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CORNERS OF LEAVITT PATH ALGEBRAS OF FINITE

GRAPHS ARE LEAVITT PATH ALGEBRAS

G. Abrams1 and T.G. Nam2

Abstract. We achieve an extremely useful description (up to isomorphism)

of the Leavitt path algebra LK(E) of a finite graph E with coefficients in a

field K as a direct sum of matrix rings over K, direct sum with a corner of

the Leavitt path algebra LK(F ) of a graph F for which every regular vertex is

the base of a loop. Moreover, in this case one may transform the graph E into

the graph F via some step-by-step procedure, using the “source elimination”

and “collapsing” processes. We use this to establish the main result of the

article, that every nonzero corner of a Leavitt path algebra of a finite graph

is isomorphic to a Leavitt path algebra. Indeed, we prove a more general

result, to wit, that the endomorphism ring of any nonzero finitely generated

projective LK(E)-module is isomorphic to the Leavitt path algebra of a graph

explicitly constructed from E. Consequently, this yields in particular that

every unital K-algebra which is Morita equivalent to a Leavitt path algebra

is indeed isomorphic to a Leavitt path algebra.

Mathematics Subject Classifications: 16S99, 05C25

Key words: Leavitt path algebra; Morita equivalence.

1. Introduction and Preliminaries

Given a (row-finite) directed graph E and any field K, the first author and

Aranda Pino in [2], and independently Ara, Moreno, and Pardo in [9], introduced

the Leavitt path algebra LK(E). Leavitt path algebras generalize the Leavitt alge-

bras LK(1, n) of [16], and also contain many other interesting classes of algebras.

In addition, Leavitt path algebras are intimately related to graph C∗-algebras

(see [17]). During the past fifteen years, Leavitt path algebras have become a

topic of intense investigation by mathematicians from across the mathematical

spectrum. For a detailed history and overview of Leavitt path algebras we refer

the reader to the survey article [1].

One of the interesting questions in the theory of Leavitt path algebras is to find

relationships between graphs E and F such that their corresponding Leavitt path

algebras are Morita equivalent. In [5] the first author, Louly, Pardo, and Smith
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established some basic transformations of graphs which preserve isomorphism or

Morita equivalence of the associated Leavitt path algebras. Motivated by these,

along with the “collapsing” process introduced by Sørensen in [18], we present

here another sufficient condition for Morita equivalence between Leavitt path

algebras (Theorem 2.11). This equivalence result in turn provides the vehicle to

establish Theorem 2.18, which allows us to associate (modulo some easily-handled

direct summands) the Leavitt path algebra of a finite graph with a (full) corner

of the Leavitt path algebra of a graph which is a special type of extension of a

“totally looped” graph (a graph for which every non-sink vertex is the base of a

loop).

This totally looped property turns out to play an important bridge role in the

analysis, as follows. We establish in Corollary 3.11 that any nonzero corner (full

or not) of any Leavitt path algebra over a graph which arises as such a “strands of

hair” extension of a totally looped graph is isomorphic to a Leavitt path algebra.

We then use this Corollary, together with Theorem 2.18, to establish the (perhaps

surprising) generalization of the Corollary to corners of Leavitt path algebras of

all finite graphs (Theorem 3.15; see also Remark 3.19). As a consequence, this

yields the (seemingly more-general) Theorem 3.17, which establishes that the

endomorphism ring of any nonzero finitely generated projective module over a

Leavitt path algebra is again a Leavitt path algebra. As well, Theorem 3.15

easily yields that every unital K-algebra that is Morita equivalent to a Leavitt

path algebra is indeed isomorphic to a Leavitt path algebra.

We now present a streamlined version of the necessary background ideas. We

refer the reader to [8] and [15] for information about general ring-theoretic con-

structions, and to [4] for additional information about Leavitt path algebras.

A (directed) graph E = (E0, E1, s, r) consists of two disjoint sets E0 and E1,

called vertices and edges respectively, together with two maps s, r : E1 −→ E0.

The vertices s(e) and r(e) are referred to as the source and the range of the

edge e, respectively. A graph E is finite if both sets E0 and E1 are finite. To

streamline the presentation and help illuminate the key ideas, we will focus on

finite graphs throughout this article, although some of the results we establish

also hold for more general graphs. A vertex v for which s−1(v) is empty is called

a sink ; a vertex v for which r−1(v) is empty is called a source; a vertex v is called

an isolated vertex if it is both a source and a sink; and a vertex v (in a finite

graph) is regular if it is not a sink. A graph E is said to be source-free if it has no

sources. The “trivial” graph with one vertex and no edges is denoted by Etriv.

A path p = e1 · · · en in a graph E is a sequence of edges e1, . . . , en such that

r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, we say that the path p starts

at the vertex s(p) := s(e1) and ends at the vertex r(p) := r(en), and has length

|p| := n. We consider the elements of E0 to be paths of length 0. We denote by

Path(E) the set of all paths in E. A cycle based at v is a path p = e1 · · · en with

2



s(p) = r(p) = v, and for which the vertices s(e1), s(e2), . . . , s(en) are distinct. A

cycle c is called a loop if |c| = 1. A graph E is acyclic if it has no cycles.

A subgraph F of a finite graph E is called complete in case, for every v ∈ F 0

for which s−1
F (v) 6= ∅, then s−1

F (v) = s−1
E (v). Less formally: F is complete in case

for every vertex v of F , if v emits at least one edge in F , then all edges which v

emits in E are included in F .

For vertices v,w ∈ E0, we write v ≥ w if there exists a path in E from v to

w, i.e., there exists p ∈ Path(E) with s(p) = v and r(p) = w. If v ≥ w and

v 6= w, then there necessarily exists a path q = e1e2 · · · et from v to w for which

the vertices v = s(e1), s(e2), , s(et), w = r(et) are distinct. (An easy induction

argument shows that any path from v to w having minimal length will have this

property.)

Let H be a subset of E0. H is called hereditary if for all v ∈ H and w ∈ E0,

v ≥ w implies w ∈ H. For a subset S of E0, the hereditary closure T (S) of

S is the (hereditary) subset {w ∈ E0 | s ≥ w for some s ∈ S} of E0. H is

called saturated if whenever v is a regular vertex in E0 with the property that

r(s−1(v)) ⊆ H, then v ∈ H.

Definition 1.1. We call the graph E totally looped in case every regular vertex

of E is the base of at least one loop.

For an arbitrary graph E = (E0, E1, s, r) and any field K, the Leavitt path

algebra LK(E) of the graph E with coefficients in K is the K-algebra generated

by the sets E0 and E1, together with a set of variables {e∗ | e ∈ E1}, satisfying

the following relations for all v,w ∈ E0 and e, f ∈ E1:

(1) vw = δv,ww;

(2) s(e)e = e = er(e) and r(e)e∗ = e∗ = e∗s(e);

(3) e∗f = δe,fr(e);

(4) v =
∑

e∈s−1(v) ee
∗ for any regular vertex v.

Remark 1.2. We will often use the fact that, by relation (4), if v ∈ E0 and

s−1(v) is a single edge (say s−1(v) = {f}), then ff∗ = v.

If the graph E is finite, then LK(E) is a unital ring having identity 1 =
∑

v∈E0 v

(see, e.g., [2, Lemma 1.6]). For any path p = e1e2 · · · en, the element e∗n · · · e
∗
2e

∗
1

of LK(E) is denoted by p∗. It can be shown ([2, Lemma 1.7]) that LK(E) is

spanned as a K-vector space by {pq∗ | p, q ∈ E∗, r(p) = r(q)}. Indeed, LK(E)

is a Z-graded K-algebra: LK(E) =
⊕

n∈Z LK(E)n, where for each n ∈ Z, the

degree n component LK(E)n is the set spanK{pq∗ | p, q ∈ Path(E), r(p) =

r(q), |p| − |q| = n}.

