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Abstract

We propose a quantitative direct method of proving the stability result for Gaussian rough
differential equations in the sense of Gubinelli [21]. Under the strongly dissipative assumption of
the drift coefficient function, we prove that the trivial solution of the system under small noise
is exponentially stable.

Keywords: stochastic differential equations (SDE), Young integral, rough path theory, rough
differential equations, exponential stability.

1 Introduction

The paper continues our study in the first part [11] to deal with the asymptotic stability criteria
for rough differential equations of the form

dyy = [Aye + f(ye)dt + g(ye)dxy, (1.1)

or in the integral form

e = o + / Ay + ()] du + / o()dz,,  te[a,T (1.2)

where the nonlinear part f : R — R? is globally Lipschitz function for simplicity and g =
(91,---,9m) is a collection of vector fields g; : R? — R? such that gj € Cg’(Rd,Rd). Equation
(1.1) can be viewed as a controlled differential equation driven by rough path x € C¥([a,T],R™)
for v € (,3), in the sense of Lyons [32], [33] where z can also be considered as an element of the
space CP~¥* ([a, T],R™) of finite p - variation norm, with pv > 1. For instance, given » € (3, 1], the
path z might be a realization of a R"-valued centered Gaussian process satisfying: there exists for
any T > 0 a constant C'r such that for all p > %

E||X; — X||P < Op|t — sP”, Vs, t € [0,T]. (1.3)

By Kolmogorov theorem, for any v € (0,7) and any interval [0, 7] almost all realization of X will
be in C¥([0,7]). Such a stochastic process, in particular, can be a fractional Brownian motion B
[34] with Hurst exponent H € (3, 3), i.e. a family of Bf = {B}!},cr with continuous sample paths
and

E|BE — BH|| = |t — s|?",vt,5 € R.

In this paper, we would like to approach system (1.1), where the second integral is well-understood
as rough integral in the sense of Gubinelli [21]. Such system satisfies the existence and uniqueness of
solution given initial conditions, see e.g. [21] or [14] for a version without drift coefficient function,
and [38] for a full version using p - variation norms.



To study the local stability, we impose conditions for matrices A € R%*¢ such that A is negative
definite, i.e. there exists a A > 0 such that

(y, Ay) < =dallyl*. (1.4)

The strong condition (1.4) is still able to cover interesting cases, for instance all diagonalizable
matrices with negative real part eigenvalues, under a linear transformation.

To study the local stability, we will assume that the nonlinear part f : R* — R? is locally Lipschitz
function such that

f0)=0 and |f(y)ll < llyllAlyl) (1.5)

where h : Rt — RT is an increasing function which is bounded above by a constant Cy. Our
assumption is somehow still global, but it has an advantage of being able to treat the local dynamics
as well. We refer to [18] and [20] for real local versions on a small neighborhood B(0, p) of the trivial
solution, using the cutoff technique.

In this paper, we also assume that g(0) = 0 and g € C} in case v € (3, 1) with bounded derivatives
Cy (which also include the Lipschit coefficient of the highest derivative). System (1.1) then admits
an equilibrium which is the trivial solution. Our main stability results are then formulated as
follows.

Theorem 1.1 (Stability for rough systems) Assume X.(w) is a centered Gaussian process with
stationary increments satisfying (1.3), and % >v>v> % is fized. Assume further that conditions
(1.4), (1.5) are satisfied, where Ay > h(0).Then there exists an € > 0 such that given Cy < €, and for
almost sure all realizations . = X.(w), the zero solution of (1.1) is locally exponentially stable. If
in addition Ay > C', then we can choose € so that the zero solution of (1.1) is globally exponentially
stable.

Our method motivates from the direct method of Lyapunov, which aims to estimate the norm growth
(or a Lyapunov-type function) of the solution in discrete intervals using the rough estimates for the
angular equation which is feasible thanks to the change of variable formula for rough integral defined
in the sense of Gubinelli. It is then sufficient to study the local and global exponential stablity of
the corresponding random differential inequality, which can be done with random norm techniques
in [1]. A necessary assumption is the integrability of solution, which is straightforward for Young
equations but difficult for the rough case under the Hélder norm. Fortunately, we are able to
build a modified version of greedy times in [4] for elements in the CP? space, which is a little more
regular than CP~Y?" by respecting also a small Holder regularity o. In addition, under the stronger
assumption that the rectangular increments of the covariance defined by

R( 5, ;/ ) = E(Xs,t ®Xs’,t’)

is of finite (g, o) - variation, we prove a similar result to [4, Theorem 6.3] on the main tail estimate
of the number of greedy time under the new (p,o) - norm. The integrability of the solution under
the new (p, o) - variation seminorm is then proved in Theorem 2.6.

We close the introduction part with a note that our method still works for the case v € (%, %]
with an extension of Gubinelli derivative to the second order, although the computation would be
rather complicated. Moreover, it could also be applied for proving the general case in which g is
unbounded, even though we then need to prove the existence and uniqueness theorem first. The
reader is referred to [31] and [8] for this approach, in which the differential equation is understood
in the sense of Davie [10].



2 Rough differential equations

We would like to give a brief introduction to Young integrals. Given any compact time interval
I C R, let C(I,R?) denote the space of all continuous paths y : I — R? equipped with sup
norm || - |leo.s given by ||yllco.s = supse; [|yell, where || - || is the Euclidean norm in R%. We write
Yst = Yy — Ys. For p > 1, denote by CP~V*"(I,R?) C C(I,R?) the space of all continuous path
y : I — R? which is of finite p-variation

n 1/1’
19 llpovars == | 50D Y et ) < o0, (2.1)
II(1) i—1

where the supremum is taken over the whole class of finite partition of I. CP~V' (I, R?) equipped
with the p—var norm

Wlpars = Ngimin ]+ 10, —ars

is a nonseparable Banach space [16, Theorem 5.25, p. 92]. Also for each 0 < o < 1, we denote by
c(I, Rd) the space of Holder continuous functions with exponent o on I equipped with the norm

(2
= |ly(a)|| + sup ———,
a,l ” ( )” sctel (t _ S)a

[Ylla.r := lymin 2]l + 1yl

A continuous map @ : A%(I) — R A%(]) := {(s,t) : min ] < s <t < max [} is called a control if
it is zero on the diagonal and superadditive, i.e. wW;; = 0 for all ¢ € I, and W, + Wy < Wy for all
s<u<tinl.

