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Abstract. In this paper, we study the near-boundary behavior of functions u ∈
F(Ω) in the case where Ω is strictly pseudoconvex. We also introduce a sufficient
condition for belonging to F in the case where Ω is the unit ball.

Introduction

Let Ω be a bounded hyperconvex domain in Cn. By [Ceg04], the class F(Ω) is defined
as the following: u ∈ F(Ω) iff there exists a sequence of functions uj ∈ E0(Ω) such that
uj ↘ u as j →∞ and supj

∫
Ω

(ddcuj)
n <∞. Here

E0(Ω) = {u ∈ PSH(Ω) ∩ L∞(Ω) : lim
z→∂Ω

u(z) = 0,
∫
Ω

(ddcu)n <∞}.

The class F(Ω) has many nice properties. This is a subclass of the domain of def-
inition of Monge-Ampère operator [Ceg04, Blo06]. Moreover, by [Ceg04], for each
sequence of functions uj ∈ E0(Ω) such that uj ↘ u ∈ F(Ω) as j →∞, we have

lim
j→∞

∫
Ω

(ddcuj)
n =

∫
Ω

(ddcu)n.

.
By [Ceg98, Ceg04], for every pluripolar set E ⊂ Ω, there exists u ∈ F(Ω) such

that E ⊂ {u = −∞}. In [Ceg04], Cegrell also proved some inequalities, a generalized
comparison principle and a decomposition of (ddcu)n, u ∈ F(Ω). In [NP09], Nguyen
and Pham proved a strong version of comparison principle in the class F(Ω).

The class F(Ω) has been used to characterize the boundary behavior in the Dirichlet
problem for Monge-Ampère equation [Ceg04, Aha07]. For every u ∈ F(Ω), for each
z ∈ ∂Ω, we have lim sup

Ω3ξ→z
u(ξ) = 0 (see [Aha07]). Moreover, if we define by N the set of

functions in the domain of definition of Monge-Ampère operator with smallest maximal
plurisubharmonic majorant identically zero then, by the comparison principles in F and
in N (see [NP09] and [ACCP09]) and by Cegrell’s approximation theorem [Ceg04] (see
also Lemma 10), we have

F(Ω) = {u ∈ N(Ω) :
∫
Ω

(ddcu)n <∞}.

In this paper, we study the near-boundary behavior of functions u ∈ F(Ω) in the case
where Ω is a bounded strictly pseudoconvex domain, i.e., there exists ρ ∈ PSH(Ω) ∩
C(Ω) such that ρ|∂Ω = 0, Dρ|∂Ω 6= 0 and ddcρ ≥ cω := cddc|z|2 for some c > 0.

Our first main result is the following:
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Theorem 1. Assume that Ω is a strictly pseudoconvex domain in Cn and u ∈ F(Ω).
Then, there exists C > 0 depending only on Ω, n and u such that

(1) V ol2n({z ∈ Ω|d(z, ∂Ω) < d, u(z) < −ε}) ≤ C.dn+1−na

anεn
,

for any ε, d > 0, a ∈ (0, 1).

For the convenience, we denote Wd = {z ∈ Ω|d(z, ∂Ω) < d}. By Theorem 1, we have

lim
d→0

V ol2n({z ∈ Wd|u(z) < −ε})
dt

= 0,

for every 0 < t < n+ 1. It helps us to estimate the “density” of the the set {u < −ε}
near the boundary.

Moreover, by using Theorem 1 for ε = dα and 0 < a < 1− α, we have

Corollary 2. Assume that Ω is a strictly pseudoconvex domain in Cn and u ∈ F(Ω).
Then, for every 0 < α < 1,

lim
d→0

V ol2n({z ∈ Wd|u(z) < −dα})
d

= 0.

When Ω is the unit ball, this result can be improved as following:

Theorem 3. If u ∈ F(B2n) then

lim
r→1−

∫
{|z|=r} |u(z)|dσ(z)

1− r
<∞.

In particular, there exists C > 0 such that

lim sup
d→0+

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad})
d

<
C

A
,

for every A > 0.

