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Abstract. This paper which continues [24] is concerned with the Cauchy
problem for the Full-Dispersion Davey-Stewartson system introduced in [18].

More precisely, in order to invert the equation for the mean mode φ we intro-

duce an approximate system by a suitable truncation of the high frequencies
of φ and we prove that the solutions to the truncated systems converge to the

solutions of the classical Davey-Stewartson system.

1. Introduction

The Davey-Stewartson system was introduced in [9] (see also [2, 10]) to model
the evolution of wave packets of surface water waves. It is actually derived for a
more general system, the Benney-Roskes system, introduced in [3] in the context of
water waves and also known as the Zakharov-Rubenchik system, introduced in [34]
as a universal Hamiltonian system to describe the interaction of short and (acoustic
type) long waves.

Our interest in the present paper is a full dispersion version of the classical
Davey-Stewartson system introduced by David Lannes in [18] and that we describe
now.

The framework is that of the motion of a irrotational inviscid fluid in an infinite
layer of finite depth of an Euler fluid bounded by a free surface and a flat bottom.

The specific regime here is the so-called modulation (”Schrödinger”) one. In
order to define the key small parameter we introduce h a typical depth of the fluid
layer, a a typical amplitude of the wave and λ a typical wavelength in the horizontal
directions (assumed to be isotropic). Then we set ε = a/h and µ = h2/λ2.

In the modulation regime, the relevant small parameter is the wave steepness,
ε = a/λ = ε

√
µ. The starting point of the analysis is the water waves system

coupling the wave elevation ζ and the trace ψ of the velocity potential at the free
surface, written in dimensionless variables (see [18])

(1.1)


∂tζ −

1
√
µ
Gψ = 0,

∂tψ + ζ +
ε

2
|∇ψ|2 − ε

(
1√
µGψ + ε∇ζ · ∇ψ

)2

2(1 + ε2|∇ζ|2)
= 0,

where G is the Dirichlet to Neumann operator which links the trace of the velocity
potential at the free surface to its normal derivative at the same surface. We denote
X = (x, y) or x the spatial variable.
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One introduces a fixed wave vector k ∈ Rd, d = 1, 2. Setting ω = ω(k) =(
|k| tanh(

√
µ|k|)

)1/2
the dispersion relation of surface gravity waves, one looks for

an approximate solution of the water wave system of the form

(1.2) Uapp(X, t) = U0(X, t) + εU1(X, t) + εU2(X, t),

where X = (x, y) or x and U0 is a sum of a modulated wave packet and of an
induced mean mode φ

(1.3) U0(X, t) =

(
iωψ(εX, εt)
ψ(εX, εt)

)
ei(k·X−ωt) + c.c. +

(
0

φ(εX, εt)

)
.

In [18], D. Lannes derived the following Full Dispersion Benney-Roskes (FDBR)
system coupling ψ, φ and the leading term ζ of the surface elevation (see [23] for
the case of capillary-gravity waves)

(1.4)



∂′tψ + i
ω(k + εD′)− ω(k)

ε
ψ

+ εi[k · ∇′φ+
|k|2

2ω
(1− σ2)ζ + 2

|k|4

ω
(1− α)|ψ|2]ψ = 0,

∂′tζ − |D′|
tanh(ε

√
µ|D′|)

ε
φ = −2ωk · ∇′(|ψ|2),

∂′tφ+ ζ = −|k|2(1− σ2)|ψ|2,

where k is the given wave vector, σ = tanh(
√
µ|k|) and α = − 9

8σ2 (1− σ2)2.
Here the time and space derivatives (indicated by a ′) are taken with respect to

the slow time and space variables t′ = εt and X ′ = εX and D′ denotes the operator
1
i∇
′.
Without loss of generality one may assume that k is oriented in the x direction,

that is k = |k|ex. We will thus write (1.4) as

(1.5)



∂′tψ + i
ω(k + εD′)− ω(k)

ε
ψ

+ εi[|k|∂′xφ+
|k|2

2ω
(1− σ2)ζ + 2

|k|4

ω
(1− α)|ψ|2]ψ = 0,

∂′tζ − |D′|
tanh(ε

√
µ|D′|)

ε
φ = −2ω|k|∂′x(|ψ|2),

∂′tφ+ ζ = −|k|2(1− σ2)|ψ|2,

Remark 1.1. It is proven in [18] that (1.4) (or (1.5)) is consistent with the full
water wave system. We recall that the notion of consistency is a ”static” (not
dynamic) one. It amounts to saying that an assumed solution of the water waves
system on some time interval [0, T ] solves the BRFD or FDBR system on the same
time interval up to some error term. A full justification of the BRFD system
requires in particular that solutions of (1.4) exist on a time scale of order O(1/ε)
which is an open problem.

It also necessitates to prove the well-posedness of the full water -wave system in
the modulation regime on the correct time scales, which has been proven in one and
two horizontal spatial dimensions in [33, 32] in the infinite depth case. The finite
depth case is up to our knowledge open.
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The obvious advantage of (1.4) (or (1.5)) on the classical 1 Benney-Roskes sys-
tem (see [3, 18]) is its a priori validity over an extended range of frequencies.