Now, consider y € C97V (I, L(R™,R%)) and x € CP~V¥ (I, R™) with 1% + % > 1, the Young integral

I ; Ytdxy can be defined as
Sd s li § ulu,v,
/Iy v IHllm—>0[ YuZu,

u,v]€Il

where the limit is taken on all the finite partition Il = {minl =ty < t; < --- < t,, = maxI} of
I with |II| := [m?xl_I |v — ul (see [39, p. 264-265]). This integral satisfies additive property by the

)

construction, and the so-called Young-Loeve estimate [16, Theorem 6.8, p. 116]

t
| [ o =] < K ) lne o Vel o
S
1,1
< K@a)lt— sl 0yl o Iol: s (2:2)
for all [s,t] C I, where
1_1
K(p.q):=(1-2"773) 7 (23

We also introduce the construction of the integral using rough paths for the case y,z € C?(I)
when g € (%, v). To do that, we need to introduce the concept of rough paths. Following [14], a
couple x = (z,X), with z € C(I,R™) and X € CSB(AQ(I),R’” @ R™) := {X: sup,, ‘!E’lgl,g < oo}
where the tensor product R” ® R™ can be indentified with the matrix space R"*", is called a rough
path if they satisfies Chen’s relation

Xt — KXoy — Xyt = Tyt @ T, Vminl < s <wu <t <max]. (2.4)

X is viewed as postulating the value of the quantity fst Tsr @dr, := X, where the right hand side is

taken as a definition for the left hand side. Denote by C#(I) c C# @ 022'3 the set of all rough paths
in I, then C? is a closed set but not a linear space, equipped with the rough path semi-norm

1
Il g := Bl g g + X025 po ) < oo (2.5)
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Let 3 >p>2,v > %. Throughout this paper, we will assume that z(w) : I — R™ and X(w) :
I x I — R™®R™ are random funtions that satisfy Chen’s relation relation (2.4) and

1

1 2
(Euxs,tup)" <Ot — s, and (E]]Xs¢H§)p <Ot — s Vst el (2.6)

for some constant C. Then, due to the Kolmogorov criterion for rough paths [16, Appendix A.3]
for all 8 € (%, v) there is a version of w—wise (z,X) and random variables Kg € LP Kz € L%, such
that, w—wise speaking, for all s,t € I,

||5Us,t|| < Kot - 5|Ba HXs,t < KB’t - 3‘%:

so that (x,X) € C#. Moreover, we could choose 3 such that

: Tt
reC%():={zecC’:lim sup H¥:0 ,
t 0-00<t—s<s [t — s|° J

st

X e COP(A%D) = (X e C¥(AD) : lim sup =55 =0},

—00<t—s<6

then COP(I) ¢ COP(I)@C 28 (A2(I)) is separable due to the separability of C%#(I) and C%2°(A2(I)).

2.1 Controlled rough paths

A path y € C8(I, L(R™,R%)) is then called to be controlled by x € CP(I,R™) if there exists a tube
(v, RY) with o/ € C8(I, L(R™, L(R™, R?))), RY € C*(A%(I), L(R™,R?)) such that
Yst = Yalst + Ry, Vmin/ < s <t < max]I.

y' is called Gubinelli derivative of y, which is uniquely defined as long as z € C?\ C?8 (see [14,
Proposition 6.4]). The space D2’ (I) of all the couple (y,y’) that is controlled by x will be a Banach
space equipped with the norm

2280 = |Ymingll + Woinrll + |99, 55, where

228, T my/|Hﬂ,1+|HRy|||2,3,I>

Ny, y'
ly. ']

where we omit the value space for simplicity of presentation. Now fix a rough path (z, W), then for
any (y,y') € D2 (I), it can be proved that the function F € C#(A2(I),R?) defined by

Fs,t = YsTsp + ygxs,t
belongs to the space

cy¥(r) = {Fecﬁ(AQ([))IFt,t =0 and

HFS,t - Fs,u - Fu,t”
|t — 5|38

I5F s, == sup < oo},

min [ <s<u<t<max I

Thanks to the sewing lemma [14, Lemma 4.2], the integral fst Yudx, can be defined as

t
/ yudxu = lim [yuxu,v + y;Xu,U]
s



where the limit is taken on all the finite partition II of I with |II| := max |v — u| (see [21]).

U,V
Moreover, there exists a constant Cg = Cg ;) > 1 with |I| := max I — min I, such that

| < Calt— s ( Iz

t
| / Yudo — Yty + 9 X 05 WBV sz + 18 N oy X n2gsg ) (27)

From now on, if no other emphasis, we will simply write ||z ; or ||X[|,5 without addressing the

domain in I or A%(I). In particular, for any f € C} (RY,R%) we get the formula for integration by
composition

fa) = S+ [ Vfwadea+ 5 [V H)de)

where the last integral is understood in the Young sense and [z]s ¢ 1= 25 ®@xs—2 Sym (Xg4) € C%6.
Notice that for geometric rough path X,; = fst Zsr @ dx,, then Sym (Xg;) = %:L‘&t ® T4, thus
[z]s = 0.

The following lemma is from [11].

Lemma 2.1 (Change of variables formula) Assume that § > %, V e Cg(Rd,R) and y €
CP(I,R) is a solution of the rough differential equation

t t
Yt = Ys —|—/ f(yu)du +/ 9(yu)dzy, Vminl <s <t <max]. (2.8)

Then one get the change of variable formula
t t
Vi = Vi)t [ DY) St [ (DY s,

43 | DV @)lo(0. 90l dle] (2.9

where
[DyV () g)]s = (DyV (ys), Dyg(ys)g(ys)) + Dy V (ys) 9 (ys), 9(ys)]-

In practice, we would use the p-var norm

by lons = lmin sl + Wil + [l ], where
vy [ T P

Thanks to the sewing lemma [7], we can use a similar version to (2.7) under p—var norm as follows.

I

‘ < CB ( wxmpfvar,[s,t] mRym%fvar,Aqs,t] + H|y/wp—var,[s,t] H’X|||g7var,A2[s,t] )
(2.10)

t
H / yudxu - ysxs,t + y;Xs,t
s

2.2 Greedy times and integrability

In this part, we would like to develop a modified version of greedy times as in [4], for which we need
a little more regularity. Given fixed v € (3, %),% € (3,v),0€(0,v-— %) and 8 = 1 + o, on each
compact interval I such that |/| = max] —min/ < 1, consider a rough path x = (z,X) € CP?(I)

1
with the modified (p, o) - norm x|, , := ||z[l, , + [IX[l¢c defined by
1 1

Ielo = (00 3 NlzwelPlo—ul™?)", [Kly, = (sup 3 [Kuslffo—ul™)",  (211)

[u,v]€Il 1 [u,v]€ll




where ¢ = §. Then [X||? , and [|z[|} , are control functions. In addition, C?(I) c CP7(I) and for
x € CP(I) we have the estimates

pos < 117 Iz sors 771X g—var,r < IXllg0r < < |1 112

I Nl —var,r < ll] ol -

Given * € (1,1/) and o € (0,v — %), we construct for any fixed v € (0,1) the sequence of greedy

times {vn (v,1,p,0)}ien w.r.t. Holder norms

To =minl, 741 :=inf {t > 1% 7} Amax . (2.12)

polrit] —

Denote by Ny 1po(x) :=sup{i € N: 7, <maxI}. Also, we construct another sequence of greedy
time {7;(v,I,p,0)}ien given by

To=minl, 741 :=inf {t > 7 (0=T7)7 + 1%l 070 = 7} Amax I, (2.13)

ql=

and denote by N, ;- (x) :=sup{i € N: 7; < maxI}. Then on any interval J such that |.J| = (%)
and with the sequence {7;(3, J,p, o) }ien it follows that

2

~
(Tz-l-l ) + |||X|”p,o, [7i,Ti1] < 5 T 5 -

hence there is a most one greedy time of the sequence 7; lying in each interval [7;(, J,p, o), 7i4-1(3, J, p, 0)].
1

That being said, if we divide I into sub-interval J of length |J;| = |J| = ( ) then it follows that

S 1|
’y,I,p O’ Z 27Jk7p, m .= lrm—‘ . (214)

k=1

We need to show that exp{N, 1, ,(x)} is also integrable for any interval I such that |[I| < 1.

