn) ∈ Zn such that
D − x∆Cn = 0. Because

∑i=n
i=1 ∆Cn(vi) = 0 then

D ∼ 0⇔ ∃x = (x1, x2, . . . , xn−1, 0) ∈ Zn−1 × {0} : D − x∆Cn = 0.

⇔ ∃x : (D1, D2, . . . , Dn) = (x1, . . . xn−1, 0)


2 −1 0 . . . 0 0 −1
−1 2 −1 . . . 0 0 0
...
0 0 0 . . . −1 2 −1
−1 0 0 . . . 0 −1 2


⇔ D1 + 2D2 + . . .+ (n− 2)Dn−2 + (n− 1)Dn−1 ≡ 0 mod n.

So we have the following result.

Proposition 2. Let D = (D1, D2, . . . , Dn) be a divisor on the cycle Cn, then
the rank of D is computed as follows.

r(D) =


−1 if deg(D) ≤ −1,
deg(D)− 1 if deg(D) ≥ 1,
0 if deg(D) = 0 and D1 + 2D2 + . . .+ (n− 1)Dn−1 ≡ 0 mod n,
−1 if deg(D) = 0 and otherwise .

The following result is straightforward.

Corollary 3. If the divisor D on the cycle Cn (with n ≥ 3) has degree 0 and
rank 0, then for all v 6= w in Cn, r(D − εv + εw) = −1.

6



2.3 Transferring chips

For computing the rank of divisors, it is important to check if a divisor is L-
effective or not. To do so, we need to consider whether we can transfer chips
in that divisor from vertices with multiple chips to vertices with negative
numbers of chips. So we will come up with the notion of transferring chips.

Definition 3. We say that in an effective divisor D, one can transfert one
chip from a vertex v to a vertex u if there exists a firing sequence from D
to an effective divisor D′ (in other words, if there exists an effective divisor
D′ ∼ D) with D′(v) = D(v)− 1 and D′(u) = D(u) + 1.

More generally, we say that in D one can transfert k chips from v to get l
chips on u if there exists an effective divisor D′ ∼ D with D′(v) = D(v)− k
and D′(u) = D(u) + l.

Independently of divisors, we say that one can transfert k chips from v
to get l chips on u on a graph G if the divisor D defined in G by D(v) =
k,D(u) = −l and D(w) = 0 for all w 6= v, u, is L-effective (D is nothing but
kεv − lεu).

This notion is very important for the Gonality conjecture (and the Brill-
Noerther conjecture also) because an effective divisor D is good for the go-
nality conjecture if and only if in D one can transfert a chip to every vertex
u with D(u) = 0.

Before considering the transferring of chips on graphs with simple struc-
ture, we note that firing a set A of vertices corresponds to moving one chip
along each outgoing edge of A.

• If v and u are the two extremities of a cut edge of a graph G = (S, T )
(v ∈ S, u ∈ T ), then firing S correponds to transferring one chip from
v to u. Hence for any positive integer k, one can trasfert k chips from
v to get k chips on u.

More generally, if there is a path from v to u such that every edge of
this path is a cut edge, then one can trasfert k chips from v to u. (We
call such a path a simple path.)

• If v and u are the two vertices of a cycle graph C. The divisor D =
kεv − kεu can have rank 0 or −1 depending on the position of v and u.
That means the transferring of k chips from v to get k chips in u is not
guaranteed.
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However the divisor D = kεv − (k − 1)εu has degree 1, then has rank
0. Hence the transferring of k chips from v to get k − 1 chips in u is
guaranteed.

So we say that the transferring chips from v to u ”loses” one chip on
the cycle.

• Now, we consider a cycle C of G in which two vertices v and u may
have degree greater than two and all other vertices of C have degree
two. The vertex set of G consists of three parts S, C and T (eventually
empty) where v connects C to S and u connects C to T . The firing
of S ∪ {v} (resp. T ∪ {u}) on G corresponds to the firing of v on C
(resp. u on C). Then a transferring chips from v and u in G can be
considered as an internal firing sequence on C, and then it loses one
chip on C.

• If v and u be two extremities of a path of k cycles, then to transfer
chips in the path from v to u, one loses one chip to go through each
cycle.

We can state the following lemma.