The full dispersion Benney-Roskes system with surface tension (capillary-gravity
waves) is given by (see [23])

(1.6)



∂′tψ + i
ωS(k + εD′)− ωS(k)

ε
ψ

+ iε[|k|∂′xφ+
|k|2κ
2ωS

(1− σ2)ζ − 2|k|4

ωS
γ|ψ|2]ψ = 0,

∂′tζ − |D′|
tanh(ε

√
µ|D′|)

ε
φ = −2

ωS
κ
|k|∂′x(|ψ|2),

∂′tφ+ ζ = −|k|2(1− σ2)|ψ|2.
Here, the dispersion relation for the water waves with surface tension is given by

ωS(ξ) = [|ξ| tanh(
√
µ|ξ|)(1 +B|ξ|2)]1/2,

where B > 0 measures the surface tension effects (Bond number).
As for purely gravity waves, k = |k|ex is a given wave vector. We will use the

notations ωS = ωS(k), κ = κ(k) = 1 +B|k|2 and σ = tanh(
√
µ|k|). γ is a constant

depending on k and B.
The classical Benney-Roskes system [3] is obtained from (1.4) or (1.6) by ap-

proximating the nonlocal operators eg iω(k + εD′) and
tanh(ε

√
µ|D′|)

ε as (denoting
Hω(k) the Hessian of ω at k)

iω(k + εD′) ∼ ε∇ω(k) · ∇′ − iε2

2
∇′Hω(k)∇′,

and

|D′|
tanh(ε

√
µ|D′|)

ε
∼ √µ|D′|2.

The Cauchy problem for the Benney-Roskes system2 is proven in [28] to be
locally well-posed, but on time scales which do not reach the order O(1/ε) that
would be required (together with uniform bounds in ε) for the full justification of
the system, see [18]. We refer to [22] for some results on the Cauchy problem for
the full dispersion Benney-Roskes system.

As explained in [18] in the ”classical” case, the Davey-Stewartson model is ob-
tained from the Benney-Roskes system by observing that at leading order, ψ travels
at the group speed velocity cg = ∇ω(k). One thus looks for solutions of (1.4) under
the form

ψ(X ′, t′) = ψ̃(X ′ − cgt, εt′),
φ(X ′, t′) = φ̃(X ′ − cgt, εt′) + φ∗(X ′, t′, εt′),

ζ(X ′, t′) = ζ̃(X ′ − cgt′, εt) + ζ∗(X ′, t′, εt′).

Neglecting O(ε) correctors, one can replace ∂′t by −cg · ∇′, and one is finally led
(see details in [18]) to the Full Dispersion Davey-Stewartson System (FDDS) for

1We will use the term ”classical” to refer to those systems where the nonlocal dispersion has
been Taylor-expanded yielding local differential operators instead of nonlocal ones.

2a similar system is derived in [34] in the general context of interactions between low and
high-frequency waves. See also [30], Chap. 15, for a similar system describing the interaction of
a laser beam with plasma low-frequency fluctuations driven by ponderomotive forces.
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gravity waves, where τ = εt′ = ε2t (from now on, we will drop the tildas in the
FDDS systems)

(1.7)



∂τψ +
i

ε2
[ω(k + εD′)− ω − εω′D′x]ψ

+ i(β∂′xφ+ 2
|k|4

ω
(1− α̃)|ψ|2)ψ = 0,(

|D′| tanh(ε
√
µ|D′|)

ε
+ ω′

2
∂′2x

)
φ = 2ωβ∂′x(|ψ|2).

We have used here the following notations (see [18])

(1.8)



k = |k|ex, ω(k) = ω̃(|k|), with ω̃(r) = (r tanh(
√
µr))1/2,

ω = ω̃(|k|), ω′ = ω̃′(|k|), ω′′ = ω̃′′(|k|),

σ = tanh(
√
µ|k|), α = − 9

8σ2
(1− σ2)2, α̃ = α+

1

4
(1− σ2)2,

β = |k|
(

1 + (1− σ2)
ω′|k|
2ω

)
.

We also recall that the Fourier multiplier operator ω(k + εD′) is given by

ω(k + εD′) = (|k + εD′| tanh(
√
µ|k + εD′|))1/2.

Note (see [18]) that the complete rigorous justification of the full dispersion
Davey-Stewartson system requires just the well-posedness of the Cauchy problem
for (1.16) on time scales τ = O(1).

For capillary-gravity waves, the full dispersion Davey-Stewartson system writes

(1.9)



ψτ +
i

ε2
[ωS(k + εD′)− ωS − εω′SD′x]ψ

+ i(βS∂
′
xφ− 2

|k|4

ωS
γ̃|ψ|2)ψ = 0,(

|D′|
tanh(ε

√
µ|D′|)

ε
+ (ω′S)2∂′x

2
)
φ = 2

ωS
κ
βS∂

′
x(|ψ|2),

with

βS = |k|(1 + (1− σ2)
ω′S |k|
2ωS

), γ̃ = γ +
κ

4
(1− σ2)2.

The classical Davey-Stewartson system which was derived formally in [9] for
gravity waves and in [2, 10] for capillary-gravity waves has been justified rigorously
in the sense of consistency in [7, 6, 8].3 It is obtained by approximating the non-
local operators in (1.16) by the relevant local ones as indicated above for the Full
dispersion Benney-Roskes system.

