Random attractors for rough differential equations
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Abstract

We use the semigroup method to study the asymptotic behavior of rough differential equa-
tions, which consists of two steps of applying the continuous and discrete Gronwall lemmas. The
existence of the global pullback attractor for the generated random dynamical system is then
proved. We also derive an estimate for the diameter of the global attractor, and prove that for
the linear diffusion function of linear form, the pullback attractor collapses to a random point.
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1 Introduction
This paper studies the asymptotic behavior of the rough differential equation
dys = [Aye + f(ye))dt + g(ys)de, t € R, y(0) = yo € RY, (1.1)

where we assume for simplicity that A € R¥? f: R4 - R4, g : R? — R¥X™: £ is globally Lipschitz
continuous with Lipschitz coefficient C'y; g either belongs to Cg such that

Cy i= max {|lgllocs | Dgllocs [ D2ocs 1 D3 1 b < o, (12)

or has a simple linear form g(y) = Cy, where C € R% ® R¥™. Such system is understood in
the pathwise sense of a stochastic differential equation driven by a Holder continuous stochastic
process. Namely, we also assume that the driving path z € C*~HY(R, R™) c CP~a (R, R™), with
% <v< %, D> % for simplicity, can be lifted into a realized component x = (z,X) of a stationary
stochastic process X.(w) = (1,z.(w),X..(w)), which has almost sure all realizations in the space
CB—HOlR T2(R™)) C CP~v (R, TZ(R™)), such that the estimate

E(flwsill” + [1%s47) < Crolt = s, ¥s,t € [0,7]

holds for any [0,7] for some constant C7,. In this circumstance, the solution is often solved in
the sense of Friz-Victoir [12], and the existence and uniqueness theorem is recently proved in [23].
However, it is not clear how to apply the semigroup technique, which is well developed in [9] and
[10] for Young differential equations [25], to estimate the rough path integrals. Therefore, we would
like to study equation (1.1) in the sense of Gubinelli [16], in order to take advantage of the concept
of rough integrals for controlled rough paths. Our aim is then to investigate the role of the driving
noise in the longterm behavior of rough system (1.1).

Although no deterministic equilibrium such as the zero solution can in general be found, system
(1.1) is expected to possess a pathwise attractor. The reader is refered to [13], [9], [10] and the
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references therein for recent development in studying the asymptotic behavior of Young differential
equations, and [15], [7], [8] for rough differential equations.

The paper is organized as follows. Section 2 is devoted to present the existence, uniqueness
and the norm estimates of the solution. In subsection 3.1, we introduce the generation of random
dynamical system by the equation (1.1). Using Lemma 3.5, we prove the existence of a global
random pullback attractor and estimate its diameter in Theorem 3.7 and Theorem 3.10. We also
prove in Theorem 3.11 that in case g(y) = Cy, the attractor is actually a random point.

2 Rough differential equations

We would like to give a brief introduction to Young integrals. Given any compact time interval
I C R, let C(I,R?) denote the space of all continuous paths y : I — R? equipped with sup
norm || - [leo.sr given by ||yllco.s = supsey [|yell, where || - || is the Euclidean norm in R%. We write
Yst = Y — Ys. For p > 1, denote by CP~V*"(I,R?) C C(I,R%) the space of all continuous path
y : I — R% which is of finite p-variation

n 1/p
19 llpovarz = | S0P Y et ) < o0, (2.1)
II(1) i—1

where the supremum is taken over the whole class of finite partition of I. CP~Va(I, R?) equipped
with the p—var norm

[Yllpvar,r = Mymin 1]l + 19/l —var 1

is a nonseparable Banach space [12, Theorem 5.25, p. 92]. Also for each 0 < o < 1, we denote by
C(I,R%) the space of Hélder continuous functions with exponent o on I equipped with the norm

9,0
= |ly(a)|| + sup ———
wr =W+ 20 G =

[Ylla.r := lymin ]l + N1yl

A continuous map w : A%(I) — RT,A%(I) := {(s,t) :min ] < s <t < max I} is called a control if
it is zero on the diagonal and superadditive, i.e. w;; = 0 for all ¢t € I, and Wy, + Wy < Wsy for all
s<u<tinl.

Now, consider y € C97V2 (I, L(R™,R%)) and x € CP~V¥ (I, R™) with ;17 + % > 1, the Young integral

f ; Ytdzy can be defined as
Sd s = li E ulu,v,
/Iy ! IHIIIBO[ Yulu,

u,v]€Il

where the limit is taken on all the finite partition II = {minl =ty < t; < --- < t,, = max [} of
I with |II| := [m?xn |v — ul (see [25, p. 264-265]). This integral satisfies additive property by the
€

)

construction, and the so-called Young-Loeve estimate [12, Theorem 6.8, p. 116]

t
H/ Yudxy — YsTst
s

| < K00 Wl 12l var e

1,1
< K(pqlt — sl I90 2 s 0y ] (2.2)

%7[87t] ’

for all [s,t] C I, where
1 1
K(p,q) :=(1—2"%»"a)"", (2.3)

We also introduce the construction of the integral using rough paths for the case y,z € C?(I)
when 3 € (,v). To do that, we need to introduce the concept of rough paths. Following [11], a



couple x = (z,X), with z € C8(I,R™) and X € Cgﬁ(AQ(I),Rm @ R™) = {X: sup, ‘!E’lgl}g < oo}

where the tensor product R™ ® R™ can be indentified with the matrix space R™*™ is called a rough
path if they satisfies Chen’s relation

Xot — X — Xyt = Tyt @ T, Vminl <s <wu <t <max]. (2.4)

X is viewed as postulating the value of the quantity fst Zsr @dx, := Xg; where the right hand side is

taken as a definition for the left hand side. Denote by C#(I) c C# @ 022ﬂ the set of all rough paths
in I, then C? is a closed set but not a linear space, equipped with the rough path semi-norm

1
Ixll .7 == llzllg r + XN 35 A2 (ry < 00 (2.5)

Given fixed v € (3, 3

min I < 1, consider a rough path x = (x,X) € CP~V*(I) with the p—var norm

),% € (%, v) and 8 > %D, on each compact interval I such that |I| = maxI —

1
P p
1l g 2= (0208 + XU s )5 where g = 2. (2.6)
2.1 Controlled rough paths

Following [16], a path y € C?(I, L(R™,R?)) is then called to be controlled by x € C?(I,R™) if there
exists a tube (y/, RY) with 3/ € CP(I, L(R™, L(R™,RY))), RY € C?P(A%(I), L(R™,R?)) such that

Yst = Ys @ x5 + R, Vmin] <s <t <max/.

y' is called Gubinelli derivative of y, which is uniquely defined as long as z € C8\ C?? (see [11,

Proposition 6.4]). The space D (I) of all the couple (y,y) that is controlled by z will be a Banach
space equipped with the norm

2260 = wintll + 1Wiin sl + |99 [, 05, where
228, |Hy/|H5,1+|HRy|||2/3,Ia

Ny, v
(74

where we omit the value space for simplicity of presentation. Now fix a rough path (z, X), then for
any (y,y') € D2 (I), it can be proved that the function F € C#(A2(I),RY) defined by

Fs,t = Ys @ Tt + y; @ Xs,t
belongs to the space

Y1) = {FECﬂ(AQ(I))ZFt,t =0 and

F 7t B F ) B F ’t
’ min [ <s<u<t<max I ’t - 3‘

Thanks to the sewing lemma [11, Lemma 4.2], the integral f; Yudx, can be defined as
t
/ Yudx, = lim Z [Yu @ Tyw + Yl @ Xy o]
s 11| —0
[u,v]€ll

where the limit is taken on all the finite partition II of I with |II| := [m?xn |v — ul| (see [16]).
€

)

Moreover, there exists a constant Cg = Cg ;| > 1 with |I| := max I — min I, such that

t
H / yudxu - ysxs,t + y;xs,t
s

| < Calt = s (Ul gy g WRY g p2p0y + 15 oy WX 210 ) - (27)



From now on, if no other emphasis, we will simply write ||z 5 or ||X[|,; without addressing the

domain in I or A?(I). In particular, for any f € C} (RY,R%) we get the formula for integration by
composition

fla) = fw) + [ i@+ [ T2 )dlo]eo

where the last integral is understood in the Young sense and [z] ¢ 1= 25 Qx5 —2 Sym (Xg4) € C?8.
Notice that for geometric rough path X,; = fst ZTsy @ dxy, then Sym (Xg;) = %xs,t ® gy, thus
[$]57t =0.

As proved in [16], the rough integral of controlled rough paths follows the rule of integration by
parts. In practice, we would use the p-var norm

1y ' llopr = Nymin 1l + [Yanin | + |99/, ;> where
UY apr = N9 —ars + IR Ny —vars -

Thanks to the sewing lemma [5], we can use a similar version to (2.7) under p—var norm as follows.

t
H / YudTy — YsTst + ngs,t
s

‘ < Cp( ”|x|”p—var,[s,t] |||RyH’q—var,A2[S,t} + |Hy/H|p—var,[s,t] ”|X”|q—var,A2[s,t] )’

(2.8)
with constant C), > 1 independent of x and y.