For any unital ring R, V(R) denotes the set of isomorphism classes (denoted by

[P ]) of finitely generated projective left R-modules. V(R) is an abelian monoid

with operation

[P ] + [Q] = [P ⊕Q]
3



for any isomorphism classes [P ] and [Q]. On the other hand, for any directed

graph E = (E0, E1, s, r) the monoid ME is defined as follows. Denote by T the

free abelian monoid (written additively) with generators E0, and define relations

on T by setting

v =
∑

e∈s−1(v) r(e)

for every regular vertex v ∈ E0. Let∼E be the congruence relation on T generated

by these relations. Then ME is defined to be the quotient monoid T/∼E
; we

denote an element of ME by [x], where x ∈ T . The foundational result about

Leavitt path algebras for our work is the following

Theorem 1.3 ([9, Theorem 3.5]). Let E be a finite graph and K any field.

Then the map [v] 7−→ [LK(E)v] yields an isomorphism of abelian monoids ME
∼=

V(LK(E)). Specifically, these two useful consequences follow immediately.

(1) For any regular vertex v ∈ E0, LK(E)v ∼=
⊕

e∈s−1(v) LK(E)r(e) as left

LK(E)-modules.

(2) For any nonzero finitely generated projective left LK(E)-module Q, there

exists a sequence of (not necessarily distinct) vertices v1, v2, . . . , vℓ in E for which

Q ∼=
⊕ℓ

i=1 LK(E)vi; restated, there exists a subset of (distinct) vertices X of E0

and positive integers {nx | x ∈ X} for which Q ∼=
⊕

x∈X nxLK(E)x.

We emphasize that the direct sums indicated in the above Theorem are external

direct sums. Also, throughout, for a positive integer n and left R-moduleM , the

direct sum of n copies of M is denoted nM .

We collect up in the next result some properties of Leavitt path algebras.

Proposition 1.4. Let K be any field.

(1) LK(Etriv) ∼= K as K-algebras.

(2) Let E1, E2, . . . , En be finite graphs. The disjoint union E1 ⊔ E2 ⊔ · · · ⊔ En

of graphs is defined as expected. Then LK(E1 ⊔ E2 ⊔ · · · ⊔ En) ∼=
⊕n

i=1 LK(Ei),

a ring direct sum as K-algebras.

(3) ([4, Lemma 1.6.6]) Let F be a complete subgraph of E. Then LK(F ) is a

subalgebra of LK(E).

We finish the introductory section by reminding the reader of some well-known,

general ring-theoretic results which will be of great importance in this analysis.

These can be found in [8, Chapters 1, 2] and [15, Sections 17, 18]. Throughout,

“ring” means “unital ring, with 1R 6= 0”. If f is a nonzero idempotent in the

ring R, then the corner of R by f is the ring fRf . (However, for notational

convenience, we allow the phrase “direct sum with a corner of ...” to include the

situation where the direct summand is the zero ring; see e.g. the Abstract.) An

idempotent f ∈ R is called full in case R = RfR. Rings R and S are Morita

equivalent in case the category R − Mod of left R-modules and the category

S −Mod of left S-modules are equivalent. For a left R-module RM , we write
4



R-endomorphisms of M on the right (i.e., the side opposite the scalars); so for

f, g ∈ EndR(M), (m)fg means “first f , then g”.

Proposition 1.5. Let R be a unital ring.

(1) Let e, f be idempotents in R. Then HomR(Re,Rf) ∼= eRf as abelian

groups.

(2) Suppose P ∼=
⊕n

i=1 Pi as left R-modules. Then

EndR(P ) ∼=

(

HomR(Pi, Pj)

)

,

the ring of n× n matrices for which the entry in the i-th row, j-th column is an

element of HomR(Pi, Pj), for all 1 ≤ i, j ≤ n. In particular, if P ∼=
⊕n

i=1Rei,

an external direct sum of the left R-modules Rei for idempotents ei, then

EndR(P ) ∼=

(

eiRej

)

,

the ring of n× n matrices for which the entry in the i-th row, j-th column is an

element of eiRej, for all 1 ≤ i, j ≤ n.

Theorem 1.6. Let R and S be unital rings.

(1) “Morita’s Theorem”: R is Morita equivalent to S if and only if there exist

a positive integer n and a full idempotent f ∈Mn(R) such that S ∼= fMn(R)f .

(2) Suppose R decomposes as a ring direct sum R =
⊕n

i=1Ri. Then S is Morita

equivalent to R if and only if S decomposes as a ring direct sum S =
⊕n

i=1 Si
where Ri is Morita equivalent to Si for all 1 ≤ i ≤ n.

(3) Let Q be a nonzero finitely generated projective left R-module, and suppose

that Q is generated by n elements. Then EndR(Q) ∼= EndMn(R)(Mn(R)q) for

some idempotent q ∈Mn(R).

2. Collapsing at a regular vertex that is not the base of a loop

In this section we achieve (Theorem 2.18) an extremely useful description (up

to isomorphism) of the Leavitt path algebra of any finite graph as a direct sum of

matrix rings over the coefficient field, direct sum with a corner of a Leavitt path

algebra of a graph which is a special type of extension of a totally looped graph.

Here is the strategy. We begin by establishing a Morita equivalence property

which is similar to an analogous property of graph C∗-algebras. The C∗-result,

called Move (R), was shown in [18, Proposition 3.2]; it followed as a special

case of the result [14, Theorem 3.1]. Move (R) applies only to very restricted

configurations of vertices and edges in a graph. By subsequently applying two

additional previously-studied graph transformations (first “in-split”, then in turn

“out-split”), both of which preserve Morita equivalence of the associated Leavitt

path algebras, we are able to eliminate the restrictions on the configurations and

achieve a significant generalization of Move (R), called “collapsing”; this is the

gist of Theorem 2.11. We then use Theorem 2.11 to establish Theorem 2.18.
5



Definition 2.1. Let E = (E0, E1, r, s) be a finite graph. Let w ∈ E0 be a

vertex such that w emits exactly one edge (call it f), and f is not a loop, and

such that w receives edges from at most one vertex. That is, |s−1(w)| = 1 (but

r(s−1(w)) 6= {w}), and either w is a source vertex or |s(r−1(w))| = 1. If w is not

a source, then denote by v the only vertex that emits to w. Define the “Move

(R) at w” graph G = (G0, G1, rG, sG) by setting

G0 = E0 \ {w}, G1 = (E1 \ (r−1(w) ∪ {f})) ∪ {[ef ] | e ∈ r−1(w)},

where range and source maps extend those of E, and satisfy rG([ef ]) = r(f)

and sG([ef ]) = s(e) = v. (Note that, in case w is a source, then G1 is simply

E1 \ {f}.)

Remark 2.2. We note that if there is a loop based at w, then the Move (R)

construction at w does not yield a well-defined graph, because in that case the

range function rG would be undefined at edges of the form [ef ] (since that vertex

w has been eliminated).

Proposition 2.3. Let K be any field. Let E be a finite graph, let w ∈ E0 be

a vertex of the type described in Definition 2.1, and let G be the corresponding

Move (R) at w graph. Then LK(E) is Morita equivalent to LK(G).

Proof. We construct a K-algebra homomorphism

ψ : LK(G) −→ LK(E)

given on the generators of the free K-algebra K〈u, g, g∗ | u ∈ G0, g ∈ G1〉 as

follows:

ψ(u) = u, ψ(g) =

{

ef if g = [ef ] (e ∈ r−1(w)),

g otherwise

and

ψ(g∗) =

{

f∗e∗ if g = [ef ] (e ∈ r−1(w)),

g∗ otherwise.

To ensure that the map ψ induces a K-algebra homomorphism from LK(G) to

LK(E), we must verify that all elements of the following forms:

uu′ − δu,u′u for all u, u′ ∈ G0,

sG(g)g − g and g − grG(g) for all g ∈ G1,

rG(g)g
∗ − g∗ and g∗ − g∗sG(g) for all g ∈ G1,

g∗h− δg,hrG(g) for all g, h ∈ G1,

u−
∑

g∈s−1

G
(u) gg

∗ for a regular vertex u ∈ G0

are in the kernel of ψ. Here we verify only the last one, since the first four

can be established easily. Let u ∈ G0 be a regular vertex. If w is a source then

s−1
G (u) = s−1(u), and so ψ(u−

∑

g∈s−1

G
(u) gg

∗) = u−
∑

g∈s−1(u) gg
∗ = 0, as desired.

