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Abstract

We propose a quantitative direct method of proving the stability result for Gaussian rough
differential equations in the sense of Gubinelli [21]. Under the strongly dissipative assumption of
the drift coefficient function, we prove that the trivial solution of the system under small noise
is exponentially stable.
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1 Introduction

This paper deal with the asymptotic stability criteria for rough differential equations of the form

dy = [Ay + f(ye)]dt + G(yi)day, (1.1)

or in the integral form

P / [Aya + Fya))du + / Gly)dra, ¢ €[0T (1.2)

where the nonlinear part f : R® — R? is globally Lipschitz function for simplicity and G =
(Gi,...,Gn) is a collection of vector fields G; : R? — R? such that

Cy+ g(y), where C = (C1,...,Cp),C; € R g = (g1,...,9m),9; € C'THPif v € (3,1)
G(y) = ¢ Cy, where C = (Cy,...,Cp),C; € R if ve(

g(y)7 where g = (917"'7gm)7gj € Cg(Rdde)7 if

(1.3)

Equation (L)) can be viewed as a controlled differential equation driven by rough path = €

C"([a,T],R™) for v € (%,1], in the sense of Lyons [32], [33] where z can also be considered as

an element of the space CP~V*([a, T],R™) of finite p - variation norm, with pr > 1. For instance,

given v € (%, 1], the path = might be a realization of a R™-valued centered Gaussian process
satisfying: there exists for any 7" > 0 a constant Cp such that for all p > %

E| X — X4||P < Cplt — s|P”, Vs, t €][0,T]. (1.4)

By Kolmogorov theorem, for any v € (0,7) and any interval [0,7] almost all realization of X will
be in C¥([0,T1]). Such a stochastic process, in particular, can be a fractional Brownian motion BH
[34] with Hurst exponent H € (%, 1), i.e. a family of B = {B}},;cr with continuous sample paths
and

E|Bf — BE|| = |t — s|*" Vt,s € R.
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In this paper, we would like to approach system (II]), where the second integral is well-understood
as rough integral in the sense of Gubinelli [21]. Such system satisfies the existence and uniqueness of
solution given initial conditions, see e.g. [21] or [14] for a version without drift coefficient function,
and [38] for a full version using p - variation norms.

Notice that the question for global asymptotic dynamics of system (1)) is studied in [5], [24],
[25], [26], [27], under the general dissipativity condition for the drift coefficient function, in which
they prove that there exists a unique smooth stationary density for (ILI]), with convergence rate is
either exponential or polynomial, depending on Hurst index H.

Meanwhile, the topic of asymptotic stability for pathwise solution of (LI]) is studied in [12] for
which the noise is assumed to be fractional Brownian motion with small intensity. Recently it is
reinvestigated in [I3] for f to be globally Lipschitz continuous and the second integral is in the
Young sense. In addition, the local stability is studied in [I8] and in [20] for which the diffusion
coefficient g(x) is rather flat, i.e. ¢(0) = D,g(0) = 0 for the Young differential equations and
9(0) = Dyg(0) = Dyyg(0) = 0 for the rough differential equations. In all mentioned references, the
technique in use is fractional calculus.

To study the local stability, we impose conditions for matrices A €
definite, i.e. there exists a A > 0 such that

(y, Ay) < =dallyl*. (1.5)

R4 such that A is negative

The strong condition (L)) is still able to cover interesting cases, for instance all diagonalizable
matrices with negative real part eigenvalues, under a transformation.

To study the local stability, we will assume that the nonlinear part f : R¢ — R? is locally Lipschitz
function such that

f(0)=0 and |[f(x)l < llylAlyl) (1.6)

where h : RT — RT is an increasing function which is bounded above by a constant Cy. Our
assumption is somehow still global, but it has an advantage of being able to treat the local dynamics
as well. We refer to [I8] and [20] for real local versions on a small neighborhood B(0, p) of the trivial
solution, using the cutoff technique.

In this paper, we also assume that ¢(0) = 0 and g € C} in case v € (%, %) with bounded derivatives
Cy (which also include the Lipschit coefficient of the highest derivative). System (LIl then admits
an equilibrium which is the trivial solution. Our main stability results are then formulated as
follows.

Theorem 1.1 (Stability for Young systems) Assume X.(w) is a Gaussian process satisfying
T4, and v > v > % is fized. Assume further that conditions (LIl), (L6 are satisfied, where
Aa > h(0). Then there exists an € > 0 such that given ||C|,Cy < €, and for almost sure all
realizations . = X.(w), the zero solution of (L) is locally exponentially stable. If in addition
Aa > Cf, then we can choose € so that the zero solution of (L) is globally exponentially stable.

Theorem 1.2 (Stability for rough systems) Assume X.(w) is a Gaussian process satisfying
@), and £ > v > v > L is fized. Assume further that G(y) = Cy and conditions (LF), (LB) are
satisfied, where Ag > h(0). Then all the conclusions of Theorem 11l on local and global exponential
stability of the zero solution hold for almost sure all realizations x of X.

Our method follows the direct method of Lyapunov, which aims to estimate the norm growth (or
a Lyapunov-type function) of the solution in discrete intervals using the rough estimates for the
angular equation which is feasible thanks to the change of variable formula for rough integral defined
in the sense of Gubinelli. It is then sufficient to study the local and global exponential stablity of
the corresponding random differential inequality, which can be done with random norm techniques
in [I]. We show in Part I that our method works for Young equations or for rough systems in which



G(y) = Cy, since it is not necessary to prove the integrability of ||6, ¢’
pathwise stability.

Part I [I1] is to present the result for the case G(y) = g(y) € C3, for which a necessary assumption
is the integrability of solution. This assumption is straightforward for Young equations but not
trivial for the rough case, and even difficult to prove under the Holder norm. Specifically, the
concept of greedy times for Holder norms and similar result to [4, Theorem 6.3] on the main tail
estimate of the number of greedy time under the a-Holder norm is not easy to prove. Fortunately,
we can overcome this issue by studying Gubinelli approach under the p—var norms in order to apply
[4, Theorem 6.3] directly.

We close the introduction part with a note that our method still works for the case v € (i, %]
with an extension of Gubinelli derivative to the second order, although the computation would be
rather complicated. Moreover, it could also be applied for proving the general case in which g is
unbounded, even though we then need to prove the existence and uniqueness theorem first. The
reader is referred to [31] and [§] for this approach, in which the differential equation is understood
in the sense of Davie [10].

ab] in order to get the

x,20]

2 Rough differential equations

21 ve (%, 1): Young differential equations

We would like to give a brief introduction to Young integrals. Given any compact time interval
I C R, let C(I,R?) denote the space of all continuous paths y : I — R? equipped with sup
norm || - |leo.s given by ||yllco.r = supe; [|ye]l, where || - || is the Euclidean norm in R%. We write
Yst = Yr — Ys. For p > 1, denote by CP~V*"(I,R?) C C(I,R?) the space of all continuous path
y : I — R? which is of finite p-variation

n 1/p
I llp-var, r = (Sup > IIyti,tmll”) < 00, (2.1)
II(I) i—1

where the supremum is taken over the whole class of finite partition of I. CP~v' (I, R?) equipped
with the p—var norm

[Yllpvars = minzll + 190, —var1 >

is a nonseparable Banach space [16, Theorem 5.25, p. 92]. Also for each 0 < o < 1, we denote by
C(I,R%) the space of Holder continuous functions with exponent a on I equipped with the norm

. _ Y.
1Yl 3= ymin £l + Byllo,r = (@)l + sup t—s)

A continuous map @ : A%(I) — R A%(I) := {(s,t) : min ] < s <t < max [} is called a control if
it is zero on the diagonal and superadditive, i.e. W;; = 0 for all ¢ € I, and Wy, + Wy < W, for all
s<u<tinI.

