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Abstract

In this paper, we give a new inequality for weighted Lebesgue spaces called Bohr-Nikol’skii

inequality, which combines the inequality of Bohr-Favard and the Nikol’skii idea of inequality
for functions in different metrics.
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1. Introduction

Let m ≥ 1, f ∈ Cm(R),Djf ∈ L∞(R), j = 0, 1, ...,m, σ > 0 and suppf̂ ∩ (−σ, σ) = ∅,
where f̂ is the Fourier transform of f . Then it is known the following Bohr-Favard inequality
(see [5, 6]):

‖f‖∞ ≤ σ−mKm‖Dmf‖∞,

where the Favard constants Km are sharp in the sense that these cannot be replaced by

smaller ones and defined by

Km =
4

π

∞∑

j=0

(−1)j(m+1)

(2j + 1)m+1
, m ∈ Z+.

The Favard constants satisfy the following properties

1 = K0 < K2 =
π2

8
< K4 < ... <

4

π
< ... < K3 =

π3

24
< K1 =

π

2
.

This inequality was extended to Lp-norm in [1]: Let 1 ≤ p ≤ ∞, m ≥ 1, σ > 0, f ∈ Lp(R),

Dmf ∈ Lp(R) and suppf̂ ∩ (−σ, σ) = ∅, where Dmf is the mth-generalized derivative of f .
Then

‖f‖p ≤ σ−mKm‖Dmf‖p,

where Km are the Favard constants defined above.
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The Bohr-Favard inequality was studied also in [7, 9, 4]. The main purpose of this paper

is to derive a new Bohr-Nikol’skii inequality for weighted Lebesgue spaces, which combines
the inequality of Bohr-Favard and the Nikol’skii idea of inequality for functions in different
metrics (see [12, 13]). Note that the Nikol’skii inequality was studied in [9 - 14] and the

Bohr-Nikol’skii inequality for Lebesgue spaces was studied in [3].

2. Main results

Denote by S(R) the Schwartz space of rapidly decreasing functions and by S ′
(R) the dual

space of S(R), the space of tempered distributions on R. If f ∈ S ′
(R) then the support of f ,

denoted suppf , is the set of points in R having no open neighborhood to which the restriction
of f is 0. The Fourier transform F of a tempered generalized function f can be defined via

the formula 〈
Ff, ϕ

〉
=

〈
f,Fϕ

〉
, ϕ ∈ S(R),

and the mth-generalized derivative of f , denote by Dmf , can be defined as follows

〈
Dmf, ϕ

〉
= (−1)m

〈
f, Dmϕ

〉
, ϕ ∈ S(R).

Let 1 ≤ p < ∞, s ∈ R. The weighted Lebesgue space Lp
s := Lp

s(R) consists of all
measurable functions such that

‖f‖Lp
s

=
( ∫

R

|f(x)|p|x|psdx
)1/p

< ∞.

Note that L
p
s(R) is a Banach space and L

p
s(R) becomes the usual Lp(R) space if s = 0.

We recall the following result in [8] as known an extension of Young’s Inequality for the
weighted Lebesgue spaces.

Lemma 1. Let 1 < u, p, r < ∞, 1/p ≤ 1/u + 1/r, 1/p = 1/u + 1/r + v + q + γ − 1,

v < 1−1/u, q < 1/p, γ < 1−1/r, γ +q ≥ 0, γ +v ≥ 0, q+v ≥ 0 and let f ∈ Lu
v (R), g ∈ Lr

γ(R).
Then f ∗ g ∈ Lp

−q(R) and there exists a constant C independent of f, g such that

‖f ∗ g‖L
p
−q

≤ C‖f‖Lu
v
‖g‖Lr

γ
,

where

(f ∗ g)(x) =

∫

R

f(x − y)g(y)dy.

Now, we state our main theorem.

