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Abstract

We provide a unified approach to study the asymptotic behavior of Young differential equa-
tions, which consists of two steps of applying the continuous and discrete Gronwall lemmas. Our
method helps to generalize the result on the existence, and on the diameter estimate, of the
global pullback attractor for the generated random dynamical system.
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1 Introduction
This paper studies the asymptotic behavior of the Young differential equation
dyt = [Ayt + f(yt)]dt + g(yt)dact,t S R, y(O) =Y € Rd, (11)

where we assume for simplicity that A € R¥>? f:R? —» R? g : R? — R¥™  are globally Lipschitz
continuous, g € C! such that D, is also globally Lipschitz continuous with respectively Lipschitz
coefficients C'y, Cy of f and g. We also assume that z € CP7Y* (R, R"™) is a realization of a stationary
stochastic process Z;(w) with almost sure all realizations in the space CP~V*' (R, R™), such that

1
(BUZEE 1y )" < o0

Such system is often understood in the sense of a Young differential equation [18], as a pathwise
approach of a stochastic differential equation with a Holder continuous stochastic noise. Our aim
is to investigate the role of the driving noise in the longterm behavior of system (1.1).

Although no deterministic equilibrium such as the zero solution can in general be found, system (1.1)
is expected to possess a pathwise attractor. The reader is refered to [10], [11], [8], [9] and references
therein for recent development in studying the asymptotic behavior of Young differential equations
and rough differential equation in general. In particular, the existence of random attractor for the
generated random dynamical system is studied in [13] and [10] for Young differential equations
with small noise in the sense that the Holder seminorm of its realization is integrable and can be
controlled to be small. Our method, by contrast, works for a general source of noise, and produces
a stability criterion which matches the classical one for ordinary differential equations when the
driving noise is deleted. Moreover, as discussed in details in Remark 3.8, the method could also
be applied to study the attractor of rough differential equations, although the estimates for rough
integrals are expected to be quite technical and would be studied separately in a coming project.
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The paper is organized as follows. Section 2 is devoted to present the existence, uniqueness
and the norm estimates of the solution. In subsection 3.1, we introduce the generation of random
dynamical system by the equation (1.1). Using Lemma 3.4, we prove the existence of a global
random pullback attractor and estimate its diameter in Theorem 3.6 and Theorem 3.10, and derive
an exponential stability criterion for the trivial solution in Corollary 3.7. At the end of this section,
we discuss particular cases in which we could prove that the attractor is an one point set.

2 Young differential equations

In this section, we briefly make a survey on Young integrals and Young differential equations. Let
C(Ja,b],R") denote the space of all continuous paths z : [a,b] — R”" equipped with sup norm
[ lloc, (a5 81Ven by (|7 oo, [a,5) = SUPsefqp) 1 2¢]], where [|-[| is the Euclidean norm in R". For p > 1 and
[a,b] C R, CP7V([a,b],R") C C([a,b],R") denotes the space of all continuous paths x : [a,b] — R"
which is of finite p—variation

n 1/17
Il ,—var, 0,6y = (Sup > e, — wti\lp> < 0, (2.1)
@:9) j=1
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where the supremum is taken over the whole class of finite partitions of [a,b]. CP~V*([a,b],R")
equipped with the p—var norm

2 llp—varapl = 2@+ 12/, var o -

is a nonseparable Banach space [12, Theorem 5.25, p. 92]. Also for each 0 < a < 1, we denote by
Cco~Hol([q, b], R™) the space of Holder continuous functions with exponent a on [a, b] equipped with
the norm ” |
L Tt — Tg

Iollocsogos = ol + sup_ Tl
Given a simplex Ala,b] := {(s,t)| a < s <t < b}, a continuous map @ : Ala,b] — RT is called a
control (see e.g. [12]) if it is zero on the diagonal and superadditive, i.e
(i), For all t € [a,b], Wiy = 0,
(ii), For all s <t <win [a,b], Wt + Wty < Ws -
Now, consider y € C4V*([a, b], Rde) and z € CP7Y¥([a, b], R™) with %—F% > 1, the Young integral

f; yidz; can be defined as
b
sdrg = li u\Lyv — Ly ),
Ay vs = i > yulry — )
[u,v]€ll

where the limit is taken on all the finite partitions Il = {a =ty < t; < --- < t, = b} of [a, ]
with |II| := [m?xn|v — ul (see [18, p. 264-265]). This integral satisfies additive property by the
RIS

)

construction, and the so-called Young-Loeve estimate [12, Theorem 6.8, p. 116]

t
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H / yudwu - ys[$t - 1'5] < (1 — 2! ) ! ”’qufvar,[s,t} m‘rm;)fvar,[s,t] ) V[S,t] - [a’ b]? (22)
S
where 6 = % + %.
From now on, we only consider ¢ = p for convenience and set
o 1-2.1
K:=(1-2"»)". (2.3)



In addition, we would like to construct, for any v > 0 and any given interval [a,b], a sequence of
greedy times {7x(7)}ren as follows

T0 = a77—k+1(’7) = lnf{t > Tk( ) m37|||p var, [T, (7),t ’Y} AD. (24)

Define
N =N, pap)(z) = sup{k € N,74(7) < b}, (2.5)

then due to the superadditivity of ]”xmg var 5.1

p p p
N-1 < 27 A RS ] NSl I

which yields N < 1 +'y PNl o g -

(2.6)

In this paper, we fix p € (1,2) and ~ := m, and write in short N, (7) to specify the
dependence of N on z and the interval [a, b].

The following theorem shows a standard method to estimate the variation and the supremum norms
of the solution of (1.1), by using Gronwall lemma and discretization scheme with the greedy times.

Theorem 2.1 There exists a unique solution to (1.1) for any initial value, whose supremum and
p—uvariation norms are estimated as follows

0 0
HyHoo,[a,b] < [HyaH + (Hf‘(L )H + (I(‘g—i 1))’C9>N[a,b] (CL’)] 6OcN[a,b] (I)+2L(b—a), (27)
L)l

9(0 o o) N
Wp-sargoa < [l + (P2 4 OO0 W] oo at-al N ), (2
g

where L = ||Al| + Cj, o = log(1 + 7).