Suppose w is not a source. Then by hypothesis w receives from only one vertex,
6



v say. If u 6= v then the statement is proved by a similar argument to that given

above. So consider the case when u = v. We note that ff∗ = w by Remark 1.2,

and s−1
G (v) = (s−1(v) \ r−1(w)) ⊔ {[ef ] | e ∈ r−1(w)}. Hence

ψ(v −
∑

g∈s−1

G
(v) gg

∗) = v −
∑

g∈s−1(v)\r−1(w) gg
∗ −

∑

e∈r−1(w)(ef)(f
∗e∗)

= v −
∑

g∈s−1(v)\r−1(w) gg
∗ −

∑

e∈r−1(w) ee
∗

= v −
∑

g∈s−1(v) gg
∗ = 0.

We next prove that ψ : LK(G) → LK(E) is injective. To the contrary, suppose

there exists a nonzero element x ∈ ker(ψ). Then, by the Reduction Theorem (see,

e.g., [4, Theorem 2.2.11]), there exist a, b ∈ LK(G) such that either axb = u 6= 0

for some u ∈ G0, or axb = p(c) 6= 0, where c is a cycle in G and p(x) is a nonzero

polynomial in K[x, x−1].

In the first case, since axb ∈ ker(ψ), this would imply that u = ψ(u) = 0 in

LK(E); but each vertex is well-known to be a nonzero element inside the Leavitt

path algebra, a contradiction.

So we are in the second case: there exists a cycle c in G such that axb =
∑m

i=−n kic
i, where ki ∈ K and we interpret ci as (c∗)−i for negative i, and we

interpret c0 as u := s(c). We then have
∑m

i=−n kiψ(c)
i = ψ(axb) = 0 in LK(E).

We write c = g1 · · · gm, where gi ∈ G1. If none of the gi’s are in {[ef ] | e ∈

r−1(w)}, then ψ(c) = ψ(g1) · · ·ψ(gm) = g1 · · · gm, so ψ(c) is also a cycle in E.

Otherwise, there exists 1 ≤ k ≤ m such that gk = [ef ] for some e ∈ r−1(w). We

then have that gi ∈ E
1 \ (r−1(w) ∪ {f}) for all i 6= k, since c is a cycle. It shows

that ψ(c) = ψ(g1...gk−1[ef ]gk+1...gm) = g1...gk−1efgk+1...gm, so ψ(c) is a cycle

in E. Thus, in any case ψ(c) is a cycle in E. But the Z-grading in LK(E) shows

that an equation of the type
∑m

i=−n kiψ(c)
i = ψ(axb) = 0 cannot hold in LK(E).

This shows that ψ is injective, so LK(G) is isomorphic to Im(ψ).

Let ǫ = ψ(1LK (G)) =
∑

u∈E0,u 6=w u. We claim that Im(ψ) = ǫLK(E)ǫ. Clearly

Im(ψ) ⊆ ǫLK(E)ǫ. To show the other inclusion, we only need to verify that

for all nonzero monomials x ∈ ǫLK(E)ǫ, ψ−1(x) 6= ∅. We can express such a

monomial x of the form x = pq∗, where p = g1 · · · gm and q = f1 · · · fn are paths

in E such that r(p) = r(q) and s(p), s(q) 6= w. Consider the following three cases.

(We note in advance that the last two possibilities of Case 1 and Case 3 cannot

occur when w is a source.)

Case 1. r(p) = r(q) = r(f). If both gm and fn are different from f , then gi
and hj ∈ E1 \ (r−1(w) ∪ {f}), so x = pq∗ ∈ LK(G) and ψ(x) = x. If gm = f

then fn 6= f (otherwise, since ff∗ = w, we get that x = g1...gm−1ff
∗f∗n−1...f

∗
1 =

g1...gm−1f
∗
n−1...f

∗
1 and r(g1...gm−1) = r(f1...fn−1) 6= r(f), a contradiction). We

then immediately obtain that m ≥ 2, gm−1 ∈ r−1(w) (since s(p) = s(g1) 6= w),

and gi, fj ∈ E1 \ (r−1(w) ∪ {f}) for all 1 ≤ i ≤ m − 2 and 1 ≤ j ≤ n. Set α =

g1...gm−2[gm−1f ]f
∗
n...f

∗
1 ∈ LK(G). We have that ψ(α) = g1...gm−2gm−1ff

∗
n...f

∗
1 =

x. If fn = f then gm is different from f (otherwise, since ff∗ = w, x =

g1...gm−1ff
∗f∗n−1...f

∗
1 = g1...gm−1f

∗
n−1...f

∗
1 and r(g1...gm−1) = r(f1...fn−1) 6=

7



r(f), a contradiction). We then have that, for n ≥ 2, fn−1 is in r−1(w) (since

s(q) = s(f1) 6= w), and gi, fj are not in r−1(w) ∪ {f} for all 1 ≤ i ≤ m and

1 ≤ j ≤ n − 2. Define β := g1...gm[fn−1f ]
∗f∗n−2...f

∗
1 ∈ LK(G). Then we have

ϕ(β) = g1...gmf
∗f∗n−1f

∗
n−2...f

∗
1 = x.

Case 2. r(p) = r(q) /∈ {r(f), w}. We immediately get that both gi and

hj ∈ E1 \ (r−1(w) ∪ {f}) for all i, j, so x = pq∗ ∈ LK(G) and ψ(x) = x.

Case 3. r(p) = r(q) = w. We have that gm and fn are in r−1(w) and

gi (1 ≤ i ≤ m− 1), fj (1 ≤ j ≤ n− 1) ∈ E1 \ (r−1(w) ∪ {f}), and so

x = g1...gmf
∗
n...f

∗
1 = g1...gm.w.f

∗
n...f

∗
1 = g1...gmff

∗f∗n...f
∗
1 = ψ(β)

for β := g1...gm−1[gnf ][fnf ]
∗f∗n−1...f

∗
1 ∈ LK(G).

In any case we always have ψ−1(x) 6= ∅, so Im(ψ) = ǫLK(E)ǫ, thus showing

that LK(G) is isomorphic to ǫLK(E)ǫ.

To establish the Morita equivalence, we show that LK(E) = LK(E)ǫLK(E)

(see the n = 1 case of Theorem 1.6(1)). It is enough to show that w is in

LK(E)ǫLK(E). Since r(f) is in the ideal LK(E)ǫLK(E), the edge f is in LK(E)ǫLK(E).

Then w = ff∗ ∈ LK(E)ǫLK(E). This proves that LK(E)ǫLK(E) = LK(E).

Hence LK(G) is Morita equivalent to LK(E), finishing the proof. �

The key Morita equivalence result for us (Theorem 2.11) is inspired by [18,

Theorem 5.2]. To achieve it, we show that Move (R) may be applied at vertices

that are more general than those given in Definition 2.1, and that the corre-

sponding Leavitt path algebras are Morita equivalent. Following [18], we call this

generalization of Move (R) a “collapse”.

Definition 2.4. [Collapse at a regular vertex which is not the base of a loop]

Let E = (E0, E1, r, s) be a finite graph, and let v ∈ E0 be a regular vertex which

is not the base of a loop. Define the “collapse at v” graph G = (G0, G1, rG, sG)

by setting

G0 = E0 \ {v}, G1 = (E1 \ (r−1(v)∪ s−1(v))) ∪ {[ef ] | e ∈ r−1(v), f ∈ s−1(v)},

where range and source maps extend those of E, and satisfy rG([ef ]) = r(f)

and sG([ef ]) = s(e). (We note that, in case v is a source, then G1 is simply

E1 \ s−1(v).)

Remark 2.5. As with Move (R), the requirement that there be no loop based

at the collapsing vertex is necessary so that the collapsing process gives a well-

defined graph.

Specific examples of this collapsing process are given below in Example 2.17.