Our second purpose is to find a sharp sufficient condition for u to belong to F(Ω)
based on the near-boundary behavior of u. We are interested in the following question:

Question 4. Let Ω be a bounded strictly pseudoconvex domain. Assume that u is a
negative plurisubharmonic function in Ω satisfying

lim
d→0+

V ol2n({z ∈ Wd : u(z) < −Ad})
d

= 0,

for some A > 0. Then, do we have u ∈ F(Ω)?

In this paper, we answer this question for the case where Ω is the unit ball.

Theorem 5. Let u ∈ PSH−(B2n). Assume that there exists A > 0 such that

(2) lim
d→0+

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad})
d

= 0.

Then u ∈ F(B2n).

Corollary 6. Let u ∈ N(B2n) such that
∫

B2n

(ddcu)n =∞. Then, for every A > 0,

lim sup
d→0+

V ol2n({z ∈ B2n : ‖z‖ > 1− d, u(z) < −Ad})
d

> 0.
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1. Proof of Theorem 1

Since Ω is bounded strictly pseudoconvex, there exists ρ ∈ C2(Ω̄, [0, 1]) such that
Ω = {z : ρ(z) < 0} and

(3) |Dρ| > C1 in Ω̄,

and

(4) ddcρ ≥ C2dd
c|z|2 = C2ω,

where C1, C2 > 0 are constants.
By (3), there exist C3, C4 > 0 depending only on Ω and ρ such that

(5) C3d(z, ∂Ω) ≤ −ρ(z) ≤ C4d(z, ∂Ω),

for every z ∈ Ω.
For every a ∈ (0, 1) and z ∈ Ω, we have

ddcρa(z) := ddc(−(−ρ(z))a) = a(1− a)(−ρ)a−2dρ ∧ dcρ+ a(−ρ)a−1ddcρ.

Then

(6) (ddcρa)
n ≥ an(1− a)(−ρ)na−n−1dρ ∧ dcρ ∧ (ddcρ)n−1.

Hence, by (3), (4) and (5), there exists 1 � d0 > 0 depending only on Ω and ρ such
that, for every 0 < d < d0 and z ∈ Wd := {ξ ∈ Ω : d(ξ, ∂Ω) < d},
(7) (ddcρa)

n ≥ C5d
na−n−1ωn.

Since u ∈ F(Ω), there exists {uj}∞j=1 ⊂ E0(Ω) such that uj ↘ u and

(8)

∫
Ω

(ddcuj)
n < C6,

for every j ∈ Z+, where C6 > 0 depends only on u.
By using (7), (8) and the Bedford-Taylor comparison principle [BT76, BT82] (see

also [Kli91]), we have, for every j ∈ Z+, ε, d > 0 and a ∈ (0, 1),

C6 >
∫

{uj<ερa}
(ddcuj)

n ≥
∫

{uj<ερa}
(ddcερa)

n

≥ C5a
nεn

dn+1−na

∫
{uj<ερa}∩Wd

ωn.

Hence, for every 0 < d < d0,

V ol2n({z ∈ Wd|uj(z) < −ε}) ≤ C7.d
n+1−na

anεn
,

where C7 > 0 depends only on Ω, ρ, n and u.
Letting j →∞, we get

V ol2n({z ∈ Wd|u(z) < −ε}) ≤ C7.d
n+1−na

anεn
,

for every 0 < d < d0.
Denote
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C = max{C7,
anεnV ol2n(Ω)

dn+1−na
0

}.

We have

V ol2n({z ∈ Wd|u(z) < −ε}) ≤ C.dn+1−na

anεn
,

for every d > 0.
This completes the proof of Theorem 1.

2. Proof of Theorem 3

In order to prove Theorem 3, we need the following lemma:

Lemma 7. Let Ω ⊂ Cn be a bounded hyperconvex domain and (X, d, µ) be a compact
metric probability space. Let u : Ω×X → [−∞, 0) such that

(i) For every a ∈ X, u(., a) ∈ F(Ω) and∫
Ω

(ddcu(z, a))n < M ,

where M > 0 is a constant.
(ii) For every z ∈ Ω, the function u(z, .) is upper semicontinuous in X.

Then ũ(z) =
∫
X

u(z, a)dµ(a) ∈ F(Ω).