2.2 Greedy times and integrability

In the following, we would like to construct a sequence of greedy times as presented in [4]. Given
}3 € (%, v), we construct for any fixed v € (0,1) the sequence of greedy times {7;(v, I, p—var)};en
w.r.t. Holder norms

o =mind, Tipr = inf {6 > 7 Il g =7} A max L. (2.9)
Denote by N, 1 ,(x) :=sup{i € N: 7; <max/}. It follows that
Ny rp(x) < T+ %) 1 - (2.10)

From now on, we would like to fix v = m and would like to write in short Nj,4(x) for conve-
nience.

2.3 Existence and uniqueness theorem

In this part, we would like to prove the existence and uniqueness theorem for rough differential
equation (1.1), where the rough integral is understood in the sense of Gubinelli [16] for controlled
rough paths. The idea is to prove first the existence, uniqueness and the differentiability w.r.t. the
initial condition, of the solution of the rough differential equation

dy: = g(y)dzy, Yt € [a,b],y, € RY, (2.11)

and then to apply Doss-Sussmann technique [24] to transform the system to an equivalent ordinary
differential equation. Note that the existence, uniqueness and continuity of the solution of (2.11)
is already provided in [16], but the differentiability of the solution y;(x,y,) w.r.t. ¥y, is somehow
missing due to the technical complex. We will derive below the proof for this statement.



Proposition 2.1 The solution y;(X,y,) of (2.11) is uniformly continuous w.r.t. yg, i.e.

17 = ylloofap) < N¥a— ya\le(logQ)N[a”’](x),

|||g - y? R|||p—var,[a7b] S ||ya yCLHN[a b] ( ) (log Q)N[a b Hya yaH, (212)

where N[a,b} (x) is the maximal index of the maximal greedy time in the sequence

) 2 2p—1 —1
™= o = e = (S0 (L G Ny 0)] pae @19
that lies in the interval |a, b].
Proof: The proof is lengthy and is provided in the appendix. O

Proposition 2.2 The solution y.(x,y,) of (2.11) is differentiable w.r.t. initial condition y,, more-
over, its derivatives g (X,Yq) is the matriz solution of the linearized rough differential equation

d& = Dg(y)&rdxe (2.14)

Proof: The proof is lengthy and is provided in the appendix.
]
The following theorem shows a standard method to estimate the variation and the supremum
norms of the solution of (1.1), by using Gronwall lemma and discretization scheme with the greedy
times.

Theorem 2.3 There exists a unique solution to (1.1) for any initial value, whose supremum and
p—uvariation norms are estimated as follows

fO)f , 1 AL(b—a)
< _
Wlecian < [lall+ (77 + ) N0 et H0 (2.15)
LFO) , 1 L)y
b Bl angos < |lall+ (B + 5 ) NG00 ON 5 00 = Dl (210

where L = HAH + Cf and my7 Rmp var,[s,t] - ”’ympfvar,[s,t] + H‘Rqufvar,[s,t}'

Proof: ~ Write in short L = ||A]| + Cf. The existence and uniqueness theorem follows [23]
with the Doss-Sussmann method. Namely, using the integration by parts for the transformation
yr = p(t,x, z¢), it can be proved that there is a one-one corresponding between the solution of

dyy = [Aye + f(ye)ldt + g(ye)dae = F(ye)dt + g(ye)day. (2.17)
and the solution of the ordinary differential equation
. 0 -1
= [aiy”(t,x,zt)} Fp(t,, 2)). (2.18)
Since the right hand side of (2.18) satisfies the global Lipschitz continuity and linear growth, by
similar arguments as in [23] there exists a unique solution given the initial value. That in turn

proves the existence and uniqueness of system (2.17).

To prove (2.15), rewrite (1.1) in the integral form

Ysit = / [Ayu + f(yu)]du + / 9(Yu )Ty (2.19)

5



Together with (1.2) and (2.8), we obtain

IN

[ (sl + 1wn)du+ | [ stwie,

S

t
< / (Lllgall + 1Ot + Cy Ul var s+ C2 UK sy + Co{ 2C2 WX,

——y

t
< /(L\Iyull+||f( JNdu+ Cy 2l —ar 5. + Co 1Kl —var o1

+CP{ |:2C§ |”X|||q—var,[s,t] + §Cg2 W‘Tm;—var,[s,t] N Cg |”x|||p—var,[s,t] }( |||y‘”p—var,[s,t} + H‘Ry ”|q—var,[s,t] )7

|y|||p var,[s,t]

+ |||x”|p—var7[s7t} [Cg |||Rqu—var7[s7t} + 50‘3 |||x|||p—var7[s7t

which yields

m Y ”’pfvar, [s,t]

t
< /(L\Iyull+||f( JNdu+ Cy ol —ar 5. + Cg 1Kl —var o

£ 202 1K1 oy + 520 e | Colelly e goir } Wy variors + 1Byt )

By similar arguments, we can show that

[

g—var,[s,t]

t
< [ Ehall + 17O+ €D oo
1
+Cof{ [2C2 1K, —var o + SO0 ey | Y C Ml s )} (Ui )+ DR v )

Therefore by assigning [ly, R, _var. 5.1 = 1¥llp—var,s,9 T 11l —var,[s,¢» We Obtain

t
Iy, Bllp—var s < 2/ (LYl —var, s, + Lysll + £ O)IDdu + Cg lll,—var, 5.1 + 205 1K lg v s 1

1
+Co{ [2C2 1%y var o) + 52 N9 o) | V Co Nl v o) § 19 Bl
(2.20)

Observe that if 2C,C ||x|| s, < 1 then

p—var,

1
20}009 |||X|Hp—var7 s,t > Cp 203 ”ngq—var7 s,t + 703 H|:U”|12)—V5u“7 s,t v Cg |||aj|||p—var7 st [
[s:1] [s:] T 9 [s.1] [s:1]

This follows that

1
Iy, Bl —var 5. _/ AL Yl —var s, 4 + AU O + Llysl) (¢ = ) + &
p

whenever 2C,C, ||x|| Applying the continuous Gronwall lemma 4.1, we obtain

p— Var[st] — 2

1
lys Bllp—var sy = AUSON + Lllys[D(E =) + &
p



+ [ aneH e i O+ LlyslD (o~ 5) + -]

< (L4 5l — (2.21)

whenever 4C,Cy |||, _yar (s 4
interval [a, b], it follows from induction that

< 1. By constructing the sequence of greedy times {7 (5~ 4C o ) }ken on

||y7—kz+1|| S ||y||oo,[7'k,’rk+1]—||y”p Var[Tk,Tk+1]
SOOI L arirpn—m)
< k41— Tk
< Iyl + = c,)
k
. 0 1 .
< AL(Tg41—70) Hf( AL(Tp41—T5)
< e Ivall + (2 +Cp)j§:0:e J
IFO AL(Ti11~70)
< k1770 =0,... —
< lwall+ (M5 Cp)<k+ De ;TR =0, N ()~ 1,

which proves (2.15) since TNy (2) = b. On the other hand,
4L(7—k+1_7—k) _ ”f(O)H i 4L(Tk+1—7k)
(¢ )+ (g

< Hya||<e4L(m+1—To) _ 64L(7'k—7'0)) (Hf(L)H - )(64L(Tk+1—m) N €4L(Tk_70)>
p

”|y7 R|||p—var7[7'k77'k+1] S Hka ||

LA 1N az(re—m) _
+<L+C,p)e ) Vk:—O,...,N[mb](X)*l,

It then follows from inequality of p-variation seminorm in [8] that

o1 Nan(-t
”|y’R|||p—var7[a,b] < N[a,pb] (X) Z |||y7R|||q—Var,[Tk77'k+l]
k=0
p—1 N[a b](x)_l
< Hya||Nab] ( ) Z (64L(7’k+1*7'0) _ 64L(Tk—7-0))
k=0
Niap) (=1 g41 k
FO 1y 5t o -
+(H (L>H + H)N[a,b} (x) (264L( k+1—T5) _ Zeu( . ]))
b k=0 =0 =0
o -2 HOERYA 2
< Ny G Il (et —1) 4 (MR 2 (03 ettt 1))
P =

N 0 1 Y
< 8 G0l + (L2 ) Va0 070 — |

which proves (2.16).
[
Following the same arguments line by line, we could prove similar estimates for ¢ = Cy as follows.