We extend Proposition 2.3 in two stages. In the first stage, we show that the

requirement that the collapsing vertex receive edges from at most one vertex can

be eliminated (Proposition 2.8).
8



Definition 2.6 ([5, Definitions 1.9]: the “in-split” graph). Let E = (E0, E1, r, s)

be a graph and v ∈ E0 a vertex that is not a source. Partition r−1(v) into a finite

number, say n, of disjoint nonempty subsets E1, E2, ..., En. We form the in-split

graph Eis = (E0
is, E

1
is, ris, sis) from E using the partition {Ei | i = 1, ..., n} as

follows: E0
is = (E0 \ {v}) ∪ {v1, v2, ..., vn},

E1
is = {e1, e2, ..., en | e ∈ E1, s(e) = v} ∪ {f | f ∈ E1 \ s−1(v)},

and define ris, sis : E
1
is −→ E0

is by setting sis(ej) = vj , sis(f) = s(f), and

ris(x) =















r(f) if x = f /∈ r−1(v)

vi if x = f ∈ r−1(v) and f ∈ Ei
r(e) if x = ej and e /∈ r−1(v)

vi if x = ej , e ∈ r−1(v) and e ∈ Ei

.

Proposition 2.7 (essentially [5, Proposition 1.11 and Corollary 3.9]). Let K be

any field. Let E be a finite graph and v ∈ E0 a vertex that is not a source. Then

LK(E) is Morita equivalent to LK(Eis).

Proof. The quoted result [5, Corollary 3.9] applies to constructions more general

than the in-split construction; however, the tools used to prove [5, Corollary 3.9]

only allow for the desired conclusion when the field K is infinite. Accordingly,

we provide here a short proof of Proposition 2.7 which holds for all fields.

We define the elements {Qu | u ∈ E0} and {Te, Te∗ | e ∈ E1} of LK(Eis) by

setting

Qu =

{

v1 if u = v,

u otherwise ,

Te =



















∑

f∈s−1(v) efif
∗
1 if e ∈ (r−1(v) ∩ Ei) \ s

−1(v), s−1(v) 6= ∅

e if e ∈ (r−1(v) ∩ Ei) \ s
−1(v), s−1(v) = ∅

∑

f∈s−1(v) e1fif
∗
1 if e ∈ r−1(v) ∩ Ei ∩ s

−1(v)

e if e /∈ r−1(v) , and

Te∗ =



















∑

f∈s−1(v) f1f
∗
i e

∗ if e ∈ (r−1(v) ∩ Ei) \ s
−1(v), s−1(v) 6= ∅

e∗ if e ∈ (r−1(v) ∩ Ei) \ s
−1(v), s−1(v) = ∅

∑

f∈s−1(v) f1f
∗
i e

∗
1 if e ∈ r−1(v) ∩ Ei ∩ s

−1(v)

e∗ if e /∈ r−1(v) .

By repeating verbatim the corresponding argument in the proof of [5, Proposi-

tion 1.11], there exists an K-algebra homomorphism π : LK(E) −→ LK(Eis),

which maps u 7−→ Qu, e 7−→ Te and e∗ 7−→ Te∗ , such that π(LK(E)) =

π(1LK (E))LK(Eis)π(1LK (E)). Note that π(1LK (E)) = v1 +
∑

u∈E0\{v} u =: ǫ.

Since Qu has degree 0, Te has degree 1, and Te∗ has degree −1 for all u ∈ E0

and e ∈ E1, π is thus a Z-graded homomorphism, whence the injectivity of π is

guaranteed by [19, Theorem 4.8]. So we have LK(E) ∼= ǫLK(Eis)ǫ.
9



To obtain the Morita equivalence, we invoke Theorem 1.6(1) (with n = 1); so

we need only establish that ǫ is full, i.e., that LK(Eis) = LK(Eis)ǫLK(Eis). It is

enough to show that vi is in LK(Eis)ǫLK(Eis) for all 2 ≤ i ≤ n. We consider the

following cases.

Case 1. Ei does not contain loops for all i. Then, for each 1 ≤ i ≤ n, there

exists fi ∈ r−1(v) ∩ Ei such that s(fi) 6= v. Therefore, sis(fi) = s(fi) ∈ E0 \ {v}

and ris(fi) = vi for all i. This implies that sis(fi) is in the ideal LK(Eis)ǫLK(Eis),

and so the edge fi = sis(fi)fi is in LK(Eis)ǫLK(Eis). Then vi = ris(fi) = f∗i fi ∈

LK(Eis)ǫLK(Eis) for all i. This proves that LK(Eis)ǫLK(Eis) = LK(Eis) in this

case.

Case 2. There exists 1 ≤ i ≤ n such that Ei contains a loop. We may, without

loss of generality, that there exists 1 ≤ k ≤ n such that Ei (1 ≤ i ≤ k) contains a

loop and Ej (k+1 ≤ j ≤ n) does not contain loops. Then, similar to Case 1, we get

that vj is in the ideal LK(Eis)ǫLK(Eis) for all k+1 ≤ j ≤ n. For each 1 ≤ i ≤ k,

there exists fi ∈ Ei such that s(ei) = r(ei) = v. We have that sis(e
i
1) = v1 and

ris(e
i
1) = vi for all 1 ≤ i ≤ k. Since v1 is in the ideal LK(Eis)ǫLK(Eis), the edge

ei1 = v1e
i
1 is in LK(Eis)ǫLK(Eis). Then vi = ris(e

i
1) = (ei1)

∗ei1 is in the ideal

LK(E)ǫLK(E) for all 1 ≤ i ≤ k. This implies that LK(Eis)ǫLK(Eis) = LK(Eis)

in this case as well.

Thus LK(E) is Morita equivalent to LK(Eis), finishing the proof. �

Here is the first generalization of Proposition 2.3, in which we remove the hy-

potheses that the collapsing vertex receives edges from at most one other vertex.

Proposition 2.8. Let E = (E0, E1, r, s) be a finite graph, and let v ∈ E0 be

a regular vertex which emits precisely one edge, f0 say. Assume that r(f0) 6= v

(i.e., that f0 is not a loop). Let G be the “collapse at v” graph. Let K be any

field. Then LK(E) is Morita equivalent to LK(G).

Proof. If v receives from at most one vertex (i.e, |s(r−1(v))| ≤ 1) then the state-

ment follows immediately from Proposition 2.3. We assume then that v receives

from the vertices {u1, u2, ..., un}, where n ≥ 2. Partition r−1(v) into disjoint

nonempty subsets Ei = r−1(v) ∩ s−1(ui) for all i = 1, 2, ..., n. By using Propo-

sition 2.7 at v according to the partition {Ei}, we get that LK(E) is Morita

equivalent to LK(Eis). But the graph Eis is the graph E, with v replaced by n

vertices v1, v2, ..., vn, each receiving from exactly one of the vertices v received

from, and each emitting one edge to r(f0). So we may apply Move (R) step by

step at v1 through vn. At each step, the Morita equivalence of the corresponding

Leavitt path algebra is ensured by Proposition 2.3. But this sequence of graph

transformations, which first in-splits at v and then performs Move (R) at each

of the vi, yields precisely the collapse at v graph G. Hence LK(E) is Morita

equivalent to LK(G). �

We now show how to eliminate the restriction in Proposition 2.8 which requires

that the collapsing vertex emits just one edge.
10



Definition 2.9 ([3, Definition 2.6]: the “out-split” graph). Let E = (E0, E1, r, s)

be a graph and v ∈ E0 a vertex that is not a sink. Partition s−1(v) into a finite

number, say n, of disjoint nonempty subsets E1, E2, ..., En. We form the out-split

graph Eos = (E0
os, E

1
os, ros, sos) from E using the partition {Ei | i = 1, ..., n} as

follows: E0
os = (E0 \ {v}) ∪ {v1, v2, ..., vn},

E1
os = {e1, e2, ..., en | e ∈ E1, r(e) = v} ∪ {f | f ∈ E1 \ r−1(v)},

and define ros, sos : E
1
os −→ E0

os by setting ros(e
j) = vj , ros(f) = r(f), and

sos(x) =















s(f) if x = f /∈ s−1(v)

vi if x = f ∈ s−1(v) and f ∈ Ei
s(e) if x = ej and e /∈ s−1(v)

vi if x = ej , e ∈ s−1(v) and e ∈ Ei

.