We recall (see [11]) that the Davey-Stewartson systems have the general form

(1.10)

{
i∂tψ + a∂2

xψ + b∂2
yψ = (ν1|ψ|2 + ν2∂xφ)ψ,

c∂2
xφ+ ∂2

yφ = −δ∂x(|ψ|2).

We refer to [2] for an explicitation of a, b, c, ν1, ν2, δ in terms of the physical
parameters. It is also convenient to use the normalized form (see [11])

3Its ”universal” character as an asymptotic system of quadratic hyperbolic systems in the
modulation regime has been proved in [5].
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(1.11)
i∂tψ + ∂2

xψ + δ∂2
yψ = (χ|ψ|2 + b∂xφ)ψ,

∂2
xφ+m∂2

yφ = ∂x|ψ|2,
where the parameters δ, χ, b and m re real and can assume both signs, and δ, χ have
been normalized in such a way that |δ| = |χ| = 1.

The Davey-Stewartson systems can be classified as ”elliptic-elliptic”, hyperbolic-
elliptic”, ”elliptic-hyperbolic” and ”hyperbolic-hyperbolic” depending on the sign
of δ,m.

The ”hyperbolic-hyperbolic” case does not occur in the context of water waves.
The ”elliptic-elliptic” case may lead to a blow-up phenomenon reminiscent of that
of the cubic focusing NLS (see [11] for a proof of blow-up and [26] for numerical
simulations analyzing the dynamics of the singularity formation).

In the case of purely gravity waves, one has b > 0 and δ > 0. Moreover, a =
1
2ω
′′ < 0 since ω′′ = ω̃′′(|k|) < 0 by the concavity of ω̃.

On the other hand, c =
√
µ−ω′2 > 0 (see Section 2). This is a subsonic condition.

Actually this amounts to saying that M < 1 where the Mach number M is defined
as M = Cg/

√
gh, where cg = d

dr

√
gr tanh(hr)|r=|k|.

One can thus invert in this case the equation for φ, writing (one can assume
c = 1 without loss of generality) φx = δR2

1(|ψ|2), where R1 is the Riesz transform
R1 = ∂x(−∆)−1/2, and reduce (1.20) to a single semilinear (cubic) Schrödinger
type equation

(1.12) i∂tψ + a∂2
xψ + b∂2

yψ = (ν1|ψ|2 + ν2δR
2
1(|ψ|2))ψ,

which is studied in [11]. In particular, whatever the signs of a and b, the Cauchy
problem is locally well-posed for initial data in L2(R2) or H1(R2) and globally for
small data, as the corresponding cubic NLS. The global Cauchy problem is much less
understood. For instance, a global well-posedness result for the hyperbolic-elliptic
case (b > 0, a < 0) in (1.12) is still missing for arbitrary large initial data.

However, for a very specific choice of coefficients4, (1.12) is integrable by the
inverse scattering transform method leading to qualitative informations on the flow.
After scaling, this integrable version of the DS system writes

(1.13)

{
i∂tψ + ψxx − ψyy = α|ψ|2ψ + βψφx,

∆φ = ∂x(|ψ|2),

with

α+
β

2
= 0.

It is then known as the DS II system, with two subcases, the focussing (β >
0) and the defocussing one (β < 0). For the defocussing DS II, one has global
solutions that behaves asymptotically in time as the solution of the linear case (see
[31, 27, 21]). In particular global well-posedness (and scattering) is proven in [21]
with arbitrary L2 initial data.

On the other hand, in the focussing integrable DS II system, the presence of an
explicit localized lump solitary wave leads to blow-up in finite time by a pseudo-
conformal law [25]. This later behavior does not seem to be generic, that is does
not seem to persist in the non integrable case (see the numerical simulations in

4with a limited physical relevance
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[16]). In particular, one can prove rigorously that no localized solitary waves exist
”not too close” to the integrable case (see [12]). However, the ”scattering” behavior
of arbitrary large solutions to the defocussing integrable DS II system proven in
[31, 27] might be generic. In both situations, the numerical simulations in [17, 16]
are illuminating.

When surface tension is strong enough however, c is no more positive (see [2])
and φ is inverted (with suitable conditions at infinity) via a wave equation and ∂xφ
is expressed in terms of |ψ|2 via an order one nonlocal operator. The integrable
version is known as the DS I system. We refer to [1] and the references therein
for a description of the results obtained on DS I system by inverse scattering tech-
niques, in particular the existence of special localized solutions called dromions.
The resulting Schrödinger type equation is no more semilinear (it involves an order
one nonlinear term) which makes the study by PDE techniques delicate. The local
associated Cauchy problem is studied in particular in [19, 13, 14]. Scattering of
small solutions is proven in [15].

For the FDDS system, in contrast to the classical system (1.20) for gravity waves
(”hyperbolic-elliptic”), one cannot invert in a straightforward fashion the equation
for φ which makes the associated Cauchy problem delicate.