Now, consider y € CI™¥ (I, L(R™,R%)) and = € CP~V(I,R™) with % + % > 1, the Young integral

J ; Ytdry can be defined as
drs = lim E T
/Iys s 11T =0 YuTuy,v,s

[u,v] €Il

where the limit is taken on all the finite partition II = {minl =ty < t; < --- < t, = max [} of
I with |II| := [m:}axl_I |v —u| (see [39, p. 264-265]). This integral satisfies additive property by the
u,v|€



construction, and the so-called Young-Loeve estimate [16, Theorem 6.8, p. 116]

t
[ e = oL R o B
S
1,1
< K@ alt— sl Iyl g 1902 s (22)
for all [s,t] C I, where
1 1
K(p,q):= (12507 (23)

Theorem 2.1 (Existence, uniqueness and integrability of the solution) Under assumptions
(Hy), (H;), there exists a unique solution of equation (L) on any interval [a,b]. Moreover
|||y|||q_var7[a7b} is integrable.

Proof:  Since v > %, ([CI) is a Young equation which satisfies the assumptions of Theorem

3.6 and Theorem 4.4 in [6] on the existence and uniqueness of solution for (II]) and its backward
equation. Moreover to estimate ||z [a,p)» We apply [6, Lemma 3.3] to conclude that there exists

a function o
Pl o) = 47108 2) max{[|A]| + Cy, (K +1)(Cy + [CID}[(b = @) + I}y 0]
such that
1lyvargasy < 19allexp {2l o) }
ot < Wolly varay + lall < Nall (1 + ex0 { F(Ually v o) })- (2.4)

From [36] (see also [28] Proposition 2.1,p.18]) the random variable Z := ellp—varo1 with 1 < p < 2,
has finite moments of any order, provided that x is a realization of Gaussian stochastic process. That
proves the integrability of [|y[l,_ar (o5 @04 [|Y]loc,[a,p)- Notice that the integrability of [[yll,_yar a4
and [|yoo,[a,4) can also be proved using [4, Theorem 6.3] with better estimates. O

2.2 v e (3,1): controlled differential equations

We also introduce the construction of the integral using rough paths for the case y, x € C*(I) when
o€ (%, v). To do that, we need to introduce the concept of rough paths. Following [I4], a couple

x = (z,X), with z € C%(I,R™) and X € C2%(A%(I),R™ @ R™) := {X : sup,, [Xoell oo} where

[t—s|2

, is called a rough path

Ran

the tensor product R” ® R™ can be indentified with the matrix space
if they satisfies Chen’s relation

Kot — Xy — Xyt = Tyt @ T, Vminl < s <wu <t <max]. (2.5)
X is viewed as postulating the value of the quantity fst ZTsr @ dx, := Xz where the right hand side

is taken as a definition for the left hand side. Denote by C%(I) C C* @ C3* the set of all rough
paths in I, then C® is a closed set but not a linear space, equipped with the rough path semi-norm

1
I%llo,r = N2le,r + 1K a2y < 00 (2.6)

Let 3 >p>2,v > %. Throughout this paper, we will assume that z(w) : I — R™ and X(w) :
I x I — R™®R™ are random funtions that satisfy Chen’s relation relation (2.5)) and

1 2
(E||xs,t||1’)p <Clt—sl’, and (EHXS,tHg)p <Ot — s Vs, tel (2.7)

4



for some constant C. Then, due to the Kolmogorov criterion for rough paths [16, Appendix A.3]
for all a € (%, v) there is a version of w—wise (z,X) and random variables K, € LP, K, € L?, such
that, w—wise speaking, for all s,t € I,

lzsall < Kalt = 5% [Xsell < Kalt — s>

In particular, if 8 — % > % then, for every a € (%,6 — %) we have (z,X) € C* Moreover, we

could choose a abit smaller such that z € C%¥(I) := {z € C : (%h% SUP)<f—s<5 lescll 0} and
—>

[t—s]*
X € COMAND)) i= (X € CRAD) : Jimmpocises 255 = 0}, then CX(1) € OO @
—
CY2(A%(I)) is separable due to the separability of C%(I) and C%2%(A%(I)).

2.2.1 Controlled rough paths

A path y € C%(I, L(R™,R%)) is then called to be controlled by x € C*(I,R™) if there exists a tube
(v, RY) with o/ € C*(I, L(R™, L(R™,R?))), RY € C**(A%(I), L(R™,R%)) such that

Ysit = y;azs,t + Rgt, Vminl < s <t <max]I.

y' is called Gubinelli derivative of y, which is uniquely defined as long as z € O\ C?* (see [14]
Proposition 6.4]). The space D2*(I) of all the couple (y,y’) that is controlled by z will be a Banach
space equipped with the norm

199 o200 = ymin 1l + [Ymin gl + (99|, 20, Where
ot lozar = N9 llaz+ 1 aa,r

where we omit the value space for simplicity of presentation. Now fix a rough path (z, W), then for
any (y,y') € D2%(I), it can be proved that the function F € C*(A?(I),R?) defined by

Fs,t = Yssy + ngs,t

belongs to the space

Co3T) = {F € C(A2(I)): Fiy =0 and
HFst—Fsu_FutH
oF = sup : : — < oo}.
”’ ”’304,[ min [ <s<u<t<max [ ’t - 3’3(1
Thanks to the sewing lemma [I4], Lemma 4.2], the integral fst Yudx, can be defined as
t
/ Yudz, = lim Z [yuxu,v + y/uXu v]
s 11| —0
[u,v] €Il
where the limit is taken on all the finite partition IT of I with |II| := max |v — u| (see [21]).

[u,v] €Il
Moreover, there exists a constant Cy, = Cy |7 > 1 with [I| := max [ — min I, such that

t
| [ v =yt o] < Calt = (Nl oy IR, a1 Mg P e ) 28)

From now on, if no other emphasis, we will simply write |z], or |X],, without addressing the
domain in I or A%(I). In particular, for any f € CZ(R% R?), then f(z) € D2* with f(z) = Vf(z)
and

I£(2), V£ (@) a 20 < 1V2lloo (Nll, + % llz1l%, ).
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In that case ([Z8) becomes

t
‘ / f($u)dxu - f(xs)xs,t + vf($s)Xs,t

3
< Clt = s fllcg (D212 + Il I, )-

Moreover, in case f € Cl‘:’ then we get the formula for integration by composition

Fw) = Fos) + / Vf ()i + / V(@) [ s

where the last integral is understood in the Young sense and [z, 1= 5@z —2 Sym (Xg4) € e 0%,
Notice that for geometric rough path X,; = f; Zsy @ dx,, then Sym (Xg;) = ;x&t ® T4y, thus
[2]s =

Lemma 2.2 (Change of variables formula) Assume that o > %, V € C3(RLR) and y €
C*(I,R) is a solution of the rough differential equation

t t
Y = Ys + / flyy)du —I—/ 9(yy)dxy, Vminl <s<t<maxl]. (2.9)

Then one get the change of variable formula
t t
Vi) = Vi) + [ DV Swdet [ DV g,

45 [ DoV i)l (2.10)

where
D,V ()g(y)]s = (DyV (ys), Dyg(ys)g(ys)) + DyyV(ys)g(ys), 9(ys)]-

Proof: Using the Taylor expansion, it is easy to see that

1
V() =V (ys) + (DyV (ys), Yst) + 5Dy V () Ys.t: ysa] + O(It = s]**).
On the other hand, it follows from (29]) and (28] that
yse = Fys)(t =)+ 9(ys)rss + l9W))Xss + O(It = 5*)
- f(ys)(t - 3) + g(ys)xs,t + Dyg(ys)g(ys)xs,t + O(’t - S‘3a)'