Proposition 2.10 ([3, Theorem 2.8]). Let K be any field. Let E be a finite graph

and v ∈ E0 a regular vertex. Then LK(E) ∼= LK(Eos) as Z-graded K-algebras.

In particular, LK(E) is Morita equivalent to LK(Eos).

We are now in position to achieve the key Morita equivalence result.

Theorem 2.11. Let K be any field. Let E be a finite graph, let v ∈ E0 be a

regular vertex which is not the base of a loop, and let G be the “collapse at v”

graph. Then LK(E) is Morita equivalent to LK(G).

Proof. If |s−1(v)| = 1 then the result follows immediately from Proposition 2.8.

We assume that e1, e2, ..., en are the edges with source v, where n ≥ 2. Partition

s−1(v) into disjoint nonempty subsets Ei = {ei} for i = 1, 2, ..., n. Applying

Proposition 2.10 at v according to the partition {Ei} of s
−1(v), we get that LK(E)

is isomorphic to LK(Eos). Since v is not the base of a loop, for each 1 ≤ i ≤ n, vi

emits exactly one edge ei, and ei is not a loop. In particular, each vi satisfies the

hypotheses of Proposition 2.8. So we may apply the collapsing process step by

step at v1 through vn. At each step, the Morita equivalence of the corresponding

Leavitt path algebra is preserved by Proposition 2.8. But this sequence of graph

transformations, which first out-splits at v and then collapses at each of the vi,

yields precisely the collapse at v graph G. Hence LK(E) is Morita equivalent to

LK(G), as desired. �

Definition 2.12 ([5, Definition 1.2] and [10, Notation 2.4]). LetE = (E0, E1, r, s)

be a graph, and let v ∈ E0 be a source. We form the source elimination graph

E\v of E as follows:

(E\v)
0 = E0 \ {v}, (E\v)

1 = E1 \ s−1(v), sE\v
= s|(E\v)1

and rE\v
= r|(E\v)1

.

In other words, E\v denotes the graph constructed from E by deleting v and all

of edges in E emitting from v.

We note that the source elimination process is allowed at isolated vertices. If

v is a source vertex in a graph E, and v is not an isolated vertex, then clearly
11



the source elimination process at v coincides with the “collapsing at v” move. So

Theorem 2.11 immediately gives the following previously-established result.

Corollary 2.13 ([10, Lemma 4.3]). Let E be a finite graph and K any field. If

v ∈ E0 is a source vertex which is not isolated, then LK(E) is Morita equivalent

to LK(E\v).

We note that Theorem 2.11 yields [10, Lemma 4.4] as well.

Let E be a finite graph. If E is acyclic, then repeated application of the source

elimination process to E yields the empty graph. On the other hand, if E contains

a cycle, then repeated application of the source elimination process will yield a

source-free graph Esf which necessarily contains a cycle.

Consider the sequence of graphs which arises in some step-by-step process of

source eliminations

E = E0 → E1 → · · · → Ei → · · · → Et = Esf .

To avoid defining a graph to be the empty set, we define Esf to be the graph

Etriv (consisting of one vertex and no edges) in case Et−1 = Etriv.

Remark 2.14. Although there in general are many different orders in which a

step-by-step source elimination process can be carried out, the resulting source-

free subgraph Esf is always the same (see, e.g., [6, Lemma 3.13]).

Remark 2.15. For a finite graph E, we perform a sequence of source eliminations

E = E0 → E1 → · · · → Ei → · · · → Et = Esf . By Remark 2.14 we may assume

that the final k steps in the process involve eliminating any isolated vertices which

may arise. The non-negative integer k is precisely the number of vertices of E

which are sinks in E, but which are not in E0
sf . As observed in [6], k may also be

viewed as the number of sinks u in E for which every path p ∈ Path(E) having

r(p) = u contains no closed subpath. Let Vk denote the graph with k vertices and

no edges. Then repeated application of Lemma 2.13 gives that LK(E) is Morita

equivalent to LK(Vk ⊔ Esf ) (when Esf is nontrivial), and to LK(Vk) (when Esf

is the trivial graph V1).

Remark 2.16. For a finite graph E, we form the (uniquely-determined) graph

Esf . In case Esf is not the trivial graph, we may then perform a step-by-step

process in which we produce a sequence of graphs

Esf = F0 → F1 → · · · → · · · → Fℓ := F,

where each Fi+1 is formed from Fi by performing a collapsing at some vertex v of

Fi which is not the base of a loop. (We note that by the construction of Esf there

will be no isolated vertices in any of the Fi.) In this way, Esf is transformed to

a totally looped graph F in which there are no isolated vertices.

Example 2.17. Although the process of source elimination yields a graph Esf

which is unique up to graph isomorphism, the process described in Remark 2.16,
12



if carried out in different orders, does not necessarily yield isomorphic graphs.

For instance, let E be the graph

•v2

e2
		

•v1

f2
		

e1

HH

f // •v4 .

•v3

f1

HH

We note that E = Esf , i.e., E has no sources.

If we first collapse E at v2, and then subsequently at v3, the resulting totally

looped graph F2 is

•v1

[e1e2]

��

[f1f2]

EE
f // •v4 .

On the other hand, if we instead collapse E at v1, then the resulting totally

looped graph F1 is

•v2

[e2e1]

��

[e2f1]

��

[e2f ]

!!❉
❉❉

❉❉
❉❉

❉

•v4

•v3

[f2e1]

KK

[f2f1]

EE

[f2f ]

==③③③③③③③③

Clearly F1 and F2 are not isomorphic as graphs. (We note that both F1 and F2

are indeed totally looped; no loop is required at a sink, specifically, at v4.)

We are now in position to establish the main result of this section.

Theorem 2.18. Let K be any field, and let E be a finite graph. Let k denote the

number of vertices of E which are sinks in E, but which are not in E0
sf . Let F

denote any totally looped graph which is constructed from the graph Esf via some
13



step-by-step process, where at each step we collapse at a regular vertex which is

not the base of a loop. Then

LK(E) is Morita equivalent to (
k
∏

i=1

Ki)⊕ LK(F ),

where Ki
∼= K for 1 ≤ i ≤ k. Consequently, there exist k ≥ 0, and (when

k ≥ 1) positive integers m1, . . . ,mk, a positive integer n, and a full idempotent

p ∈Mn(LK(F )), for which

LK(E) ∼= (Mm1
(K)⊕Mm2

(K)⊕ · · · ⊕Mmk
(K))⊕ pMn(LK(F ))p

as K-algebras.

Proof. By Remark 2.15 we have that LK(E) is Morita equivalent to LK(Vk⊔Esf).

Applying k times statements (1) and (2) of Proposition 1.4 gives that LK(E) is

Morita equivalent to (
∏k

i=1Ki) ⊕ LK(Esf ). Then one forms the sequence of

graphs Esf = F0 → F1 → · · · → · · · → Fℓ := F, where each Fi+1 is produced

from Fi by collapsing at some regular vertex of Fi which is not the base of a

loop. The Morita equivalence then follows directly from repeated application of

Theorem 2.11.

To establish the isomorphism, we use the well-known fact that for a field K,

the only rings Morita equivalent to K are of the form Mn(K) for some positive

integer n. So the consequence follows immediately, using statements (1) and (2)

of Theorem 1.6. �

3. Corners of unital Leavitt path algebras

The main goal of this section (indeed, of this article) is to show that every

corner of a Leavitt path algebra of a finite graph is also isomorphic to a Leavitt

path algebra (Theorem 3.15). Consequently, we achieve what on the surface

seems to be a more general result (Theorem 3.17): for any finite graph E and any

nonzero finitely generated projective left LK(E)-module Q, the endomorphism

ring EndLK(E)(Q) is isomorphic to LK(F ) for some finite graph F .