Proof: 'Write in short L = ||A|| + C. The existence and uniqueness theorem is proved in [5].
To prove (2.7), we use the fact that || g(y) < Cg 1yl )—var,[s,4 to derive

H|p—var,[s t] =

t
Iyt — wsll < / (Llgall + 1 £O) D+ Bl ar .y (19| + K Co Iyl var 5. )

which yields

t
0o < [ Bl sue g+ (O] + Ll )
12l var sy (19 o1+ KC 1ol var s )
t
< [ Ellsne g+ (5O + Ll )

+ wxmp—var,[s,t] (”g(ys)” + (K + 1)09 |||y|||p—var,[s,t] )

As a result, we obtain

t
[0yt (1= (K 4 DCo Il anegon) < [ LMol g+ (LSO + Ll e = 9

2l var s, 19 sl



which derives

t
mymp—var,[s,t] < / 2L |||y’”p—var,[s,u] du + Q(Hf(O)H + LHySH)(t - S) +2 mmmp—var,[s,t] Hg(yS)H

whenever (K + 1)Cy | z|| | < 3. Applying the continuous Gronwall lemma 4.1, we obtain

p—var,[s,t

90l —var s < 2(11 )H+LHysH)(t—8)+2\H$IHp var [s.] 19(Ys) |

+/ 2L 2| F(O) | + Lllys ) (1 = ) + 2 Bl o 9(s) ]
1/(0)|

/\

< (OW 2l g N 1) 26 — ]
1) .
< (”<L 2l o) 19O + 19112 +2C Bl o 1)) €227 = el
Ol , 9] (s
< .
< (Tt mane O el = (2:9)

whenever [|lz]|,_,,. 54 < 7- By constructing the sequence of greedy times {7, = 75(7)}ren on
interval [a, ], it follows from induction that

Hka+1H < |’yHOO,[Tk,Tk+1] < Hy”p—var,[rk,'rk+1]

K+2 fO go - .
9
k
K +2 _ ||f(0)|| ||g || K +2\k—j o
< 2L(Tk1=0) E 2L (Tk1—75)
_(K+1) Hya”+< L )] (K+1> !

IN

ea (k+1) HyaH + (Hf(l?ﬂ + (Jiﬁ%))‘gg)eak(k + 1)} 62L(Tk+1*TO)

1£(0)]] lg(0)] a(k-+1)+2L (41 —70) _
S[Hzm\H( +(K+1)Cg)(k+1)}e #7T0) E =0,..., Ny (z) — 1,

which proves (2.7) since Ty, () = b. On the other hand,

a+2L(Tk+1—Tk) _ Hf(O)H Hg(O)H 2L(Tk+1—7'k)
”yfk”<e 1) + ( I (K~ 1)cg>e

(ea(k+1)+2L(Tk+1—To) N eak+2L(Tk—T0)>

|||y|||p—var,[7k,7'k+l] S

IN

1Yall

Hf(O)H HQ(O)H a(k+1)+2L(Tk4+1—70) ak+2L (1, —70)
+( L +(K+1)cg><e ¢ )
(

LA N9\ 2rimr-m) _
+(*F +(K+1)Cg)e , Vk=0,..., Nigg(e) - 1,

It then follows from inequality of p-variation seminorm in [9] that

77—
o1 Nap (@)=l
S N[apb} ( ) Z |||y|||q—var7[7'k77'k+l]
k=0
Nig by ()=
p—1

< HyaHN[Tb]( ) ( o(k+1)+2L(TK+1—70) _ eak)+2L(kaT0))
> a,

k=

[e=]



N (@) =1 kg1 k

+(*5 +(K+1)Cg)N[a7b} @ > (]Zoe ] _jz;e ")
p—1 ab](x)
P aN+2L(b—a) ||f(0)|| ||g N ) (@)—§)+2L(b—7;) _
< Ny @{luall(e 1) + (2 2400 )( e ) -1))
J:
N f(0 9(0 oNry 41(2) 4 2L(b—a
< Ny @[l + (! (L)”ﬂzﬁff)Hcvg)N[a,b](@}e Nan (@200 — 1y, |

which proves (2.8).

The following corollary give an another estimate for the solution of (1.1). :
Corollary 2.2 The following estimate holds
Wpsarge < [l + e { 2O 2100 (04l o) N @)] =
x e Na,p) (@) +2L(b—a) [ﬁ (z) (2.10)
Proof: Prove similar to Theorem (2.1) we have

g < (Ll oy MO + T8+ 20, ol g D)2 e
< (ma { LU o)1} 0 4 ol g + (0 ) sl 226 — s

whenever (K + 1)Cy [[@]],_ . 5.9 < % and s,t € [a,b], which finally leads to (2.10). O

3 Random attractors

3.1 Generation of random dynamical systems

In this subsection we would like to present the generation of a random dynamical system from Young
equation (1.1). Recall that COP~va([a,b], R™) is the closure of C*°([a,b],R™) in CP~Y3([a, b], R™)
and COP~Va (R, R™) is the space of all z : R — R™ such that z|; € C%P~Va*(I,R™) for each
compact interval I C R. Then equip C%P~¥¥ (R, R™) with the compact open topology given by the
p—variation norm, i.e the topology generated by the metric:

1
dp(ﬂzl,xg) = Z 27(||$1 — xng_var,[_ng] A 1).
E>1

Assign
Q0= Cg:p*var(R,Rm) — {.’E c CO,p—var(R’Rm” T = 0},

and equip with the Borel o— algebra F. Note that for z € CJ?™ " (R, R™), Izl yer. 7 and [|Z][p—var,1
are equivalent norms for every compact interval I containing 0.
Let us consider a stochastic process Z defined on a probability space (£, F,P) with realizations in
(CoP " (R, R™), F). Assume further that Z has stationary increments. Denote by 6 the Wiener
shift

(). = x4y — a4, VE € R, € Cg’pfvar(R, R™).



It is easy to check that € forms a continuous (and thus measurable) dynamical system (6;):cgr on
(Cg’p "R, R), F). Moreover, the Young integral satisfies the shift property with respect to 6, i.e.

b b—r

-

(see details in [5]). It follows, as the simplest version for rough cocycle in [3, Theorem 5] w.r.t.
Young integrals that, there exists a probability P on (2, F) = (Cg’p YR, R™), F) that is invariant
under 6, and the so-called diagonal process Z : R x Q — R"™, Z(t,z) = x; for all t € R,z € Q, such
that Z has the same law with Z and satisfies the heliz property:

Zivs() = Zs(x) + Zy(0sz), Vo € Q,t,s € R.

Such stochastic process Z has also stationary increments and almost all of its realization belongs
to CoP Y™ (R,R™). It is important to note that the existence of Z is necessary to construct the
diagonal process Z. We assume additionally that (2, F,P, ) is ergodic.

It is important to note that, when dealling with fractional Brownian motion [16], we can start with
the space Co(R,R™) of continuous functions on R vanishing at zero, with the Borel o—algebra F,
and the Wiener shift and the Wiener probability P, and then follow [14, Theorem 1] to construct
an invariant probability measure PH = BHP on the subspace C¥ such that B 0§ = o B, It can
be proved that 6 is ergodic.

Under this circumstance, if we assume further that

1
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then it follows from Birkhorff ergodic theorem that
1
nm»mmw(ZMwmm“J%J@ (3.2)

for almost all realizations z; = Z;(w) of Z.

Proposition 3.1 System
dye = [Aye + f(yo)]dt + g(yr)dZy(w) (3-3)

generates a random dynamical system.