As the result,

Vst = (DyV(ys), f(s))(t —5) + (DyV(ys), 9(ys))xs,t + Dy V (ys) Dyg(ys)9(ys)Xs e
%Dny(ys)[g(ys), 9(ys))Ts s @ x4+ O(|t — 5)3%)

= (DyV(ys): [ (ys))(t = 5) + (DyV (ys), g(ys)) s + %Dny(ys)[g(ys),g(ys)][éﬂ]s,t

(DY () D,0(w)0(0s) + DV ()lo0s), 0ys)]) K + Ol — 5%)
= DV (), S~ )+ DV (52), 9y + (D, (o)), Koo
2D,V (w)lo(us). el + Ot — 5.

which is the discretization version of (2.I0). The conclusion is then a direct consequence of the
sewing lemma. 0



2.2.2 Greedy times

For any v € (3,1) and on each compact interval I such that |I| = max] — minI = 1, consider a

rough path x = (z,X) € C¥(I) with Holder norm. Then given « € (%,V), we construct for any
fixed v € (0,1) the sequence of greedy times {7;(7, I, @)}ieny w.r.t. Holder norms

To =min/, 741 :=inf {t > 7t %l g = 7} Amax . (2.11)
Denote by N, 1 o(x) :=sup{i € N: 7; <max/}. From the definition ([ZII), it follows that

1
v < (rien =70 (Dol g + K03, per )

which implies that

N’y,I,a(x)_l 1 1 —1
|| > TNy a(x) — minl = Z (Tig1 — ) > Ny,l,a(X)VE ( |||$|||V1 + |||X|||221,,A2(1) ) o
i=0
This proves that
—1 1 uia
Nyra(%) < 117 (lll, + 1K1, 2y ) (212)

Also, we construct another sequence of greedy time {7;(v, I, a)}ien given by
To=minl, 741 :=inf {t > 7 (t— 7)Y 4 1%l 7 4 = ’y} A max I, (2.13)

and denote by N, 1,(x) := sup{i € N : ¥; < maxI}. Then on any interval J such that |J| =

1
(%) '72% and with the sequence {Ti(%, J, @) }ien it follows that

- g
(Tig1 — 7)) 72+ =<l = 5T ="

-2

TiyTit1]
hence there is a most one greedy time of the sequence 7; lying in each interval [7;(, J, &), 7i41(3, J, @)].
1

That being said, if we divide I into sub-interval J of length |Ji| = |J| = (%) 7% then it follows
that

\ Y U
Nyra(x) <Y N3 g o(x), mi= {mw (2.14)
k=1
Theorem 2.3 (Existence and uniqueness of the solution) Assume that G(y) = Cy, there

exists a unique solution of equation (L) and also of the backward equation on any interval [a,b].

Proof:  To make our presentation self contained, we give a direct proof here for the rough
differential equation

dy = [Ayy + f(ye)]dt + Cypdxy = F(yp)dt + Cypday,

or in the integral form

t t
v =G,y = ya +/ F(yy)du +/ Cyudy, t € la,T], (2.15)

where F'(0) is globally Lipschitz continuous with Lipschitz coefficient Ly = [|A|| + C. Denote by
D2%(y,, Cy,) the set of paths (y,4) controlled by z in [a,T] with y, and y), = Cy, fixed. Consider
the mapping defined by

M D:%a(ylb Oya) — D:%a(ytb Oya)v M(yv y/)t = (G(y7 y/)tv Cyt)



Then similar to [21] we are going to estimate || M (y, ') ||
19/l + 1R ]l Since

= [Cyllo+||RE )|

‘2 using || (y, y/)”’m,2a =
o

x,20

A

ICyl., < lCl vl < IC <||y’||oo Il + (T = a)® |||Ry|||2a)
ICT Nl lyall + 1CHT = a)* Nzl ([l + ICIT = a)® RVl

IN

and

a , /
IREEY))

IN

t t
Lt = s[l[yllosg + NCUY oo, 501 Xs ]
+Colt — s> [ Il s, ICT IR oy 07 + NCT 1M gy WM, 215,01 |

IN

where we can choose T'— a < 1 so that C,, can be bounded from above by C,(1). In addition

1l st < Mall + 196 1T — a)* Izl + (T = a)** | RY [l ,
thus it follows that
[l 2]
2c
< (T —a) " Lyllyal + (T — a)' =Ly |zl 941l + L (T — @) [|RY ||,
+C 1KMo (el + (T = a)* ||&/]],,) + CallCI(T — a)® [ Il DR o0 + (1¥/]]., H\X\Hm]

All in all, we can estimate [M(y,y')], 5, as follows
.6, 2
< el + (@ = ) | ) el + (T = @) DRVl | + || R
< (T - Lyl + [(IC)] + (T =)' ~Ly ) llell, + 1C1 1K |1l
+ [ = ICl all, + (T = ) ICN (@ + Ca) IXllso | 1],
+ICIT = ) + (T = @)Ly + Call CIT = @) all, | 1R Do
<

(L +ICT+1CICa ) A+ ICDulyall + |Ls + ICH + ICICa) (119l + 1RV )

< u(lall + 1Cvall + 199l 50 )

where we choose for a fixed number ;1 € (0,1) with
1
M 1= max { [ Ly + €I+ Ca) | (1 + €1, 5 }

and T' = T'(a) satisfying

1
“2a 3 p
(T N a)l 2 + ”’x”’a,[a,T} + ”‘stmAz([mT}) = W < 1L

Therefore, if we restrict to the set

B = {(.1/) € D2 (40 Cwo). |

o
93 a0 < T2 el

8



then

2
7
+M)Hyall T el
7

M0 e < #l 9z < (72
which proves that M : B — B. By Schauder-Tichonorff theorem, there exists a fixed point of M
which is a solution of equation (ILI)) on the interval [a, T]. Next, for any two solutions (y,y’), (7,7")
of the same initial conditions (y,, Cy,), by similar computations, one get

s = G Mne < (0= 5l + 1028 = G2 ) < 0l = @7,

and together with p < 1, this proves the uniqueness of solution of (LI)) on [a,T]. By constructing
the greedy time sequence (2.13]), we can extend and prove the existence of the unique solution on
the whole real line. It is easy to see that solution y; depends linearly on initial y,, hence there exists
a solution matrix ®(¢,a,x,X) of equation (Z.I5]). The similar conclusion holds for the backward
equation. O
The estimate of the solution under the supremum norm || - || and the ||, -[|, 5, semi-norm is proved
straight forward. 7

Theorem 2.4 Assume G(y) = Cy. For any interval [a,b], the seminorm ||y, y'll, o0 1 and the
supremum norm ||yl|o (a5 are estimated as follows.

Y poaay = lvallexp {Nu [a,b],0(X) log <u+i>}; (2.16)

M> 1_

Wloosons < Talles {Ng oapatlos (1 + =)} (217)

M> 1_

Proof: To estimate ||y, v/|| we use the same greedy time (2ZI3)) to get

T2

1
[ —1_M\|yﬂ\|

so that

N

1971l < MYllos,ririen) < Ny ll + 1Cly7 [(Tirr = 70 Nzl

x,204,[T4,Tiy 1]

_ —\a o 1
(1 1€ = 70 el + 12 )l < (i =, )l (2.18)

IN

As a result 1 i
7 Iz
o/ e ey < T 0 € T2 (1 =) el

and therefore

N“ Jlab],a () N-]’a-,[a,b],a(x) 1
/ / H
Iy 9l 20 far < > samrn S D = (N + ﬁ) [19al
i=0 i=0
1
< lyall 0 { N jas G108 (i =) }
The same estimate using (2.18]) shows 2I7]). []



3 Stability results
We first present the definition of pathwise stability (see e.g. [13]).

Definition 3.1 (A) Stability: A solution p(-) of the deterministic differential equation ([III) is
called stable, if for any € > 0 there exists an r = r(e) > 0 such that for any solution y of (LI
satisfying ||y, — pal|l < v the following inequality holds

sup ||y — ]| < e.

t>a

(B) Attractivity: u is called attractive, if there exists v > 0 such that for any solution y of (L))
satisfying ||ya — tal|l < we have

lim ||y; — || = 0.
t—o0

(C) Asymptotic stability: p is called
(i) asymptotically stable, if it is stable and attractive.