Proof. It is obvious that ũ ∈ PSH−(Ω).
Since X is compact, for every j ∈ Z+, we can divide X into a finite pairwise disjoint

collection of sets of diameter less than
1

2j
. We denote these sets by Uj,1, ..., Uj,mj

. We

can furthermore assume that for every 1 ≤ k ≤ mj+1, there exists 1 ≤ l ≤ mj such
that Uj+1,k ⊂ Uj,l.

For every j ∈ Z+, we define

uj(z) =
mj∑
k=1

µ(Uj,k) sup
a∈Uj,k

u(z, a) and ũj = (uj)
∗.

Then ũj ∈ F(Ω). Moreover, by [Ceg04], we have∫
Ω

(ddcũj)
n ≤M,

for all j ∈ Z+.
By the semicontinuity of u(z, .), we get that ũj is decreasing to ũ as j →∞. Hence,

ũ ∈ F(Ω) and
∫
Ω

(ddcũ)n ≤M . �

Recall that if u is a radial plurisubharmonic function then u(z) = χ(log |z|) for some
convex, increasing function χ. We have the following lemma:

Lemma 8. Let u = χ(log |z|) be a radial plurisubharmonic function in B2n. Then,
u ∈ F(B2n) iff the following conditions hold

(i) lim
t→0−

χ(t) = 0;

(ii) lim
t→0−

χ(t)

t
<∞.
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Proof. It is clear that (i) a necessary condition for u ∈ F(B2n). We need to show that,
when (i) is satisfied, the condition u ∈ F(B2n) is equivalent to (ii).

If (ii) is satisfied then there exists k0 � 1 such that k0t < χ(t). Hence u(z) >
k0 log |z| ∈ F(B2n). Thus, u ∈ F(B2n).

Conversely, if (ii) is not satisfied, we consider the functions uk = max{u, k log |z|}.
Then, for every k, uk > u near ∂B2n. Hence∫

Ω

(ddcu)n ≥
∫
Ω

(ddcuk)
n = kn

∫
Ω

(ddc log |z|)n k→∞−→ ∞.

Thus u /∈ F(B2n).
The proof is completed. �

Proof of Theorem 3. Denote by µ the unique invariant probability measure on the uni-
tary group U(n). For every z ∈ B2n, we define

ũ(z) =
∫

U(n)

u(φ(z))dµ(φ) =
1

c2n−1|z|2n−1

∫
{|w|=|z|}

u(w)dσ(w),

where c2n−1 is the (2n− 1)-dimensional volume of ∂B2n.
By Lemma 7, we have ũ ∈ F(B2n). Since ũ is radial, we have, by Lemma 8,

lim
|z|→1−

ũ(z)

|z| − 1
= lim
|z|→1−

ũ(z)

log |z|
<∞.

Hence

lim
r→1−

∫
{|z|=r} |u(z)|dσ(z)

1− r
= M <∞.

Consequently, we have

lim sup
d→0+

V ol2n({z ∈ B2n : ‖z‖ = 1− d, u(z) < −Ad})
d

≤ M

A
,

for all A > 0.
By using spherical coordinates to estimate integrals, we get the last assertion of

Theorem 3.
The proof is completed. �

3. Proof of Theorem 5

3.1. An approximation lemma. In order to prove Theorem 5, we need the following
lemma:

Lemma 9. Let Ω be a hyperconvex domain in Cn and u ∈ PSH−(Ω). Assume that
there are uj ∈ F(Ω), j ∈ N, such that uj converges almost everywhere to u as j →∞.
If supj>0

∫
Ω

(ddcuj)
n <∞ then u ∈ F(Ω).

This lemma has been proved in [NP09]. For the reader’s convenience, we also give
the details of the proof. First, we need the following lemmas:

Lemma 10. [Ceg04] Let u ∈ PSH−(Ω). Then there exists a decreasing sequence of
functions uj ∈ E0(Ω) ∩ C(Ω) such that limj→∞ uj(z) = u(z) for every z ∈ Ω.
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Lemma 11. Let u, v ∈ F(Ω) be such that u ≤ v on Ω. Then∫
Ω

(ddcu)n ≥
∫

Ω

(ddcv)n.

Proof. Let {uj}j∈N, {vj}j∈N ⊂ E0(Ω) be decreasing sequences such that uj ↘ u, vj ↘ v
on Ω and

sup
j>0

∫
Ω

(ddcuj)
n < +∞, sup

j>0

∫
Ω

(ddcvj)
n < +∞.