Proof: ~ The proof follows directly from [3] and [5, Section 4.2]. Specifically, the solution
generates a so-called random dynamical system defined by ¢(t,w)yo := y(t,w, yo) on the probability
space (Q, F,P) equipped with a metric dynamical system @, i.e. ¢ : RxQxR? — R? is a measurable
mapping which is also continuous in (¢, zg) such that the cocycle property

p(t+s,w) = @(t,0w) o p(s,w), Vi, s €R,

is satisfied. ]

3.2 Existence of pullback attractors

Given a random dynamical system ¢ on R? we follow [6], [2, Chapter 9] to present the notion of
random pullback attractor. Recall that a set M = {M(w)}weq a random set, if w — d(x|M(w))
is F-measurable for each z € R?, where d(E|F) = sup{inf{d(z,y)ly € F}|x € E} for E,F are
nonempty subset of R? and d(z|E) = d({z}|E). An universe D is a family of random sets which
is closed w.r.t. inclusions (i.e. if Dy € D and Dy C Dy then Dy € D). In our setting, we define



the universe D to be a family of random sets D(w) which is tempered (see e.g. [2, pp. 164, 386]),
namely D(w) belongs to the ball B(0, p(w)) for all w € 2 where the radius p(w) > 0 is a tempered
random varible, i.e.

. 1
hrin n log p(6iw) = 0. (3.4)

t—+oo

An invariant random compact set A € D is called a pullback random attractor in D, if A attracts
any closed random set D € D in the pullback sense, i.e.

lim d(p(t, 0_w)D(0_1w)| A(w)) = 0. (3.5)

t—o00

The existence of a random pullback attractor follows from the existence of a random pullback
absorbing set (see [6, Theorem 3]). A random set B € D is called pullback absorbing in a universe
D if B absorbs all sets in D, i.e. for any D € D, there exists a time ¢y = to(w, D) such that

o(t,0_w)D(0_w) C B(w), for all t > t,. (3.6)

Given a universe D and a random compact pullback absorbing set B € D, there exists a unique
random pullback attractor (which is then a weak attractor) in D, given by

A(w) = Ns>oU>s9(t, 0_1w)B(0_1w). (3.7)
We need the following auxiliary results.

Proposition 3.2 Assume that A has all eigenvalues of negative real parts. Then there exist con-
stant C'y > 1, A4 > 0 such that

19l 50, [a,8] Cpe 4%,

H(I)prvar,[a,b] < ||A||CA€7AAa(b - CL), V0<a<hb,

IN

where ®(t) = et

Proof:  Denote by Aq,...,A\q all the eigen values of A then for every zo € RY, ®(t)zy =
Zgzl e’ Pj(t)zg, where P; are matrices with polynomial entities (see [7, p. 89]). Fix an e €
(0, — max; Re);), and define Cy := Z?:l sup;~o e || P;(t)||. By choosing A4 := —maxRe); — ¢,
we obtain

m
J2(t)] < et S e P(0)]] < Cae 4" < Cae™4%, Va,b] € BT,
k=1

which yields (3.8). On the other hand, since

18(u) - B(v)]| = \

/: Ad(s)ds

< / HAHCAG_)\ASdS < w<e—)\f;u _ e_)\AU>
u AA

for any u < v in [a,b] and e~*4" is a decreasing function, it follows that

|A[[Ca

|A[[Ca
p—var,[a,b] = WA <

p—VE),I}[(l,b] o )\A

—Aa-
1l e

(7% = e™8) < A Cae™ (b~ a),

which proves (3.9).



Proposition 3.3 Given (3.8) and (3.9), the following estimate holds: for any 0 < a<b<c

b
| [ ote-ogtodn]| < Kea[t+ 1410 - )] Bl uiusy 4 [Colllly-sarian + 19O

(3.10)
Proof: Since g is Lipchitz continuous, it follows that
19(wa) —9we)l < Cyllya — wll < Cy llyll—var.ap -
which yields [|g(y)l,—var,ja,6) < Cg I¥ll,—var,ja,5- Then (3.8) and (3.9) derive
b
) / D(c — s)g(ys)das
< ”‘xmp—var,[a,b] (HCI)(C - a)g(ya)H + K ”|(p(c - ')g(y')mp—var,[a,b]>
< ey sar o {18 — @) 9G]
I (190 = Yy var oy 19 o fo) + 190 = Moo oy B9y var sy ) }
< KCallaly—arap ¢ x
x [CQHyaH + 1l9O)[| + 1Al (6 — a) (Cyllyllocfay + 9O)I) + Co lylly—var,jazy }
< KCa[L+ A1 = )] Il - var oy €4 [ Collyllp—var sy + l9(O)]]-
]
The following lemma is the crucial technique of this paper.
Lemma 3.4 Assume that y; satisfies
t t
yr = 2(t)yo +/ D(t —5)f(ys)ds +/ O(t — 5)g(ys)dws, V= 0. (3.11)
0 0
Then for any r > 0 given and n > 0,
Il < Callwll+ 5 IO - 1) (3.12)

=+ Z eAATKCA(l + HAHT) mxmpfvar,AZ e/\]ﬂ” [CQHyHP—V&r,AZ + Hg(O)H 7Vt € A:w
k=0

where A} := [kr,(k+ 1)r], Ly := CaCp, X=X g — Ly.

Proof: First, for any t € [nr, (n+ 1)r), it follows from (3.8) and the global Lipschitz continuity
of f that

t t
Il < 19wl + [ 196 =) 7w)lds + | [0t = g0},
t t
< CaeMl+ [ Cae™ ) (Ol + 15O s + | [ 06t = au)as,
_ C _ o ai—s
< Cae ol + SO =) 4 6+ CaCy [ M,



where [3; := H fg ®(t — s)g(ys)dxs||. Multiplying both sides with e*4? yields

C t
lyelle*” < Callyoll + lelf(O)ll(e“t — 1) + e 4 CACf/0 4%|ys || ds.

By applying the continuous Gronwall lemma 4.1, we obtain
Ca
lyelle*® < Callyoll + HHf(O)H(eA“t — 1) + e’
! L¢(t—s) Ca Aas Aas
+ [ Lyt [Callwll + 2T O) (M7 = 1) + B4 ds.
0
Multiplying both sides with e~ Zs* yields

L. o C B
el e®1=20" < Cualgolle™ " 4+ 2 IFO) (P70 — et 4 reCa=Eo)

t
Lys C . .
+/0 Lye [CA“?JO\HTjIIf(O)H(e“ 1)+ Bect?|ds

IN

t
Callvol + 3 A IO (0470~ 1) 4 o1t 1 [ pcaEds
(3.13)

Next, observe from (3.10) that for all s <t

BgePra—Ls)s

= MmOl [ B (s — u)g(yu)day
0
\.fJ_l S
< ettt 3 H/ (s — u)g(yu)dzy +H/ P(s — u)g(yu)dwy
=0 v rls/r]
[2]-1
< P ST KO+ AN fell -, ap €4 [Collyllpar.ag + 9(0) ]
k=0