(ii) exponentially stable, if it is stable and there exists r > 0 such that for any solution y of
([T satisfying ||ya — pall < r we have

. 1
limsup —log [|y¢ — || < 0.
t—o0 t

3.1 Case 1. v € (1,1): Young systems

Lemma 3.2 Let v(s,t) be a control function, A([s,t]) a positive increasing function w.r.t. the
inclusion of interval set [s,t]. Assume 0 € CI7V satisfying for any s,t € [a,b]

me”’q var,[s,t] = 7(37 t) + A([87 t]) mx’”p—var,[s,t} + 2KA([87 t]) mx”’p—var,[s,t} WHWq—var,[s,t] : (31)
Then for any s,t € [a, b

100 g—var, s, < 27(5:8) + 28(1s, ) Nl p—yar 5. + EP A5, D) ]l

p—var,[s,t] *

(3.2)

Proof: We apply the same arguments as in [16, Proposition 5.10, pp. 83-84]. Namely, for any
fixed [s,t] C [a,b], it follows from ([B]) that for [u,v] C [s, ]

ol < 2y(u,0) + 2A([s, 1)) ] whenever 3.3)

q—var,[u,v] p—var,[u,v]

1
< _—
Il -ar ot < TREG ¢

Assume that [|zf],_,, 5.9 > W([st])’ define a sequence of greedy time

to=s, tiy1:=inf{u >t |z|,_ } At

1
The sequence would end up at some time ¢ty = ¢, with
Vam) - Z CANIRE 1 L -

so that
N < (4K (s, 1)) Il

p—var,[s,t] *

10



Together with (3:3]) and the greedy times t;, we derive

N-1

N—
1
[0 — 0s]] < Z: 101, — Ol < ; <27 tistit1) +2A([tz,tz+1])m>

p
< 2y(sut) + g (AL D) 1ol

in case |2, _var, (5,9 > m. All in all, for any s,t € [a, b]

B P
16 = 0,1l < 2(5.8) + 20005, 1) ol o + )P (28005, 6) Nl gy

Using the fact that (s, t) and ]Hazmg var s

g-var seminorm that for all a < s <t < b

are control functions, it follows from the definition of

100 g—var s, < 27(5:8) + 2A([5, ) 2l v, s, + P AL D) N2 -
[]
Lemma 3.3 Assume that there exist positive increasing functions H, k1, ko with
Er(lzll,—var01) < 005 (3.4)
H(0) + Exa (2]l p—var,0,1) < Aa; (3.5)

such that y; satisfying

t
log [[y:|| < log [|yall + / [H(l[ys])) = Aalds + m1(lzll,—var,j0,0) + #2(llval)s Vo <t <a+1. (3.6)

Then the zero solution is locally exponentially stable.

Proof: ~ We apply the random norm techniques in [I] to translate the original problem for
random integral inequality (B.0) into the problem for deterministic integral inequality. Fix an
0 <e<Aa—H(0)— Eri(|z],_varo,1]) and assign

n—1

F(tv $) = /{1(”|$|”p—var,[n,t]) + Z Iil(mxmp—var,[k,k—i-l])’ Vn > O,Vt € [’I’L, n+ 1]
k=0

Then it follows from (B.6)) that

t
log [|yz[| < log [|ynl| + / [H (l[ysll) = Aalds + K12l —var n,0) + £2(lyall),  VE € [n,n 4 1].

n

Hence for any t € [n,n + 1]

log ||yl exp{(Aa — H(0) — e)t = T'(¢, z)}
< logllynl exp{(Aa = H(0) — €)n —T'(n,z)}

+ [ [ (Il expl(0n — HO) = 95 = Do)} exp{~ (s — H(0) = s + I(s,2)}
—(H(0) +¢€)|ds

+/£2(|]ynH exp{(Aa — H(0) —e)n — T'(n,z)} exp{—(Aa — H(0) — e)n + F(n,a:)})

11



From the definitions of I' and &1, for almost sure all = there exist the limit

I'(¢t
lim (t,z)

t—o00

n—1
. 1
= Jim 23 sallely s srs) = Bl o) < 2= HO) —e. - (3)

thus there exists an integer m = m(Aa — H(0) — ¢, z) such that —(Ag — H(0) —€)t +I'(t,z) < 0 for
any t > m(Aa — H(0) — €, x). Assign
z = log ||yt|| exp{(Aa — H(0) — e)t = T'(t,x)} = log ||ye]| + (Aa — H(0) —€)t — I'(¢,x),Vt > 0.

Because H and kg are increasing functions, it follows that for any n > m((Ag — H(0) —¢€),x)
t
2 < 2n + Ra(e) + / [H(ezS) — (H(0) + 6)]ds, vt € [n,n+ 1. (3.8)

Again since H and k9 are increasing functions, there exists a § > 0 such that
ko(8) + H(0e™0)) < H(0) + ¢

Using (24)), one can choose r(x) such that

lyoll < () = S exp{T(m, z) — (Aa — H(0) — )m H 1+ oD Pl i)} (39)
7=0

so that (B:28) and (2] implies
Zm = log ||lyml|l + (Aa — H(0) — e)m — T'(m,z) <logd, ¥|yol < r(zx).

Because H (exp{z, +ro(e”)}) < H(6e%20)) < H(0)+e, it follows from the continuity in s of H(e*)
that H(e*) < H(0) +¢€,Vs € [m,m+ 1), hence [B8)) follows that z; < z,, + ko(e*™) < log d + k2(d)
and H(e*7) < H(0) + e. This argument proves that z; < logd + k2(0),Vt € [m, m + 1], hence it also
follows from (B.8]) that

2 < 2m + K2(0) — [H(O) +e— H<5e“2(5))] (t —m),Vt € [m,m + 1]
and in particular

Zma1 < Zm — [H(O) +e— H(5e™)) — 52(5)} < log zp, < logé. (3.10)

By the induction principle, one can show that (3.I0]) holds for every n > m, so that

IN

2t Zn + ka(6) — [H(0)+6—H<5e“2(6)>](t—n)

ZN — [H(O) +e— H(6e®2)) — 52(5)] (n—N)+r2(0) — [H(O) +e— H<6e“2(6)>] (t—n)

IN

< logé + ka(0) — [H(O) Fe— H(bek2®) — @(5)} (t — N,

for all t € [n,n+ 1],n > m. As a result,

log |yl
< D(t,a) — (Aa — H(0) — e)t +log § + ra(8) — [H(O) +e— H(6em2@) — @(5)] (t —m)
< T(t,z) +logd + [H(O) Y- H(dem2®)) - ,{2(5)] m— [AA — H(dex2@) @(5)}15

12



thus

IN

tisup ¢ log ] <~ [\ = HE D) — 1200)] + Er(lol a0,

< = [HO) + e~ HED) — ry(6)] <0, (3.11)

In other words, by choosing z( satisfying (3.28]), the zero solution is locally exponentially stable. [J

Theorem 3.4 (Local stability for Young differential equations) Assume X.(w) is a Gaus-
stan process satisfying (L4l), and v > v > % is fized. Assume further that conditions (L), (I.0Q)
are satisfied, where Ay > h(0), and there exists uy € (0,1), u2 > 0 such that the functions H,k; in
B21)) satisfies B.0)). Then the zero solution of (1)) is locally exponentially stable for almost sure
all the trajectories x of X.