Theorem 2.4 There exists a unique solution to the rough differential equation

dys = [Ays + f(yo)]dt + Cyeday,t € R, y(0) = yo € RY, (2.22)



for any initial value, whose supremum and p—variation norms are estimated as follows

0 —a (6% X
Woiess < [luall + A2y o] etr-orsorioanco (223)
0 —a (6% X p%
1. Bl oy < [l + 2y 0 040N NE )~ g, (220
[a,b] L [a.D]

where L = HAH + Cf’ my? R”’pfvar,[s,t] = my’”pfvar,[s,t] + ”’Ry mqfvar,[s,t] and a = log(l + %>

Proof: Notice that the proof on the existence and uniqueness, as well as the Holder norm
estimates, of the solution of (2.4) is already given in [7]. To estimate the norms, we derive similar
estimates as in the proof of Theorem 2.3 with note that

vi=Cuys [Cyli=C%s RGY =CRY,
Hence the estimate of ||y, R, _,, (54 in (2.20) is of the form
Iy, Bll,—var 5.
t
<2 [ (Ll sne oy + Ll + 17O+ (1N Vel + 2ICT By ) e
+2Cp{\|0 [ D AR (o] ) 7 ME— } Iy Bl —var 5.1 -

As a result

t
3
1y Rllpsar o) < / ALYl g A+ 21O + Lllg 1) = ) + 5 Iy
s p

whenever 2C,||C|| ||| = 3. Applying the continuous Gronwall lemma 4.1, we obtain

p—var,[s,t

3
ly: Blly—varfsy < AUSOI + Lllys )t = 5) + 55 lls]l
2C,

[ AL a1 + Ll (a = 9) + 5ol

1/ (0)]l 3 4L(t—
< +(1+ = ) (t=s) _ 2.25
whenever 4C,Cl [|x]|,_ya (s < 1. The rest is the a direct consequence of [10, Theorem 2.1] (see

also the proof of Propositions 2.1, 2.2 in the Appendix). O

3 Random attractors

3.1 Generation of rough cocycle and rough flows

In this subsection we would like to present the generation of a random dynamical system from rough
differential equations (1.1), which is based mainly on the work in [3] with only a small modification.
Recall that a random dynamical system is defined by a mapping ¢(t,w)zo = z(t,w,xo) on the
probability space (€2, F,P) equipped with a metric dynamical system 6, i.e. ;s = 6, o 05 for all
t,s € R, such that ¢ : R x  x R — R? is a measurable mapping which is also continuous in ¢ and
xo and satisfies the cocycle property

ot + s,w) = @(t,0;w) o p(s,w), Vi, s R,



(see [2]). Now denote by TZ(R™) = 1@ R™ @ (R™ ® R™) the set with the tensor product
(Lg" ") ® (LA 1Y) = (Lg' +hl gt @bl +g° +17), Veg=(1,¢"9") 0= (11" € T{(R™).

Then it can be shown that (TZ(R™), ®) is a topological group with unit element 1 = (1,0, 0).

For € (%, v), denote by COP~V¥ ([a, b], T2(R™)) the closure of C*°([a, b], T2(R™)) in CP~V2([a, b], TZ(R™)),
and by Cg* " (R, T?(R™)) the space of all z : R — R™ such that z|; € COP~v (I, T?(R™)) for

each compact interval I C R containing 0. Then Cg’p VR, T2(R™)) is equipped with the compact

open topology given by the p—variation norm, i.e the topology generated by the metric:

1
dP(X17X2) = Z 27(“)(1 - XQHp—var,[—k,kz] A 1)7
k>1

where the p—var norm is given in (2.6). As a result, it is separable and thus a Polish space.
Let us consider a stochastic process X defined on a probability space (2, F,P) with realizations in
(CoP ™V (R, T2(R™)), F). Assume further that X has stationary increments. Assign

Q= COPT(R, THR™))

and equip with the Borel o— algebra F and let P be the law of X. Denote by @ the Wiener-type
shift

(Qw). = wit @wir., VE € R,w € COPT™ (R, TE(R™)), (3.1)
and define the so-called diagonal process X : R x Q — TZ(R™), X;(w) = w; for all t € R,w € Q. Due
to the stationarity of X, it can be proved that € is invariant under P, then forming a continuous
(and thus measurable) dynamical system on (2, F,P) [3, Theorem 5]. Moreover, X forms a p—
rough path cocycle, namely, X.(w) € Cg’p VR, TZ(R™)) for every w € €, which satisfies the cocyle

relation:
Xt+s(w) = Xs(w) ® Xt(esw)avw € Q,t, RS Ra

in the sense that X s1r = X¢(fsw) with the increment notation X st := X;! ® Xgyp. It is
important to note that the two-parameter flow property

X57u & Xuﬂg = X57t,vs7t eR

is equivalent to the fact that X;(w) = (1,z¢(w),Xo+(w)), where z.(w) : R = R™ and X .(w) :
I xI — R™®@R"™ are random funtions satisfying Chen’s relation relation (2.4). To fulfill the Holder
continuity of almost all realizations, assume further that for any given 7' > 0, there exists a constant
Cr,, such that

E(|Jesall” + 1X,417) < Crylt = s, Vs,t € [0,T]. (3.2)

Then due to the Kolmogorov criterion for rough paths [12, Appendix A.3], for any S € (%, v) there

exists a version of w—wise (z,X) and random variables Kg € LP, Kz € Lg, such that, w—wise
speaking, for all s,t € I,

||$S7t|| < Koé‘t - 3|/Bv HXS,tH < K5|t - S|25,V8,t eR

so that (z,X) € CP. Moreover, we could choose 3 such that

. Tst|

reC%(I):={zeC’:lim sup |, =0},
0=0<t—s<s |t — [P

sl

X e OOV (A1) = (X e C¥(AND) : fim sup 7= = 0},

—00<t—s<s



then C%8(I) ¢ C%A(I)@C%?8(A2(I)) is separable due to the separability of C%#(I) and C%2%(A%(T)).
In particular, due to the fact that || X.(0pw)ll,_yar sy = 1X-(@)ll,—var s1n,t4n) it follows from
Birkhorff ergodic theorem and (3.2) that

Dx,p) = limsup EJMkwpm[MJ ~ (BIX OB p1y)” =TG)  (33)

for almost all realizations x; of the form X;(w). We assume additionally that (2, F,P,0) is ergodic.

Remark 3.1 It is important to note that, due to [3, Corollary 9], this construction is possible
for X : R — R™ to be a continuous, centered Gaussian process with stationary increments and
independent components, satisfying: there exists for any T" > 0 a constant Cr such that for all
p>1

E||X; — Xs||P < Cplt —sP¥, Vs, t €]0,T]. (3.4)
By Kolmogorov theorem, for any 8 € (%, v) and any interval [0, 7] almost all realization of X will be
in C%([0,T]). Then X has its covariance function with finite 2-dimensional p—variation on every
square [s,t]? € R? for some p € [1,2)], and X is the natural lift of X, in the sense of Friz-Victoir
[12, Chapter 15], with sample paths in the space C8’57HOI(R, T2(R™)), for every p > 2p.
For instance, such a stochastic process X, in particular, can be a m— dimensional fractional Brow-
nian motion B¥ with independent components [20] and Hurst exponent H € (1, 1), i.e. a family
of BH = {B}'};cr with continuous sample paths and

1
E[BIBH] = 7(t2H 2 s\zH)Imxm,w, s € Ry

2

For any fixed interval [0,T], the covariance of increments of fractional Brownian motions R :
[0, T)* — R™*™ defined by

R( K t ); E(BHBY,)

tl
is of finite p— variation norm for p = ﬁ, i.e.
s t\|°P\r
Rl ={ s S [rv( 5, )} <
H([)»HI(II) [S,t}GI,[S’,t’}EI’

and )
HRH[s,t]Z,p < Mp7T’t — s];,Vt,s c [O,T].

Then one can prove that the integral in L?— sense

X%] = lim XZ AX) = lim Y X! X] Vs,t€[0,T]
|TI|—0 |1'[|—>0 wa]el

is well-defined regardless of the chosen partition II of [s,t]. Moreover,
1 .
X5r = §(X§,t)2v Xoh+ ijt = X..X] b
and for % <v< ﬁ = H, there exist constants C(p, p,m,T),C(p, p,m,T,v) > 0 such that

B[Ix, Op. p.m. Tt — 5% = Clp. o, Tt — P, Vst € [0,7]

+ Xl

IN

A

< Clp,p,m,T,v)M?. (3.5)

B IXIE + X1, |

Therefore, almost sure all realizations x = (X,X) belong to the set C#([0,T]) and satisfy Chen’s
relation (2.4).
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We reformulate a result from [3, Theorem 21] for our situation as follows.