As suggested in [18] one could consider as well the full dispersion version of only
the first or the second of the two equations of the FDDS system (1.16), namely

(1.14)


∂τψ +

i

ε2
[ω(k + εD′)− ω − εω′D′x]ψ

+ i(β∂′xφ+ 2
|k|4

ω
(1− α̃)|ψ|2)ψ = 0,

[(
√
µ− ω′2)∂′2x +

√
µ∂′2y ]φ = −2ωβ∂′x(|ψ|2),

or

(1.15)


∂τψ −

i

2
(ω′′∂′2x +

ω′

|k|
∂
′2
y )ψ + i(β∂′xφ+ 2

|k|4

ω
(1− α̃)|ψ|2)ψ = 0,(

|D′| tanh(ε
√
µ|D′|)

ε
+ ω′

2
∂′2x

)
φ = 2ωβ∂′x(|ψ|2).

This has the advantage of ”splitting the difficulties” : in the first case, one can
invert the equation for φ as for the hyperbolic-elliptic classical DS case, but one
keeps the ”bad” dispersive properties of the Schrödinger part. In the later case
one has the ”good” properties of the hyperbolic NLS and the ”bad” invertibility
properties of the equation for φ.

We consider here the full dispersion Davey-Stewartson system written as

(1.16)


∂tψ −

i

2
(ω′′∂2

x +
ω′

|k|
∂2
y)ψ + i(β∂xφ+

2|k|4

ω
(1− α)|ψ|2)ψ = 0,

(
|D| tanh(ε

√
µ|D|)

ε
+ ω′2∂2

x)φ = 2ωβ∂x(|ψ|2).

Which is a 2-d model in space for the unknown ψ : R×R2 → C and φ : R×R2 → R.

As noticed in [24] the ”subsonic” condition
√
µ − ω′2 > 0 does not ensures the

solvability of the equation for φ since, denoting ξ the dual variable of X ′, the
frequencies ξ such that
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tanh(ε
√
µ|ξ|)

ε|ξ
= ω′2

ξ2
1

|ξ|2
will cancel the symbol.
The parameters ω′, ω′′, |k|, α, β, µ are defined as previously.

We will only consider the case
√
µ > ω′2, so that we can find r0 such that:

tanh(
√
µr0) = ω′2r0.

In order to invert easily the equation for φ we introduce an approximate system
by truncating the high frequencies.

More precisely, let δ be fixed such that 0 < δ < r0, for each ε > 0, we define

Rε = r0−δ
ε . We then replace the mean mode φ by φε := F−1(χ(|ξ| ≤ Rε)φ̂) so that

5

(1.17) supp φ̂ε ⊂ {ξ ∈ R2; |ξ| ≤ Rε} =: Ωε,

to get a family of systems depending on the parameter ε as follows

(1.18)


∂tψε −

i

2
(ω′′∂2

x +
ω′

|k|
∂2
y)ψε + i(β∂xφε +

2|k|4

ω
(1− α)|ψε|2)ψε = 0,

(
|D| tanh(ε

√
µ|D|)

ε
+ ω′2∂2

x)φε = 2ωβ∂x(|ψε|2).

Since the supports of φ̂ε and |̂ψε|2 are in {ξ ∈ R2; |ξ| < Rε}, we need to construct
a suitable initial data for the Cauchy problem for the ε−FDDS which converge to
the initial data of the Cauchy problem for the corresponding classical DS system.
We proceed as follows.

First, let ψ0 ∈ H1 be the intial data of the classical DS system, then we define

(1.19) ψ0ε = fε ? ψ0 where fε = F−1(χ(|ξ| < Rε
2

)).

Then we have that supp ψ̂0ε ⊂ {|ξ| < Rε

2 }. It follows

supp |̂ψ0ε|2 ⊂ supp ψ̂0ε + supp ψ̂0ε(−.) ⊂ {|ξ| < Rε}.
Our purpose is to prove that when ε tends to 0, the solution of (1.18) with initial

data ψ0ε tends to the solution of the following classical Davey-Stewartson system
with initial data ψ0:

(1.20)

∂tψ −
i

2
(ω′′∂2

x +
ω′

|k|
∂2
y)ψ + i(β∂xφ+

2|k|4

ω
(1− α)|ψ|2)ψ = 0,

(
√
µ|D|2 + ω′2∂2

x)φ = 2ωβ∂x(|ψ|2).

The paper is organized as follows. As a preliminary step we solve the equation
for ∂xφε reducing the approximate FDDS system to a NLS type equation. The
corresponding Cauchy problem is classically solved in the next section, on a time
interval independent of ε. We then pass to the limit as ε → 0 by compactness
arguments.

1.1. Notations. The norm in L2 based Sobolev spaces Hs will be denoted ||u||s..
The norm in the Lebesgue spaces Lp will be denoted |u|p. The Fourier transform

in spatial space will be denoted by (̂.) or F and by F−1 for the inverse Fourier

5χ(A) denote the characteristic function of the set A.
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transform. |D| will denote the Fourier multiplier defined by |̂D|f(ξ) = |ξ|f̂(ξ).
Throughout this paper, C denotes a general constant independent of ε if there is
no further specification.

2. Solving the equation for ∂xφε

We first rewrite the second equation of (1.18) in Fourier space

(
|ξ| tanh(ε

√
µ|ξ|)

ε
− ω′2ξ2

1)φ̂ε(ξ) = 2iωβξ1 |̂ψε|2(ξ),

then, since the support of φ̂ε does not contain any zero of the equation
|ξ| tanh(ε

√
µ|ξ|)

ε −
ω′2ξ2

1 = 0, one can write

(2.1) ∂̂xφε(ξ) =
2ωβξ2

1

ω′2ξ2
1 −

|ξ| tanh(ε
√
µ|ξ|)

ε

|̂ψε|2(ξ).