Proof: We summarize the ideas of the proof here for reader benefits. In Step 1 we use the
integration by parts to derive the equation of log ||yl in (B13) and the equation of 6; = ﬁ in
(I4). The estimate of [|0], .., 5, is then given by (BI7) by applying Lemma In Step 2
we derive an estimate of log ||yl in (319), with the help of auxilliary polinomials P;,i = 1,...,4
satisfying ([B:20). The conclusion is then a direct consequence of Lemma

Step 1. As proved in [6], there exists a unique solution of (L2]) and also the backward equation.
Since y = 0 is the solution of (L2), it follows that y; # 0 for all ¢ € R if yy # 0 (otherwise there
would be two solutions of the backward equation starting from y; and ending at zero and yg, which
is a contradiction). Then observe that

9ws) _ 9ws) —9(0) _ Jy Dyglnys)ysdn
sl lys|l sl

1
= / Dyg(nys)bsdn =: G(ys,6s), Vs €R; (3.12)
0

meanwhile

1 ()l = 11f (ys) = SO < hllysIDllysll, Vs € R.
Using the rule of integration by parts (see [40, [41])), it is easy to check that

leg HytH = <9t,A6t + J|C’(t”)>dt + <9t7 Cet + G(yt,Ot)>da:t, (313)

where 6; satisfies the equation

d6, = (A0t+f(yt) 0,00, A0, + LY )>)dt+<09t+G(yt,0t) Ht(Ht,CHt—i-G(yt,@t»)dxt. (3.14)
el el

A direct computation using assumptions shows that

1 1
1G (Y, 0)lloo,a,p) < Cg A §Cg”yHoo,[a,b] < C (1 A §HyHoo,[a,b]) (3.15)
and
1
160 = | | Dustmioar

0 g—var,[a,b]

1 1
< | [ pustman Ohocast | [ Dsstman| 10,
0 q—var,[a,b] 0 0, [a,b]

IN

1 1
/0 1Dy g ()l ,—var, a0y 41 + /0 1Dy g(n9) |00, a6141 1014 —var, 0,1
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1
< §Cg <Hy”oo7[a,b} ”‘qu—van[a,b} + my’”q—var,[a,b] ) (316)

it follows that

t
16: = Osll < 2] All( - 5) + 2/ h({lyul)du + CICT + Collyllos, s,6) N2l —var. 5.
K N2l —var fag 1€ + Gy, 0) — 6(6,CO0 + G(y,0))

p—var ”‘q—var,[s,t]

t
2||Afl(t =) + 2/ h(llyul)du + CICN + Cyllyllos, s,0) N2l —var (5.

+KOg |||$”|p—var,[s,t} |||y|||q—var,[s,t} + ZK(ZHCH + Cg||y||007[5,t]) |||x”|p—var,[s,t} |||0|||q—var,[s,t] :

IN

Since each of t — s, f; h(||yu ) du, ||| is a control, the function

p—var,[s,t] W‘TWq—var,[s,ﬂ

t
(s, 1) = 2[|Af[(t - 5) + 2/ hllyull)du + K Cg |2l —var 15,0 19y —var. 5.

is also a control. By using triangle inequality for g-var seminorm with ¢ > p > 1, we get for all
a<s<t<b

106 = Osll < N0l g—var, 5.
= s { 3 (400 + @O+ Collloe o) 1l
[u,v]€Il

%
2K 2)Cll + Colyloo .0) 1y var 5.y W0y —var ] )}
< y(s,) + IO+ Collylloe s.0) Il sy 2K CICH + Collylo o) Nl g 10l v

which has the form of [B.1]) with A([s,?]) := 2[|C|| + Cyl|ylec,[s,q- Applying (3.2) in Lemma [3.2] we
conclude that for all a < s <t <b

”‘emq—var,[s,t]
< 29(5,8) + 2Q2/CN + Collylloofs,) 12 p—var s, + CEP T AK CICH + Collylloo, s, ) N2l e .

IN

t
2 Al —s) + 2/ hllyulldu + K Cq ll2ll,—var. 5.0 191l g—var. 15,
AN+ 2Cgl1Ylloo fs,0) Ny —var, 9 + CEP T AICH + 2Cg[1ylloo,s,0)” 11,

p—var, [S,t} ’

Step 2. Next, to estimate ([B.13)), we first use (2.2) and B.I0]) to get

1
”‘x”’p—var,[a,b] (HC” + §CQHy”oo,[a,b}) + K mxmp—var,[a,b} ”’ <67 Co+ G(y7 6)>”‘q—var,[a,b}

b
/ (8, CO, + Glys, 0,))da,s

IN

IN

1 1
20— var, a9 <HCH +5ColYlloo a1 + K CICH + Collylloo, ) 191g—var,fo,6) + 55 Co 19lg—var, o )

We estimate equation (BI3]) in the integration form, using (B.I7) and (L3

t
g lull < og [vall+ | [=Aa-+ Al lds
1
+ W‘Tmp—var,[a,t] (HC” + §CQHy”oo,[a,t] + K m <97 Co+ G(ya 9)>Wq—var,[a,t] >

14

(3.17)



IN

t
1
log [[all + / [=Aa + hlllys D]ds + (1C1 + 5 Cgllylloofa,0) 12 lp—var, a0

1
+§CQK |||':U|||p—var7[a,t] |||y|||q—var,[a7t} + K |||':U|||p—var7[a,t] (2”0” + OgHyHOO,[a,b]) |||9|||q—var,[a7t}

IN

og [l + [ -3+ bl s + (€1 + 5ol o) 1T

5 CoK 1ol ot 1oy + 5 1y g CICT + Collyloo )
{21400~ @) +2 [ Bl KC, Ul o 1o

FAICT + 20 Myl ) 1ol + REP AT + 20, Iyl o) B -

Writing in short Ya,t = Cg”qu—var,[a,t] = Cg(HyaH + ’”y”’q—var,[a,t}) and Tp = mxmp—var,[a,t] then
Yat > Cgllylloo,fa,q); We use the convex function inequality

(’LL + U)p < Mi—Pup + (1 - Ml)l_pvp7 V’LL,’U >0,u1 € (07 1)7
to get

t 1 1
log [lyel| < log |yl +/ [=Aa+ hlllysIDlds + (IO + 5 Yar)zp + 5 KapYar

t
(20l + Yar) {2141~ ) +2 [ hlll)du + Ky

a

2K \r-1 2K \p-1
- P .p - D P
HAIC + 2amy+ (F5) @lelra+ (7=-)" @Yarah)
t
< g luall+ [ (At Alalds + Qs + @z (318)

where we applying Cauchy inequality for estimating 1, Q2 in (BI8]) to get forall 0 <a <t <a+1

t
Q1 = HCHpr+4KHA|!HC|!$p+4KHCH9«’p/ h(llyall)du + 8K |C*z) + (BK)IICIP a7

IN

(1 + 4K A [C 2y + 8K [C]22% + B CIP a2yl 4 2K o | C )22
1 t 2

2K / ()

(1 + 4K A])[C 12y + 8K [C]22% + SE)P|CIPH = 4 2K o | C )22

1 t
Iy o / h(llyal)?du
H2 Ja

IN

IA

1 t
PU(|Cllzp) + paPa((|C]zp) + QKE / h([|yul)?du.