Definition 3.1 ([4, Definition 2.2.21]: “the restriction graph”). Let E be a graph

and let H be a hereditary subset of E0. We denote by EH the restriction graph:

E0
H := H, E1

H := {e ∈ E1 | s(e) ∈ H},

and the source and range maps in EH are simply the source and range maps

in E, restricted to H. (We note that H must be hereditary in order for the

construction EH to actually yield a graph, specifically, so that the restriction of

the range function r to edges having s(e) ∈ H is defined.)

Remark 3.2. By construction, the restriction graph EH is a complete subgraph

of E, so that by Proposition 1.4(3) we may view LK(EH) as a K-subalgebra of

LK(E).
14



Definition 3.3. (The “strands of hair” extension of a graph) Let E be a finite

graph, with E0 = {v1, v2, . . . , vt}. Let n1, n2, . . . , nt be a sequence of positive

integers. We define the strands of hair extension (concisely: hair extension)

graph E+(n1, n2, . . . , nt) to be the graph E, together with an extension by a

“strand of hair” of length ni − 1 at each vi. Graphically, E+(n1, ..., nt) is formed

by adding these vertices and edges to E:

•v
ni−1

i

e
ni−1

i // · · · •v
2

i

e2i // •v
1

i

e1i //

where r(e1i ) = vi. (So if ni = 1, then we attach no new edges at vi.) If the sequence

n1, n2, . . . , nt is understood from context, we will denote E+(n1, n2, . . . , nt) sim-

ply by E+.

Remark 3.4. By construction, E is a complete subgraph of any hair extension

E+(n1, n2, . . . , nt), so that by Proposition 1.4(3) we may view LK(E) as a K-

subalgebra of LK(E+(n1, n2, . . . , nt)).

For clarification, we consider the following example.

Example 3.5. If E is the graph

•v1
��

// •v2

then E+(3, 2) is the graph

•v
2

1 // •v
1

1 // •v1
��

// •v2 •v
1

2oo

The following Proposition illuminates exactly why the totally looped property

should play such a central role in this analysis. We first need a lemma.

Lemma 3.6. (cf. [11, Lemma 4.5]) Let E be totally looped. Then every subset

of E0 is saturated.

Proof. Let H be a subset of E0 and v ∈ E0 a regular vertex with r(s−1(v)) ⊆ H.

By hypothesis v is the base of a loop f , i.e., r(f) = v = s(f). So v ∈ r(s−1(v)),

and so v ∈ H. Thus H is saturated. �

Proposition 3.7. Let F = {v1, v2, . . . , vt} be a totally looped finite graph. Let

n1, n2, . . . , nt be a sequence of positive integers, and let E denote the hair exten-

sion graph F+(n1, n2, . . . , nt). Let Q be a nonzero finitely generated projective

left LK(E)-module. Then there exist positive integers mi (1 ≤ i ≤ u), and a

hereditary subset T = {vj1 , vj2 , . . . , vju} of F 0 such that

Q ∼=

u
⊕

i=1

miLK(E)vji .

Moreover, if Q is a generator for LK(E)-Mod, then T = F 0.
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Proof. By Theorem 1.3(2) we have that

Q ∼=
⊕

w∈E0

m′′
wLK(E)w

for some (not necessarily unique) non-negative integers m′′
w. For any w ∈ E0

which is of the form vji for some j ≥ 1 (i.e., for each “added” vertex w), we have

LK(E)w = LK(E)vji
∼= LK(E)vi (by using Theorem 1.3(1) j − 1 times). So by

replacing appropriate summands, we have

Q ∼=
⊕

w∈F 0

m′
wLK(E)w (∗)

for some non-negative integers m′
w. Clearly we can eliminate any summand for

which m′
w = 0. Denote by T1 the set of remaining vertices (i.e., the set of vertices

w in F 0 for which m′
w ≥ 1 in (∗)). So

Q ∼=
⊕

w∈T1

m′
wLK(E)w. (∗∗)

Let T denote the hereditary closure of T1. (Note: The hereditary closure of

T1 is the same regardless of whether we view T1 ⊆ F 0 or T1 ⊆ E0; either way,

T ⊆ F 0.) We claim that

Q ∼=
⊕

w∈T

mwLK(E)w,

where each mw ≥ 1. For, let z ∈ T , let v ∈ T1, and suppose that there is a path

p = e1e2 · · · ex from v to z. By an observation made in the Introduction, we may

assume that the sequence of vertices v = s(e1), s(e2), . . . , s(ex), r(ex) = w which

appear in p contains no repeats. In particular, no ei is a loop. By Theorem 1.3(1)

we have LK(E)v ∼= ⊕e∈s−1(v)LK(E)r(e). Since v ∈ F 0 we have that r(e) ∈ F 0

for all e ∈ s−1(v). But because F is totally looped, v = r(f) for at least one loop

f ∈ s−1(v); in addition, f 6= e1 because e1 is not a loop. So this decomposition

yields that

LK(E)v ∼= LK(E)v ⊕ LK(E)r(e1) ⊕
⊕

e∈s−1(v)\{f,e1}

LK(E)r(e). (†)

Now replace any one of the summands isomorphic to LK(E)v which appears

in the decomposition (∗∗) of Q by the isomorphic version of LK(E)v given in

(†); note that such a replacement does not decrease the number of copies of the

summand LK(E)v which appear in (∗∗). Continuing this same process now on

the summand LK(E)r(e1), we see that after x steps we arrive at a direct sum

decomposition of Q which includes a summand isomorphic to LK(E)z, and which

has not decreased the number of summands isomorphic to any given LK(E)w

which appeared in decomposition (∗∗) of Q. (Note that LK(E)z will appear as

a summand of Q in no more than x steps, because there are no repeats in the
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sequence of vertices in p.) This completes the proof of the claim, and establishes

the displayed isomorphism of the statement.

For the second part, suppose that Q is in addition a generator for LK(E)-

Mod. Let w ∈ F 0. Then for some positive integer s there is a split epimorphism

sQ → LK(E)w → 0; so there are maps ϕ ∈ HomLK(E)(sQ,LK(E)w) and ψ ∈

HomLK(E)(LK(E)w, sQ) for which ψϕ is the identity map on LK(E)w. But using

Proposition 1.5(1) and the standard decomposition of maps to and from finite

direct sums, the equation w = (w)ψϕ yields elements ri,j and r
′
i,j in LK(E), with

1 ≤ i ≤ u and 1 ≤ j ≤ s ·mi, for which

w =

u
∑

i=1

s·mi
∑

j=1

wri,jvir
′
i,jw.

Because w and each vi is in F , and because there are no paths which start in

F 0 and end in any of the added vertices which produce E as a hair extension of

F , each expression wri,jvi and vir
′
i,jw is an element of LK(F ). Since w and each

vi an idempotent, we can therefore view each term wri,jvir
′
i,jw in the displayed

sum as an element of the ideal of LK(F ) generated by the set of vertices T ⊆ F 0.

We have thus established that the ideal I(T ) of LK(F ) generated by T contains

all vertices of F 0, and so I(T ) = LK(F ). But T is not only hereditary, it is

by default saturated as well (Lemma 3.6). We now apply [4, Theorem 2.5.9] to

conclude that T = F 0. �

Theorem 3.8. Let F be a finite totally looped graph, let E = F+ be a hair

extension of F , and let Q be a nonzero finitely generated projective left LK(E)-

module. Then EndLK(E)(Q) is isomorphic to a Leavitt path algebra. Specifically,

EndLK(E)(Q) ∼= LK(G), where G is a hair extension of the restriction graph FT

of F by some hereditary subset T of F 0. (In particular, G is a hair extension of

a totally looped graph.)

Moreover, if Q is in addition a generator for LK(E)-Mod, then EndLK(E)(Q) ∼=
LK(G) where G is a hair extension of F .

Proof. By Proposition 3.7 we may decompose Q as

Q ∼=
⊕

v∈T

mvLK(E)v,

where T is a hereditary subset of F 0, and eachmv ≥ 1. Write T = {v1, v2, . . . , vu}.