Translated rough paths

Given ¢ = §, % € (%, v)and o € (0,v— %) then %—l—% > 1. Following [14, Chapter 10 & Chapter 11],
let W = C(I,R™) be the probability space equipped with a Gaussian measure P and let (X;) be a
continuous, mean zero Gaussian process, parameterized over a compact interval I. The associated
Cameron-Martin space H C W consists of paths t — h. = E(ZX.) where Z € W! is an element
in the so-called first Wiener chaos. If h. = E(ZX.) denotes another element in A then the inner
product (h,h)y := E(ZZ) makes H a Hilbert space and Z + h is an isometry between W' and H.
The triple (W, H,P) is then called the abstract Wiener space.

We need a little more regularity for the rectangular increments of the covariance

s t
R( J t ) = E(Xst ® Xop)

which seems to be natural for Gaussian processes with stationary increments.

IZll,,2 < oo, where (2.15)
s t\|¢ 1
1Rllyopr = ( sup R( 5 )= st - spe).
q, ,IXI H(I)’H(I’) [ Z s/ t/

s,t]el(T),[s,t]eII(I")



Given (2.15), we prove a modified version of [14, Proposition 11.2] that # is continuously embedded
in the space of continuous paths of finite (g, o)-variation, i.e. H < C%°(I,R%), and there exists a
constant Cepp > 0 such that for all h € H and all s < tin I,

1l ooy < 1l /IRl goge < CompliBll

The proof goes line in line with the one of [14, Proposition 11.2] except we need to add terms
ltjs1 — tj]77% and |tgy1 — 3|79 in the expression of elements in [9 and its dual space [, where
T+ =1

That means h € C77V?(I,R™) is of complementary Young regularity, but ”respecful” of o-Holder
regularity in the sense that ||h[|,, ; < co. It then makes sense (see e.g. [16] or [4]) to define the
so-called translated rough path Tpx as

tﬁx:(x+mx+/ﬁ®dx+/x®dh+/h®d@.
We are going to prove that

Lemma 2.2 Given |I| < 1, the translated map Ty, : CP° — CP° such that for any [s,t] C I we have
the estimate

1Tl < K0 0) (1l gy + Wl sy ) < K (000 (Il gy + 12— 51% hlly gy ) (216)

1—3

Proof: The proof is quite direct and similar to [4, Lemma 3.1]. By assigning K := (1-2"»)~!
observe that

ikl < o+l + (Bl + | [roae) 4l [ooa] 4] [rom
q,0,J q,0,J q,0,J
1
< el o + 117 1006 + 1N 5 A2 ()
1 1 1
2 2 2
Afrea  |fecal]  s]fron
3,0,A2(J) 3,0,82(J) 3,0,8%(J)
o 1 z 1 i 1 a
< Axlyos + 1170100y 6.5 + 262112 N2l 5 2160 + B2 T2 MRl 6.
g 1 g 1 g
< A%l o.s + 1712 M0l 0,5 + K2l 60 + 112 101l 0.0) + K2[T12 2l 0.
1 g
< (U 2K2)(xly 65 + 112 1720lg,0,0)-
Hence (2.16) holds by assigning K (p,0) := 1+ 2K, O

Theorem 2.3 (Tail estimate and integrability) Assume that X has a natural lift to a geomet-
ric (p,o)- variation rough path X and there ezists Cemp € (0,00) with ||h|l, , ; < Cembllhll% for
all h € H. Then for a fized I with |I| < 1, there exists a set E C W of P-full measure, with the

property: for allw € E;h € H and v > 0, if
E L —qo
IX(w =Bl or <7 then 112 IAIIG . 177 = Nok(poyy,1po (X (W) (2.17)

Moreover,
2
)

—— (2.18)
chmbu‘ 7

P{w : Nok(p.o),1 90 (X)) > 1} < exp {2071 (B(B,))} exp {

where ®~1 is the inverse of the standard normal cumulative distribution function and By :={we

W || X(w) <} In particular, exp{Nag (X(w))} is integrable.

”|p70'7] an)ﬁ/’va)O—

7

1

2



Proof:  We follows the arguments in [4, Proposition 6.2 & Theorem 6.3] line by line. From
the definition of the sequence 7; and the integer Nax (p.0)y,1p,0(X(w)) we have |X(w)ll, 5 (7 ri00] =
2K (p,0)y. Consider E :={w € W : T}, X(w) = X(w + h),Vh € H} then P(E) =1 by [14, Theorem
11.5] or [4, Lemma 5.4] or [16, Lemma 15.58]. For every w € E and h € F,, = {h € H :
IX(w =), <~} using (2.16) we have

2K(p.o)y = Xy friia) = 1T X0 =) o7 )

K(p7 0)( ” X(w - h)” 0,0, [Ti,Tig1] + |Ti+1 - T’i‘§ H‘hmq,g,[n,n+1] )
< K(p,o)y+K(p,0)lmir1 — 7l % |||

IN

q,0,[Ti,mi11]

which leads to |41 — 7|2 1Al 17 700) = v and

117 Ial?, =

[Ti77—i+l
Hence using the fact that [|h[|7 , is a control function, by taking the summation on all possible

interval [7;, Ti+1], we get

N2Ka'y I,p, O‘(X ))

Nak (poytpo(X(@)y? < 1% |||h|||ZW o) S 17 IRIE, ;< 1T1% CL IRl
=0

.

which follows (2.17). As a result,
{w : NZK(p,U)’y,I,p,U(X(w)) > n} NEC W\ (Bv + rnK)

where K denotes the unit ball in %, B, + r,K := {x + r,y : € B,y € K} is the Minkowski sum,

and r, = CeZZFII g The rest applies Borell’s inequality as in [4, Theorem 6.1 & Theorem 6.3] so
that )

P{w : NQK(pvg)%I’p’o(X(w)) >n} < exp(Qb%) exp ( - %),
where P(B,) =

by). This proves (2.18) and the integrability of exp{Nag (p,o)y,1,p.0c(X(w))} (see
J

O
also [4, Remark 6.4 O

Corollary 2.4 For |I| <1, then exp{Ny 1o} is integrable.

Proof: The conclusion follows directly from the integrability of exp {mN 1, Jk’pya(x)} and the
Cauchy inequality that

m m
_ 1 1]
(N 1o} < []explNg 500} € — S exp {mNg 5,000}, m= [,

ki = 171

2.3 Existence, uniqueness and integrability of the solution

Theorem 2.5 (Existence and uniqueness of the solution) Under the mild assumptions, there
exists a unique solution of equation (1.1) and also of the backward equation on any interval |a,b].