Also

2K
— M1

K+1
Q2 = Sy Yar+2KC)ap{ (K +2)Vaswp + (5

p—1

) (2Ya7t)px§}
t

K Y,ray {21+ 2 [ Bl + K Yoz, + (@IC] + 2Var)a,

a

(o) aclyap+ (=) V)
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K+1

2K
< S Yau + 2K Cllay { (K + 2oy + (5

p-1 P.D
— M1> (2Ya,t) $p}

2K \p-1
2K Yy { 20 Al + Koy + (41O +2Ya )z, + <E) llc|)Par

2K \p-!
(1_N1> (2o 2} + 2K i 2 a2 + 2K / (lyall)®d

On the other hand, it follows from (24I), Cauchy inequality and Hélder inequality that

Yopane < Omluyauml w2 (14 exp {2 (lally-ar o) })
< ; Pl 2O (1 exp (2P (el o))
< o cmu al P + B2y a2 7 (1 exp {4 F (Il o) } )
Hence,

1 I
Qa2 < o} )+ PP () + 2K [ Wl P
2 12 Ja
In summary, we have just proved that for all a <t <a+1
! 4K M1
tog el < togllall + | [ = Xat hllgol) + ol ds + P AT Tl o)
12 Po (2l var fa,) + 12P5 (Cs 121y var ) + EPI H(Cys llyall)  (3.19)

where P/"', Py, P{"", P}"" are polynomials with positive coefficients (possibly depending on parameter
w1 € (0,1), uo € Ry) corresponding to possibly fractional orders. In particular,

P (z) = (1 +4K||A|])z + 8K 22 + BK )P 2P ul P Py(z) = 2K 2%

PI"(0) = P»(0) = P (0,2) = P} (0, 2) = P§"(2,0) = P{" (2,0) = 0. (3.20)
By assigning
H(z) := h(z )—l—i—é{h( )2
k1(z) = P‘”(HCH ) + k2P (|C]2) + p2 P5" (2) (3.21)
Ra(z) = —Pp(2)
2

and using A4 > h(0) and the fact that k1 satisfies ([B.4]), together with assumption ([3.3]), we derive
the conclusion as a direct consequence of Lemma [3.31 O

Corollary 3.5 Assume that the linear Young differential equation
dyy = Aydt + Cydx (3.22)

satisfies (LO). Then a criterion for the globally exponential stability is

1
> (144K (Al + 8K + K ) ICI(E N2l 0y ) (3.23)

p—var,[0,1
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Proof: We apply B19) for h(-) = 0,g(-) = 0, thus it is no harm to set 3 = 1 and pe = 0 in
this case, which we get
g [lyrall < logllykll = Aa + PLUICH I, var, fhop1)
< log|lykll = Aa + (L + 4K JANICH Nl —ar 1) + BENCI D22 a1y
1
+EEP (O b

p—var,[k,k+1] *
As a result
135£p%1%ﬂWM| < S+ (AR JADICHE ol ue o1 + SKICIE Il o,
+BEPICIPLE 2l oy
. :
< A+ A HAKNADICH (B U2l o ) +SKICI (B 0y )T

1
+HBEPICIPE Nl 01

Assign C := ||C|| <E H\xmz +‘1,ar 0.1] > i , then system ([B:22]) is exponentially stable if

A > (1+4K|A|)C + 8KC? + (8K)PCPT! = PL(C), (3.24)

which, together with the fact that A4 < ||A|| and K > 1, implies that C' < 1. In that case (B24) is
followed from (B.23]). O

Theorem 3.6 (Global stability for Young differential equations) Assume X.(w) is a cen-
tered Gaussian process satisfying (L4), and v > v > % is fired. Assume further that conditions
T3, @C8) and B23) are satisfied. Then there exists an € > 0 such that whenever Cy,Cy < €, zero
solution of system (1)) is globally exponentially stable for almost sure all realization x of X.

Proof:  Choose g = Cy, then it is followed from ([B.I9) that for alla <t <a+1

t
1%mnsmmmu/em+@+wqw+Wﬂmmmmw>
1
ACHPIC 1l sus o) + CrPE Cos Vel o) + A" s ) (3:29)

In review of assumption (3.3]), due to ([B:23) we can choose u1 € (0,1) such that
Aa > EPIC]Hl2lp—var,jo,17)-
Then we can choose € = €(y1) such that given Cf,Cy < €
0<Xi=As—Cp—4KCy + Efg( [ —— ) (3.26)

It follows from (B.25]) that

tog 11| < 108 190l = (A Bl —varo.)) + %0l o) + 2 (0]

or by induction for any n € N

n—1 n—1

7 w02l )] + 2 r2(lel). (3:27)

k=0 k=0

Bll—‘

tog [lyall < Tog llyoll = [+ Ex(lel—ar o) —



For any 0 < 0 < %, using (37)) and ([B3.20]), there exists m = m(x, A, 0) large enough such that for

every n > m
n—1

A
log [lyml| < log lyoll = 5+ > _ malluxll)
k=0

With that fixed m, choose the initial point zy close to zero enough such that

m—1
ra(lloll) <6 and Y ma(llyell) < mé. (3.28)
k=0
Then N )
log [[ym|| < log llyoll = 5m + dm < log [lyol| — (5 — 8)m
or

A
lymll < llyolle™ 7™, (3.29)
Assume ([3:29) holds for all k = m,...,n for some n > m. Then by (327

A n
log [lyms1 | < 1og lyoll = 5 (n+1) +dm+ > ma(llyxll)

k=m
A n
k=m
A
A
< logllyoll = (5 = 9)(n +1).

Hence ([B:29) also holds for n + 1, which follows by induction that (23] holds for every n > m,
provided that we choose the initial yg such that (3.:28]) is satisfied.

Next, for fixed r(x) > 0 and for any ||yo|| < r(z) and any v > 0, the Young differential equation

d% - |:AZ/J;+ ~fly )}dt—I—[C’ +%(%)]d$t
- [Ayt+fn,( )}dt+[0 +g (7)]dxt (3.30)

satisfies the existence and uniqueness of solution %, and moreover its coefficient functions A4, C, f, g,
satisfies the same conditions as A, f, g do, with the same parameters A4, Cy, Cy. In particular, ([3.27)
holds with parameters independent of ~. Since (2.4]) derives

k-1

Iyl < llgoll TT [1 + expt F(lall,-ur yyen)}]s VR EN,
§=0

we also choose v = v(d, m(z, A, 0)) large enough such that

,_.

m—

[+ xPLF (lally e )} <7
]:0

( m—1

r\x

T i

or equivalently /{s< [1 +exp{F([|=],_ var,[j,j+1])}]) < 0.
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Then it is easy to check that

. < IkaH>

k=0 k=0

m—1

A\
Nk

3
/_\
"
?:1

[1+ E(llely—var [“+1])]>

0
m—1 m—1

< @(M [1 +eF(|||:cmp,var,[j,j+1]>]) < ms. (3.31)
k=0 R

Notice that (B31]) has the form of ([B.28]), hence we can prove by the same induction argument as

(329) that

on

ol < W0l o=G=om or g < oG, ¥ > m.

v
In other words, the zero solution of (1)) is globally exponentially stable for almost sure all z. [

3.2 Case 2. ve(3,3) and g(y) = Cy

In this section we consider a particular rough case in which g(y) = C'y. We could then prove the
same conclusions on stability, and even a general form of local stability.

Theorem 3.7 (Local stability for rough differential equations) Assume % >v>v > %
and X.(w) is a stationary process satisfying (L4). Assume further that conditions (LH), (LG) are
satisfied, where g(y) = Cy and A > h(0). Then there exists an € > 0 such that given |C|| < €, the
zero solution of (ILLT) is locally exponentially stable for almost all realization x of X. If in addition

A > Cy, then we can choose € so that the zero solution of (L) is globally exponentially stable.

