SOME REMARKS ON THE CEGRELL’S CLASS &
HOANG-SON DO AND THAI DUONG DO

ABSTRACT. In this paper, we study the near-boundary behavior of functions u €
F(2) in the case where ) is strictly pseudoconvex. We also introduce a sufficient
condition for belonging to F in the case where 2 is the unit ball.

INTRODUCTION

Let ©2 be a bounded hyperconvex domain in C". By [Ceg04], the class F(Q2) is defined
as the following: u € F(Q) iff there exists a sequence of functions u; € €¢(£2) such that
u; \ u as j — oo and sup; [, (ddu;)" < oo. Here

&(Q) ={ue PSH(Q)NL>®(Q) : lim, u(z) =0, [(ddu)™ < oo}.

The class F(2) has many nice properties. This is a subclass of the domain of def-
inition of Monge-Ampere operator [Ceg04, Blo06]. Moreover, by [Ceg04], for each
sequence of functions u; € E¢(2) such that u; \, u € F() as j — oo, we have

lim [(dd®u;)" = [(dd“u)".

By [Ceg98, Ceg04|, for every pluripolar set E C €, there exists u € F(Q) such
that £ C {u = —oo}. In [Ceg04], Cegrell also proved some inequalities, a generalized
comparison principle and a decomposition of (dd°u)",u € F(2). In [NP09], Nguyen
and Pham proved a strong version of comparison principle in the class F(€2).

The class F(€2) has been used to characterize the boundary behavior in the Dirichlet
problem for Monge-Ampere equation [Ceg04, Aha07]. For every u € F(2), for each
z € 02, we have limsup u(§) = 0 (see [Aha07]). Moreover, if we define by N the set of

Q36—z
functions in the domain of definition of Monge-Ampere operator with smallest maximal

plurisubharmonic majorant identically zero then, by the comparison principles in F and
in N (see [NP09] and [ACCP09]) and by Cegrell’s approximation theorem [Ceg04] (see
also Lemma 10), we have
F(Q) ={ueN(®Q): [(ddu)" < co}.
Q

In this paper, we study the near-boundary behavior of functions u € F(2) in the case
where § is a bounded strictly pseudoconvex domain, i.e., there exists p € PSH(2) N
C(Q2) such that plog = 0, Dplaq # 0 and dd°p > cw = cdd®|z|* for some ¢ > 0.

Our first main result is the following:
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Theorem 1. Assume that 2 is a strictly pseudoconvexr domain in C" and u € F(£2).
Then, there exists C' > 0 depending only on 2,n and u such that

C. dnJrlfna

aer

(1) Volo,({z € Qld(z,00) < d,u(z) < —€}) <

for any e,d >0, a € (0,1).

For the convenience, we denote W, = {z € Q|d(z,09) < d}. By Theorem 1, we have
lim Vola,({z € Wylu(z) < —€})
d—0 dt
for every 0 <t < n+ 1. It helps us to estimate the “density” of the the set {u < —e}
near the boundary.
Moreover, by using Theorem 1 for e = d* and 0 < a < 1 — «, we have

=0,

Corollary 2. Assume that S is a strictly pseudoconver domain in C" and u € F(Q).
Then, for every 0 < a < 1,
lim Volo,({z € Wylu(z) < —d*})

d—0 d =0

When (2 is the unit ball, this result can be improved as following:
Theorem 3. If u € F(B?") then
lim f{|z\:r} |u(z)|do(2)
r—1- 1—r
In particular, there exists C' > 0 such that
B2 . 1-— —A
lim sup Voly, ({7 € 2|l > d,u(z) < —Ad}) _ c

d—0+ d
for every A > 0.

< 00.

Y

Our second purpose is to find a sharp sufficient condition for u to belong to F(2)
based on the near-boundary behavior of u. We are interested in the following question:

Question 4. Let Q be a bounded strictly pseudoconvexr domain. Assume that u is a
negative plurisubharmonic function in € satisfying

. Voly,({z € Wy :u(z) < —Ad})
lim
d—0t d

for some A > 0. Then, do we have u € F(2)?
In this paper, we answer this question for the case where €} is the unit ball.

Theorem 5. Let w € PSH™(B*"). Assume that there exists A > 0 such that
2) lim Voly,({z € B* : ||2|| > 1 —d,u(z) < —Ad})
d—0t d

Then u € F(B>").

Corollary 6. Let u € N(B*") such that [ (ddu)™ = oo. Then, for every A > 0,
B2n

BQn . 1_ 4
lim sup Vol ({z € [[2]] > d,u(z) < d})

d—0+ d

=0,

=0.