Proposition 3.2 Let (0, F,P,0) be a measurable metric dynamical system and let X : R x Q —
TZ(R™) be a p- rough cocycle for some 2 < p < 3. Then there exists a unique continuous random
dynamical system @ over (0, F,IP,0) which solves the rough differential equation

dy = [Aye + f(ye)]dt + g(y)dXi(w), t > 0. (3.6)

3.2 Existence of pullback attractors

Given a random dynamical system ¢ on R? we follow [6], [2, Chapter 9] to present the notion of
random pullback attractor. Recall that a set M = {M(w)}weq a random set, if w — d(z|M(w))
is F-measurable for each z € R? where d(E|F) = sup{inf{d(z,y)ly € F}|x € E} for E, F are
nonempty subset of R% and d(z|E) = d({z}|E). An universe D is a family of random sets which
is closed w.r.t. inclusions (i.e. if D1 € D and Dg - D1 then Dg € D). In our setting, we define
the universe D to be a famlly of random sets D(w) which is tempered (see e.g. [2, pp. 164, 386]),
namely D(w) belongs to the ball B(0, p(w)) for all w € 2 where the radius p(w) > 0 is a tempered
random varible, i.e.

lim - log p(fiw) = 0. (3.7)

t—4oo t

An invariant random compact set A € D is called a pullback random attractor in D, if A attracts
any closed random set D € D in the pullback sense, i.e.

Jim d(p(t.0-160) D{6-) | A(w)) = 0. (33

The existence of a random pullback attractor follows from the existence of a random pullback
absorbing set (see [6, Theorem 3]). A random set B € D is called pullback absorbing in a universe
D if B absorbs all sets in D, i.e. for any D € D, there exists a time ¢ty = to(w, D) such that

o(t,0_w)D(0_w) C B(w), for all t > t,. (3.9)

Given a universe D and a random compact pullback absorbing set B € D, there exists a unique
random pullback attractor (which is then a weak attractor) in D, given by

A(W) = OSZOUtZSQO(t,G,tw)B(G,t(JJ). (310)

We need the following auxiliary results.

Proposition 3.3 Assume that A has all eigenvalues of negative real parts. Then there exist con-
stant Cy > 1, 4 > 0 such that

1P[lofap < Cae 4%, (3.11)
1@lp—varap) < [AICAe(b—a), VO<a<b, (3.12)

where ®(t) = et
Proof: See the proof in [10, Proposition 3.2]. O

Proposition 3.4 Given (3.11) and (3.12), the following estimate holds: for any 0 < a <b<c

| [ ot~ st

< Calt+GolANb = )] (Cy el gy + C2 1K1 o))

+2C,Cae I C2 IR ue oy V Co 15 var sy 195 Rl o
(3.13)
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Proof: Since
B~ )gly) — (e — 5)g(ys) = [Ble — 1) — B(c — 9)glu) + @(c — ) (lgw)ls @ 00 + R
it follows that

[@(c—)g(y)]s = @(c—s)[g(y)]s = (c — 5)Dg(ys)g(ys),
| RO < oe - ) RID |+ @(c — £) - B(c - 5)l lg(wo)l,

IN

which yields
I =90l vargasy < 26518 = Vloo oty IWhy—sar oy + €5 190 = Mp—sar o
p—var,[a,b]
(e )| || 22| + Clle(e =)y o

q—var,|a,b]

Mgb(c—-)g(y.) ‘H

IN

qfvar,[a,b}

Using (4.2) and (3.11), (3.12), we can now estimate

b
/ B(c— 5)g(ys)dz,

< 1®(c—a)g(ya)lllzapll + [®(c = )g(y)]allIXapl]
e M ] TR . MY [CICRYION) ([ M-
< CaCye ™M all, oy oy + CaChe 4D XNy e oy
O KT, e o1 [2CACZE D gl 0y + CaC2 A€ (b = )
+Cp I2lly oy { CAColl Alle ™4 (b — )
+04e D (Cy IR, ety + 52 1y Wy oy )
< Call + GllANb - @™, i €5 Pl )
G, Cae D[22 1K, g + 2O ot | ¥ Co Dol van g} 10 Bl
which, together proves (3.13).
The following lemma is the crucial technique of this paper. :
Lemma 3.5 Assume that y; satisfies
yr = ®(t)yo + /Ot O(t —s)f(ys)ds + /Ot O(t —s)g(ys)dxs, Vt>0. (3.14)
Then for any r > 0 given and n > 0,
lonlleC+= < Callyll + 5= IO (2450 1) (3.15)
N Z”: AT oAa—Ly)kr [m(x, AF) + r2(, AR [y, Rllp o ar } Ve AT
where A} := [kr, (k+1)r], Ly := CaCy and
ki o) = Call + ColANG = ) (Cy oy + C I o) (316
ra(x,[08]) = 2C,Ca{ C2 1K varfay V Co I¥lyvar o) |- (3.17)
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Proof: First, for any t € [nr, (n+1)r), it follows from (3.11) and the global Lipschitz continuity
of f that

ol < 19wl + [ 196 =) 5w)lds + | [ 0= (),

IN

. t
Cae™ Nl + | Cae™ ) (Gl + 15O )as + | [ 002 = au)aa,

IN

C t
Cae ol + SISO = €4+ 6+ CaCy [ 40y,
0

where f3; := H fot ®(t — 5)g(ys)dzs||. Multiplying both sides with e*4? yields

Ca t

lyelle** < Callyoll + Ellf(O)ll(eAAt — 1)+ Bt + CACf/O M lys | ds.

By applying the continuous Gronwall lemma 4.1, we obtain
Aat CA Aat Aat
lyelle™™ < Callyoll + THIF O+ = 1) + Bre
! Ls(t—s) Ca Aas Aas
+ [ Lt [Calloll + STIFO)(7 — 1) + o] ds
0
Multiplying both sides with e st yields
_ _ Ca _

lelle®4=50 < Caluolle™ "+ S FO) (X475 —eht) 4 geato)

t
L.s C s s
+ [ L [CA”?JOH+T\AHf(0)H(€/\A 1)+ B ds
0 A

IN

t
Callwll + 5L L AO (0 = 1) 4 a0 4 [ ca-ra
(3.18)

Next, observe from (3.13) that for all s <t

S

ﬁse(AA*Lf)S = eMa—Ly)s (s —u)g(yu)dry

0

)\A Lf Z H/ S—’LL yu dl’u

L;J*l
ePamL)s N7 MR [ (6, AL) a3, AF) s Bl v, |
k=0
e ED [ (3, [ 2, 8]) + a6, L L D Y Rllp v 2.
) g ) P » HUllp—var,[r[ 2],s]
2]
D BN | (3¢, AL + (6, AR) Uy Bl |
k=0

IN

(s — u)g(yu)dzy

rls/ TJ

IN

IN

17]
A N p(Aa—Ly)kr ,—Ly(s—kr) [m(x, AL) + ra(x, AL) [y, Rmp—var,A; } . (3.19)
k=0

IN
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Replacing (3.19) into (3.18) yields

HytHeW‘L”t
< Callwll + 5 ISO] (P20 —1)
L Z SO L Ly (k) [m(x, AL) + (% AR [y, Rllyar ar }
Lehar Ze Aa—Ly)kr o—Lg(s— kr)[ 1(x, AY) + ka(x, A}) |||g,/,11?|Hp_%mA2 }ds
0 k= 0
< Callyoll + —7- Hf( [Pt —1
S AllYo
n t
+emzem_mkr {,ﬂ(x, A}) + ra(x, A}) |||y,Ry||p_Var7Aﬂ(e—w_m) + / L fe_Lf@_kr)dS)
k=0 kr
S AllYo
< Callwoll + 3 —7- Hf( [Pt —1
+ Z eAAre(AA—Lf)kr [/{1 (X, AZ) + KQ(X, AZ) |||y, R’”p_var,Az } ’ (3.20)

where we use the fact that e~ Lr(t=hr) 4 fkfr Lfe_Lf(S_k’”)ds =1 for all t > kr. The continuity of y
at t = (n+ 1)r then proves (3.15).