Lemma 4. If there is a path of p cycles from v to u then one can
transfert l + p chips from v to get l chips on u.

Furthermore, a first simple result on cactus graph is the following.

Lemma 5. Every divisor of degree g on a cactus graph G (of genus g) are
L-effective.

By consequence, every divisor of degree g+ r on G has a rank at least r.

Proof. Indeed, if on a cycle of G there is at least 2 chips then this cycle
can transfer chips to other cycles by keeping only 1 chip for itself. Then by
transferring chips from cycle having more than one chips to cycles of less
than one chips, we can distribute one chip on each cycle and zero chip every
elsewhere, which give us an effective divisor.

2.4 Gonality conjecture on cactus graph

Theorem 6. The Gonality conjecture is true for cactus graph.
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Proof. Let G be a cactus graph of genus g. We will construct a divisor of
degree bg+3

2
c and of rank at least 1 on G.

Because a cactus is a tree of cycles and because any tree has one center
or two centers (a center of a graph is a vertex O where the greatest distance
d(O, v) to other vertices v is minimal), then G has a cycle O such that the
path of cycles from O to any cycle of G contains at most bg+1

2
c cycles. Let

consider a vertex ω ∈ O. We defince the divisor D as follows: D has bg+3
2
c

chips at ω and zero chips elsewhere. By Lemma 4, one can transfert bg+3
2
c

from ω to get at least bg+3
2
c − bg+1

2
c = 1 chip on v for every vertex v of

G. This implies that the rank of D is at least 1. Hence the conjecture is
correct.

Moreover, from the above proof, we can compute the gonality of a cactus
graph. Recall that the gonality of a graph G, denoted by gon(G), is the
minimum degree of a divisor of rank 1. For that, we use the notion of
radius of a graph - the minimum of eccentricities of all vertices of G - where
eccentricity of a vertex v is the maximum of distance from v to other vertices.

Corollary 7. Let G be a cactus graph. Let T be the representing tree of G.
Then the gonality of G is equal to the radius of T plus 2.

3 Brill-Noether conjecture on cactus graph

Theorem 8. The Brill-Noether conjecture is true for cactus graph.

The Brill-Noether number ρ(g, r, d) = g−(r+1)(g−d+r) is non negative
if and only if d ≥ g + r − g

r+1
. We now fix d = g + r − b g

r+1
c. Then to prove

the Brill-Noether conjecture, it suffices to find a divisor of degree d and of
rank at least r.

We will first analyze these numbers.
Put p = b g

r+1
c, we write g = p(r + 1) + t with t = g mod (r + 1).

Then d = g + r − b g
r+1
c = p(r + 1) + t+ r − p = (p+ 1)r + t.

Definition 4. In this Section we fix the cactus graph G with genus g. Fix a
positive number r. We define p = b g

r+1
c, d = g+ r− p, and t = g− p(r+ 1).

Let H be a connected subgraph of G (and then H is a cactus graph). We
denote gH the genus of H. We define tH = gH mod p and rH = bgH

p
c − 1

then gH = (rH + 1)p+ tH .
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We define dH = gH + rH − p.
A divisor DH on H is called a good divisor on H if deg(DH) = dH and

r(DH) ≥ rH .

Our purpose is to construct a good divisor for cactus graphs.
However, note that for the original graph G, evan gG = g but rG may

not be equal to r and dG may not be equal to d, because by definition t = g
mod (r+ 1) but tG = gG mod p. Then the good divisor DG on G (of degree
dG and of rank at least rG) may not be a divisor D satisfying the Brill-
Noether conjecture (of degree d and of rank at least r). We can adjust this
difference as follows.

If t < p then tG = t and rG = r, dG = d, hence DG is also the desired
divisor D on G.

If t ≥ p then tG < t, and rG > r, dG > d. We know that d = g+ r− p and
dG = g+rG−p, then dG−d = rG−r. NowDG is a divisor of rank rG, then if we
define a divisor D from DG by subtracting rG−r chips (in some vertices), the
rank of D decreases by at most rG−r, that implies r(D) ≥ rG−(rG−r) = r.
Moreover the degree of D is equal to dG − (rG − r) = d.

So to find a divisor D satisfying the Brill-Noether conjecture on G, it is
sufficient to find a good divisor DG on G.