Note that there are σ =
∑

v∈T mv direct summands in the decomposition. By

Proposition 1.5 EndLK(E)(Q) is isomorphic to a σ × σ matrix ring, with entries

described as follows. The indicated matrices may be viewed as consisting of

rectangular blocks of size mvi ×mvj , where, for 1 ≤ i ≤ u, 1 ≤ j ≤ u, the entries

of the (i, j) block are elements of the K-vector space viLK(E)vj .

On the other hand, because T is hereditary, we may construct the restriction

graph FT of F . Furthermore, because mi ≥ 1 for all 1 ≤ i ≤ u, we may construct

the hair extension G = F+
T (m1,m2, . . . ,mu) of FT . For each 1 ≤ i ≤ u, and
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each 1 ≤ y ≤ mi, let p
y
i := eyi · · · e

1
i denote the (unique) path in G = F+

T having

s(pyi ) = vyi , and r(p
y
i ) = vi. Note that, because of the specific configuration of the

added vertices and edges used to build G as F+
T , repeated application of Remark

1.2 gives that pyi (p
y
i )

∗ = vyi in LK(G). Note also that |G0| =
∑

1≤i≤umi, which

is precisely σ. Writing LK(G) = ⊕v∈G0LK(G)v and again using Proposition 1.5,

we get that LK(G) is isomorphic to the σ× σ matrix ring with entries described

as follows. For 1 ≤ i, j ≤ u, and 1 ≤ y ≤ mi, 1 ≤ z ≤ mj , the entries in the row

indexed by (mi, y) and column indexed by (mj , z) are elements of vyi LK(G)vzj .

We now show that these two σ×σ matrix rings are isomorphic as K-algebras.

To do so, we show first that for each pair (mi, y), (mj, z) with 1 ≤ i, j ≤ u, and

1 ≤ y ≤ mi, 1 ≤ z ≤ mj , there is a K-vector space isomorphism

ϕ = ϕ(mi,y),(mj ,z) : viLK(E)vj → vyi LK(G)vzj .

For r ∈ LK(E) we define

ϕ(mi,y),(mj ,z)(virvj) = pyi virvj(p
z
j )

∗.

Writing r as a sum of elements of the form kαβ∗ with k ∈ K and α, β ∈ Path(E),

we have that virvj may be viewed as a sum of elements kαβ∗ with s(α) = vi and

s(β) = vj. Because any path which starts in T must have all of its vertices in T

(because T is hereditary, and there is no path from T ⊆ F 0 to any of the added

vertices which yield G as F+
T ), we have that the expression virvj is indeed an

element of LK(G), which in turn yields that pyi virvj(p
z
j )

∗ ∈ vyi LK(G)vzj .

That ϕ is K-linear is clear. Further, ϕ is a monomorphism: if pyi virvj(p
z
j)

∗ = 0

then multiplying on the left by (pyi )
∗ and on the right by pzj yields virvj = 0.

To show ϕ is surjective: for vyi sv
z
j ∈ vyi LK(G)vzj with s ∈ LK(G), define s′ =

(pyi )
∗vyi sv

z
j p

z
j ∈ viLK(G)vj . But using the fact that there are no paths from

elements of T to any of the newly added vertices which yield G as (FT )
+, we

have as above that s′ may be viewed as an element of LK(E). Then, using

the previous observation that pyi (p
y
i )

∗ = vyi in LK(G), we conclude that ϕ(s′) =

pyi (p
y
i )

∗vyi sv
z
j p

z
j(p

z
j )

∗ = vyi sv
z
j , and thus ϕ is surjective.

We now define Φ to be the K-space isomorphism between the two matrix rings

induced by applying each of the ϕ(mi,y),(mj ,z) componentwise. We need only

show that these componentwise isomorphisms respect the corresponding matrix

multiplications. But to do so, it suffices to show that the maps behave correctly

in each component. That is, we need only show, for each mℓ (1 ≤ ℓ ≤ u) and

each x (1 ≤ x ≤ mℓ), that

ϕ(mi,y),(mℓ,x)(virvℓ) · ϕ(mℓ,x),(mj ,z)(vℓr
′vj) = ϕ(mi,y),(mj ,z)(virvℓr

′vj).

But this is immediate, as (pxℓ )
∗pxℓ = vℓ for each vℓ ∈ T and 1 ≤ x ≤ mℓ.

The additional statement follows from the final assertion of Proposition 3.7. �

Remark 3.9. In the previous proof, E is an arbitrary hair extension of F , by

some sequence of |F 0| integers. As well, G is a hair extension of a subgraph FT
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of F , by some sequence of |F 0
T | integers. In general there need be no relationship

whatsoever between the two sequences of integers.

The following example will help illuminate the ideas of Theorem 3.8.

Example 3.10. Let F be graph

F = •v1
��

// •v2
�� ��

kk // •v3 •v4
��

oo .

Then F is totally looped (note that v3 is a sink, so no loop is required at v3). Let

E be the hair extension F+(3, 1, 2, 3) of F , pictured here:

•v1
��

// •v2
�� ��

kk // •v3 •v4
��

oo

E = •v
1

1

OO

•v
1

3

OO

•v
1

4

OO

•v
2

1

OO

•v
2

4

OO

Let R denote LK(E). Consider the (arbitrarily chosen) nonzero finitely gener-

ated projective left R-module Q = Rv21. We write Q in the form indicated in

Proposition 3.7, as follows. Using the isomorphism of Theorem 1.3(1) multiple

times, we have

Q ∼= Rv11
∼= Rv1 ∼= Rv1⊕Rv2 ∼= Rv1⊕ (Rv1⊕ 2Rv2⊕Rv3) ∼= 2Rv1⊕ 2Rv2⊕Rv3.

The hereditary subset of F 0 corresponding to Q is T = {v1, v2, v3}, so

FT = •v1
��

// •v2
�� ��

kk // •v3 .

The decomposition

Q ∼= 2Rv1 ⊕ 2Rv2 ⊕Rv3

dictates that we construct the hair extension G = F+
T (2, 2, 1) of FT , graphically,

G = •v1
��

// •v2
�� ��

kk // •v3

•v
1

1

OO

•v
1

2

OO .

By Proposition 3.7 we have EndLK(E)(Q) ∼= LK(G). For notational simplification,
let S denote LK(G). Then the explicit description of these two algebras as matrix
rings as described in the proof of Proposition 3.7 is:















v1Rv1 v1Rv
1

1 v1Rv2 v1Rv
1

2 v1Rv3

v
1

1Rv1 v
1

1Rv
1

1 v
1

1Rv2 v
1

1Rv
1

2 v
1

1Rv3

v2Rv1 v2Rv
1

1 v2Rv2 v2Rv
1

2 v2Rv3

v
1

2Rv1 v
1

2Rv
1

1 v
1

2Rv2 v
1

2Rv
1

2 v
1

2Rv3

v3Rv1 v3Rv
1

1 v3Rv2 v3Rv
1

2 v3Rv3















∼=















v1Sv1 v1Sv1 v1Sv2 v1Sv2 v1Sv3

v1Sv1 v1Sv1 v1Sv2 v1Sv2 v1Sv3

v2Sv1 v2Sv1 v2Sv2 v2Sv2 v2Sv3

v2Sv1 v2Sv1 v2Sv2 v2Sv2 v2Sv3

v3Sv1 v3Sv1 v3Sv2 v3Sv2 v3Sv3















.
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Corollary 3.11. Let E be a graph which arises as a hair extension of a totally

looped finite graph F . Let ε be a nonzero idempotent in LK(E). Then the cor-

ner algebra εLK(E)ε is isomorphic to a Leavitt path algebra. More specifically,

εLK(E)ε is isomorphic to the Leavitt path algebra of a hair extension of FT ,

where FT is the (totally looped) restriction graph of F to some hereditary subset

T of F 0.

Moreover, in case ε is a full idempotent in LK(E), then εLK(E)ε is isomorphic

the Leavitt path algebra of a hair extension of F itself.

Proof. The first statement follows directly from Theorem 3.8, as LK(E)ε is a

nonzero finitely generated projective left LK(E)-module, and EndLK(E)(LK(E)ε) ∼=
εLK(E)ε. The statement about full idempotents follows from Proposition 3.7, be-

cause an idempotent f in a ring R is full precisely when Rf is a generator for

R-Mod. �

There is a specific hair extension construction for arbitrary graphs which is

already known, and which will be useful in establishing our main result.