We now consider the function

f(ξ) =

∣∣∣∣ω′2 − |ξ| tanh(ε
√
µ|ξ|)

εξ2
1

∣∣∣∣
=

∣∣∣∣ω′2 − |ξ|2ξ2
1

tanh(ε
√
µ|ξ|)

ε|ξ|

∣∣∣∣ ,
when |ξ| ≤ Rε.
Since the function: x 7→ tanh x

x is strictly decreasing in R+ and Rε <
r0
ε we have

√
µ ≥

tanh(ε
√
µ|ξ|)

ε|ξ|
≥

tanh(ε
√
µRε)

εRε
>

tanh(
√
µr0)

r0
= ω′2.

Then

f(ξ) ≥
tanh(ε

√
µRε)

εRε
− ω′2 =

tanh(
√
µ(r0 − δ))

r0 − δ
− ω′2 > 0.

Therefore,

(2.2) |∂̂xφε| ≤ C0||̂ψε|2|,

where C0 is independent of ε, namely

C0 =
|2ωβ|

tanh(
√
µ(r0−δ))

r0−δ − ω′2
.

The above observation leads to the following lemma.

Lemma 2.1. The second equation in (1.18) is uniquely solvable and

(2.3) ‖∂xφε‖L2(R2) ≤ C0 ‖ψε‖2L4(R2) .

Note that besides the L2 norm, by a similiar calculation as in the case of the
classical Davey-Stewartson system (see [11]), the energy E(ψ) is formally conserved
by the flow of (1.16) where

E(ψ) =

∫
R2

(
ω′′|ψx|2 +

ω′

|k|
|ψy|2 + 2

|k|4

ω
(1− α)|ψ|4 +

ω′2

4ω
(φx)2

− 1

4ω
(
tanh(ε

√
µ|D|)

ε
φ) (|D|φ)

)
dx dy.
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Setting ∂xφε = Fε(|ψε|2), one can rewrite (1.18) as a single NLS type equation,

(2.4) ∂tψε −
i

2
(ω′′∂2

x +
ω′

|k|
∂2
y)ψε + i(βFε(|ψε|2) +

2|k|4

ω
(1− α)|ψε|2)ψε = 0.

3. Cauchy problem for the ε−FDDS

In this section, we will consider the Cauchy problem for (1.18) (or (2.4)) with
initial data ψε(t = 0) = ψ0ε ∈ H1(R2) defined as in (1.19). In particular we obtain
the following theorem.

Theorem 3.1. Let ψε(t = 0) = ψ0ε ∈ H1(R2), then there exists a unique maximal

solution (ψε, φε) solution of (1.18) on [0, T ∗ε [ where T ∗ε = O(1/ ‖ψ0ε‖2H1), such that

ψε ∈ L∞t (0, T ∗ε ;H1(R2)), ∇ψε ∈ L4
t (0, T

∗
ε ;L4(R2)),

∂xφε ∈ L∞t (0, T ∗ε ;L2(R2)) ∩ L2
t (0, T

∗
ε ;H1(R2))

One has the conservation of the L2 norm and of the energy :

|ψε(·, t)|2 = |ψ0ε|2, E(ψε(·, t) = E(ψ0ε), 0 ≤ t < T ∗ε .

Moreover one has the persistency property : if ψ0 ∈ Hs(R2), s > 1, then

ψε ∈ L∞t (0, T ∗ε ;Hs(R2)), ∂xφε ∈ L∞t (0, T ∗ε ;Hs(R2)).

Proof. Let us denote

U(t) := eit(ω
′′∂2

x+ ω′
|k|∂

2
y), (unitary in all Sobolev spaces)

then we can rewrite (2.4) using the Duhamel formulation as an integral equation

(3.1) ψε = U(t)ψ0ε − i
∫ t

0

U(t− s)(βFε(|ψε|2) +
2|k|4

ω
(1− α)|ψε|2)ψε(s)ds.

We denote the operator on the right hand side by T (ψε) and recall the two-
dimensional Strichartz estimate for U(t)

(3.2)

∥∥∥∥∫ t

0

U(t− s)f(s)ds

∥∥∥∥
L∞t (0,T ;L2)∩L4

t (0,T ;L4)

≤ C ‖f‖
L

4/3
t (0,T ;L4/3)

.

Set

X = {u ∈ L∞t (0, T ;H1),∇u ∈ L4
t (0, T ;L4)},

and

B = {‖u‖X ≤ 3 ‖ψ0ε‖H1},

T can be chosen later.
The proof is standard and relies classically on the Banach fixed point theorem. We
only derive here suitable bounds in order to emphasize that the existence time and
the norm of solution are independent of ε.