We know that the cactus graph G is a tree of cycles, then to find a good
divisor for G, we begin by finding good divisor for simpler structure like path
of cycles or star of cycles.

Our purpose is to prove the following result which is useful for the recur-
sive construction of good divisor.

Let T be a tree of cycles rooted at v and with subtrees T1, T2, . . . Tl.
If for each subtree Ti, there is a good divisor, then there is a good
divisor for T .

For that, from a good divisor DTi on Ti, we will construct a symmetric
divisor S(Ti, v) and an asymmetric divisor A(Ti, v) on Ti oriented to v. Then
by using these divisors on all Ti, we will construct a good divisor DT for T .

First of all, we consider a path of cycle.

Lemma 9. Let P be a path of cycles which is an induced subgraph of G.
Then there exists a good divisor on P .

Proof. Let P be a path of gP cycles: C1, C2, . . . CgP . On each Ci there is two
vertices xi, yi - possibly the same - of degree greater than 2 such that for
1 ≤ i ≤ p− 1, Ci and Ci+1 are connected by a simple path from yi to xi+1.
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First, we write gP = (rP + 1)p + tP with 0 ≤ tP ≤ p− 1. We will find a
divisor DP of degree dP = gP + rP − p and of rank at least rP (defined as in
Definition 4).

We call node the rP + 1 vertices : yp, y2p, . . . , yrP p, y(rP+1)p, and specially
keynode the vertex y(rP+1)p.
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Figure 2: Path of cycles and its nodes

The divisor DP is defined as follows: put tP chips at the keynode and put
p+ 1 chips at each other node. It is clear that deg(DP ) = dP . We will prove
that DP − λ is L-effective for any effective divisor of degree rP λ. Because
we have rP + 1 nodes, then there exists an index 0 ≤ j ≤ rP such that λ
has exactly j chips on the interval I1 = [x1, yjp], rP − j chips on the interval
I3 = [x(j+1)p+1, y(rP+1)p+t] and zero chips on the interval I2 = [xjp+1, y(j+1)p].

The divisor DP is equivalent to D′P obtained from DP by transfering p+1
chips from y(j+1)p to x(j+1)p+1. Now, the divisor D′P has g1 + j chip on I1,
zero chips in I2 and g3 + rP − j chips in I3 (where g1 and g3 are the genus of
I1 and I3 respectively). Then the divisor DP − λ has g1 chips on I1, g3 chips
on I3 and 0 chips on each vertex of I2, then it is L-effective on I1, on I2 and
on I3, hence DP − λ is L-effective.

This implies that DP is of rank at least rP , hence a good divisor on P .

Keeping the notations of the above lemma. Let v be the extreme vertex
of P closed to the last cycle CgP . We call (P, v) the path of cycles oriented
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to v. From the good divisor DP on P , we define the asymmetric divisor and
the symmetric divisor on (P, v).

Definition 5. • The asymmetric divisor oriented to v on P A(P, v) is
nothing but DP (defined in the proof of Lemma 4).

• The symmetric divisor oriented to v on P S(P, v) is obtained from
A(P, v) by putting p+ 1 (instead of tP ) chips at the keynode.

The following properties of these new divisors can be deduced directly
from the proof of Lemma 4.

Corollary 10. • deg(A(P, v)) = dP and r(A(P, v)) ≥ rP . Consequently
from A(P, v), one can send rP − s chips to v and s chips to anywhere
in P , for 0 ≤ s ≤ rP .

• deg(S(P, v)) = dP +p+ 1− tP and r(S(P, v)) ≥ rP + 1. Moreover from
S(P, v), one can send p + 1 − tP + rP − s chips to v and s chips to
anywhere in P , for 0 ≤ s ≤ rP .

We now consider a star of cycles.

Lemma 11. Let S be a star of cycles which is an induced subgraph of G.
Then there exists a good divisor on S.

Proof. The root of a star of cycles can be a vertex or a cycle.
Let consider the first case: the root of S is a vertex.
Now let vertex v be the root and B1, B2, . . . , Bl be branches of S. Each

branch Bi is a path of gi cycles. We define for each Bi the nodes and keynode
(as the proof of Lemma 4).