Proof:  Since there are similar versions for p - variation norm in [21] and [38], we would only
sketch out the proof here. We first solve the rough differential equation

dz = g(z)dxy. (2.19)



From [21], we could apply Schauder-Tichonorff theorem to conclude that there exists a unique
solution of (2.19) on D%B([a,b]) where 3 = zla + 0. Moreover, denote ¢(t,z,2,) = z to be the

solution mapping of (2.19) then we can prove that ¢ is C! w.r.t. 2, and in the |-, [l .o - nOTM.
More specifically, by using Lemmas 4.2, 4.3, 4.4 and the greedy time sequence {7;(547, [a, 0], p,7) }ien
in (2.13), where p € (0,1) is fixed and M > 1 is a constant dependent of Cy, o, we can prove that

there exists a generic constant A = A({a, b], 24, Cy,x) such that

’H (2) 2/) - (Z’ Z/)H’x,p,a,[a,b] < Hia - Za” exXp {ANﬁ,[a,b],p,a(x)}

AllZa — za| (1 + exp {ANL [%b],p,o(x)}) (2.20)

2M

IA

||Z - ZHoo,[a,b]
In fact denote by ®(¢,z, z,) the solution matrix of the time dependent linearized system

d&y = D.g(o(t, v, z4))&edy,

then & = ®(t,x, 24)(Za — 24) is the solution of the linearized system given initial point £, = Z, — zq.
Assign ry := Z; — z; — &, then r, = 0 and

t 1 t
re = / [/ ng(zs + 77(23 - Zs)) - ng(zs) (Zs - Zs)dndfts + / ng(ZS)TSd:E87
a 0 a
t
= e +/ D.g(zs)rsdzs, YVt € |a,b, (2.21)
where e is also controlled by = with e, = 0 and

/ ! 1 9
leall < /0 1D29(2a +1(Za = 2a)) = D2g(za) 20 = zalldn < 5C[| 20 — 2all™-

From (2.21) it can be proved that

7Moo sy V 77 .,

(etll - lles €l o gosy ) 5P {AN a0 00 |

Az = zal?exp {AN a0 ()} (2.22)

;0,0,]a,b]

IN

which proves o(t,z, z,) to be C' w.r.t. z,, with corresponding derivative ®(t,x, z,).
Using the integration by parts for the transformation y; = (¢, x, %), it can be proved that there is
a one-one corresponding between the solution of

dy: = [Aye + f(yo)ldt + g(yi)dzy = F(y.)dt + g(ye)dx;. (2.23)
and the solution of the ordinary differential equation

0

o= |G| Pt ) (2.24)

Since the right hand side of (2.24) satisfies the global Lipschitz continuity and linear growth, by
similar arguments as in [38] there exists a unique solution given the initial value. That in turn
proves the existence and uniqueness of system (2.23). A similar conclusion holds for the backward
equation see e.g. [14, Section 5.4].

U
Thanks to the integrability of exp{N, 44 po(X)}, We can prove the integrability of the solution
under the supremum norm || -[|oc and the ||-, |, , , semi-norm. The reader is also referred to [38] for
a similar version for the integrability of the solutions, defined in the sense of Friz-Victoir, of rough
differential equation (1.1). Notice that the solutions of rough differential equation (1.1) in the sense
of Gubinelli and in the sense of Friz-Victoir could be proved to coincide.



Theorem 2.6 (Integrability of the solution) For any interval a < b < a + 1, the seminorm
19, ¥l .o a5 @nd the supremum norm ||yl [ap are integrable.

Proof: Consider the solution mapping

M : D2 (ya, 9(¥a)) = D¥ (Ya, 9(ya)),

My, o)s = (H(y. o) g)),  where H(y, ') = ya + / F(ya)ds + / 9(ys)des

Given B = % +o,q="1%and (y,y) € D we would use the modified seminorm

H|y’y/H|m,p,o,I = my,mp—var,l + ”|Ry”|q70'71’ where
1
L D L e ) R L PR (e
[u,v]€ll

Observe that

9(yt) — 9(ys)

1
= / Dyg(ys + nys,t) (Ystst + R?’S"t)dn
0

1 1
= Dyg(ys)yss + / [Dyg(ys + Y1) — Dyg(ys)} Yss,pdn + / Dyg(ys +nys) RY ;dn
0 0
(2.25)

A

hence g(y)!, = Dyg(ys)y, where y' = g(y). Notice that

l9W) lse < Collylloe < Colllwill + [/
lg@)lp—var < Collull,—vars
H\g(y)/wpfvar 1Dy g(y)lloo |H?/H|p,var + 1Dy g () —e 19100 < Cg |

) < Cqlyall + Cy |y v/

p—var z,p,0’

A

IN

] e/ 4 1 N

where

Wy < 1o B2l + (T = )" IRV,
< Collyal el ar + (T = @) + 2l 1ar ) |

On the other hand, it follows from (2.25) that

A

Y 4o (2.26)

1
IRV < Coll Bl + 5ol loclloel sl

which, combined with (2.26), implies

|7
g—var
1
S Cg |” Rqu—var + ECEIHy/HOO wxmp—var |||y“’p—var
1
< Cylt = sl 1Ry + 5C3 12l var N9l —va

1 ) 1
< SO e I3l + (Colt = 517+ SC2 Wallyvar (Wellyvar + 12 = 517)) [l

10



Now we compute

IRESON = (¢ = ) {IFwa) | + Li(Cyllya

+H/ 9(yu) — 9(ys)ldzy

)zl —var + L (T = a)” | B, }

z,p,0

< (= ){Lylvall + L Collgall + 195l ) V2l vas + Ly (T = @) URV,, |
o @Ml + Co (el [ B0+ 1Ky 9@l —oar )
thus ‘HRH @) H can be estimated as follows
‘HRH(y,y’) H

< |T—al” “{Lfnyan + L (Cyllya
+(C2lya N ) 1N
1 3 1 2 1 2 /
+CO¢ ”|x‘”pfvar {icg mxmp,o' HyaH + (Cg + §Cg mxmp,o’ + icg |||'r”’p7var> H}y7 Y ‘Hx,p,o’ }

+Ca Xl s {Co 9,10 + Colball Wl vae + C2((T = @) + Wolyra ) 199 0 }-

, }
x?p’o.

epio) N2 ar + Ly (T = )7 |

In summary, we then get

I var + (H RH) H

< 9l { €3 Ul var + L (T = )77 + LyCy(T = @)~ il + CF X
1
+5CaCi Il s 17k + CaC Il WXl }
H{ColT = al” + Cy Il + Ly (T = )™ Nl + LT = al + Cy Xl
1 1
+Ca 7l var (Co + 5C2 Wl + 5C2 oly—var )
+Ca IXlly, (Cy + CAT = @) + C2alyar ) } 19/, 20 (2.27)
Denote by

1
31

the maximum of all the coefficients in the above estimates, then using the fact that