Theorem 2. Let 1 < u, p < ∞, 0 < q + 1/p < v + 1/u < 1, v − q ≥ 0, m ≥ 3, σ > 0, and

f ∈ S ′
(R) such that it’s mth-generalized derivative Dmf ∈ Lu

v (R) and suppf̂ ∩ (−σ, σ) = ∅.
Then f ∈ Lp

q(R) and there exists a constant C > 0 independent of f, m, σ such that

‖Dmf‖Lu
v
≥ Cmλσm−λ‖f‖Lp

q
, (1)

where

λ = v +
1

u
− q − 1

p
> 0.
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Proof. Let us first prove (1) for the case σ = 1. To do that, we denote K := (−∞,−1] ∪
[1, +∞), Kε := (−∞,−(1 + ε)] ∪ [1 + ε, +∞) for each ε > 0, and

Υ(y) =

{
C1e

1/(y2−1) if |y| < 1,

0 if |y| ≥ 1,

where C1 is chosen such that
∫

R
Υ(y)dy = 1. We define the sequence of functions (φm(y))m∈N

via the formula

φm(y) = (1K3/(4m)
∗ Υ1/(4m))(y),

where
Υ1/(4m)(y) = 4mΥ(4my).

Then Υ1/(4m)(y) = 0 for all y 6∈ [−1/(4m), 1/(4m)],
∫

R
Υ1/(4m)(y)dy = 1. Hence, for all

m ∈ N we have φm(y) ∈ C∞(R) and

φm(y) = 1 ∀y ∈ K1/(2m), φm(y) = 0 ∀y /∈ K1/m. (2)

So, it follows from suppD̂mf ⊂ K that φm(y)D̂mf = D̂mf . Therefore, since

D̂mf = (−iy)mf̂ ,

we get

φm(y)D̂mf = (−iy)mf̂ ,

and then

D̂mfφm(y)/(−iy)m = f̂ .

Hence

f = (2π)−1/2(Dmf) ∗ F−1(φm(y)/(−iy)m). (3)

We consider two numbers r, γ satisfies 1 < r < ∞, q+ 1
p −v− 1

u = 1
r +γ−1, γ+v ≥ 0, γ−q ≥

0, v − q + γ ≤ 1. From the hypothesis, we have 1
p ≤ 1

u + 1
r , γ < 1 − 1

r , v < 1 − 1/u and

−q < 1/p. Therefore, due to (3) and Lemma 1, we obtain the following estimate

‖f‖Lp
q
≤ (2π)−1/2‖Dmf‖Lu

v
‖F−1(φm(y)/ym)‖Lr

γ

= (2π)−1/2‖Dmf‖Lu
v
‖F (φm(y)/ym)‖Lr

γ
. (4)

We define

km := 1 +
1

m
, ϑm(y) = φm(kmy), Φm(y) = φm(y) − ϑm(y).

Then

(F (ϑm(y)/ym))(x) = (km)m(F (φm(kmy)/(kmy)m)(x) = (km)m−1(F (φm(y)/ym))(x/km).

So,

∥∥∥F (ϑm(y)/ym)
∥∥∥

Lr
γ

= (km)m−1+γ+ 1
r

∥∥∥F (φm(y)/ym)
∥∥∥

Lr
γ

.

3



Hence, it follows from (km)m−1+γ+ 1
r ≥ (km)m−1 = (1 + 1

m)m−1 ≥ 3
2 that

∥∥∥F (ϑm(y)/ym)
∥∥∥

Lr
γ

≥ 3

2

∥∥∥F (φm(y)/ym)
∥∥∥

Lr
γ

.

Therefore, since Φm(y) = φm(y)− ϑm(y) we get

∥∥∥F (Φm(y)/ym)
∥∥∥

Lr
γ

≥
∥∥∥F (ϑm(y)/ym)

∥∥∥
Lr

γ

−
∥∥∥F (φm(y)/ym)

∥∥∥
Lr

γ

≥ 1

2

∥∥∥F (φm(y)/ym)
∥∥∥

Lr
γ

. (5)

From (4)-(5) we obtain

‖f‖Lp
q
≤ 2(2π)−1/2‖Dmf‖Lu

v
‖F (Φm(y)/ym)‖Lr

γ
. (6)

Now, we will estimate ‖F (Φm(y)/ym)‖Lr
γ
. To do that, we put C2 = max{‖Υ(j)‖L1 , j ≤ 3}.