A KO [1+ A5 = L)) Bl [Collollpvaririzso + 19O
17

—

(]

KCAQL+ A ollyyar g €457 24D [yl varag + lg(O)1]

—

Sle ||

— o

< 3 MEOANL+ AN Bl a4 e Collllpman ag + (O] (314

£
Il
o

Replacing (3.14) into (3.13) yields

HytHe(“_Lf)t

< Callpll + 5 IO (2 —1)

FONHCALHIAD S v P4 N[04ty + 19O
k=0
2]
+LfKCA( +HAHT \/O ZeAAT ”|x’”p var, A7 e()\A Lf)kr —Ly(s—kr) |:C ”pr var, A} +Hg( )H}dé’



< Callpll + 5 IO (0 —1)
-F§:6AAKCM(1+WVHUW$MmeA;GQA_L”M[CEHMb—wLmnw+Uﬂ-*Hgmﬂ\
k=0
t
X<€—Lf(t—kr)+/ Lfe—Lf(s—kr)dS)
kr
< Calwll + —F- |U(W

+3MTRCA( + [All) ol —ar,ag €4 7505 | Collyllp—varag + 19O
k=0

where we use the fact that e~ Ls(E=kr) 4 fktT Lfe_Lf(S_k’”)ds = 1 for all ¢ > kr. Hence, for t €
[nr, (n+ 1)r),

o4 < Callnl + 5O (e~ 1)
n—1
+ 3 MTKCAW + A el yar ap €475 | Cyllyllpvarag + 19(0) ]
k=0

The continuity of y at ¢ = (n + 1)r then proves (3.12).

Using (2.6), we use from now on the following estimate

K+
1 < F(x,[a,b]) := exp {log i lN[ab}( x)+2L(b— a)}
K+2 1
< . p - . .
< e on ] e 2K DCP Iy +2L0 -0} (15)
Proposition 3.5 Define
G, [08]) = Wollyur oy F s [0 )Ny (2), (3.16)
2p—1
H(xa [a’7 b]) = 1+ ’”xmpfvar,[a,b] [1 + F( [a b])N[ Z} (x>:|7 (317)
and
=S eV H (O, | H [1 + MyCyG(0_jz, [-1, 1])} (3.18)
=1 j=1

(which can be infinity), where X > 0, My := Cpe* (1 + ||A|)K and F is given by (3.15). Assume
further that

A> G o= a1+ A 206 + DE )|+ 206 + 1T )|} (3.19)
Then b(x) is finite and tempered a.s., i.e.
lim 1log b(6ix) = 0. (3.20)

t—+oo t
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Proof: Assign A, = [k, k + 1] and Ni(z) := Na, (x). Observe from (2.6) that

p—1 p—1
NS @) £ (1 RE DO Il s, ) T S 1+ RO+ DCP T 2l s,
2p—1 1 p1 _ _
N7 (z) < <1+[2(K+1) ol lzllp - varAk) P <2 (1+[2(K+1)Cg]2” lHlsvll\fﬁVir,Ak),
As a result, a direct computation shows that
Gl [a,t) < [1olyanfas) + 2K+ DC T Iy 0y | P, [a,8), (3.21)
p—1
Hw, [0,8) < 1+ ol gy 27 F (@, 108D (I2llyar o) + 20K+ DCIP ™ o1 0 )
(3.22)
Due to the inequality log(1 + ae’) < a + b for a,b > 0, (3.21) yields
log (1 + M1CyGa, [-1, 1]))
K+2
< YT T 1 4L[Illwlllp_var,[_l,u + 20 + D)CP 2} 1y |+
1 p
g 2+ DO el e 1,1
K +2 _ K +2
< Mt T 2] (K DT O Nl g+ Mt T O Ml
It follows that for a.s. all x,
n—1
llﬁs;p - log H [1 + M KCyG(0_px, [—1 ])} = hTILILsng - kzolog [1 + M, CyG (b, [—1, 1])]
n—1
K+2 1
< 4L P
< [M 2K +1)° + K+1][2(K+1)C] hmsup kzo|||«9 k:v|||p var,[~1,1]
n—1
K+2 1
4L
M W[Q(K‘f‘ 1)Cqy ]hmjup kZOIIIH Kl p—var,[~1,1]
K+2 1 P
< 4L
< |[m I ES e {2+ vere)]” + [20 + DE,re)] |
p ~
< Cue(1+ ANt { 205 + 10| + 206 + DCTR)] | = 6.
Meanwhile, (3.22) and (3.15) yield
p—1
log H(z, [~1,1]) < 1og(1+ el 1.4) +log [27 Flz, [a,1])]
108 (14 12l ar gy + 2K+ D)CI ™ Izl 0 )
< 2log(L + [lll,yar, (—1,1) + 205 + 1)CoJP ™" 4 2plog (1 + el var —1.1])
p=1 K+2 1
+(log27 +log Tt + g 20K + DO el 1y + 4L
1
< @42 el ar 1)+ e RE DG Il a1
_ p-1 K+2
2p—1
+{4L+[2(K+1)Cg] +log2 P +logK+1},
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where we use the inequalities log(1 + a + b) < log(1 + a) + log(1 + b),Va,b > 0 and log(1 + ab) <
log(1+ a) +1logb,Va > 0,b > 1. As a result,

log H(6 -1.1 log H(6_ -1,1
lim sup og H (0, [~1,1]) = lim sup 0g H(0 _nw, [1,1]) =0.
n—00 n n—00 n

Hence, there exists for each 0 < 26 < A — G an ng = no(d, z) such that for all n > ny,

n—1 n—1
o(—3+G)n H [1 + G(O_pz, [— 1,1])}, H [l—f—G(ka, [—1,1])| < 0FEm
k=0 k=0
and
e < H(O0px, [~1,1)), H(Opz,[-1,1]) <
Consequently,

no—1

ba) < Y e MH(O_ [ (1 + MCyG (0, [-1, 1])) £ Y 2Ok

;:1 |

j=1 k=ng
no—1 o k-1 e—(A—26—G)no
< kZ_l e H(O_jx,[ ];[ (1 + M10 G( 9,]'1‘, [—1, 1])) + m

which is finite. The proof on the temperedness of b is quite lengthy and will be provided in the
appendix.
[
We are now able to formulate the first main result of the paper.

Theorem 3.6 Assume that A has all eigenvalues of negative real parts with Ay satisfying (3.8) and
(3.9), and f is globally Lipschitz continuous such that \a > CyCa. Assume further that the driving
path x satisfies (3.2). Then under the condition

Aa— CaCy > Ca(1+ ||A|])e’\A+4(”A”+Cf){ [2(K n 1)cgr(p)}p + [Q(K n 1)cgr(p)} } (3.23)

1

where T'(p) = (E ||\Z|Hp var [ 1,1] )E, the random dynamical system ¢ possesses a pullback attractor
A(x).