M := max{C,Cy(1 + C’S), Li(Cy+1),

Izl —var < 1T = a|” [l

p,c — ”| p,0'7

we derive from (2.27) that

< 3M{ Xl o + Ill, p + (T = @) } (Il

x7p7o- -

x7p7o—

Defining for any fixed p € (0,1) a sequence of greedy time {7;(7y, I, @)}ien as in (2.13) then the

estimate ||y, ']l , on each interval [7;, 7;11] has the form

< pllyzll + w ||y, || = |y, /|| HynH

- < —
z,p,0, [T, Tit1] ©,p,0,[Ti Tit1] z,p,0, [T Tiv1] — 1

11



Therefore by applying Lemma 4.1, we get

N -1
ip lop.0 )

, _
z,p,0,[a,b] < NLM a, b}»a(x) Z x,0,0,[Ti,Ti+1]
=0
N% [a b] P, U(X) 1
= o
< N o) po(X) Z ﬂllyﬁll' (2.28)
=0

To estimate ||yz || we use the fact that y is controlled by z to get

||y'Fi+1 H < Hy||00,[77'i,77'i+1] < HyﬂH + CgHyﬂH ”’xmp—var,[ﬁ,ﬁ_;rﬂ + (77_7;4‘1 - 77_1')0 H Y,y |H ©,0,0, 7, Fit1]
p© I+ p
< = 11(1 ——) < —||lyx, 2.29
< (U ) < T (2.29)
hence by induction
L+p . -
Il < (T2 ol ¥ =00 N a0
We then conclude that
£ [a,b],p,o -1
_ 3M p [ 1+ u
x,p,o a b] - NLM [a b],p,o‘(x) 1 — (1 ) HyaH
i=0
_ 1+p
< 51N g oo ) o0 { [N npo 0] log 0} (230)
Meanwhile the same estimate as (2.29) also shows that
_ 1+up
19llse o1 < Il exp { [N, (0.110(0)] tog 7 |- (2.31)

Finally, the integrability of solution is a direct consequence of Corollary 2.4 on the integrability of
exp{N L la b],p,U(X)}' =

3M°

3 Stability results

We now formulate the main result of our paper.

Theorem 3.1 (Global stability for rough differential equations) Assume % >v>v> %
and X.(w) is a centered Gaussian process with stationary increments satisfying (1.3). Assume
further that conditions (1.4), (1.5) are satisfied, where g € C} with coefficient Cy and X > h(0).
Then there exists an € > 0 such that given Cy < €, the zero solution of (1.1) is locally exponentially
stable for almost all realization x of X. If in addition X\ > Cy, then we can choose € so that the zero

solution of (1.1) is globally exponentially stable.

Proof: The sketch of the proof is as follows. We derive the equation for log ||y:|| in (3.1) and
the equation for ¢ in (3.2). With the help of Proposition 3.2 the estimate of [|(6, 6")[|, 24, (4,4 15 then
given in (3.3). Notice that for Gaussian geometric rough path, then [z].. = 0, but we still compute

the estimates here for general rough paths. Step 2 is to compute all components in (3.5), in order
to derive (3.10) and (3.12) for log ||y, || The integrability of exp {Nﬁw[,€ k+1}7p7g(x)} then helps to
choose Cy < € small enough so that the arguments in [11, Theorem 3.3 & Theorem 3.6] can be

12



applied to prove the local/global exponential stability.

Step 1. We use similar arguments in [13] to prove that the solution of the pathwise solution of
the linear rough differential equation (1.1) generates a linear rough flow on R?, and that y; = 0 iff
yo = 0. Hence it remains to prove all the formula for y; and r;. By direct computations using (2.9),
we can show the following equations.

e |ly:||? satisfies the RDE
dllyell* = 2(yr, Aye + f ()t + 2(yr, 9(yo))de + [l ()P d[x]osr,

where 2(y, 9(y))s = 2(ys, 9(ys)) + 2(ys. [9(v)]5)-
e ||y:|| satisfies the RDE

|| L A+ PVt + —— G, o)) da
Iy Tl
1 , 2
+2||yt” |:||g(yt)H Hyt‘|2<ytag(yt)> :|d[l']07t,

where [”—;H@,g(y»}; = [Ilyll] (ys, 9(ys)) + IylsH [(y,g(y))] .

e log ||y:|| satisfies the RDE

fyt)
1yl

it + (00, T i, [ S 2 g, SO g,

dlog|lye|| = (0, AOy +
el lyell llyell

vl
e 0, satisfies the RDE

where [<9’ M>L — (0 g(y§)> + (0, [M]/>_

ao, = |46, (0, A0 0, + LW _ g, S )>9t}dt+[( v _ g, 9 )>0t]d

Tl el el O Tl
Lo o), o ) o) o)
300 0 200 )~ V1l
where
M_ M /:M/_ M/_ 9(¥s)\7’
Tl ~ @), = e = e fpes = [0 ip) oo
Assign
glys)  glys) —g(0) I Dyg(nys)ysdn !
Gl == Tl Twl | Dustmo.in

then it is easy to check that

1G(Y, Olloo < Cgi - NGy Ol p—var < Collylly—var + 101l —var)-

Rewrite 6; in the form

fw) . f)
Tl % Tl

t
0, — 9a+/ [A95—<93,A95>93+ >95]ds

13



/ [ Ys: Os) HS,G(ys,Gs)Ws}dxs
/ 30, G0, 020, — 200, Gl00,0.))G w1, 0) — Gy, 01120, il
/ (ys. 0 d3+/ Q(ys, 0s)dys + / H (ys, 0s)d[z]o,s. (32)

We can prove an estimate for [|(6,6")], . a,p)- (The proof is provided in the Appendix).

Proposition 3.2 For all 0 < a < b, there ezist a generic constant P = P(b — a,v — «) and a
generic increasing function Q(-) = Qp—qv—a(-) such that

H‘ (9’ 0/) H z,p,[a,b]
(b—a)*(8M)>
e 7 otos + (12l + 1Kl a2 g0y + 12y, 2 g
21— )il 1{ - ( [a.b] ([a.b]) (I 1))

Ly ik 1 4

5 M98 0 s + 5 (Wl WX a2y + Wiellnzqagyy ) 1 (3:3)
where .
M := max {2(of + AL, 96 Ko (1 + Ca) C2(1+ Cy), 5} (3.4)

Step 2. It is now sufficient to estimate the quantity in (3.1). For any integer n > 1, rewrite
(3.1) in the integral form

f(ys)
A

t t
log el = logllyell + / (65, A0, + LWy 4 / (05, Gy, 0,)) s
a a

+ /at E!\G(ys,es)u? {6, G (ys, 0,))? | dlelos

(Ys, 0s))dxs

<S7

t
< log Jyall = At —a) + / h(llysl)