By Υ1/(4m)(x) = 4mΥ(4mx), we obtain Υ
(j)
1/(4m)(x) = (4m)j+1Υ(j)(4mx) and then

‖Υ(j)
1/(4m)

‖L1 = (4m)j‖Υ(j)‖L1 ≤ C2(4m)j, ∀j ≤ 3.

Therefore,

∥∥∥φ(j)
m

∥∥∥
L∞

=
∥∥∥(1K3/(4m)

∗Υ
(j)
1/(4m)

)
∥∥∥

L∞
≤

∥∥∥Υ
(j)
1/(4m)

∥∥∥
L1

≤ (4m)jC2, ∀j ≤ 3. (7)

Note that φm(y) = 1 ∀y ∈ (−∞,−1 + (1/2m)] ∪ [1 − (1/2m), +∞) and φm(y) = 0 ∀y ∈
[−1 + (1/m), 1− (1/m)].

So, if |y| < 1−(3/m), then |y| < |kmy| < 1−(1/m) and then φm(y) = φm(kmy) = 0, which
implies Φm(y) = 0. Further, if |y| > 1 then |kmy| > |y| > 1 and then φm(y) = φm(kmy) = 1,

which implies Φm(y) = 0. From these we have

suppΦm ⊂ [1− (3/m), 1]∪ [−1, (3/m)− 1]. (8)

Now, for y ∈ [1− (3/m), 1]∪ [−1, (3/m)− 1] we get

∣∣∣y − kmy
∣∣∣ =

∣∣∣ y

m

∣∣∣ ≤ 1

m
. (9)

From (7) and (9) we have the following estimate for y ∈ [1− (3/m), 1]∪ [−1, (3/m)− 1]

∣∣∣Φm(y)
∣∣∣ =

∣∣∣φm(y) − ϑm(y)
∣∣∣ =

∣∣∣φm(y)− φ(kmy)
∣∣∣

≤
∥∥∥y − kmy

∣∣∣.
∥∥∥φ

′

m

∥∥∥
L∞

≤ 1

m
4mC2 = 4C2, (10)

and
∣∣∣Φ′

m(y)
∣∣∣ =

∣∣∣φ′

m(y)− ϑ
′

m(y)
∣∣∣ =

∣∣∣φ′

m(y)− φ
′

m(kmy)
∣∣∣

=
∣∣∣φ′

m(y)− kmφ
′

m(kmy)
∣∣∣ ≤

∣∣∣φ′

m(y)− φ
′

m(kmy)
∣∣∣ +

∣∣∣(1 − km)φ
′

m(kmy)
∣∣∣

≤
∣∣∣y − kmy

∣∣∣.
∥∥∥φ

′′

m

∥∥∥
L∞

+
∣∣∣1 − km

∣∣∣.
∥∥∥φ

′

m

∥∥∥
L∞
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≤ 1

m
(4m)2C2 +

∣∣∣1 − km

∣∣∣4mC2

≤ 20mC2. (11)

Put Ψm(x) = (F (Φm(y)/ym))(x). Then

Ψm(x) =
1√
2π

∫

R

eixyΦm(y)/ymdy.

Therefore, due to (8), we have

sup
x∈R

∣∣∣Ψm(x)
∣∣∣ ≤ 1√

2π

∫

R

∣∣∣Φm(y)/ym
∣∣∣dy =

1√
2π

∫

1− 3
m
≤|y|≤1

∣∣∣Φm(y)/ym
∣∣∣dy

and it follows from (7) that

sup
x∈R

∣∣∣Ψm(x)
∣∣∣ ≤ 6

m
√

2π
sup
y∈R

∣∣∣Φm(y)
∣∣∣(1− 3

m
)−m ≤ 24e4C2

m
√

2π
. (12)

We also obtain

sup
x∈R

∣∣∣xΨm(x)
∣∣∣ =

1√
2π

sup
x∈R

∣∣∣
∫

R

eixy(
mΦm(y)

ym+1
− Φ

′

m(y)

ym
)dy

∣∣∣

≤ 1√
2π

∫

R

∣∣∣mΦm(y)

ym+1
− Φ

′

m(y)

ym

∣∣∣dy.