Proof: By the variation of parameter formula for Young differential equations, it is easy to
prove (see e.g. [10]) that y; satisfies

ye = ©(t)yo + /0 (t —s)f(ys)ds + /0 (t — s)g(ys)ds. (3.24)

Then by applying Proposition 3.4 and using the estimate in (2.7)

Hpr—va,r,A;c < |:”yaH + (Hf([?)” + (Igifol))HC'g)Nk(x)} N:%({L')F(:II,A]@),

where Ni(x) := Na,(z), we obtain

n—1

+MECA+ AN Y e ol o a, ¥
k=0

n n CA f 0
™ < Calyol + @~ 1y GO

12



e + (L2

IN

) {Cg“,ya” + (Lol

IN

n—1

+ Moy Z ekk |:1 + |||:I:’||p—var,Ak (1 - Nk

k=0

where

Callyoll +

lg(O)l

L

%_

K + 1>cg)Nk<w>]NZ;1 () F (2, Ak) + ||g<o>||}

Call F(0)]|(* = 1) n-1

A = ALy,
My = CaeM(1+]A|)K,

M, = max {C’A

A
A

e 1

A

k=0 k=0

3

Callyoll + M1 Cy

L
1

e ]

k=0

b IO ] 7 ey, 0+ oo

(K +1)C,

p—1
N7 (z)F(z, Ag)| vkl

p—var,Ay

2p—1
p

(@)F(.80)

1 1

MCy(T+ Gergies)- MiCo pmas{IF O a1

By assigning a := Callyol|, ux := ||yxlle**, k& > 0 and using (3.16), (3.17), we obtain

n—1

n—1

up < a+ MCy Z G(x, Ap)ug + My Z e’\kH(x, Ay).

k=0

k=0

We are now in the position to apply Lemma 4.2, so that

lyn (@, y0)ll - <

n—1

Callgolle™" TT [1 + M, G0, [0, 1))]
k=0

n—1

n—1
Y R (g, 0,1) ] [1+M109G(9jx, 0,1])].

k=0

j=k+1

Now using (2.7) and (2.6), it follows that for any ¢ € [n,n + 1]

It w0)l < [l o)l + (

IO llg)

L

e I)Cg)Nn(m)}F(l«,An)

n—1

< Callwlle ™ F(z, ) [T [1+ M1CyG 01, 0,1))]

g

k=0
1£(0)]] 19(0)]]
AR 1)Cg>Nn(m)F(x,An)
n—1 n—1

Z eAk —|— 6>\AKCA(1 + ||AH) Z eAk |||:E‘Hp—var,Ak X

(3.25)

(3.26)

(3.27)

(3.28)

My Y e MR (2, Ay H (04, [0,1]) ] [1+Mlcgc:(9jx, 0,1])].(3.29)

k=0

j=k+1

Consequently, by assigning x with 6_,;x in (3.29), we obtain

lye(0—¢2, yo(0—¢))

n—1

< Calyo(O—x)lle " F(0_yz, M) [

k=0

|

1+ MngG(Hk,ta:, [0, 1])

13



(Lo, ( [Mol))uo ARSI,

n—1 n—1

+My 3 e R B, A H (B, [0,1)) [] [HMlch(ej,tx, [0, 1])}
k=0 j=k+1
< Callyo(O_ix)|e ™ Fz,[n—t,n—t+1] f[ 14+ M CyG (O, [-1,1])]
LT T PR
n—1 n—1
M Y eI [ — tn — t+ 1) H (O, [-1,1]) ] [1 + M1CyG(0;—nw, [~1,1))
k=0 j=k+1
n—1
< CaF(a, =11 o0 e T [1+ MiCyG(Op— e, [-1,1])]
k=0
LTI PP
n—1 n—1
FMF( 1) e H (G, -1,1) ] [1+M109G(0j,nx, ~1,1])
k=0 j=k+1
< CaF(x,[-1, 1) yo(0—a) e ]| [1 + MGy G0, [1, 1])}

k=1

+(\|fgm| = K'Jg_ic)f)\g Q)N[_LHW(% 1.1

n k—1
Mo F(a,[-1,1) Y e Y H (O, [-1,1) [ [1 + MGy G0z, -1, 1])] (3.30)
k=1 Jj=1

We are now in the position to apply Proposition 3.5 into (3.30) so that for t € A, with 0 < ¢ <
(A — G) and n large enough
lye(0_sz,m0)|| < Cae|yo(f_sz)||F(z,[1,1]) exp {— </\ -G - 5) n} +

+<||f<Lo>|| . (IMOB)% )Ny (@) Fa, [-1,1))

+M2F Ze—)\kH 9 k;l’ ]j |:1—|—M10 G -5, [—1,1])
k=1 j=1
< CaF(z,[~1,1)|lyo(0_sz Hexp{ </\ G- 5) }+Mgb( )
+(”f(LO)” + (K|,’g+( 1))”Cg)N[_1,1] (2)F(x,[~1,1]), (3.31)

where b(x) is given by (3.18). This implies that, starting from any point yo(0_:z) € D(6_sx) which
is tempered due to (3.4), there exists n large enough such that for ¢ € [n,n + 1]

-l < 1+ Mabte) + (L2 + LNy @10 =), 32

In addition, it follows, using (2.6) and the inequality log(14ab) < log(1+a)+logbforalla > 0,b > 1,

14



that
logh(x) < log(1l+ M)+ log[l + b(z)]
+1og{1+(’f(LO)”+ lo(Ol V14 RO+ DO U2}y | Pl 1=1,10)}

(K +1)C,
< log(l + My) + log[L + b(z)] + log [1 n ”ff)” + ([Mol)h]
+HR(K + DO N2l (1,1 + o8 F(, [-1,1])
< log(1 + My) + log[1 + b(x)] + log [1+ ”f(LO)” + ([ﬁg_iol);gg] + 20K + DO el 1.1
log gy + e 2OC+ VOGP Iy gy AL

Hence the temperedness of b(z) follows from the temperedness (3.20) of b(z) and of |||$wp var,[—1,1]"

Therefore, there exists a compact absorbing set B(z) = B(0,b(z)) and thus a pullback attractor
A(x) for system (1.1) which is given by (3.7). O

Corollary 3.7 Assume that f(0) = g(0) = 0 so that y = 0 is a solution of (1.1). Then (3.23) in
Theorem 3.6 is the exponential stability criterion for the trivial attractor A(x) = 0.