Replacing vj by (1 − 1

2j
) max{vj, uj}, we can assume that vj ≥ uj. By the Bedford-

Taylor comparison principle [BT76, BT82] (see also [Kli91]), we obtain, for every j,∫
Ω

(ddcuj)
n ≥

∫
Ω

(ddcvj)
n.

Letting j → +∞, we get ∫
Ω

(ddcu)n ≥
∫

Ω

(ddcv)n,

as desired. �

Proof of Lemma 9. For every k ≥ 1, we denote

uk(z) = sup
j≥k

max{u, uj}.

Then, we have

(i) vk := (uk)∗ ∈ PSH−(Ω) for all k ≥ 1.
(ii) vk is a decreasing sequence satisfying vk ≥ u for every k ≥ 1.

(iii) vk = uk almost everywhere and uk converges to u almost everywhere.

By (iii), we have limk→∞ vk = u almost everywhere. Since u and limk→∞ vk are plurisub-
harmonic, we get u = limk→∞ vk.

Since 0 ≥ vk ≥ uk, we have vk ∈ F(Ω). Moreover, by using Lemma 11, we obtain

C := sup
j>0

∫
Ω

(ddcuj)
n ≥

∫
Ω

(ddcvk)
n,

for every k ≥ 1.
Now, it follows from Lemma 10 that there exists a decreasing sequence wk ∈ E0(Ω)∩

C(Ω) such that limj→∞wj(z) = u(z) in Ω. Replacing wj by (1−j−1)wj, we can assume
that wj(z) > u(z) for every j > 0, z ∈ Ω. Applying Lemma 11, we have∫

{vk<wj}
(ddcwj)

n ≤
∫

{vk<wj}
(ddcvk)

n ≤ C,

for every j, k > 0.
Letting k →∞, we get, ∫

Ω

(ddcwj)
n ≤ C,

for every j > 0.
Thus, u ∈ F(Ω). �
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3.2. Proof of Theorem 5. For every 0 < a < 1, we denote Sa = {φ ∈ U(n) :
‖φ− Id‖ < a} .

For every 0 < ε, a < 1 and z ∈ B2n
1−ε := {w ∈ Cn : ‖w‖ < 1− ε}, we define

ua,ε(z) = (sup{u((1 + r)φ(z)) : φ ∈ Sa, 0 ≤ r ≤ ε})∗.
Then ua,ε is plurisubharmonic in B2n

1−ε satisfying

(9) lim
a→0+

lim
ε→0+

ua,ε(z) = u(z),

for every z ∈ Ω.
Moreover, for z 6= 0,

(10) ua,ε(z) = (sup{u(ξ) : ξ ∈ Ba,ε,z})∗,
where

Ba,ε,z = {ξ ∈ Cn : ‖ z

‖z‖
− ξ

‖ξ‖
‖ < a, ‖z‖ ≤ ‖ξ‖ ≤ (1 + ε)‖z‖}.

It is obvious that there exist C1, C2 > 0 such that

(11) C1a
2n−1ε < V ol2n(Ba,ε,z) < C2a

2n−1ε,

for every 0 < ε, a < 1/2 and 1/2 < ‖z‖ < 1− a.
By (2), (10) and (11), for every 1/2 > a > 0, there exists εa > 0 such that, for every

εa > 3ε ≥ 1− ‖z‖ ≥ ε > 0, we have

(12) ua,ε(z) ≥ −3Aε.

For each 1/2 > a > 0 and εa > 3ε > 0, we consider the following function

ũa,ε(z) =


3A(−1 + |z|2) if 1− ε ≤ ‖z‖ ≤ 1,

max{3A(−1 + |z|2), ua,ε(z)− 6Aε} if 1− 3ε ≤ ‖z‖ ≤ 1− ε,
ua,ε(z)− 6Aε if ‖z‖ ≤ 1− 3ε.

Then ũa,ε ∈ F(B2n) and∫
B2n

(ddcũa,ε)
n =

∫
B2n

(ddc3A(−1 + |z|2))n <∞,

for every 1/2 > a > 0 and εa > 3ε > 0.

Moreover, ũa,ε
a.e.−→ u as a, ε↘ 0. Hence, by Lemma 9, we have u ∈ F(Ω).

The proof is completed.
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