Proof: We sketch out the proof here in several steps. In Step 1, we derive the equation for
log ||ly¢|| in (B:32]), and the equation for § = ﬁ in (B.33]). Notice that for Gaussian geometric rough
path, then [z].. = 0, but we still compute the estimates here for general rough paths. As such the
estimate for [|6, 0'[|,, 5, (.4 is Proved by Proposition 3.8 which, due to G(y) = Cy, does not include
19, ¥'ll s 20, a,57> hence we do not need the integrability of [|y, y'[l,, 24,[4,,- The estimate for log ||y || is
then derived in ([B.30]) in Step 2, where each component is computed so that finally log ||y:|| satisfies
(340). The conclusion is then followed from Proposition and Theorem [3.4]

Step 1. We use similar arguments in [I3] to prove that the solution of the pathwise solution
of the linear rough differential equation (II)) generates a linear rough flow on R?, and that y; = 0
iff yo = 0. Hence it remains to prove all the formula for ; and r;. By direct computations using
([2.10l), we can show the following equations.

o |ly:||? satisfies the RDE
dllyell* = 2(ye, Aye + f(yi))dt + 2(ys, Cyp)day + || Cyel|*d[x]o s,
where 2(y, Cy)s = 2(ys, Cys) + 2(ys, [Cy]5).

o ||yl satisfies the RDE

1 1
dlly]| = (e, Ay + fye))dt + —(ys, Cyp)daxy
Tlyell [yt
1 2 1 2
2t Cyn2dizlos,
2Hyt” |:H yt” ”ytH2<yt yt> ] [ ]07t

where [ﬁ(y,C’y}]; = [”71”] (ys, Cys) + |1S|| [(y,C’y)];
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e log ||y:|| satisfies the RDE

f )
el

where [0, 09>L — (6,,C8,) + (8, [CH]L).

dlog ||yl = (0, A0y +

1
Vdt + {0y, CO)dxy + HC@HQ — (6, C’Ht>2]d[:n]07t, (3.32)

e 0, satisfies the RDE

46, — [Aet—<9t,A9t>et+Ji(yﬁ) — 6, J[’( ”)>9t}dt+ [C@t <6t,06t>9t]dxt

1
+5{ 3061, C0)26, — 206, C0)CO: — 1 COI0. o (3.33)
where

co- (9,09>9]' — [CO]. — (6,,C0,)0, — [(93,099}'93.

S S

Rewrite (333)) in the form
df; = f(t, Ht)dt + g(@t)da;t + k(@t)d[az]avt, t e [CL, b] (334)

or in the integral form

t t t
O, =F(0,0"); =0, +/ fu,8,)du —|—/ 9(0y,)dx,, —|—/ k(0y)d[z]qu, VO<a<t<b
where g € C? such that there exist

Cy = maX{Hg(@)Hoo,[o,T}, 1D g(0) |, 0,775 ||D999(9)||oo,[0,T}} < o0;
k is Lipschitz continuous with Lipschitz constant such that

= [1E(0)llos, 0,7y V Lip(k) < oc.

We can prove the following estimate (see the proof in the Appendix).

Proposition 3.8 There exist a generic constant P = P(b — a,v — «) and a generic increasing
function Q(-) = Qp—qp—al-) such that for all 0 < a <D,

mac { [|(6,0')

[CXR1

b
< e-a [P+ [ Qs b)) du+ P( el o + 1Kl mrgasy + Ul agon )

z,20,[a,b] |(6’6 )H‘fcﬂa,[ab

8

ufa:|'

(3.35)

Step 2. It is now sufficient to estimate the quantity in [8.32). For any 0 < a <t < 1, rewrite
(332)) in the integral form

f(ys)
[[ys

g lyall~ At = a) + | h(lue])
| [G1C01° = (0., CO i

t t t
1
lOgHytH = 10g||yaH+/ <ysyAys >d ‘|‘/ <937093>dl‘s+/ [§||095||2—<95,095>2]d[$]07s

IN

t
/ (0s,COg)dx

a

]

(3.36)
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The last term in the last line of ([836]) can be estimated as

/ " [Bice? - 6..00.02)dlel.

< 21CIP [l

+ Kalb — al** l2]ll20,a2 ()

)| [3lcer - w.co]

a,[a,b]

3 (6% (6%
I = P Wiallsa, az(ias) + Felb = a* Helhza a2(as) [ucu?wucu}umm o

. 3 v—2a
< NICIP1e = a2 Wiella, a2 sy [ 5 + 5Kalb — al® (Cy loll, + b — al~2(]

(.

(0% 3 (0%
< ICI21b = P lialla a20 iy (5 + 5KaCalb — al” Jl, )
5RO — ol [ 1B ooy (el + 17 + 5 16,0112 5. ) (3.37)

Meanwhile the rough integral can be estimated as

|

S <6a709a> ab‘

b
/ (05,COs)dxs

a

(<9 o).

+Calb = P (Wellagagy [ RO, 14608 N gy WKl p2(000) )
< €I = al” §ol, o) + 4ICIPIE = 0> 1Kl 0, a s
+Calb = aP* ([l gy [|[RO||, 110, COYly oy WKz p2(aay ):
(3.38)

20, [a,b

To estimate the brackets of the last line of ([338]), we apply ) to get

146, COY Ml ooy < MNCON oy + 1405 20D gy + 140, COZl , oy + 1O, CONO, COMl oy
< HYICI 1Ol g0
< WO (Cylal, + b= a2 (Lall, + D ]|6,0']], )-
Meanwhile
IREGN < [8,00) — (60,,C05) — (6.,CO)ar
< I+ 2ACHLINR, sl + ICHIREIE + 1CI1E Pl
< ACNEL N+ ACP IR el + NCTNRE P + 41O ]

thus it follows that

‘ R

< 2l || &°

(9,09>‘

‘2a7[a,b}

‘ 2a,[a,b]
+HACIP Nl o,

< YOI Pl oy + (2UCT +AUCI2 b = 0l Pl sy )

FAICI1—al® Pellagogy | ], 1€ =]

Re‘

‘m Jla,b]

+Clb -

z,2c mx 2a°

Combining all the above estimates into (338]) and applying Cauchy inequality we get

b
/(6’5,005>de < CN1b = al* Iella, o, + 4UCI 1D = al** IXlag, a2 (0.
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+Co||IC)2b — af* (4HC [ 12l \wai,[a,b] + 14C¢ Xl 20, a2 (10,8 12110 0,07 )
2

+CallCll = { ol g (1 +2||0|||b — al* Izl s )

)

+7ICIb - a2 |(fell, + 1) I} (3.39)

Replacing ([B37) and (3:39) into (3:30]) using (B.33]) in LemmaBEL we conclude that there exists an
increasing polynomial with all positive coefficients

w(ts a2, X, o)) = K (t = @ Dollg o WX0z0, 210 Dol sz ) (0002, [o]) = O,

and an increasing function K : RT™ — R* such that forall 0 <a <t <1

F0.H2 o+ 10— o (5 ol ab]+

z,2c

t
g ) < tog vl + | [Bluel) + ICUE (lyel) = Aa] ds + [ Cllsttsa,, X[, (340)

which is similar to ([8:36]). Because of (2.7)), (8.7 holds for the realization x and X. Since A > k(0),
we can choose ||C]| < € small enough such that function H(u) := h(u) + ||C||K(u) is increasing
function and H(0) < A4. Using (2I7), Theorem B4 and Theorem [B.6, we can then prove that
system (L)) is locally/globally exponentially stable at zero. O

Corollary 3.9 Let ®(t,z, X, [z]) be the solution matriz of dzy = Azidt + Czdxy. Then there exists
a function k(t,a,z, X, [x]) such that for any 6 > 0

1®(t, 2, X, [2])]| < exp{ — At + |[C||K(E, 0, 2, X, [x])}. (3.41)

As a result
hmsup IOg”ZtH < =M+ [IC]| E &(6,0, 2, X, [2]). (3.42)
t—s

Corollary 3.10 Consider the following system
dys = Ay + f(yo)ldt + Cyed B, y. € RY, (3.43)

where B is a fractional Brownian motion with Hurst index % < H < 1; A is negative definite and
f:R? = R is globally Lipschitz continuous, i.e. there exist contants ho,cy > 0 such that

(y. Ay) < —hollyl®,  1f (1) = Fy2)l < esllyn —vall,  Von,42 € RY (3.44)

Assume that hg > cy. There exists an € > 0 such that under condition ||C|| < €, ¢ possesses a
random pullback attractor consisting only one point a(x), to which other random points converge to
with exponential rate.