[ RGO = (61, Gl 0.2l

The last term in the last line of (3.5) can be estimated as

/at [EHG(ys,Hs)H2 — (0, G(ys,98)>2]d[x}a78

< 20 ad]| + K llolls —sur s00) H 216w 0)I* - (6.6(u. )’ —
< 503 Il e —var,a2(fa.0)
T[S P [ng(mm”p_m 101, var) + 2C2 (Nl + 2 H!9|||,,_var)]
- g C2 Nl —var sy + 3KaCE N —var 210ty (Co N lpvar + 9,
+5KaC2 @Mz —ar, 52ty (2C0 12l ar [
< ;C’g 12— var, A2 (a0} + 13K, C} ||[] Iz —vara2(a,0) 1%l —var

+KaC2 lallp—varn2(iay (3 199/, + 5 116,0

x,p)
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3
5Ca M2l var a2 10,y + 13KaCy Nl —var, a2 10,1y 17—

IN

2

1 1
FTIEC N v a2y + 555 N0:9 115, + 565 116-€711 -

Meanwhile the rough integral can be estimated as

<]

[ 0. G0,
(B> Gy 00)) 22 — all + || €0, G5, 0)),

+Ca (Dl g [| B

(R

o [CAEION) I (PR

£ —var,[a,t]
< Cy 2l —var jay + 5C; XN 2 —var,a2(fa.)
+COé< |||$”|p—var,[a,t] H‘R(Q,G(yﬁ» + H} <9’ G(y’ 6))>/H‘pfvar,[a,t] |||Xm £ —var,A2([a,t]) ) ’

(3.7)

L —var,[a,t]

To estimate the brackets of the last line of (3.7), we apply (4.8) and (4.9) to get
1146, Gy )], va

oG
16 60O, + [0, 55 00

Co "

IN

oG,
+] 0.5 w0

p—var p—var

IN

p—var + Cg(mymp—var + |||9|||p—var)||9/||00 + CgHy/HOO H|9”|p—var
+Cy( I9hp v 19"l + 100 15"l + 19 1],y )
+Cyl1y oo N0 + Co (Uylp—var 18"l + 110/ )

< 10CE(Cyllwlly—yar + 1941, ) +13C2(2Cy Nl _or + [|0.€],
P P

which, together with Cauchy inequality follows that

23
140, G (W, ) Il 1N 2 —var p2(iay < 36CG Nl 1K 2 s, a2 (1) + 303 I var, A2 ((a,t)

13
+5C; llv-v'lI5, + 5 €5 eIl (3.8)
In addition,
W ROCEN||
§fvar
< 1Ol G Ol + 16w, O || B, +[|REC],
§—var 2—VaI'
S Cg memp—var (”|y”|p—var + mg”’p—var) + Cg H)Ra P _var
2
+Cy (IR Mg v+ 19 oo Wl Wl + ||, 167 U 06 v )
2
< Cyllyv/ll.p +265 10001, + €3 Utlysar (Colehysao + 199, )

0.,.,)

+Cg (209 |||x”|p—var + ’HH’ glmm,p ) {309 H|$”|p—var + ( ‘Hy’ y,mw,p + ‘HQ, 9/|Hm,p ) }

+2C2 ol - ar (2C5 Mol —ar + |
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which together with Cauchy inequality gives

(0,G(y,9))
e || 7
5 5
< 2O+ Collgn I+ Co 10011, + 505 Ul + 6C3 Nl + 5C2 Nl
29 1 1 1 1
ARl + 5 V12, + 5C2 08,002, + 3G It 1L, + 5Ca 0.1,
5)
= 50 Il o + 11CE N2} e + 17C 20l o
o+ (v 12, + 18,002, + IS, + 16211, 3.9)

Combining (3.6), (3.7),(3.8), (3.9) to (3.5), we conclude that there exists a generic constant A and
a generic polynomial k1 (Jlly » [Xllzq  I[e]llq) such that

t
log [yl < 1oglwal + [ [~Aa + h(lua]Dlds
+Cgﬂl(”|x”|p—var,[a,t] ’ |||X|||g—var,A2([a7t]) ’ ||| [CE] ”|g—var,A2([a7t]))

FOA(N0 0N g N8 oy + 1109

x7p7

i,p,[a,t] ) ’

Using (3.3) and Cauchy inquality, and with the generic constant A and the generic polynomial x;
if necessary (that is possible since o < ), we conclude that

i,p,[a,t] + ‘Hy’y,‘

log ||l
t
< g uall + [ [~ blluel) + Cy) s

y. 9| i,p,[a,t] +|

16
Y, y/m:py,p,[a,t] }
(3.10)

+Cgr1 (Il o,z > 1Nz, 2210 07) - W2 Mp—var, a2 fa,07)) + CgA{ H

To estimate [ly, y'l,, (a,]> We apply (2.30) with generic constant A to conclude that for any a <t <
b<a+1,

517 oy < Wl Wy < Allwal™ N7 (%) exp{mAN s

W:[avb]zp’o— 2M°

la,t],p,0 (X)}

IN

1 o1 .
SAlal ™ + SAexp {2mAN 4 10,0} (311)

By replacing (3.11) into (3.10), there exists a generic polynomials with all positive coefficients

p( exp {Nﬁ,[a,t],p,d (X) })

such that
t
log ] < 1ogllwall + [ [ = a+ bl + Cy]ds
+Cyt (Do var, o) » 1K —var, 82ty D2 v, 5210 )
+CoP (50 {N . fa 00 () }) + Coalyal) (3.12)
where

Ko(z) = %A(zg + z¥>,
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for some generic constant A. Due to (2.6) and Corollary 2.4, there exists for almost sure all x the

limit
n—1
nhjgo n k:ZO Hl(’”xmp—var,[k,k—&-l] ) |||Xwg—var,A2([k,k+l]) ] Wg_var,A2([k,k+1]))
= Rl y—var 0,17 K0 2 —var, a2(p0,1)) > W21l —var,a20,17)) = 51 < 003
1 & - -
and nlg)go - Z /<c2<exp {ANﬁ,[k’kJru’p’a(x)}) = Em(exp {ANQ”WJOJLPJ(X)}) = K < 00,

we can use (2.31) and the same arguments in [11, Theorem 3.3 & Theorem 3.6] to conclude that
the zero solution of (1.1) is locally/globally exponentially stable.
]

4 Appendix

4.1 Some technical lemmas

Lemma 4.1 Let x € 65”([(1, b,RY, p>1. Ifa=19 <7 <---<7Tn =0, then

N-1
p—1
|||x||‘p-var»[a7b] = N Z ”|x|||p—Var7[Tz‘,Ti+1];
=0

N-1
p—1

Izl oy < NP .07 7]
=0

Proof: The first estimate is a direct consequence of [6, Lemma 2.1]. The second estimate is
followed from the inequality that

a1+ ...t ap)P(br+ ...+ b)) P <KD P+ dlb P, Yag, b > 0,i=1,... k.
1¥1 k7k
[

Lemma 4.2 Given § = % + o0, , assume that (y,y') € D (I) and [yyi= fst Yudxy,. Then (T,T7) €
Dgﬁ(l) with T = y. Moreover for any I such that |I| <1

fir |

ot < (1t o+ D b g ) (1 + Bl 1), (4
Proof: Tt follows directly from (2.7) that (I',T") € D2°(I,R?) with I, = y,. As a result,

s = Wy < 19 oot Bl + DRVl v 1
(o 1+ 19— ) Dl g + T IR - (4:2)