0
We need one more auxiliary proposition.
Proposition 3.6 Define
p—1
Glx[ab]) = SO Dny(x, 0, BN, (%), (3:21)
H(x, [a,b]) = eAAr{CAWO)J(e "D 4 fasb])
£ O)]l ALb—a) 7
i3 (%, [a,5]) . +Cp) N (3}, (3.22)
and
bx) =3 e H (O 1x, | H [1+G (0%, [—1,1])} (3.23)
k=1 j=1

(which can be infinity), where X\ := Ay — CaCfy, K1, k2 are given by (3.16), (3.17). Assume further
that

- 1
A> G o= 5(JAeM+8L{ [4cpcgr(p)]p + [16,6,0 ()| }. (3.24)
Then b(x) is finite and tempered a.s., i.e.
1
t_lgmoo —log b(6:x) = 0. (3.25)

Proof: Assign A = [k, k + 1] and Ni(x) := Na, (x). Observe from (2.10) that

p—1 p—1

N ) S (THUCCP I s, ) T S 14+ BCC T I,

2p—1 2p—1

NP (x) = (1+[40p0] I ) Pt (1+[4cc]zp 2 )

p—var,Ay

p—var,Ag

14



In addition, it follows from (3.24) that 2C,I'(p) < 2C,CyI'(p) < 1. As a result, a direct computation
shows that
1 —a
G(x,[a,b]) < §CA6/\A+4L(b ){401)09 lIIl s [4CpCy)? H’X”’i,mr,[a,b} }{Cg mx‘”pfvar,[a,b] Vv 1}'
(3.26)

Due to the inequality log(1 + ﬁ(u +uP)(uV 1)) < v(u+uP) for all u>0,v > 1, (3.26) yields

p—var,[a,b

1
log (1+ Glx,[-1,1))) < 5Cae* 4G, Cy Il a1y + GOl IXIE_ 11y |-

It follows that for a.s. all x,

n—1 n—1

1 1
lim sup — log H [1 +G(0_kx,[—1, 1])] = limsup — Z log [1 + G(Okx, [-1, 1])}
n—soo MN 0 n—oo M 5—0
1 1 n—1 1 n—1
< SCa T limsup — 3 10 x limsup = 3 [|o_ }
< 5Cac im sup ’;0 16—kl 1,1y + Lim sup kZ:O 101l v, 1,1y
1

< cAeMSL{ [4cpcgr(p)]p + [4cpcgr(p)}} e

2
Similarly, it is easy to show from (3.22) and (3.16), (3.17) that E|log H(x,[—1,1])| < oo, thus
lim sup log H(6rx, [~1, 1)) = limsup log H(0—nx, [—1,1])

n—00 n n—00 n

=0.

Hence, there exists for each 0 < 2§ < A — G an no = ng(0, ) such that for all n > ny,

n—1 n—1

(=06 < H [1 + G(O_px, [-1, 1])}7 H [1 +GOx, [-1,1])| < o(8+G)n
k=0 k=0
and
e M < HO_px,[-1,1]), H(0,x,[-1,1]) < ™.
Consequently,
no—1 k—1 oo )
bx) < 3 e MHO x, [-1,1)) (1 + MiCyG(0jx, [—1, 1])) + 3 e 2Ok
k=1 j=1 ja—,
= Ak M e—(A—=26—C)no
< Y M HEO -1 ) T (14 MGG o-x,[-1,1) + e
k=1 j=1 —

which is finite. The proof on the temperedness of b(x) is proved similarly to [10, Appendix].

We are now able to formulate the first main result of the paper.

Theorem 3.7 Assume that A has all eigenvalues of negative real parts with A4 satisfying (3.11)
and (3.12), and f is globally Lipschitz continuous such that Ay > CyCa. Assume further that the
driving path x satisfies (3.3). Then under the condition

1
Ay — CaCy > 50,4&“8("14“””{ [4Cpcgr(p)}p + [4cpcgr(p)] } (3.27)
1
where T'(p) = (E ||\Z||\£_Var7[_171] ) ¥, the random dynamical system o possesses a pullback attractor

A(x).
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Proof: Using the rule of integration by parts for rough integrals, it is easy to prove that
satisfies

t t
w= Bl + [ 0= s)fw)ds + [ @t - )glpda, (3.28)
0 0
Then by applying Proposition 3.5 and using the estimate in (2.15)

o £ (O]
Iy, Rlly—var a,, < lurlle™ N " (x) + +
p—var,Ap k ( L Cp)

-1
4Lfv p (X%

where Nj(x) := Na,(z), we obtain

C 0
Il < Calll + (& — A0
“ it I£(0) 2wt
—i—e)‘AZe’\k{m(x,Ak)+n2(x,Ak)Mkae4LNk” (x)+( I +5)64LN,€P (x)}}
k=0 p
CallfO)|l(e* p-t
< Calol + CAL O = DS ”“+Ze o, AN, (60
k=0
£ )] ~
Aar Ak 4L p
+eMA kzoe {m(x,Ak)—i—m(x,Ak)( T —i—Cp) N (x)}
n—1
< Callwoll + ) ralx, Ag)e w7 (e el (3.29)
k=0
n—I1
Call ()]l (e* = 1) IF ) | 1
Aar Ak L\ 4L AT
+e kzoe { 3 +m1(x,Ak)+ﬁ2(x,Ak)< 7 —|—Cp)e N, (x)}

By assigning a := Callyoll, ux := ||yxlle**, k > 0 and using (3.21), (3.22), we obtain

n—1 n—1
up, < a+ Z Gz, Ap)u + Z N H (2, Ay). (3.30)
k=0 k=0

We are now in the position to apply Lemma 4.2, so that

n—1 n—1 n—1
lyn (e 90)1| < Callyolle™ TT [14G (O, [0.1) |+ 3" e XD H (@, [0,1)) [ [1+6G(0;2,0.1)].
k=0 k=0 j=k+1
(3.31)
Now using (2.15), it follows that for any ¢ € [n,n + 1]
£ (0)] AL
e yo)ll < [lnCemo)ll+ (R + Cp)Nn<x>]e
< Cue|yolle H [1+G (01, 0, 1])} (3.32)
T If©O) 1
~X(n—k) AL . AL —
+kzzoe A H (0, [0, 1])j:1;[+1 [Hc;(ejx, 0, 1])] te ( T Cp)Nn(x).

Consequently, by assigning x with 6_,x in (3.32), we obtain

|ye(0—¢x, yo(0—¢x))
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n—1

< Cacolle™ T |1+ G(r—x. [0, 1))]
k=0
S B o1 TT 1w o s io.10] o et (JEOU 1y
+Ze € ( k,tx,[ ) ]) H |: + ( ]—tx7[ ’ ]):| +e (L+q3> n( —tx)
k=0 j=k+1
n—1
AL, (|o—An a(IFO 1
< Cacllyoe ]}‘[(][1+G(9knx,[—1,1])}+e <L+C’p)N[1’1](X)
n—1 n—1
+Y e R H (0 ox, [-1,1) ] [1 + G0j_nx, [~1, 1])] (3.33)
k=0 j=k+1

We are now in the position to apply Proposition 3.6 into (3.33) so that for ¢ € A, with 0 < 0 <
$(A = G) and n large enough

I @-all < Cacttln(o-o)exp { - (3= & =o)n} e (LR 4 Z)n1 0

n n—1
S et o T [+ 0w 1)
k=1 J=k+1
< Cactt (0 exp {- (A~ G =) n} 0+ (L2 c,,)N[ ),

(3.34)

where b(x) is given by (3.23). This implies that, starting from any point yo(6_;x) € D(6_;x) which
is tempered due to (3.7), there exists n large enough such that for ¢ € [n,n + 1]

0 1 .
- )] < 14060+ e (L4 2y 60 =50, (559
L Cp
Moreover, the temperedness of b(x) follows directly from the temperedness (3.25) of b(x) and of
I%ll,—var,—1,1-  Therefore, there exists a compact absorbing set B(x) = B(0,b(x)) and thus a
pullback attractor A(x) for system (1.1) which is given by (3.10). O

Remark 3.8 (i), Assume that f(0) = g(0) = 0 so that y = 0 is a solution of (1.1). Then (3.27) in
Theorem 3.7 is the exponential stability criterion for the trivial attractor A(x) = 0.

(i) It is important to note that the term e*8UI4I+C) in (3.27) is the unavoidable effect from
the discretization scheme.

(iii), A similar proof of Theorem 3.7 using step size r with Ay = [kr, (k + 1)7] then leads to a
criterion for the existence of a global random pullback attractor

{AA+8WA”+CfﬂT{[

1
A= CaCy > 3-Cae 4C,C,T(p, r)}p + [46,6,0 (0,1 } (3.36)

1

where I'(p, r) = (E [V —— . ) ? for almost sure all realizations z. As a result, the final criterion

p—var,|
can be optimized to

[AA+8<HAH+cf>} . { [

A= CaCy > inf = CA 4cpcgr(p,r)]p n [4Cpcgr(p,r)} }
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In the following, we are going to prove that the diameter of the random attractor can be
controlled by parameter Cy. We first introduce a quantity.

Proposition 3.9 Assume that x satisfies (3.3). Then under criterion (3.27), the following quantity
1s well defined and finite

£(x) = et Z ( |||'9—kx‘”p—var,[0,1] + ’”0—kX|”;27—var,[0,1] ) X
k=1
“\n— f 0 1 ~ p—1
xe M k){maX{H(L)”ycp}N[O,l](ekx>+b(‘9kx)}N[0,1](6kX) v (3.37)

—1
Proof:  Observe that the existence of I'(x, p) implies the temperedness of N 11(x), N 1] (x)pT

and [Ix||,_ar 0,1 + H|x|||12)_var,[071]. The convergence of the series in (3.37) can then be proved similarly
to the convergence of b(x) in Proposition 3.6. O

Theorem 3.10 Under the assumptions of Theorem 3.7, the diameter of A is estimated as
diam(A(x)) < 2C,Ca(1+ [|A])(Cy V CFE(x) (3.38)
where £(x) is given in (3.37).