We now prove that B is stable under T . Using estimate (2.3), Strichartz’s
estimate (3.2), Sobolev’s embedding and Hölder’s inequality, we get the following
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estimates:

‖T (ψε)‖X
= ‖T (ψε)‖L∞t (0,T ;L2) + ‖∇T (ψε)‖L∞t (0,T ;L2) + ‖∇T (ψε)‖L4

t (0,T ;L4)

≤2 ‖ψ0ε‖H1 + C

(∥∥Fε(|ψε|2)ψε
∥∥
L

4/3
t (0,T ;L4/3)

+
∥∥∇(Fε(|ψε|2)ψε)

∥∥
L

4/3
t (0,T ;L4/3)

+
∥∥|ψε|2ψε∥∥L4/3

t (0,T ;L4/3)
+
∥∥∇(|ψε|2ψε)

∥∥
L

4/3
t (0,T ;L4/3)

)
.

(3.3)

And, ∥∥Fε(|ψε|2)ψε
∥∥
L

4/3
t (0,T ;L4/3)

≤
∥∥Fε(|ψε|2)

∥∥
L2

t (0,T ;L2)
‖ψε‖L4

t (0,T ;L4)

≤C0T
3/4 ‖ψε‖3L∞t (0,T ;L4)

≤CT 3/4 ‖ψε‖3L∞t (0,T ;H1) ,

(3.4)

(3.5)
∥∥|ψε|2ψε∥∥L4/3

t (0,T ;L4/3)
≤ CT 3/4 ‖ψε‖L∞t (0,T ;H1) ,∥∥∇(|ψε|2ψε)

∥∥
L

4/3
t (0,T ;L4/3)

=
∥∥ψ2

ε∇ψ̄ε + 2|ψε|2∇ψε
∥∥
L

4/3
t (0,T ;L4/3)

≤ CT 1/2 ‖ψε‖2L∞t (0,T ;H1) ‖∇ψε‖L4
t (0,T ;L4) .

(3.6)

And, for h ∈ R2∥∥Fε(|ψε|2)ψε(X + h)− Fε(|ψε|2)ψε(X)
∥∥
L

4/3
t (0,T ;L4/3)

=

∣∣∣∣∣∣∣∣(ψε(X + h)− ψε(X))Fε(|ψε(X + h)|2)

+ (Fε(|ψε(X + h)|2)− Fε(|ψε(X)|2))ψε(X)

∣∣∣∣∣∣∣∣
L

4/3
t (0,T ;L4/3)

≤3C0T
1/2 ‖ψε‖2L∞t (0,T ;L4) ‖ψε(X + h)− ψε(X)‖L4

t (0,T ;L4) ,

Dividing by |h| and letting |h| tends to 0, we deduce that∇(Fε(|ψε|2)ψε) ∈ L4/3
t (0, T ;L4/3)

and ∥∥∇(Fε(|ψε|2)ψε)
∥∥
L

4/3
t (0,T ;L4/3)

≤ 3C0T
1/2 ‖ψε‖2L∞t (0,T ;L4) ‖∇ψε‖L4

t (0,T ;L4)(3.7)

Combining (3.3)-(3.7), we see that there exists T = O(1/ ‖ψ0ε‖2H1) such that B is
invariant under T .

Proving that T is a contraction on B proceeds as in the previous step by using
the following expression.

ψ1Fε(|ψ1|2)− Fε(|ψ2|2)ψ2 = (ψ1 − ψ2)Fε(|ψ1|2) + ψ2Fε((|ψ1| − |ψ2|)(|ψ1|+ |ψ2|))

and

ψ1|ψ1|2 − ψ2|ψ2|2 = (ψ1 − ψ2)|ψ1|2 + ψ2(|ψ1| − |ψ2|)(|ψ1|+ |ψ2|)
where ψ1 and ψ2 are in X.
Therefore from these two steps, we can choose the existence time T ∗ε = O(1/ ‖ψ0ε‖2H1).

�
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Remark 3.1. From (1.19) we have

‖ψ0ε‖H1 =

∥∥∥∥√1 + |ξ|2 χ(|ξ| < Rε
2

) ψ̂0

∥∥∥∥
L2

≤ ‖ψ0‖H1 .

Then, we can choose an existence time T ∗ of the solution of (1.18) which is inde-
pendent of ε and the solutions are also bounded by 3 ‖ψ0‖H1 in that time interval.
Therefore, in the next section, we will prove that the solutions tend to a solution of
the classical Davey-Stewartson system when ε tends to zero.

4. From ε-FDDS to classical DS

We prove here that the solutions of the ε-FDDS system converge to that of the
classical Davey-Stewartson system as ε tends to 0. We first recall a very classical
result in [20], and some useful estimates.

Lemma 4.1. (Aubin-Lions’s Lemma) Let B0, B,B1 be three reflexive Banach spaces.
Assume that B0is compactly embedded in B and B is continuously embedded in B1

. Let

W = {V ∈ Lp0(0, T, B0),
∂V

∂t
∈ Lp1(0, T, B1)}, T <∞, 1 < p0, p1 <∞.

W is a Banach space with norm

‖V ‖W = ‖V ‖Lp0 (0,T,B0) + ‖Vt‖Lp1 (0,T,B1) .

Then the embedding W ↪→ Lp0(0, T, B) is compact.
When p0 =∞, p1 > 1, the above statement is also true, see [29].

Lemma 4.2. Let Ω be an open set of Rn and let g, gε ∈ Lp(Rn), 1 < p <∞, such
that

gε → g almost everywhere in Ω and ‖gε‖Lp(Ω) ≤ C.
Then gε → g weakly in Lp(Ω).