IN

On the other hand,

t
IRE = [ e,

which implies

< 9 oo 111X

+ Cppnlt = 517 (Nl var 1R + 1191,y 1K )

IR, o1 < ot 4 19, ) UKD + Cogri el + UK o) [l sy oy - (4:3)
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Combining (4.2) and (4.3) and using |I| < 1 we get

el 0
< Wit 19, s Ul v+ U ) + 101 6 s
Gy (Wl + XD, ) 195
< i 120 —var,r + 1Kl 0. 0) + (|I|U Flely—var, s + 1Xllg0,r ) Coin + D 9.9, 0
which implies (4.1). 0

Lemma 4.3 Assume that g € C3 with coefficient Cy and z, = g(yu). Then (z,2') € D;%ﬁ(f) with
2t = Dg(ys)y. and for any |I| <1 we get

3 1
1220 por < oL+ 18 et (1217 + 5 Wl + 5 U2 )] (il + 1199 ) (44)

Proof: Since
1 1
9(ye) — glys) = /0 Dyg(ys + 1Ys.t)Ys,edn = /0 Dy (ys + nys ) (Yewss + RS, )dn
1 1
= Dg(ys)yszss + /0 Dyg(ys + nys,) RY dn + /O [Dg(ys + nys,t) — Dg(ys)|yssedn,
it follows that 2z, = Dg(ys)y., and

1
1RSIl < Coll RS +/0 Conllysellly lloo,r |5 ¢lldn,

so that 1
120,00 < CollR Ny ox + §Cglly’Hoo,I lll,.o. 1

”ymp—var,f ’

where

19y —ars < 19 ooyt Wl + 117 IR s
(I (A 1y g T WP g 2

11 4+ Ul (Wi 1+ 1955 s )-

IN

IN

On the other hand,

1= Mo < NP9 M, < Co 19l + Cll oot Ul -

Hence given |I]| <1 we get

12, 2l 200,
< Colly s + Coly ot Wl s+ Co RN s + 5 Coll et Wl 1 Wl
< Colly 9 lys + Coll oo (14 5 Wl ) U1+ Wy ) (Wi sl 4 1991
which follows (4.4) due to |I| < 1. O
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Lemma 4.4 Assume that g € C} with coefficient Cy and z, = g(§Ju) — g(yu). Then (z,2') € D%B(I)
with 2, = Dg(§s)y. — Dg(ys)yL, In addition for any |I| <1 we get

/
H}Z’ < ‘Hx,p,a,[

< AC (1 + Nl + 1117)2 15

X (||Z7min1 ~ Ymin 7| + (1 inin 1 = Yonin 11l + [|7 = 9,7 — y/m%p,a,f)-
Proof: A direct computation shows that
(@) = 9(ye) — 9(Fs) + 9(ys)

1

) —
= /0 [Dg Us + NYs,t) st — Dg(ys + nys,t)ys t} dn

|
Q

Zst =

1

Dg(Fs + n¥s) R, — Dg(ys + nys t)Ri’,t] dn
0

+/ [Dg(ys + 10Fst)¥s — Dg(ys + nys.e)y }ws ¢dn
0
1 —
= / [Dg(ys + nJst)RY; — Dg(ys + nys t)RZt] dn + [Dg(ys)Js — Dg(ys)yglzs.e
0
1 1
+ / / [029(173 + 0 Ts 1) [Tssts Tal — D*g(Ys + 1m1Ys.t) [Ys,ts Vo] [ ndM 25 1.
0 0

This shows that z, = Dg(ys)y, — Dg(ys)y, and

zee = Dg(i)yi — Dg(ye)y; — Dg(§s)is + Dg(ys)ys
= [Dg(y:) — Dg(us)5; — [Dg(ye) — Dg(ys)ly: + [Dg(ys) — Dg(ys)]iss — Dg(ys)[Fs.t — Vsl

1
= / [ng(ﬂs + 0G50 [Us.t> Ut) — D9 (Ys + 1Ys ) [Ys.t yé]} dn
0
+[Dg(gs) - Dg(ys)]gg,t - Dg(ys)[gs,t - y;,t];

which implies that

12 vme < Colllg = oo + 15 = ysllow| Ul var 15 o0 + Co 1 = Yl 17l
+Co 19l var 17 = ¥ oo + Coll7 = 9l 17l —sue + Co 1T =¥l - (46)

A similar estimate shows that

IRy < CollB7N,, [15 = ylloo + 115 = 3.l | + Cy || R7 — RY|

q?o—
15l { Coll7 oo Ul [17 = Yl + 17 = v, 1]

+Coll5' oo 17 = Yllp—var + Co lylly—var 15" — y’Hoo}-
Therefore
’
H‘Z, < ‘Hx,p,a

< {H@ ~Ylloo + 17 =y lloo 17 = Yl pevar T 17 = ¥l + |17 = ¥'[|,—oae + 1 BY = B[ ., } X

/ z,p,o,1 + my’y/mx,p,cr,l} X

(4.5)

(4.7)

x {(Cgllﬂ’lloo 171, var + Co 1l (1 + 2], 0) + Cg + Coll loo (1 + N2ll, ) + Co 17,7, }
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Note that

17 = ylloo < MNFmint = Yminzll + [Fnin 1 = Yin 11117 Nl + (17 + N2l ) |7 9.5 =¥/, 0
17, = y-illoo < NFtnins = Yonin 11 Nl + (117 + N2l o) |5 = 9.5 = ¥l 0
17 = 9lpvar < 17 Wl o 1500 1 = Yonin 2+ (17 + Dl o) 17— 9.5 = ¥l 00
17 = ¥llee < ¥ming — Yemin1ll + my_yagl_y/mz’p’a;
170y —var < Mmin 21l + G NN Dl + (LT + Wl o) (177,
Wy < Wimintl) + i 117 Bl + (U117 + Bl ) 9 -
Replacing all the above estimates into (4.7), we get (4.5). O

4.2 Proofs of auxilliary propositions

Proof: [Proposition 3.2] We are going to estimate the Hélder norm of 6 using equation (3.2).
Consider the solution mapping M : D2Y(0,, Q(x4,04)) — D204, Q(4,0,)) defined by

M(Qv 0,)15 = (F(Gv al)tv Q(yta 9t))7

where F' is defined as the right hand side of (3.2), together with the seminorm

1.0, = 1M, —oar + || 2

MO, 50 = 1QW, O, —var + ‘H RF(0.0)

2 _var

p_
5 —var 3

We are going to estimate these seminorms. From ' = Q(y,6) and y' = g(y), it follows that