The genus of S is gS =
∑l

i=1 gi. And we write gS = (rS + 1)p + tS with
tS ≤ p−1. We will find a divisor DS of degree dS = gS+rS−p = rS(p+1)+tS
and of rank at least rS.

We first write gi = p(ri+1)+ti with 0 ≤ ti ≤ p−1. Put r′ = (rS−
∑l

i=1 ri)

and t′ = (tS −
∑l

i=1 ti) = p(l − 1− r′).
The good divisor DS is constructed as follows. We define the restriction

of DS on each branch Bi to be the symmetric divisor on Bi if t′ < 0, and the
asymmetric divisor on Bi if t′ ≥ 0. At the end, we put the remain chips at v
(see Figure 3).
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Figure 3: Star of cycles S and the good divisor defined on it in the case t′ ≥ 0

To ensure that DS is a good divisor, we must prove that DS − λ is L-
effecitve for any divisor λ of degree rS. Let λi be the number of chips of λ
in branch Bi, and put r′i = λi − ri.

We consider two cases: t′ ≥ 0 or t′ < 0.

• If t′ ≥ 0, then r′ ≤ l − 1. The remain chips to put at v is

d(v) = (p+ 1)rS + tS − (
l∑

i=1

ri(p+ 1) + ti) = (l − 1)p+ r′.

Because there are l branches and
∑l

i=1 r
′
i = r′ ≤ l − 1, then there is

some index j such that r′j ≤ 0. Applying Corollary 10, we can send
−r′j chips from Bj to v and ensure that DS − λ is L-effective on Bj

(and the number of chips of DS − λ in Bj is equal to gj − p).
Now, restrited on the graph S\Bj, the number of chips of DS − λ is
equal to the genus, then it is L-effective (see Lemma 5). This implies
that DS − λ is L-effecitve.

• If t′ = p(l− 1− r′) < 0. Because ti < p for each i, then t′ ≥ −p(l− 1),
and l ≤ r′ ≤ 2l − 2.

The remain chips to put at v is

d(v) = (p+ 1)rS + tS −
l∑

i=1

(ri + 1)(p+ 1) = (p+ 1)(r′ − l) + tS.
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Because there are l branches and
∑l

i=1 r
′
i = r′ ≤ 2l − 2, then there is

some index j such that r′j ≤ 1.

If there is some r′j ≤ 0. Similar to the previous case, we can send
−r′j +p+1− tj chips from Bj to v and ensure that DS−λ is L-effective
on Bj (and the number of chips of DS − λ in Bj is equal to gj − p).
And the result is the same as in the previous case.

If all the r′i ≥ 1 then there are some branches j such that r′j = 1; and
we denote by J the set of there indices j. We denote also H the graph
∪j∈JBj. To show that DS is a good divisor, it is sufficient to prove that
DS−λ on H is L-effective and that degH(DS−λ) ≤ g(H)− p. In fact,
for Bj with j ∈ J , by Corrolary 10, the restriction of DS on Bj has
rank at least rj + 1 = λj, so DS −λ is L-effective on Bj. Hence DS −λ
is L-effective on H.

Now, let us compute:

degH(DS−λ)−gH =
∑
j∈J

(p+1)(rj+1)−
∑
j∈J

(rj+1)−
∑
j∈J

(p(rj+1)+tj) =
∑
j∈J

−tj.

We must prove that
∑

j∈J tj ≥ p. For that, we analyze gS by two ways.
First,

gS = (rS + 1)p+ tS ≥
∑
i

rip+
∑
j∈J

r′ip+
∑
i 6∈J

r′ip+ p

≥
∑
i

rip+ |J |p+ 2(l − |J |)p+ p =
∑
i

rip+ p(2l − |J |+ 1).

On the other side,

gS =
∑
i

gi =
∑
i

(ri + 1)p+
∑
i 6∈J

ti +
∑
j∈J

tj

≤
∑
i

rip+ lp+ (l − |J |)p+
∑
j∈J

tj =
∑
i

rip+ (2l − |J |)p+
∑
j∈J

tj.