Proof: The case H > % is proved in [I3, Theorem 3.3]. For % < H < %, starting with the
estimate ([B.41]), we apply the Holder inequality such that

/f(t,(l,$,x, [33]) < HO + (t - a)'%(tva7$7xv [33]), V0 <a<t< 17
where Hy > 0 is a constant and
it a2, %)) = Bt = 0,100 gy Dl o o) Pl oy ) 00,2, %) =,

and R is an increasing function. It follows that I'(¢, s, z, X, [z]) = (t — s)&k(t, s, x, X, [z]) is a control
function, and
@t 2, X, [2])| < exp {ICIHo — Aat +[|CIT(,0,, X, [z])}.

The arguments are then similar to the proof of [I3, Theorem 4.4]. We stress here that for the rough
case, it is proved in [2] that the system (B.43]) generates a random dynamical system [1]. O
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4 Appendix

Proof: [Proposition B.8] Consider the solution mapping M : D2%(0,, g(8,)) — D2*(04, 9(6,))
defined by
M(0,0')e = (F(0,0")1, 9(61)),

together with the seminorm

= lg@ll, + || 7@

|

We are going to estimate these seminorms. Observe from ([B:34)) that 6’ = g(6;), thus

T, 20 2

160020 = NN, + | 2], . M@0

1911 Vallo +17 = al* [|R)) < Cylal, + b= al|0.0]], 0 (@)

1D6g(6 )l 101l < Cq 16, - (4.2)

161l
lg @)l

Meanwhile using Holder inequality

IN A

, t
IR < / 1£ (1w, 0) | du + | Dog(8) g (0)[[[Xs.e] + [1(0.)|oo|[2]:.

+Kalt = 5 1Ol Iolloa + Calt = s (Wl || BO| -+ lo®)[l,, 1Ko )

IN

o [ L\ 2
= s ([ 10 ) G + Cillald

+Kalt = [ C 16l Uallq + Calt = 5 (Mally || RZO|, -+ ll9(6) Il 1Kl )
(4.3)

where we use the fact that 6/ = () to get

la@)ll, = lDeg(®)@|l, < IDag(@)ll 1€/l + 1 Dog @)l 16 .
< Cyllg@®)ll, + Cy 01, 9(0) ]l < 2C2 0], -

On the other hand

16%12:(t) — 2(s)|dn

1RO < /01 |Dog (8 + e~ 6.)) ~ Dag(o)
*/01 | Dag (6 + (6. — 6.) [ 1B,
thus
e, < 1o ], + o ot bt < [, + et .

Combining these above estimates into (£3)), we get

’ b 1 1—2v
R < - / 1 0) |7 du) "+ C2 Xl + O]l
+KaCrlb = af® 191, I[e]l,
o 1
+Calb = al*{ Il [Co[|R]|, +5C2 1l 160, ] +2C2 101 UK, }

Cy(b = )2 4 C2 Kl + Co Malloe + CaCylb — @) Nl | B

2

IN
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1 (03
+{C2CallXl0 + CrKa lalllzq + 5CaCE Iall2 }1b—al” 10l

1-2v
where Cy := <f: ||f(u,9u)||ﬁdu> . Together with (A1) and ([@2]) we conclude that for any
a < b such that b —a <1 then

|rre| + 9@,

< Cplb =) + G} IXllq + Ok allpe + CaCylb — @)° J
1 (0%
+{ |C2Ca IXlq + CKa o)l + 5CaCE Il |1 — al + Cy | x
< [Cyllell, + 16—l 0.0, 5,
< Cplb—a)* 7 + 2 [Xlyq + Cr el + C2 el
1 [e%
+|C2CaIX o + CrKa Malllzo + 5CaCE Il | Cylb — al lal,
1 [e%
+{ |C3Ca 1Kl 0 + Cea l[elly, + 5CaCE Iall?, | (b = @) + Cy + CaCy lall, |
x(b—a) %
< M|l = a2 + [Xllgq + lalllaq + Nl + (1Xlq + 1202 + Uellloa ) (0= @) lal,
M{(IXlaq + 12 + Walllq ) B2lly + 16 = 0272 + X lloq + Ualllaq + ol } 16,6']], 5,
where

M o= max {Cp, G0+ Co), Ol + Ka), Cy(Ca + 1), 5|

Now construct for any fixed p € (0,1) a sequence of stopping times {7y }ren such that 79 = 0 and

- _ N
‘Tk+1—Tk’2V 2a+’7k+1_7—k‘y a< mx”’I/,[Tk,Tk+1]+”’XH‘2V,A2([T]€,T1€+1D+W [‘T] ”’21/,A2([Tk77k+1})) 2IM’ (4 4)

for all k € N, then it follows that
Izl

IXlhao < 171 = 7¢O UKD, A2(freme ) < L

]l 20

IN

’Tk—l-l — Tk’V_a wxmy,[m, ] < 17

Tk+1

IN

|Tht1 — Tk|2(y_a) Il [z] |||V,A2([Tk,m+ﬂ) <1

hence it derives

9O e, + RO

2a Tk,Tk+ﬂ

< 2M{!Tk+1 P g — il (el + 0Kl + el ) Y0+ (0.0, )
< nt |60, 20
Hence using the fact that 6’ = g(6) and F(6,6') = 6 we conclude that
1€, 20y < T2 (15)
Therefore "

m 6 6 ‘Hx 20, [a,b = TNﬁ,[a,b],y,a(x)a

I
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where N S [a,8,,a(X) is the number of stopping times 74 in the interval [a,b]. It is easy to see that

_ 1

b—a> Ny e ga7 (1+ 12l oy + Xl p2asy + Wiellonnzgesy )}

All in all, we have just shown that for all 0 < a <b < T

(16669, 20
< )T (Lt el oy I nn oy + T sy )
(1 - pur al 1
< 22 2 (2)7 7 @07 [14 (Bl oy + W8N poosy + Vel )]
< 7227 e + 57+ (Kol o + Wy + N s )

(4.6)
It is important to note that when estimating M — (and similarly for M %), one can estimate
M <Cp+M,  where M =max {05(1 +Cl), Cr(1 4 Ky), Cy(Co + 1)}

In that case using Holder inequality we get

1 1 9T 1 1
M7 < 27a O 4 M

1-2v 1

< 2(f ) P ) =+ M

= / 1F (s ) |75 du + M7 . (4.7)

where we choose s<a<v<; L such that 1 — 2v > v — a. Replacing [E7) and a similar estimate
for M7= into ([E8) we have the conclusion B3H) for [|(6,6")], 20, (-
(6,6 20,0 and [[(6, 6" A 2.20,[a,p) &€ direct consequences of Cauchy inequality.

The other estimates for

O
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