Lemma 4.3. If t0 > 1 and s ≥ 0, one has
(4.1)

‖fg‖Hs ≤ C
(
‖f‖Ht0 ‖g‖Hs + 〈‖f‖Hs ‖g‖Ht0 〉s>t0

)
, ∀f, g ∈ Hs ∩Ht0(R2).

Note that, the condensed notation As = Bs+〈Cs〉s>s∗ means that As = Bs if s ≤ s∗
and As = Bs + Cs if s > s∗.

Theorem 4.1. Let ψ0 ∈ H1(R2), ψ0ε is defined as in (1.19) and (ψε, φε) be
the solution of (1.18) given by theorem 3.1. Then (ψε, ∂xφε) tends to (ψ, ∂xφ)
in L∞t (0, T ∗;H1(R2)) × L∞t (0, T ∗;L2(R2)) weak-star, where (ψ, φ) is the solution
of (1.20) with initial data ψ0.

Furthermore, If ψ0 ∈ Hs(R2), s > 3 then (ψε, ∂xφε) tends to (ψ, ∂xφ) strongly

in L∞t (0, T ∗;Hs−δ
loc (R2)) for 0 < δ < 2.

(T ∗ is the existence time interval for all ε and is defined as in Remark 3.1.)

Proof. We first denote

F (u) = F−1
X

(
2ωβξ2

1

ω′2ξ2
1 −
√
µ|ξ|2

û(ξ)

)
.

It is not difficult to see that ψ0ε → ψ0 in H1 when ε tends to zero.
From theorem 3.1 and Remark 3.1, we know that ‖ψε‖L∞t (0,T∗;H1), ‖∂xφε‖L∞t (0,T∗;L2)
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are uniformly bounded in ε, then by using Hölder inequality and Sobolev embed-
ding theorem, we also have that

∥∥|ψε|2ψε∥∥L∞t (0,T∗;L2)
, ‖(∂xφε)ψε‖L∞t (0,T∗;H−1) are

uniformly bounded in ε. Using the first equation of (1.18), it is also true for
‖∂tψε‖L∞t (0,T∗;H−1). Therefore, we have (up to an extraction of subsequences)

(4.2) ψε → ψ in L∞t (0, T ∗;H1) weak-star.

(4.3) ∂xφε or Fε(|ψε|2)→ l in L∞t (0, T ∗;L2) weak-star.

(4.4) ∂tψε → ψ in L∞t (0, T ∗;H−1) weak-star.

(4.5) (ω′′∂2
x +

ω′

|k|
∂2
y)ψε → (ω′′∂2

x +
ω′

|k|
∂2
y)ψ in L∞t (0, T ∗;H−1) weak-star.

(4.6) |ψε|2ψε → h in L∞t (0, T ∗;L2) weak-star.

(4.7) (∂xφε)ψε or Fε(|ψε|2)ψε → g in L∞t (0, T ∗;H−1) weak-star.

Thus, we need to prove

(4.8) h = |ψ|2ψ,

(4.9) g = F (|ψ|2)ψ,

and

(4.10) l = F (|ψ|2) or ∂xφ.

We will use, for any bounded open subset Ω of R2, the compact embedding

H1(Ω) ↪→ L4(Ω),

and the continuous injection

L∞t (0, T ∗;X) ↪→ L2
t (0, T

∗;X), for any Banach space X.

Let denote

W = {v ∈ L2
t (0, T

∗;H1(Ω));
∂v

∂t
∈ L2

t (0, T
∗;H−1(Ω))}.

By Aubin-Lions theorem, we have

W ↪→ L2
t (0, T

∗;L4(Ω)) compactly .

Hence, {ψε} is relatively compact in L2
t (0, T

∗;L4(Ω)) for any bounded subdomain
Ω in R2. Therefore, ψε → ψ strongly in L2

t (0, T
∗;L4

loc(R2)) up to a subsequence.
Thus,

ψε → ψ almost everywhere in (0, T ∗)× R2,

or

|ψε|2ψε → |ψ|2ψ almost everywhere in (0, T ∗)× R2.

Combining with lemma 4.2 we get (4.8).
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We now prove (4.9) by proving that Fε(|ψε|2ψε) → F (|ψ|2)ψ in L2
t (0, T

∗;H−1)
weak star. First, let v be some test function in L2

t (0, T
∗;H1) vanishing outside of

a compact set Ω ∈ R2. Then∫ T∗

0

∫
R2

(Fε(|ψε|2)ψε − F (|ψ|2)ψ)v dX dt

=

∫ T∗

0

∫
Ω

Fε(|ψε|2)(ψε − ψ)v dX dt+

∫ T∗

0

∫
R2

(Fε(|ψε|2)− F (|ψ|2))ψv dX dt

= I1
ε + I2

ε

Estimate for I1
ε :

|I1
ε | ≤

∥∥Fε(|ψε|2)
∥∥
L∞t (0,T∗;L2(R2))

‖ψε − ψ‖L2
t (0,T∗;L4(Ω)) ‖v‖L2

t (0,T∗;L4) .

Since ψε → ψ strongly in L2
t (0, T

∗;L4), I1
ε → 0 when ε→ 0.