Proof: 'The existence of the pullback attractor A is followed by Theorem 3.7. Take any two
points aj, a2 € A(x). For a given n € N, assign «* := 6_,,x and consider the equation

dyy = [Aye + f(ye)]dt + g(yi)dxy. (3.39)

Due to the invariance of A under the flow, there exist by, b € A(z*) such that a; = y,(z*,b;). Put
2zt = z¢(x*) = ye(x*,b1) — ye(a*, b) then z,(z*) = a1 — az and we have

dzy = [Az + P(t, z)]dt + Q(t, z¢)dxf (3.40)
where we write in short y} = y;(x*,b1) and

Pt,z) = f(y(t,z*, b)) — fylt,z*, b)) = flyr +2) — F(y1),
Qt,z) = gyt,z*,b2)) — gly(t, ™, b)) = g(yt +2) — gy} ).

Observe that
I1P(t,2) — P(t,2)|| < Crllz = 2|, |Q(E, 2) — Q(t, 2)|| < Cyllz — 2]
and P(t,0) = Q(t,0) = 0. Consequently,
1P, ze) || < Crllzell,  [1QE z) [l < Cyll2¢l-

Using the rule of integration by parts for rough integrals, it is easy to see that z; satisfies the
equation

t t
2zt = 2 + / O(t — s)P(s, 25)ds + / O(t — 5)Q(s, z5)dxy.
On the other hand, a direct computation shows that
[@(c—)QC,2)s = @(c— )9y, — 2lc—s)lg(y")],

= ®(c—s)Dg(y)g(yl) — ®(c — 5)Dg(y?)g(y?)

|REE9CH < ate— )R + lo(e — 1) — @(c = 9lIQ )| (3:41)

IN
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which yields

ot~ 9QC N My oy < 202020~ oo ot (19 —vnn o+ 12 )
—I—20§ |8 (c — ')mp—var,[a,b]

@(c—)Q(2.) _ g(y") 9(y°)
H‘R g—var,a,b] H(I)(C b)H ( H’R g—var,|a,b] + H)R ‘q—var,[a,b] )
+209 m‘I’(C - ')’”qfvar,[a,b] (342)
As a result, we use similar estimate to Proposition 3.4 to obtain
H / (c— $)Q(s, zs)dxs
< 1®(c = a)Qa, za) | 12l var,a,p) + I[P = )R 2)]all 1K g var, a
P(c—)Q _.
+CP{ |Hx|||p—var,[(z,b] ’HR q—var,a,b] + H’qu—var,[a,b] H‘ C Hlp—var,[a,b] }
< Cae D (O Lol oy + 202 1K g ) 2
+CACH AN — )e 2D (Cy el v gy + C2 1Kl vty )
A (e— 1
+CypCae D[22 UKD,y oy + 5O Iy | ¥ Co Dl } %
LR e ¢
% ( H‘y 7R prvar,[a,b] + ‘ y ’R p—var,[a,b] ) (3 3)

Now, repeating the estimate in the proof of Theorem 3.7 with 8 = || fotq)(t — 5)Q(s, zs)dx¥|| we
obtain

t
Ml < Callall + 57 + Ly [ (Callall + 4557 ) eI
0
and then
t
Mzl < Callzoll + 6 + Ly / e Brds (3.44)
0

Similarly to (3.19) we have

t
i = | [ e - 9w
0

Lt)
< MY A+ IAD(Co I T, + C2I ara )€1
k=0
1 2
x (il + gl + |, | + || B ). (3.45)
p—var,Ay p—var, Ay
Therefore the similar estimate to (3.20) in Lemma 3.5 shows that
Lt)
A *
Mzl < Callzoll + CoCal+ AN Y (Cg 13l —vae. G I Iy Ak) X
k=0
(k) + gl + |, 5| o 98 (3.46)
p—var,Ay p—var,Ay

19



Since b; € A(x*) for i = 1,2, it follows from the invariance of A that v'(k,x* b;) € A(0rx*).
Moreover, it follows from (3.10) and (3.35) that

sup [yl < b(x). (3.47)
yEA(x)

Indeed, taking y* € A(x) be arbitrary, it follows from (3.10) that there exists a sequence tj — 0o
such that

y" = limp(tk, 0-4,%, yo(0-1,.x))

where yo(0_+,x) € B(6_¢,x). Since b(x) is tempered, by choosing #; large enough so that (3.35)
holds, we conclude that (3.47) holds. As a consequence, (3.47) yields llyt(k, x*,b1)|| < b(Opx*).
Similarly, ||zo]| < ||b1]] + [|b2|| < 2b(x*). On the other hand, due to (2.16) and (3.46) yields

n—1
lnll < 2Cabx)e™ +26,Ca(1 + 141Gy V ) 3 (I Nymvars, + I vars, )¢
k=0
1fO) 1 o L irn osy] AL =
X | max v — ¢Na, (X*) + b(0px™) | e Na, (X*)
[ { L cp} ; } ‘
< 204b(0-px)e ™ +2C,Ca(L+ [A]N(Cy v C2) Y ( 10—l — v 0.1y + WX o1 ) “
k=1
—-A(n—k Hf(O)H 1 7 4l p=1
e\ >[max{ . ,C,p}N[O’l](Q_kx)—i—b(O_kx)]e Nig.1)(6_1%)"7 . (3.48)

Letting n tend to infinity, the first term in the last line of (3.48) tends to zero due to the temperedness
of b(x). Hence it follows from (3.37) in Proposition 3.9 that

la = az| < 2C,CA(1 + [JAIN(Cy v C3)E(x)

which proves (3.38).
[
In the rest of the paper, we are going to prove the result on one-point attractor in case g is of
linear form, as proved in [10] for Young equations.

Theorem 3.11 Assume that g(y) = Cy is a linear map. Then under the condition
_ Aat4(|AlI+Cy) P
Aa = CaCy > 2041 + [|A]l]e AG|[CIIT ()| + [4GICIT®)| (3.49)

the attractor is a random point, i.e. A(x) = {a(x)}.

Proof: 'With the setting in the proof of Theorem 3.10 for g(y) = Cy, observe that Q(t, z;) = Cz
and

l1@(c =IOV, e < 120 = MooiatICI Nl var oy + 12 = My var oy 1C12 D2l o
|| reme= 19(¢ ~ Yooy o IO IRy —vae g + 12 = My fary 12l oot

A

IN

q—var,[a,b]

As a result, the estimate in (3.43) is of the form

b
| [ et a2z
< (- a)Czl 12"

p—var,|a,b] + ||¢(C - a)C2ZU«H |||X*Wq—var7[a7b}
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+Cp{ ”’x* |||p7var,[a,b] H‘RQ(Ci.)CH‘q—var [a,b] + H‘X* ’”qfvar,[a,b} ‘H [(I)(C B C]/mp—var,[a,b] }
< CPCA[l + HAH(b - )] —Aale=b) (HCH mx H’p var,|a,b] + ”CH ”’X ’”p var,|a, b}) X
x(Izall + 12, BNy -aro ) (3.50)

Meanwhile, similar estimates to (2.24) in Theorem 2.4, with P(¢,0) = 0, show that

—1

Vo Bl oy + 70l < [zl etBO-00Nun GO N = (), with
Nag(x") < 1+ BGICIPIKIE_ oy

As a result, (3.46) has the form

n—1

A A *

zall < Callzoll + CpCall + [|A]Je* Y (IICII Il var, . + 1C17 I Varak) X
k=0

p-1
s eMAaNa, (x )NAi (x*) e 2|

n—1

Callzoll + Y Ia, (x)e |zl
k=0

IN

where

—1
Ia,) (%) = CpCall + | AN (IO 1l ar, 51 + ICI 1%y oy ) € F Mt (X)Napb (%)
[ ] [a,0]

is the function of x. Now applying the discrete Gronwall lemma, we obtain

n—1

Mzl < Callzoll TT [1+ T 0 (04-)]
k=0

Hence, it follows from Birkhorff’s ergodic theorem that

hmsup logHZnH < —)\—I—hmsup Zlog[1+l[0a](9 kx)}< )\—l—Elog[l—l—I[Ol]( )}
70 k=1

Given C), and a, it follows from the estimate of Njg j(x) and the inequalities

log(1+ue’) < wv4log(l+wu), Vu,v>0,
(2C), + 3)v

AT A+u" Hu+u?) < 2-awlu+ul), Yu>0,v>1,
P

log [1 +

that

A pl( )UICTHI +ICI1* Il
[a,b] p—var,|a,b] p—var,[a,b]

IN
5}
03
_|_
A
N
=
+
B
>
b
()

p—var,[0,1]
20, +3
1C,

IN
<)

|

{
ra(ac,ic))” 1l

{

Ca[l + ||A[|]era+4L [1+(4C (el Y ar [0,1]] x

2
% (ACICT Il —ar oy + [ACHICN] IXI2var oy ) } + @ (ACHICT) IXIE o
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p
< 2041+ AN L [ACICI KD var o) | + [ACICT 10 o) ]}

Therefore we finally obtain

. 1 p
limsup —loglz < —A+2Caft+ |4leM {46, CITR)] + 4G, lCI0E)]"} <0

n—oo

under the condition (3.49). This follows that lim,_, ||a1 — a2 = 0 or A is an one point set. O

4 Appendix
Lemma 4.1 (Continuous Gronwall Lemma) Assume that ug, o, 3 > 0 such that
t
ur < oy —l—/ Bugds,Vt > a.
a

Then .
up < oy —|—/ ﬁeﬁ(t_s)asds,w > a.
a

Proof: See [1, Lemma 6.1, p 89]. O

Lemma 4.2 (Discrete Gronwall Lemma) Let a be a non negative constant and wy,, o, By, be
nonnegative sequences satisfying

n—1 n—1
Uy < a—i—Zakuk—i—ZBk, Vn >1
k=0 k=0
then
n—1 n—1 n—1
un <max{a,uo} [JA+ar) +> B J[ L+ay) (4.1)
k=0 k=0  j=k+1
for all n > 1.
Proof: See [10, Appendix 4.2] O

Proof: [Proposition 2.1] The proof is divided into several steps.