Definition 3.12 ([7, Definition 9.1]). For any finite graph E and positive integer

n, let MnE denote the hair extension graph

MnE = E+(n, n, . . . , n).

In other words, MnE is constructed from E by attaching a strand of hair of

length n− 1 of the form

•v
n−1 // · · · •v

2 // •v
1 //

to each v ∈ E0.

Proposition 3.13 ([7, Proposition 9.3]). Let K be any field, E a finite graph

and n a positive integer. Then there exists a K-algebra isomorphism

ϕ :Mn(LK(E)) −→ LK(MnE).

In particular, any full n×n matrix ring over a Leavitt path algebra is isomorphic

to the Leavitt path algebra of a hair extension of E.

For each positive integer n we denote by An the “straight line graph” having

n vertices and n− 1 edges:

An = •vn−1 // •vn−2 // · · · •v2 // •v1 // •v0 .

Easily (or, applying Proposition 3.13 to Etriv) we get

Lemma 3.14. For any positive integer n, LK(An) ∼=Mn(K).

We are finally in position to achieve the main result of this article.
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Theorem 3.15. Let K be any field. Let E be any finite graph, and let ε be any

nonzero idempotent in LK(E). Then the corner εLK(E)ε of LK(E) is isomorphic

to a Leavitt path algebra.

Proof. By Theorem 2.18 we have

LK(E) ∼= (Mm1
(K)⊕Mm2

(K)⊕ · · · ⊕Mmk
(K))⊕ pMn(LK(F ))p

for some k ≥ 0, integers m1, . . . ,mk, and some full idempotent p in Mn(LK(F ))

for some positive integer n and totally looped graph F . By Proposition 3.13

Mn(LK(F )) ∼= LK(MnF ). Let γ denote the image of p under this isomorphism;

so γ is a full idempotent in LK(MnF ). Then as K-algebras we have

LK(E) ∼= (Mm1
(K)⊕Mm2

(K)⊕ · · · ⊕Mmk
(K))⊕ γLK(MnF )γ.

Since MnF = F+(n, n, . . . , n) is a hair extension of the totally looped graph

F , Corollary 3.11 yields that γLK(MnF )γ ∼= LK(G1) for some finite graph G1,

where G1 is a hair extension of F . So we get

LK(E) ∼= (Mm1
(K)⊕Mm2

(K)⊕ · · · ⊕Mmk
(K))⊕ LK(G1);

denote this K-algebra isomorphism by Φ. Write Φ(ε) = (ǫ1, ǫ2, . . . , ǫk, ǫ); then

each of ǫ and ǫi (1 ≤ i ≤ k) is an idempotent. Reordering if necessary, we may

eliminate any summand for which ǫi = 0, and thereby get

εLK(E)ε ∼= (ǫ1Mm1
(K)ǫ1 ⊕ ǫ2Mm2

(K)ǫ2 ⊕ · · · ⊕ ǫℓMmℓ
(K)ǫℓ)⊕ ǫLK(G1)ǫ

for some ℓ ≤ k. If ǫ = 0 then we eliminate the summand ǫLK(G1)ǫ; otherwise,

again invoking Corollary 3.11, we have that ǫLK(G1)ǫ ∼= LK(G) for some graph

G. Thus we have

εLK(E)ε ∼= (ǫ1Mm1
(K)ǫ1 ⊕ ǫ2Mm2

(K)ǫ2 ⊕ · · · ⊕ ǫℓMmℓ
(K)ǫℓ)⊕ LK(G).

It is well-known that any corner of a full matrix ring over a field K is isomorphic

to a full matrix ring (possibly of smaller size) over K. So

εLK(E)ε ∼= (Mn1
(K)⊕Mn2

(K)⊕ · · · ⊕Mnℓ
(K))⊕ LK(G)

for some integers 1 ≤ ni ≤ mi (1 ≤ i ≤ ℓ). Since Mt(K) ∼= LK(At) for any

positive integer t (Lemma 3.14), this last isomorphism with Proposition 1.4(2)

yields

εLK(E)ε ∼= LK(An1
⊔An2

⊔ · · · ⊔Anℓ
⊔G),

thus establishing the result. �

Corollary 3.16. Let K be any field. Let A be a K-algebra which is Morita

equivalent to a Leavitt path algebra. Then A is isomorphic to a Leavitt path

algebra.
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Proof. If A is Morita equivalent to LK(E), then (see Theorem 1.6(1)) there

exists a positive integer n and a (full) idempotent p ∈ Mn(LK(E)) for which

A ∼= pMn(LK(E))p. But using Proposition 3.13, we have pMn(LK(E))p ∼=
εLK(MnE)ε for some idempotent ε ∈ LK(MnE). Finally, we invoke Theorem

3.15 to get the desired result. �

Although the following result seems on the surface to be a generalization of

Theorem 3.15, this result in fact follows as a consequence of Theorem 3.15.

Theorem 3.17. Let K be any field. Let E be any finite graph, and let Q be a

nonzero finitely generated projective left LK(E)-module. Then EndLK(E)(Q) is

isomorphic to a Leavitt path algebra.

Proof. SupposeQ is generated by n elements as an LK(E)-module. Then by The-

orem 1.6(3), under the standard Morita equivalence Ψ between LK(E)−Mod and

Mn(LK(E))−Mod, Ψ(Q) is isomorphic to a direct summand ofMn(LK(E)), i.e.,

Ψ(Q) ∼=Mn(LK(E))q for some idempotent q ∈Mn(LK(E)). But the equivalence

yields that

EndLK(E)(Q) ∼= EndMn(LK(E))(Ψ(Q)) ∼= EndMn(LK(E))(Mn(LK(E))q).

This in turn by Proposition 3.13 is isomorphic to EndLK(MnE)(LK(MnE)ε) for

some idempotent ε ∈ LK(MnE), which in turn is isomorphic to εLK(MnE)ε.

Now Theorem 3.15 gives the result. �

We close this article with a series of remarks.

Remark 3.18. There is a tight but not fully understood connection between

results about Leavitt path algebras and results about their graph C∗-algebra

analogs. The connection continues in this context as well. Specifically, Arklint

and Ruiz [11], and Arklint, Gabe and Ruiz [12] have established (among many

other things) that for a finite graph E, any corner pC∗(E)p of the graph C∗-

algebra C∗(E) by a projection p is isomorphic to a graph C∗-algebra.

Remark 3.19. Our ability to establish Theorem 3.15 for all nonzero idempotents

ε in LK(E) may seem surprising. Specifically, we need not assume that ε possess

any additional properties (e.g., that ε be full, or that ε ∈ LK(E)0, or that ε = ε∗).

The point here is that by the theorem of Ara, Moreno and Pardo (Theorem

1.3(2)), we have a description up to isomorphism of any left LK(E)-module of

the form LK(E)ε for all idempotents ε of LK(E) in terms of idempotents of the

form LK(E)v where v ∈ E0. The foundational result which is used to establish

Theorem 1.3 is the fact that the Leavitt path algebra LK(E) may be viewed as

the “Bergman algebra” of the monoid ME, which allows the extremely powerful

[13, Theorem 6.2] to be invoked.

Remark 3.20. By combining the germane ideas in the proofs of Theorem 3.15

and Corollary 3.16, we can in fact establish a more precise result about algebras
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which are Morita equivalent to Leavitt path algebras. Specifically, let K be any

field, A a unital K-algebra, E a finite graph, and F a finite graph in which every

regular vertex is the base of a loop that is obtained from the graph Esf via some

step-by-step process of collapsing at a regular vertex which is not the base of a

loop. Then A is Morita equivalent to LK(E) if and only if

(1) there exists a finite acyclic graph V such that the number of sinks in V

is equal to the number of all those sinks of E which are not in E0
sf ,

(2) there exist a positive integer k, and a hereditary subset H of (MkF )
0

containing F 0, and

(3) A is isomorphic to LK(V ⊔ (MkF )H).
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