Estimate for I2
ε : Note that we can rewrite

Fε(|ψε|2)− F (|ψ|2)

=CF−1

 |̂ψε|2(ξ)

ω′2 − |ξ| tanh(ε
√
µ|ξ|)

εξ21

− |̂ψ|2(ξ)

ω′2 −√µ |ξ|
2

ξ21


:=CF−1

(
qε(ξ)|̂ψε|2(ξ)− q0(ξ)|̂ψ|2(ξ)

)
.

=CF−1
(

(qε − q0)(ξ) |̂ψε|2(ξ)
)

+ CF−1
(
q0(ξ) (|̂ψε|2 − |̂ψ|2)(ξ)

)
Then by Plancherel theorem, we have

|I2
ε |

≤C

∣∣∣∣∣
∫ T∗

0

∫
R2

(qε − q0)(ξ)|̂ψε|2(ξ)ψ̂v(ξ) dξ dt

∣∣∣∣∣+ C

∣∣∣∣∣
∫ T∗

0

∫
R2

q0(ξ)(|̂ψε|2 − |̂ψ|2)(ξ)ψ̂v(ξ) dξ dt

∣∣∣∣∣
:=I3

ε + I4
ε

Estimate for I3
ε : By Hölder inequality and

I3
ε ≤

∥∥∥|̂ψε|2∥∥∥
L2

t (0,T∗;L2)

∥∥∥χ(Ωε)(qε − q0)ψ̂v
∥∥∥
L2

t (0,T∗;L2)
.

Since χ(Ωε)(qε−q0)ψ̂v(t, ξ)→ 0 pointwise in (0, T ∗)×R2 and |χ(Ωε)(qε−q0)ψ̂v| <
C|ψ̂v| and ψ̂v ∈ L2

t (0, T
∗;L2), dominated convergence theorem follows∥∥∥χ(Ωε)(qε − q0)ψ̂v

∥∥∥
L2

t (0,T∗;L2)
→ 0

when ε tends to 0. Hence, I3
ε → 0 when ε tends to 0.

Estimate for I4
ε : By Plancherel identity

I4
ε =

∣∣∣∣∣
∫ T∗

0

∫
R2

(|ψε|2 − |ψ|2)F−1(q0(ξ)ψ̂v(ξ)) dX dt

∣∣∣∣∣ .
Since

∥∥|ψε|2∥∥L∞t (0,T∗;L2)
is uniformly bounded then by similar argument of getting

(4.8), we get that |ψε|2 → |ψ|2 in L∞t (0, T ∗;L2) weak-star. Therefore we need to



14 H. LUONG AND J.-C. SAUT

show that F−1(q0(ξ)ψ̂v(ξ)) ∈ L1
t (0, T

∗;L2). Indeed, by Plancherel’s identity∥∥∥F−1(q0(ξ)ψ̂v(ξ))
∥∥∥
L1

t (0,T∗;L2)
=
∥∥∥q0(ξ)ψ̂v(ξ)

∥∥∥
L1

t (0,T∗;L2)

≤ C
∥∥∥ψ̂v(ξ)

∥∥∥
L1

t (0,T∗;L2)

= C ‖ψv‖L1
t (0,T∗;L2)

≤ C ‖ψ‖L2
t (0,T∗;L4) ‖v‖L2

t (0,T∗;L4) <∞.

The proof of (4.10) is similar to that of (4.9), and this concludes the proof of weak
convergence.

In order to prove the strong convergence, we note that by a similar argument as
above, (ψε, ∂xφε) tends to (ψ, ∂xφ) in L∞t (0, T ∗;Hs(R2)) weak-star. Furthermore,
by (4.1), Plancherel identity and using the fact that s > 3, we have

‖∂t∂xφε‖L∞t (0,T∗;Hs−2) =
∥∥Fε(2Re(∂tψεψε))∥∥L∞t (0,T∗;Hs−2)

≤C
∥∥∥〈ξ〉s−2 F(Re(∂tψεψε))

∥∥∥
L∞t (0,T∗;L2)

=C
∥∥Js−2Re(∂tψεψε)

∥∥
L∞t (0,T∗;L2)

≤C(
∥∥Js−2(∂tψεψε)

∥∥
L∞t (0,T∗;L2)

+
∥∥Js−2(∂tψεψε)

∥∥
L∞t (0,T∗;L2)

)

≤C ‖ψε‖L∞t (0,T∗;Hs) ‖∂tψε‖L∞t (0,T∗;Hs−2) .

Therefore, Simon’s lemma 4.2 and the identity of the weak and strong limit follow
that (ψε, ∂xφε) tends to (ψ, ∂xφ) in L∞t (0, T ∗;Hs−δ

loc (R2)) strongly, where 0 < δ <
2. �

5. Remarks on the complete full dispersion system

One can of course apply the same truncation process on the φ equation for
the complete full dispersion Davey-Stewartson systems (1.16), (1.9) yielding ap-
proximations of them. Using Lemma 2.1, the fact that the linear dispersive part is
skew-adjoint and standard arguments, one obtains straightforwardely the those two
systems are locally well posed for initial data in Hs(R2), s > 1 on a time interval
[0, T ∗) where T ∗ does not depend on ε. Note that this result does not depends on
the dispersion.

In presence of surface tension, the resulting equation in ψε is reminiscent of a
fractional nonlinear Schrödinger equation.
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