Proof: Using (3.31) and the fact that My = 0 if f(0) = g(0) = 0, we obtain

lye(0—e, yo)l| < Cac* F(a, [=1,1])yo(0—) | exp {— (A= G = §) n} (3.33)

for t € A,,. It follows that all other solutions converge exponentially in the pullback sense to the
trivial solution, which plays a role as the global pullback attractor.
[

Remark 3.8 (i), In [13] and [10] the authors develop the semigroup method to estimate the Holder
norm of y on intervals 7, 7,1 where 7% is a sequence of stopping times

70 =0, Th+1 — Tk + mxmﬁ,[‘/'k,TkJrl] =4

for some p € (0,1) and 3 > }%, which leads to the estimate of the exponent

—(Aa — Qe max{CY, Cg}Tﬁ)Tn

for some generic coefficient ) independent of A, f, g, x. It is then proved that there exists hrg inf 70 =
n o0

37 where d = d(u) depends on the moment of the stochastic noise. As such the exponent is estlmated
as

- <)\A — QeM max{Cy, Cg}d). (3.34)

However, it is required from the stopping time analysis (see [10, Section 4]) that the stochastic noise
has to be small in the sense that the moment of Holder semi-norm ||z|5 _; ;; must be controlled as
small as possible. In addition, in case the noise is diminished, i.e. g =0, (3.34) reduces to a very
rough criterion for exponential stability of the ordinary differential equation

1
C S*)\AG_AA.
o)

By constrast, our method uses crucial Lemma 3.4 by applying first the continuous Gronwall lemma
in (3.13) in order to clear the role of the drift coefficient f. Then by using (2.7) to give a direct

15



estimate of yi, we can apply the discrete Gronwall lemma without using technical stopping time
analysis to control the role of driving path . The left and the right hand sides of criterion (3.23)

A = CaCy > Ca(l+ A4 [ai 1+ 1)0,r(p)]” + [2(K +1)C,T ()] }

can be interpreted as, respectively, the decay rate of the drift term and the intensity of the volatility
term, where the term e*4T4(I41+C1) i the unavoidable effect of the discretization scheme. Criterion
(3.23) is therefore a better generalization of the classical criterion for stability of ordinary differen-
tial equations, and is satisfied if either Cy or I'(p) is sufficiently small. In particular, when g = 0,
(3.23) reduces to Ay > C'4Cy, which matches to the classical result.

(i), A similar proof of Theorem 3.6 using step size r with Ay = [kr, (k + 1)r] then leads to a
criterion for the existence of a global random pullback attractor

Aa+4(|Al+Cy)

Aa—CaCy > iCA(1+||A||r)e[ }{ [2(K+1)Cgr(p,r)]p+ [2(K+1)Cgr(p,r)] } (3.35)

1 1
where T(p,r) = lim (% S W0kl ) = (E F{ ) * for almost sure all re-

alizations x. As a result, the final criterion can be optimized to

A= CaCy > int %CA(I + || Ar)e [A“‘H(”A”*Cf)]r{ [2(K + 1e,r. 0| + 205 + 16,01 }.

(iii), Theorem 3.6 still holds for the rough differential equations in the sense of Gubinelli [15],
using Lemma 3.4. In that case, the estimates for Young integrals would be replaced by the estimates
for rough integral, using p— variation norms. Details of the proof would be provided in a coming
project. The reader is also referred to a simpler version for rough differential equations in the recent
works [8], [9] on exponetial stability of the trivial solution using Lyapunov function method.

As presented in the following, we could prove that the diameter of the random attractor can be
controlled by parameter C,;. We first introduce a quantity.

Proposition 3.9 Assume that x satisfies (3.2). Then under criterion (3.23), the following quantity
1s well defined and finite

00 - f 0 .

€@) = 3 e N0kl o (1 10l o) [mae 1L o)} +b0_s)]
k=1
X exp {2N[0,1] (O_yz) + 2L}. (3.36)

Proof: Observe that the existence of I'(x, p) implies the temperedness of exp {2N 0,1] (z)+ 2L}

and |Ha:|||p_var,[071]. On the other hand, we use the inequalities log(1 4+ a + b) < log(1 + a) + log(1 +
b), Ya,b > 0 and log(1 + ab) < log(1 + a) + logb, Ya > 0,b > 1 to obtain

(0 ,
108 1ol var ) (1 + 1l vue o] + 1o [mae { /O gy} 1 )] +

+2N[071] (l’) + 2L

L O]
L

< 2l a0y + lomb(a) + max {F2 2llg(0)]1} + 2 (Nouy() + 1)

Then it follows from the temperedness of b(z) that the quantity

£(0 A
ol a5y 1 Bl o) [ e L2 g0y} 4] xcp {2V ) + 22}
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in (3.36) is tempered. The convergence of the series in (3.36) can then be proved similarly to the
convergence of b(z) in Proposition 3.5. O

Theorem 3.10 Under the assumptions of Theorem 3.6, the diameter of A is estimated as
diam(A(x)) < 204eM (1 + || A) K C & () (3.37)
where £(x) is given in (3.36).

Proof: The existence of the pullback attractor A is followed by Theorem 3.6. Take any two
points ay,az € A(x). For a given n € N, assign z* := 6_,,x and consider the equation

dys = [Ays + f(ye)]dt + g(ye)dy . (3.38)

Due to the invariance of A under the flow, there exist by, b € A(z*) such that a; = y,(z*,b;). Put
2zt = zi(x*) == ye(x*,b1) — ye(x*, ba) then z,(z*) = a1 — ag and we have

dzi = [Azy + P(t, z)]dt + Q(t, z)dx] (3.39)
where we write in short yi = y;(x*,b1) and
(

P(t7 Zt) = f y(twr*be)) - f(y(tax*7b1)) = f(ytl + Zt) - f(ytl)v
Qt,ze) = gly(t,a*,b2)) — gly(t, ™, b)) = gyt +2) — 9(yt).-

Observe that
I1P(t,2) — P(t, )| < Cfllz = &I, 1Q(t, 2) — Q(t, 2)]| < Cyllz — &/
and P(t,0) = Q(¢,0) = 0. Consequently,
1P, ze) | < Crllzell,  [1QE z2)[| < Cyll¢l-
Since Dg is bounded by Cy, for u,v € Ay

1Q(w) — Q)| = llg(y) — 9(wa) — 9(ys) + 9wl < Cyllye — vall + Cyllyz — y2 1, (3.40)

which yields
|||Q”|p—var,[uv — C my H’p var,[u,v] +C myQMp var,[u,v] © (341)

Now, repeating the estimate in the proof of Theorem 3.6 with 8 = || fo O(t — s)Q(s, z5)dzk|| we
obtain

Ml < Callall+ 5 + g [ (Calloll + 75 Ao
and then
Mlall < Callol + 5+ 1y [ i (3.42)
Similarly to (3.14) we have

t
:At _ e)\tH/O O(t — 8)Q(s, zs)dws

t)

< Y KOG+ JAD I lyar.s €D (il + 19 e s, + 1520, )
k=0
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[t]
< MC Y1 a5 (gl 120+ 0 M, + 920, )- (3:43)

k=0
Therefore
t]
e)\tHZtH S CAHZO” + Mlcg Z ’”ZE* |||p—var,Ak e/\keiLf(tik) (Hyal—Var,Ak + Hy2”p—var,Ak) +
k=0
t [s]
* Mk —Ly(s—k
JFLfMlC’g/(; Z ”|£C |||p—var,Ak ee st )<”y1||pfvar,Ak + ||y2Hp7var,Ak>d3
k=0
[t
* Ak
< Callaoll + MiCo D 1l vars (15 Doty + 17y, ) %
k=0
t
X (e_Lf(t_k) + Lf/ e_Lf(s_k)ds>
k
1t
Ak
< Callzoll + MGy D 1Ty var g (15 i + 1P v, ) (3.49)
k=0