> 0.
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1. PROOF OF THEOREM 1

Since € is bounded strictly pseudoconvex, there exists p € C2(€,[0,1]) such that
Q={z:p(2) <0} and

(3) Dp| > Cy in O,
and
(4) ddcp Z ngdC|Z|2 = CQCL),

where C;, Cy > 0 are constants.
By (3), there exist C3,Cy > 0 depending only on Q and p such that

(5) C3d(z,00) < —p(z) < Cyd(z,09),

for every z € ().
For every a € (0,1) and z € Q, we have

dd°pa(z) 1= dd*(—(—p(2))*) = a(l — a)(=p)*"*dp A d°p + a(—p)*~"dd°p.
Then
(6) (dd°pa)" > a"(1 — a)(—p)"*""tdp N dp A (dd°p)"~".

Hence, by (3), (4) and (5), there exists 1 > dy > 0 depending only on © and p such
that, for every 0 < d < dp and z € W, :={£ € Q : d(&,00) < d},

(7) (ddcpa)n Z C5dna7nflwn.
Since u € F(§2), there exists {u;}32, C E(£2) such that u; \, u and
(8) /(ddcuj)" < 067
Q

for every j € Z*, where Cg > 0 depends only on u.
By using (7), (8) and the Bedford-Taylor comparison principle [BT76, BT82] (see
also [K1i91]), we have, for every j € Z*, ¢,d > 0 and a € (0, 1),

Co> [ Wduy > [ (ddep)”

{uj<epa} {uj<epa}
Csa™e" .
Z Jntl-na W
dr {uj<epa}nWy
Hence, for every 0 < d < dy,
O ‘dn-i-l—na
VOlgn({Z c Wd\uj(z) < —6}) S %T’
€
where C; > 0 depends only on €2, p,n and .
Letting 5 — oo, we get
C,.drti—na
VOlgn({Z S Wd|u(z) < —e}) < 7—7
a™e”

for every 0 < d < dy.
Denote
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a"€"Voly, ()

C= maX{C’7, dg+1_na }

We have
C' dn+ 1—na

aen

Voly,({z € Wylu(z) < —€}) <

Y

for every d > 0.
This completes the proof of Theorem 1.

2. PROOF OF THEOREM 3
In order to prove Theorem 3, we need the following lemma:

Lemma 7. Let Q C C" be a bounded hyperconvex domain and (X,d, i) be a compact
metric probability space. Let u: Q) x X — [—00,0) such that
(i) For everya € X, u(.,a) € F(Q) and
[(dd°u(z,a))* < M,
Q
where M > 0 is a constant.
(ii) For every z € Q, the function u(z,.) is upper semicontinuous in X .
Then u(z) = [u(z,a)du(a) € F(Q).
X
Proof. 1t is obvious that « € PSH~(Q).
Since X is compact, for every j € Z", we can divide X into a finite pairwise disjoint

collection of sets of diameter less than % We denote these sets by Uj1, ..., Uj . We

can furthermore assume that for every 1 < k < mj i, there exists 1 < [ < m; such
that Uj-‘rl,k C UjJ.
For every j € Z*, we define

uj(z) = ];u(Uj7k) sup u(z,a) and a; = (u;)*.

aEijk
Then @; € F(2). Moreover, by [Ceg04], we have

({(ddcaj)" < M,
forall j € ZT.

By the semicontinuity of u(z,.), we get that u; is decreasing to 4 as j — co. Hence,
u € F(Q) and [(dda)™ < M. O
Q

Recall that if u is a radial plurisubharmonic function then u(z) = x(log |z|) for some
convex, increasing function y. We have the following lemma:

Lemma 8. Let u = x(log|z|) be a radial plurisubharmonic function in B*". Then,
u € F(B*) iff the following conditions hold
(i) Tim x(t) = 0;
t—0—
x(?)

(i) lim == < oo.
t—0~
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Proof. Tt is clear that (i) a necessary condition for u € F(B*"). We need to show that,
when (7) is satisfied, the condition u € F(B*") is equivalent to (ii).

If (4i) is satisfied then there exists ky > 1 such that kot < x(¢). Hence u(z) >
kolog |z| € F(B*"). Thus, u € F(B>").

Conversely, if (i) is not satisfied, we consider the functions u; = max{u, klog |z|}.
Then, for every k, u; > u near OB?". Hence

[(ddew)™ > [(ddeug)™ = k" [(dd®log|z|)" "= occ.
Q Q Q
Thus u ¢ F(B>").

The proof is completed. O

Proof of Theorem 3. Denote by u the unique invariant probability measure on the uni-
tary group U(n). For every z € B*", we define

i(z) = [ u(d(2)du(d) = —

2n—1
U(n) Can—1|2| {lwl=l=I}

u(w)do(w),

where cg,_; is the (2n — 1)-dimensional volume of OB*".
By Lemma 7, we have @ € F(B?"). Since @ is radial, we have, by Lemma 8,

i) _ o le)

im = 1l
zl=1- |z] =1 |z|-1- log|z|

< 00

Hence

lim f{\z|:r} lu(z)|do(2)

r—1- 1—r

=M < 0.