Step 1: First we would like to estimate the solution norms of (2.4). To do that, observe that

e

|/ () du—g () —lo K| < ol Rl g 8] 1 a0 Nl

due to (2.7). It then follows that y is controlled by x with ' = g(y). Since
1
9(e) —9(ys) = / Dyg(ys + nys,t)ysedn
0
1 1
= Dy(ys)ys © st + / Dg(ys + nys.¢) R ydn + / [Dg(ys +nys,t) — Dg(ys)ys @ s,0dn),
0 0
it easy to show that [g(y)], = Dg(ys)g(ys), where we use (1.2) to estimate

1 1
IRYY) < /0 1Dg (s + nys.) | RY,[ldn + /O IDg(ys + nyst) — Dg(ys) g (ws) ||l s.lldn

IN

1
Coll B 4ll + 5.Cgllys el 5.l
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Hence, it follows, using p-variation norms and Hélder inequality, that

M@Vl e sy < 265 Wllp—sar s+ M@ llooyfs1 < €

1
H\Rg<y>(H < ColBango + 52 N0y 19y arfo (42)

q—var,[s,t]

As a result, by introducing |y, | = 1y o+ IR0y —us s e obtain

p—var,[s,t] -

ol < | [ oz,
< Ng@s)lllzsell + 11Dg(ys)g(ys) 1%l
e[ T POY Tl I . Y 710 —
< Oy lelly—var s + C2 1Kl gy, s
+C{ Cy el IRV + [3 )2 +2)X] e
P1~9 p—var,[s,t] g—var,[s,t] Tllp—var,[s,t] g—var,[s,t] ymp var,[s,t]
< Cyllyvar oy + C2 UK sy + 2Co] Co Xl oy ¥ C2 I sty § 0 Blly s

< 2{Cy Il var oy Y ORI oy } (1 + Co s Bllpvar )

which yields

UMy < 24 Colly v oV CEIRI ar oy } (14 Colys Bllyaro ) (43)
The same estimate for RY is actually included in the above estimate, hence
VRN, v o) < 2{ Co Wl oy ¥ C2 I oy (14 Co My Bllyvarpoy ). (44)
Combining (4.3) and (4.4) gives
|||y7 R”|p var,[s,t] < 4{0 |||X|||p var,[s,t] N 02 |||me var,[s,t] }(1 + CP |||y7 Rwlnfvar,[s,t] ) (45)
It implies from (45) that ”|yaRWpfvar,[s,t} < Cip whenever {Cg mepfvar,[s t] N 02 |||X|Hp var,[s,t] } <

sc; < 1, which yields

1
Xl = 56,6,

whenever

1
|||y7 R|Hp—var7[s7t} S Fp

By constructing the sequence of greedy times {Tk(m)}k@\] on interval [a,b], it follows from
induction that

1
lymeaall < Wylloo,tmemia) < WYllp—varfremn) < lymll + 0y, Bllp—var iy ) < Momcll +
p

1
< <yl +(k+1)?, Vk=0,...,Njgy(x)— 1

P
That means 1
1Ylloo 0t < 1Yall + @N[a,b](x) (4.6)
On the other hand, it then follows from inequality of p-variation seminorm in [8] that
o1 Nan(-t 1 21
I Pl SNy 09 3 10 Rl < Vol 00 (47)
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Step 2: Next, using (4.6) and (4.7) for any two solutions y:(x,y,) and :(x,y,) within the

bounded range & [ b] ( ), let us consider their difference z; = g — y;, which satisfies the integral
rough equation

—— / [9(5s) — 9(y)]dzs.

As a result, y, = g(ys), Js = 9(Js) and

9(Ut) — 9(ye) — 9(Fs) + 9(ys)

1
/ [Dg(ﬂs + 0s,t)¥st — Dglys + nys,t)ys,t} dn
0

| Dg(5)9(5s) = Dglys)g(ys)| @ 7 + /O " [Doti + i) R, — Doty + mn) R an

- ([Pt + i) — Dyl 905 — [ Dot + o) - D)) o)} © s
| Dg(5:)9(5:) = Dy(y)g ()| @ ot

+ /0 1 {Dg(ﬂs + NYs.t) (Ri?,t - R t> [Dg(ys +0Ys,t) = Dg(ys + nys,t)} Ri’,t}dn

+ /0 1 [Dg(z?s + NYs,t) — Dg(:t?s)] [g(ﬂs) - g(ys)] ® @s1dn

+ /01 [Dg(zis +0Ys,t) — Dg(ys) — Dg(ys + nys.) + Dg(ys)}g(ys) ® @5 pdn

| Dg(5:)9(5:) = Dy(y)g ()| © ot

+ /O 1 {Dg@s +ngs ) RYY + [Dg(ﬂs +nYs,t) — Dglys + nys,t)} R?,t}dn

+ " [Pt + i) — Do) [o() - 9(3)] @ s

/ / D?g(Gs + pmys,)n(Us, — yst)dudn) (ys) ® sy

2Cg||zs|\ and

/ 9(Fs + imyss) — D*g(ys + unys,t)nys,t} dudn)g(ys) ® Tt
This pI‘OVGS g) (y)} = Dg(Z/S) (Ys) — Dg(ys)g(ys> = Q(Us) — Q(Z/s) with ”Q(gs) - Q(yS)H <
1Q@) — QU llp—var s < CQ( 12l —var,s,6) T 12 lloo, 5,1 |||y|||p_var,[s,t])
<

262 (W2l s + 12 oo 5. 10— )

and moreover

H‘ RI®—9(v)

< Cg ”’Rzmqfvar,[st +CQH HOO

‘quvar,[s,t] mq var,[s,t]

1 _
5 C el fot [ Wy + 1200 (00— + 0l vargo )]

Using the fact that

sl < | [ ot ~ stuiar,
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< Cyllzs I

pae )+ 205 ]| I
+Cp{ Mlly s o) || 700

g—var,[s,t]

q—var,[s,t] + ’” |HQ7V31',[S,t} |H [g(g) - g(y)]lmp—var’[&ﬂ }7

we can now estimate

ol snegon < 2{Colxly vungog ¥ C2 X sunog } %
el [+ Co1 Bl oy + 19 Blly 5] + Co 12 Blly o}
20 { Cy 1Kl var oy ¥ C2IXI2 vy }
X (1418 Bllpvar o) + 19 Blly—var gy ) (12611 + 12 Rl v )-
The similar estimate for || R?[|,_,, [ is already included in the above computation. Therefore by
combining with (4.7), we obtain
Iz, Bl p—var 5.1

AC{ Co Il —var oy ¥ C2IRI sy }

x(1+ 15 Rllp v, oy + 185 Blly o )(||st 12 Bl o)

(5]
2p—1
(e 1 Sy L (s ) [ (Y E S My

8CpCy°

IN

IN

which follows that
2p—1

< lzs]l - whenever 8C,Cy(1+ CN;C 101 O Il v oy < 1
p

(B

p—var,[s,t]

Therefore, (2.12) is followed directly from the usage of greedy times (2.13), which is similar to (4.6)
and (4.7). O
Proof: [Proposition 2.2] The proof is divided into several steps.