Since b; € A(z*) for i = 1,2, it follows from the invariance of A that y'(k,z*,b;) € A(fpx*).
Moreover, it follows from (3.7) and (3.32) that
sup |ly|| < b(x). (3.45)
yeA(z)
Indeed, taking y* € A(x) be arbitrary, it follows from (3.7) that there exists a sequence t; — oo

such that
y" = limp(te, 0,2, yo(0-1,.2))

where yo(f_s,x) € B(6_y,x). Since b(x) is tempered, by choosing #; large enough so that (3.32)
holds, we conclude that (3.45) holds. As a consequence, (3.45) yields lyt(k, 2*,01)|| < b(Ora*).
Similarly, ||zo]| < ||b1]| + [|b2]| < 2b(x*). On the other hand, due to (2.10)

||yi(x*)”p—var,Ak
< gk (@)l + max g ===, 2[lg(0) | 1 | e PRENCIADIOE ) Eal MENNG

(i f(0 T — )Ny (z*)+2L N
< [kl + mase {IXO0 g0y eromimmenrszta gy, )

[ 7 * fo | x* * .
< [iktal + ma LIXO g0y et 20 g oy, )i=12 (3.8

since o = log Ié—ﬁ <ic< %. Hence (3.44) yields

n—1

2nll < 2Cab(z*)e ™™ +2M1Cy > 2™, var.a, 1+ 1271y —var.n ) e x
k=0
1£(0)]] 20 .
x [max{ I ,2ug<0)u} + b(Ora )} exp {sz(:c ) + 2L}
< 20ub(B_na)e ™ + 2M1C, SN0kl o (1 + 10—kl o)e ™ ¥
k=1
£ ()]l ;
X [max {T 2| g(O)H} + b(e,kx)} exp {QN[OJ] (O_xz) + 2L}. (3.47)
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Letting n tend to infinity, the first term in the last line of (3.47) tends to zero due to the temperedness
of b(z). Hence it follows from (3.36) in Proposition 3.9 that

a1 — az|| < 2M1Cyé(x)

which proves (3.37).
[
In the rest of the paper, we would like to discuss on sufficient conditions for the global attractor
to consist of only one point, as seen, for instance, in Corrollary 3.7. The answer is affirmative for g
of linear form, as proved in [11] for dissipative systems. Here we can also present a simpler version
using semigroup method.

Theorem 3.11 Assume that g(y) = Cy is a linear map. Then under the condition
P
A = CaCy > Ca(1+ AN I ok 1 1) Cr@)|” + [2(K + DICITE)]},  (3.48)

the attractor consists of only one point, i.e. A(x) = {a(x)}.

Proof:  Firstly, note that (3.48) assures the existence of the random pullback attractor of ¢
with Cy = ||C|| now. Since g(y) = Cl is linear,

H|Q”|p var, u'u] C |||Z|||p var,[u,v} :
As a result, the estimates in (3.44) can be rewritten as

n—1

A Ak
Mzl < Callzoll + MiCy Y o ly—sara, €[l lp—var.a, (3.49)
k=0

Meanwhile, using similar arguments to the proof of Theorem 2.1, we obtain

t
|m—%|s/Lumm+0uﬁmﬂwwmwm+meﬂmw)
S

which yields

t
|||Z‘Hq—var,[s,t] < / LHZquU + Cg |||ZE |||p var,[s,t] (HZSH + (K + 1) |||Z|||q var,[s,t])
s
and then
! 1
ol angoa = Wl + Ul < [ 22l s g+ (1+ ) el

whenever (K +1)Cy ||z*|| < 1. Therefore similar arguments as in the proof of Theorem 2.1

p—var,[s,t]
show that
p—1
”Z”q—var,[a,b] < N[ f)b}( ) aN[, b]( ) 2L(b—a) HZ || with
Nag@®) € 1+ 20K+ DCP 1512
As a result, (3.51) has the form
n—1
Mzl < Callzoll+ MiCy 3 Lula)e Ny ()Mo ) 2= |,
k=0
< CAHZOHJFZIk ) [zl

k=0
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where

p—1
p (%) ,aNg(z*)+2L
p—var,[0,1] Nk (SC )6

Iy = MGyl
Now applying the discrete Gronwall lemma, we obtain

n—1

Mzall < Callzoll [T+ i)
k=0

From the estimate of N (z*) we have

M (K +2) P
I < Srne [(20K + D0 100y —ue oy ) + (206 + DC 10kl yue oy ) |
p

xexp {2 + a(2(K + 1)Cy 10h-ntlly o) ) }
and then
log(1+ 1) < e e (2K + )0 Ikl vargon)

Mi(K+2) 5 1 P
(G 17" * 7er) (U + DG lkntly o)
p

< Cac® 2L+ A (20K + D)Cy k-l arory + (206 + DCy Wk nlly— o) |-

Hence,

lim sup — logHan < —A+limsup — Zlog 1+ 1)

P
< A+ Cae (L A 20K + DCp) + (20K +1)C, ) Tm)?] <0
under the condition (3.23). This follows that lim,_,~ ||a1 — a2|| = 0 or A is an one point set.  [J

Remark 3.12 We would like to discuss the technical difficulty in proving the one-point attractor
result for general nonlinear g, under further assumption that Dy is also globally Lipschitz with the
same coefficient C,. Specifically, it is easy then to prove that

1Q(w) = Q)| < Cyllzu — 2ull + Cyllzloo fuo I = oll, Yu < v € Ay

which yields
1
”|Q”’p7var,[u,v] < Cg mzmpfvar,[u,v] + Cg”zHoo,[u,v] H‘y H‘p—var,[u,v] : (350)
As a result, the estimates in (3.44) can be rewritten as

n—1

e)‘”Han < CA||ZOH+M109 mx*’”p—var,AkeAk 1 H|y1w —var.A HZHP_VaLAk (3.51)
p—var,Ay
k=0

Meanwhile, using similar arguments to the proof of Theorem 2.1, we are able to show that
ellgvar o < (V)57 212 20—, (3.52)
where N/ = N[ b]( *) is the maximal index of the maximal greedy time of the sequence

. 1
0 =a, Ty :=inf{t > 7 :2KCy||z* ”’p—var,[n,t] (1+ H‘ylmq_van[mt]) = 5} AD
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that lies in interval [a,b]. Note that N[’a b

Niay (™) <1+ AECP Nl 17y 0y U+ 19—y )

}(x*) can be estimated as

Combining this with (3.51) for ¢t = n we get

n—1

CA”ZOH + Z Mng mx*”’pfvar,Ak I+ H‘yl ‘H —var, Ay X
k=0 !

n—1

Callzoll + > Txe* | zl] (3.53)
k=0

|z

IN

IN

in which

p—1

B = MGyl llara, O+ 19l ) [ (Mo (09) 7 e8]

< M1€2L exp {(4ch)p |||‘T*W£—var,Ak <1 + H‘yIH‘pfvar,Ak >p} X
% p
o [KCy 1" Ty (L 10 M varn, ) + (4B Co 1 ey (1 19 v, )
(3.54)
and H}ylmpivanm is bounded by
0 0
19 e < [loeto+ (2 2 )N ()] P, )
. 0 0 .
< [ittune + (P20 1))”09)N[o,u<ek_nx>} O, 0,1]) = F(B)_2).