Consequently, we have

Voly,({z € B : ||z = 1 — d,u(z) < —Ad}) < M
A ?

lim sup
d—0+t d

for all A > 0.

By using spherical coordinates to estimate integrals, we get the last assertion of
Theorem 3.

The proof is completed. O

3. PROOF OF THEOREM 5

3.1. An approximation lemma. In order to prove Theorem 5, we need the following
lemma:

Lemma 9. Let Q be a hyperconvexr domain in C* and uw € PSH~(Q2). Assume that
there are u; € F(Q), j € N, such that u; converges almost everywhere to u as j — oco.

If supj [o,(ddu;)™ < oo then u € F(Q).

This lemma has been proved in [NP09]. For the reader’s convenience, we also give
the details of the proof. First, we need the following lemmas:

Lemma 10. [Ceg04] Let u € PSH~(2). Then there exists a decreasing sequence of
functions u; € Eo(Q2) N C(Q) such that lim; o u;(z) = u(z) for every z € Q.
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Lemma 11. Let u,v € F(2) be such that u < v on Q. Then

/Q (ddeu)” > /Q (ddv)"™.

Proof. Let {u;}jen, {vj}jen C €0(2) be decreasing sequences such that w; N\, u, v; \, v
on €2 and

sup/ﬂ(ddcuj)" < 400, sup/ﬂ(ddcvj)" < 4o00.

§>0 7>0
1
Replacing v; by (1 — 2—]) max{v;, u;}, we can assume that v; > ;. By the Bedford-
Taylor comparison principle [BT76, BT82] (see also [Kl1i91]), we obtain, for every j,

/Q (dd°w;)" > /Q (dd°w,)"

/Q(ddcu)” > /Q(ddcv)”,

as desired. 0

Letting 7 — 400, we get

Proof of Lemma 9. For every k > 1, we denote

uF(2) = sup max{u, u;}.
Jjzk

Then, we have
(i) vy := (uF)* € PSH=(Q) for all k > 1.
(ii) vy is a decreasing sequence satisfying vy > u for every k > 1.
(iii) vy = u* almost everywhere and u* converges to u almost everywhere.
By (iii), we have limy_, o, v = u almost everywhere. Since u and limy_,, vy, are plurisub-
harmonic, we get u = limy_, o, V.
Since 0 > vy > uy, we have v, € F(2). Moreover, by using Lemma 11, we obtain

C :=sup [(ddu;)™ > [(ddv,)",
7>0 O 9)

for every k > 1.

Now, it follows from Lemma 10 that there exists a decreasing sequence wy € E¢(£2) N
C(£2) such that lim;_,o w;(z) = u(z) in Q. Replacing w; by (1—j')w;, we can assume
that w;(z) > u(z) for every j > 0,z € Q. Applying Lemma 11, we have

[ (ddowy)" < [ (ddv)" < C,
{vp<w;} {v<w;}

for every j,k > 0.
Letting k — oo, we get,

J(ddw;)" < C,
Q

for every j > 0.
Thus, u € F(N). O
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3.2. Proof of Theorem 5. For every 0 < a < 1, we denote S, = {¢ € U(n) :
| — 1d| <a} .

For every 0 < ¢,a < 1 and z € B¥"_:={w € C": |w|| < 1 — €}, we define

Uac(2) = (sup{u((1 +7)9(2)) : ¢ € 55,0 <7 < e})".

Then u,  is plurisubharmonic in B?"_ satisfying
9 lim lim u,(z) = :
¥ e Bt tael2) =)
for every z € Q.

Moreover, for z # 0,

(10) Uae(2) = (sup{u(§) : § € Bac:})"

where

Bae:={€C": Hﬁ - HE_IIH <a, [zl <&l < A+ e)l=ll}-
It is obvious that there exist C, Cy > 0 such that
(11) Ca® e < Volay(Bae.) < Coa®™ e,

for every 0 < ¢,a <1/2and 1/2 < ||z]| <1 —a.
By (2), (10) and (11), for every 1/2 > a > 0, there exists ¢, > 0 such that, for every
€a >3 >1—|z]| > €> 0, we have

(12) Ug,e(2) > —3Ae.
For each 1/2 > a > 0 and €, > 3¢ > 0, we consider the following function
BA(=1+ 123 if 1—e<|z]| <1,
Uge(2) = ¢ max{3A(—1+ |z]?),uac(z) —64c} if 1—-3e<|z]| <1—F¢,
Uge(z) —6Ae if  [|z]| <1 —3e.
Then t,, € F(B*") and
[ (ddtge)" = [ (dd°3A(—1+ |z|*))" < 0,
B2n B2n
for every 1/2 > a > 0 and ¢, > 3¢ > 0.

Moreover, ¢ 2% was a,e \, 0. Hence, by Lemma 9, we have u € F(Q).
The proof is completed.
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