0 < Mo Wy + | < 2C Wl + 10,91, (48)
Wl e < 9o Bl + DR v < Gl + |3 ¥l (4.9)
100 Dl < 2NGW: Oy + 205 10l —ae < 4C 10l —sae +2C 1l (4.10)
1QW: Dl < 20G(y,0) ] < 2Cy;
|H@W.0)l < 3G, 0)|% < 12¢2;
V@O yvr < IGO0, e + 61G W 0) o0 UG W, Ol < 6C2 (2000, - + Wl )-
Meanwhile
0Q 0Q
9/:7305/ 7&95‘9/
QU O = 5 (e 80)ol + g (s, 0006,
oG oG oG
= 505 - 6557 3505 /95 an 57059/
oy s 005 = (00, 5 (Y5, 05)8500s + g (1 05)0
0L, Gl 0000 — (00, G, )0, — (02, (1, 0,101,

where 5 . 5 .
G G
—_— = D Ond — = D dn;
oy /O yg (ny)0ndn, - - /0 y9(ny)dn;
which, together with 6/ = Q(y, 6) and y' = g(y), derive
MQ(y’ 0)/’prvar

S Cg( |||y"|p—var ||y,||00 + |||9|”p—var Hy/HOO + H}y/mp—var)
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IN

IN

IN

and

+Co (218 loe 100 + 09l 15" lo0 + 060, 15"l + 1[5 )

25 (10— 16" UO U~ + 200"l HOM, s + 216l sl v )

o (Uyvar 160 + 110"l ) + Co (2060 W0 + 101+ 16" Ul )
2C (Wl e 150 + 119/ + 2000 190+ 2 [0,

309 By v 1910 + 416 oo 191, v )

205 (Cy Iyl —var + 19N, var +2C 10, + 20QW Ol

+6Cq Iyl —ae +8C 16l )

12C2 (209l yar + 3100, - )

1Q(: 0 loe < 2Cy (115 lloc + 2010'lloc) < 2C,(Cy +4C,) < 10C2.

Hence by using Holder inequality, we get

IN

IN

1R
t
[ P800 s+ 1@ NIt |+ 1 3 6) ol ol + K NE 3O v
+Ca (Il R (2 [ Py
2(Cy + AN (¢t = 8) + 10C2 Xl + 12C2 | el
+6KaC2 Mol —var (2060, e + Ul )

+Ca(Belyovms [ B, 12C5C 0y 3100 rae) 1T ). (4.11)

RQ(yae)

p_
3~V

On the other hand

0
IR0 < HQ@,@»—Q@S,@)—829(%,98)@/;%

thus

IN

IN

0
+] Qe - Q.8 - 20,0060,
1 8@ aQ
/0 |52 (s + o = 00.00) = 52 w00l
1190 oQ /
N /0 |5 (s 000 = 6)) = 52, 0 | 162 sl

L 15 w0 s 20 0 —03) 2

| reo

p_
5 —var

0
Cy IRl s + Colly oo Nl 19l + Co | 2

+ Cyll0 oo [l
ar

p_
5 Vs

o ) F ORIy Bl v+ 2C3 Wl 160
2

g

p—var ” p—var

Y 0
Cy (IR e + | R

—var
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0
< (IR Ny e + | B, ) + Ol (e + 2060 ).
2

Combining these above estimates into (4.11) and using (4.10), we get

=

10w Ol

p

< 2(Cr + AT ~ @) + 1063 1Kl e + 12C il
46K C2 105 v (2000 —sne + 15l )+ 2C (Il + 2 10— )
0 Cy bty v (1B v+ ||, ) + G M (D9l + 2000,
2
1262 (219l + 3160 ) 1Dy }
< 2(Cy + AT = @)+ 1063 IRl e + 1263 g oo

2
+ (209 +6KaCy |[2] + CaCy 2l —yar + 24CaCy X gfvar) (7] M—

|” £ —var p—var

+(4C, + 12K, C2 ]
+CaCy ||

+2CaCy 2]l oy + 36CaC IX| g_var) 161l

Il
5—var p—var

Y y,mx,p + CO‘CQ H}07 HIH‘x,p :

p—var

Using (4.8) and (4.9), it follows that for any a < T such that 7' —a < 1 we get

[&re|,  + 16w O,
< 2ACs+ AT — @) + 10C2 1Kl e +12C2 2]l 5 var
+(2C, + 6KaC2 allly v + CaC2 Il — e + 24CaC2 1K g sar ) (Co Nl + 199 I, )
+ (46, + 12KaC3 1ol gy + 2CaC3 Nl e + 36CaC3 1Kl _sa ) (200 lolyae + 16,9'],.,)
+CaCy v ¥/, + CaCy [l6:6',,
< 2(Cs+ AT — @) + 10C2 1KYy +12C2 2]l 5 var

+(10C, + 30KaC2 allly ur +5CaC2 N2l g +96CaC2 XNy oy ) Co l]

”| £ —var p—var

2 2 2
+ CaC2 ]2 e + 24CaC2 Xy o, ) |

p—var

p—var

+(2C, + 6K, C2 1 [2] U9 |y

[
£ —var

+(4C +12KaC2 2]l _ur + 2CaC2 0l ya + 36CaCE IXlz o ) 10.€/],,-

||| £ —var p—var

Using (3.4), it is easy to check that

GOl

e

2

< M{T = a+ I1X0pur + 12llz s + 1l var
2
(I e+ 021 + Wzl s ) Uzl } (14 18011, + 9., )
< M{T =0+ IXNp e + 2l ar + ol var

O (P T S 1 P ' T S GRS R Y G T

Now construct for any fixed p € (0,1) a sequence of stopping times {7 }ren such that 79 = a and
ot = T+ 120 var frp 0] T |||XWg—var,M([Tk,TkH]) + Il[] ”|121_var,A2([Tk,Tk+1])
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I
_ <1 (4.12)
2M (L + [y, 'l p,fay)

for all k£ € N, then it follows that

mQ(ya )|||p var, [T, Tkt 1] + H‘RF(G 0

/
8 —var, |7,k 41] Shtp Hw’ o miap

Hence using the fact that ' = Q(y,0) and F(0,0") = 6 we conclude that

116, < (4.13)

x7p7[7-k77—k+1} - 1 — M
Therefore by applying Lemma 4.1, it follows that

N-1

/ / 0
G| PREED DY G [ PR Sl L
1=
< M NI < _# N?,
1—pu 1—p
where N = N u (a,b],p(X) is the number of greedy times 74 defined in (4.12) in the interval
2T )
[a, b]. It is easy to see that
b—a > N p ),[ajb}yp(x) X

2M 1+ {lvv'

NI

«{ L (14 By + Py + Wl ooy )}
201+ 19,9, p o) 2 A%, A

All in all, we have just shown that for all 0 <a <b <1

([CAD] P

(b—a)?(2M)?
(1=

b 8M)» 2 2
< (—)u()u) [1+[Jv y’»ug,mb]] (14 (Wl gy + 0oy gy + Wl ooy )

NN

IN

L4 0o+ %0y + Wy ) (L Wy )

ANII)

NI

,p,[ab (|H$ I ) + 1Kl A2 (a0 + 2] |||2y,A2([a,b]))

NS

1 4 1 4
5 1591 iy + 5 (Wl gy + 1K p2qaayy + Nl nzqay )

which proves (3.3). O
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