Applying Lemma 4.2, we finally can show that
. 1
lim sup — log ||z, ||
n—oo 1
1 - n 4 z) lo
s Ay > log {1 + MGy 10— gl —var, o, (1 + F(0-1)) [1 + Ny 3y (0—g)e” Mo O-x)t 52} }
k=1

< -+ FElog {1 + MiCy Il ar oy (1 + F(2)) [1 + N (@)t Mo @) logQ] } (3.55)
However, to derive from (3.55) an estimate for exponential decaying rate, it is required that b(z)

and b(z) have to be integrable, which is rarely satisfied even with fractional Brownian noises. We
therefore leave this interesting open problem for future work.

4 Appendix
Lemma 4.1 (Continuous Gronwall Lemma) Assume that ug, oy, 5 > 0 such that

t
u < oy +/ Busds, ¥Vt > a.
a

Then .
up < oy —|—/ 566(t_5)asds,Vt > a.
a
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Proof: See [1, Lemma 6.1, p 89].

0

Lemma 4.2 (Discrete Gronwall Lemma) Let a be a non negative constant and tpy, cy, Bn be

nonnegative sequences satisfying

n—1 n—1
Up < a+2akuk+2ﬁk, Yn>1
k=0 k=0
then
n—1 n—1
u, < max{a, uo}H 1+ o) —i—Zﬁk H (14 o)
k=0 Jj=k+1
for alln > 1.
Proof: Put
n—1 n—1
Sn = a+2akuk+ZBk
n—1

T, := max{a, uO}H 1+ ag) —i—Zﬁk H 1+ «aj).

k=0 j=k+1

(4.1)

We will prove by induction that S,, < T;, for all n > 1. Namely, the statement holds for n = 1 since

S1 = a+ aguo + Bo < max{a,ug}(l + ) + Bo = T1.

We assume that S,, < T, for n > 1, then due to the fact that u, < .S, we obtain

n— _

Sn+1 = G+Zakuk+ZBk+anun+ﬁn
k=0 k=0

Sn + anuy, + Bn

Sn + anSp + Bn

VANVAN

n—1

IN

j=k+1

n—1

< max{a, UO}H 1+ ay) +Zﬁk IT A +ey) =Tupr.

k=0  j=k+1

Since u, < Sy, (4.1) holds.

n—1 n—1
max{a,uo} [J(1+ar) +> 8 [] (14 )| (1+ an) + Ba
k=0 k=0

U
Proof: [The temperedness of b] For n > ng we have
e k-1
b(O_px) = Ze_’\kH(m@—(kJrn)iﬁmp var,[—1 1]) H [1 + MngG(H‘9_(j+n)l'H|pfvar,[fl,1}):|
k=1 j=1
o n+k—1
= S M HO— el an) TT [1+ MG, GUO ol ey 1)
k=1 j=n+1
An
- ¢ X (4.2)

[Ty [+ MG, GOl e 1.1)]
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0o n+k—1

S IO ol g a) 1T [1+ MGl 1)
k=1 j=1

e)xn e .
< Z o~ Ak ,(20+C) (nt-k)
= o(=5+G)n
k=1
B e o= (A=20-G)(n+1)
T e(=0+G)n 1 _ o—(A—20-G)
e36n
< 7A,
T er26-G
b(0 log b(6_—
which implies that lim log b(0_n) <36 forall 0 <8 < $(A— G) or lim g0 nv) =0.
n—060 n n— 00 n
Next,
[e'¢) k 1
b(Onz) = Y e M HIO0 pinzl, var;11) [ ] ( + MiCyG (10—, oy 1,1]>)
k=1 7=1
n k—1
= eiAkH(‘”e—k—i—nxmp_var -1 1] H < + M]-C G ”’9_J+nx|”p var 1,1])> +
k=1 Jj=1

k=n+1 J=1

We now estimate the first summation in (4.3),

> e M H 0kl 1.1 H (14 MGG 0l 1.0))
k=1 J=1

n—1
= Z G_AkH |||0 k+n13”|p var,[—1 1]) (1 + MngG(|H9j$|”p—var,[—1,1}))
k=1 Jenmh
. n e_)‘kH(m@karanp var [*171])

T (1 306,68l 1) S

=1 [[j= (1 + M CyG([|6;2]|,— varv[—1’11)>
il POl )

j=1
= L (14 MGG, 1)
1;[ ( L =11] ) kzzo H 1 (1 + MIC G(m@ xmp var [71,1])>

. el A H 0kl yar (-1.1))

= M ] (1+ MGGl )
e 1tg JT —var,[—1,1]
j=1 < P ) k=0 H?:l (1 + MlCQG(majx’”p—var,[—l,l])>

e—(A—é—G)n ~

(3 A H (052l 1)) S A H (052l ar,-1.1))
S Ty (14 MGG U2, v 11))) ks TToy (1 MGG G051, 1)

IN

n Ak n—1
e—()\—é—é)n (ZOI e H(”|9k35”|p var,[— 11]) +€_>\ Z e(AG+25)k)

o Iy (14 MGl ey 1y)) o

no )\kH 0.1
em (Z (il i) 1 1)_ »

= I (14 M0G,G 10 :r|||,, ) B

IN
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The second term in (4.3)

00 k—1
Z e_AkH ’”9 k+n1’mp var,[—1,1] H < + MlC G ”’0—]+nx“‘p var, | 171]))
n+1 Jj=1

B
II

n—

_ (1 £ MGGl e ) ¥

7=0
k—n—1
S R H Oy e aa) (14 MGy GUO— ol 1.1)))
k=n+1 j=1
n—1
= ] (1 —|—M1CgG(”|9jx|||p_var’[_1’u)) X
j=0
x> e HWO k2l var 11 ]| (1 + Mlch(|H9—j1‘”|p_var,[_171}))
k=1 j=1
< b(x). (4.5)
Hence
- A H 10kl —var-1,1) 1
b(0nz) < e Z k—1 Lo + (A—G+20) + (@)
S I=L (1 MGGl ey 1) © -1
log b(6),
which point out that le M = 0. Similarly (3.20) is obtained with some modification.
n—oo n
U
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