Step 1: First, for a fixed solution y(x,y,) on a given interval [a,b], we need to prove the
existence and uniqueness of the solution of the linearized rough differential equation (2.14), which
has the time dependent coefficient 3; := Dg(y;). To do that, we simply follow Gubinelli’s method
by considering the Ito-Lyons map H; = &, + f(f Ys&sdxs on the set Da%ﬂ([a, b], €a, Xa€a) of controlled
paths & such that &, is fixed, & = X,&,. Note that 3; = Dg(y;) is also controlled by x with

1
Yot = / D?g(ys + nys.e)(9(ys) @ xsz + RY,)dn,
0

thus
S =D2(ys)g(ys), BRI < CgRY,

As a result ;& is also controlled by x with [X.£]) = 3¢ + X&) and

1 2
+5C;

s

IRE < 1Sl sall + NENETN + I3 NI

It then enable to estimate
HHs,t - Esfs & xs,t + [2{955 + Esfg} @ Xs,t“
t
= H / 2ué-udxu - Esgs ® Ts,t + [ngs + Esfg] ®X s

+0s(t = " (Wl o || R, + 1% oy NIBET )

28,[s,t]
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where

I=ellly < 1% loo Bells + 115l 5 I€loo + I Hoo 1€/ 5 + HZHs 1€ oo
£ by 3 :
Im=e]l,, < 120 behs + =5 el + 12l | B[] with
IEn < gl + =) 1€, < ISlocliéall + (¢ = @) 1€ €l
l6ls < €l bally + (= a)? | REJ|, < 2o Bels ol + (Hally v 1) ¢ = 0)” JlE. €'l
leloe < Neall + (= ) Bels < Nall (14 Ilsolt = )7 izl ) + (= )% (Wally v 1) €€ ly5 -

A direct computation then shows that

lEellly < {18l + ¢ = @ ISl + 15 oot = @) (lally v 1) + |21l ¢ = )2 (U2l v D} |
LISl 1800 + 1 oo IS loo s + 1571 (1+ 18l (¢ — @) Bl ) lEal

7<), < {1l + 1Sl (¢ = @) (ally v 1) + 1Ry ¢ — @) (Uil v D} lle-€

{25 1loo s + 1B 5 (1 + 12 loo(t = 0)° Nalls ) il

&€l

A

Hence

127l

IN

(1ol oo + 12 s l1'llo0 ) 1Kl + Ot = 0 (el | B> | + 105 2] )
1l HENs + U2l ¢l

{10t = @) (Uzlly v 1) + ISl5 (¢ = )zl v D} |
+{IBIZ Nals + IS0 [1+ 120t = @) oy | Plgall

Combining everything together, we have just showed that there exists constants

IN

(g P

IN

&€l

M1 = Ml(Z, [a, b], x,X), M2 = MQ(Z, [a, b], x,X)
such that

1+ 1R 5 < Mallgall + M (¢ = @) + llols + UKz | 11€€ Il

This implies that on every interval [t,tr11] of the greedy times

1

to = a,tp1 = inf{t > : My [(t = t)7 + Nallg o + 1Xllap ) = 53 AL

the Ito-Lyons map is a contraction from the set {Dzﬁ([a, b, €as Ba&a) 165 € N 1, < 2Ms|&, H}

ty1] =
into itself, hence there exists a unique solution of (2.14) on every interval [tg, tx+1]. The concatena-

tion of solutions on intervals [ty, tx+1] then proves the existence and uniqueness of the solution of
(2.14) on a, b].
Step 2: Denote by ®(t,x,z,) the solution matrix of the linearized system (2.14), then £ =

O(t,x,2q)(Za — 24) is the solution of (2.14) given initial point &, = Z, — z4. Assign 1 := Z; — 2z — &,
then r, = 0 and

t 1 t
Ty = / [/ D.g(zs +n(Zs — 25)) — D2g(2s) | (Zs — 2s)dndzs + / D.g(zs)rsdas,
a 0 a

t
= ea7t+/ D.g(zs)rsdxs, Yt € [a,b], (4.8)
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where .o
€at = / / [ng(zs +n(Zs — 2s)) — ng(ZS)] (Zs — zs)dndzs
a JO

and e is also controlled by x with e, = 0. We are going to estimate |[7||o 4,0 and |7, R|

p—var,[a,b]
through ¢l o 1€l var o) - 1Bl var o)+ First observe that
Tst = €st+ /t Dg(yu)rudz, = € @ x4 + RS, + /t Dg(yu)rud,,
: :
which yields r, = e, + Dg(ys)rs and
1Bl < 1B+ 1D @)y Ksell + Cp (el [| BP9 ||+ 1l Do)V, ). (49)

A direct computation shows that

| Pgtwir: = Dgtyor. = [D2w)gwers + Do(wrt] @ w.

1
1
| [ D%t + mues) R |+ 5 C2llalrallzecl + |1 Dot R
0

which yields [Dg(y)r], = D?g(ys)[g(ys), rs] + Dg(ys)r,, and
1 T
”Rst "I < ClIRY N7l oo + 5092”7“||oo\|ys7t||Hﬂ?s,tH + Cyll R il + Collys,tlll[rs.ll

[ oacor

1
L = Collrlloo 1171 + 5Calrlloe Iyl llzll, + Co IR, + Cy lull, Il -

Similarly, we can show that

1[Dg(y)r] I
ItDg(y)r!'|l,

Combining all the above estimates into (4.9), we obtain

1271, < CoCly Izl 1271,

Cylirlloe + Cyllr'lloo

<
< 22|l Iy, + C2 Il + Cy |1, + Collr'llo sl -

1
+rll, {203 IXll, + Cp llzl,, [Cg 1521, + 5Cq lll, Iyl + Co Wylllp} + Gy IX[l, (4¢3 Iy, + 203)}

1
sl {2C2 1K1, + Cy lall, [Cy IR, + 5C2 Il Iyl | +4C,C2 X1, }
IR+ Co X ll€'lloe + Cp 1K, (Cy [|€'[l,, + Co Iyl ll€'l0) =2 R,
and similarly
Irll, < lle'lle Nzl + Collrlloo 2l + B < Nl€'lloo 21, + Co I, (lrsll + Irll,) + B
Therefore, taking into account (4.7) we have just proved that there exists a constant

M = M(p, |a, b], ||| ) > 1

p—var,[a,b

such that

1 Bl argos < M(Colallymanon + C2 %N gvangosn ) (17l + 17 Bllp o)
M (1€ o o)+ 1€ oy + I N )
2M (Cy U%pvar o ¥ Co UKoy ) (s 7 Bl )

—|—M(||€ ||OO [(lb + {He H‘p var,[a,b] + |||Re”|q_"arv[avb] )’

IN
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which implies

|”7“ Rmp var,[s,t] = ”TSH + 2M(H€ HOO [ab + H}e }Hp var,[a,b] + H‘Rewq—van[a,b})

whenever 2M Cy [|x[|,_ap 5. < 1. Similar estimates to (4.6) and (4.7), using the sequence of greedy
times {Tk(m)}kg\;, lead to

HTHOO,[a,b] v mr? Rmpfvar,[s,t]

p—1 , , . (log2)N4MlC 7[a7b](x)
< N T {Irall+ 282 (1€ sogos] + 1l var oy + DR gsne o) o ;
(1+log2)N 1 ’[a’b](x)
< 2 (1 o) + 1 oy + Vg ) (410
where we use the fact that r, = 0.
Step 3: From (4.8), it follows that
1 1 1
¢ = / [Dg(ys +nzs) — Dg(ys))zsdn = / DQQ((l — un)ys + un.%) (25, zs|ndpdn = &,
0 0o Jo
is controlled by z. As a result |e4]| < $Cy||z||* thus
1
€looiers < 3Collel e (4.11)

IN

_ 2
‘Helmp—var,[a,b] Cg( |||y’”p—var,[a,b] \/ mymp—var,[a,b} ) ||Z||007[a7b] + 2Cg||z”oo7[a’7b] |||Z|||P—Varv[a:b] ’

On the other hand,

IRE < 1o %o ell + Co{ By var oy IR —vm oy + 0oy 1o )
thus [ RN, v ap) S 1€ ooufab) 1N —var oy
+Cp< |||x”|p—var,[a,b] H‘Ré}quvar,[a,b} + ”’qu—var,[a,b] mélulpfvar,[a,b} )’ (412)
where a direct computation shows that
11
& = / / {D3g((1 — 1n)ys + wms) (1 — pm)ys + ungl, 2s, 2]
o Jo

+2D%g ((1 — pn)ys + /mﬂs) 25, zs]}ndudn,
E,t - / / D 9 v y) Zt7 Zt] + D29(§7 y) ([287 Ri,t} + [ng&t, z./sxs,t + R;t] + [Rip Zt])

+[D29(§, Y)sst <[Zs + 24, 2, + Ri,ﬁ) }ndudn-
We therefore can show that there exists a generic constant « such that

1otV 12T ooy v I

g—var,[a,b]

2
< a(lzloofons + 12 Bllyvar oty + 12 loo a1 + 11l —var sy ) (4.13)

By replacing (4.11), (4.12), (4.13) into (4.10), and using (2.12), we derive that there exists a generic
constant such that

”Z](Xa ga) - y.(X, ya) - f-(X,Zja - ya)Hoo,[a,b} < CVHga - yaH2~

This, combined with the linearity of £ w.r.t. ¥, — Y4, shows the differentiability of y;(x,y,) w.r.t.
Ya-
[
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