So, we have
∑

j∈J tj ≥ p, which implies that degH(DS−λ) ≤ g(H)−p.
This completes our proof.
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Let us consider now the second case: the root of S is a cycle C.
Recall that gS = (rS + 1)p+ tS and dS = rS(p+ 1) + tS. We consider the

star S ′ obtained from S by replace the cycle C by a vertex v.
We analyze two subcases.
If tS ≥ 1, then gS′ = gS−1 and dS′ = dS−1. We construct a good divisor

DS′ on S ′ as in the first case for a star with a vertex root. Then, we define
DS the divisor obtained from DS′ by putting one chip at the cycle C.

If tS = 0, the divisor DS is defined as the good divisor on S ′ in the case
t′ < 0, that means we put p+ 1 chips at each node of every branch (and the
remain chips at C).

We let the reader check that DS is a good divisor on S.

We now define the symmetric divisor and the asymmetric divisor of a star
oriented to a vertex.

Definition 6. Let S be the star defined as in Lemma 11. Let w be the
extreme vertex of Bl (on the opposite side of the root of S, which is not
included in Bl). We call (S,w) the star oriented to w.

We write tl = τl+ωl such that ωl = g mod p, or equivalently τl+
∑l−1

i=1 tl
is a multiple of p.

The branch Bl is reorganized as follows. Write Bl as a path from v to w
of gl cycles: C1, C2, . . . Cgl .

We call the vertices yτl+ip, with 0 ≤ i ≤ rl + 1, nodes, and specially yτl
the ”keynode”, and yτl+(rl+1)p the uppernode of Bl.

Let DS be the good divisor defined in the Lemma 11.

• The asymmetric divisor (oriented to w) on S, denoted by A(S,w), is
defined by taking the good divisor DS with the modification on Bl as
follows:

- put ωl chips at the uppernode of Bl,

- put p+ 1 chips at each other node of Bl (including the keynode),

- at the end, put the remain chips at v.

• The symmetric divisor (oriented to w) on S, denoted by S(S,w), is
obtained from A(S,w) by putting p + 1 (instead of ωl) chips at the
uppernode of Bl.
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Figure 4: Asymmetric divisor of a star of cycles, in the case t′ ≥ 0

From the proof of the above lemma, we can state the following properties
of the asymmetric and symmetric divisors on star.

Corollary 12. • For the asymmetric divisor A(S,w): deg(A(S,w)) =
dS and r(A(S,w)) ≥ rS. Consequently, for 0 ≤ s ≤ rS, one can send
rS − s chips to w and s chips in anywhere in S.

• For the symmetric divisor S(S,w): deg(S(S,w)) = dS + p + 1 − tS
and r(S(S,w)) ≥ rS + 1. Moreover, for 0 ≤ s ≤ rS, one can send
p+ 1− t+ rS − s chips to w and s chips in anywhere in S.

Now, we have all ingredients to build a recursive process for determining
the good divisor for a tree of cycles.

Proposition 13. Let T be a tree of cycles which is an induced subgraph of
G. T is rooted at v and with subtrees T1, T2, . . . Tl. If for each subtree Ti, we
has a good divisor, then there exists a good divisor for T .

Proof. We consider the case where the root of T is a vertex, the other case
can be proved similarly.

Similar to the above lemmas, we write gT the genus of T and gi the genus
of Ti. We use always the notations of r, p, ri, ti, r

′, t′.
For each subtree Ti, from the good divisor of Ti, we can construct the

asymmetric divisor A(Ti, v) and the symmetric divisor S(Ti, v) on Ti oriented
to v.
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We define the good divisor DT of T as follows. If t′ < 0, then DT

restricted on each subtree Ti is the symmetric divisor on Di. Otherwise
t′ ≥ 0, DT restricted on each branch Ti is the asymmetric divisor on Ti. At
the end, we put the remain chips at v.

The proof of the goodness of DT on the tree of cycles is similar to that
on a star of cycles.

Now, the above proposition give us a recursive method to construct the
good divisor for the tree of cycles G from the good divisors of its sub-trees.
And then, because we have a good divisor forG, the Brill-Noerther conjecture
holds.

Discussion We can prove the Brill-Noether conjecture for cactus graphs
because these graphs have a structure of tree of cycles. We hope to apply
some of our techniques for more general classes of graphs, for example graph
with special ear decompositions, and in particular for series- parallel graphs.

On the other side, we think that by using an explicit analysis of the
structure of the representing tree of a cactus graph, one can find not only its
gonality, but furthermore a lower bound for the degree of a divisor of rank r.
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