Therefore, due to (7)-(8), we have

sup
x∈R

∣∣∣xΨm(x)
∣∣∣ ≤ 1√

2π

∫

1− 3
m
≤|y|≤1

∣∣∣mΦm(y)

ym+1
− Φ

′

m(y)

ym

∣∣∣dy

≤ 6

m
√

2π
sup

1− 3
m
≤|y|≤1

∣∣∣mΦm(y)

ym+1
− Φ

′

m(y)

ym

∣∣∣

≤ 6

m
√

2π

[
sup
y∈R

∣∣∣Φm(y)
∣∣∣m(1− 3

m
)−m−1 + sup

y∈R

∣∣∣Φ′

m(y)
∣∣∣(1 − 3

m
)−m

]

≤ 6

m
√

2π

[
4C2me4 + 20C2me4

]
=

144e4C2√
2π

. (13)

We see that

∥∥Ψm

∥∥r

Lr
γ

=

∫

|x|≤m

∣∣xγΨm(x)
∣∣rdx +

∫

|x|≥m

∣∣xγΨm(x)
∣∣rdx

≤ sup
x∈R

∣∣Ψm(x)
∣∣r

∫

|x|≤m

xγrdx + sup
x∈R

∣∣xΨm(x)
∣∣r

∫

|x|≥m

∣∣∣ 1

xr−γr

∣∣∣dx.

Due to r − γr > 1, we have
∫

|x|≥m

∣∣∣ 1
xr−γr

∣∣∣dx < ∞, and then

∥∥Ψm

∥∥r

Lr
γ
≤ 2mγr+1 sup

x∈R

∣∣Ψm(x)
∣∣r+ 2mγr+1−r

r − γr − 1
sup
x∈R

∣∣xΨm(x)
∣∣r. (14)
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From (12)-(14), we obtain

∥∥∥Ψm

∥∥∥
r

Lr
γ

≤ 2mγr+1
(24e4C2

m
√

2π

)r
+

2mγr+1−r

r − γr − 1

(144e4C2√
2π

)r
= 2m−r+γr+1

(e4C2√
2π

)r
(

144r

r − γr − 1
+ 96r),

and then
∥∥∥Ψm

∥∥∥
Lr

γ

≤ e4C2√
2π

(
144r2

r − γr − 1
+ 96r2)

1
r m−1+γ+ 1

r = m−1+γ+ 1
r /C3, (15)

where C3 =
√

2π/e4C2(
144r2

r−γr−1 + 96r2)
1
r . From (6) and (15) we have

‖Dmf‖Lu
v
≥ Cm1−γ− 1

r ‖f‖Lp
q
.

So, (1) has been proved for the case σ = 1.
Next, we prove (1) for any σ > 0. To do that, we define a function fσ as follows

fσ(x) = f(x/σ), x ∈ R.

Clearly, (Dmfσ)(x) = σ−m(Dmf)(x/σ). Hence,

‖fσ‖L
p
q

= σ
q+ 1

p ‖f‖L
p
q
, ‖Dmfσ‖Lu

v
= σ−m+v+ 1

u‖Dmf‖Lu
v
. (16)

From suppf̂ ∩ (−σ, σ) = ∅ we deduce suppf̂σ ∩ (−1, 1) = ∅. Therefore,

‖Dmfσ‖Lu
v
≥ Cmλ‖fσ‖Lp

q
,

where λ = v + 1
u − q − 1

p . Hence, it follows from (16) that

σ−m+v+ 1
u‖Dmf‖Lu

v
≥ Cmλσ

q+ 1
p ‖f‖Lp

q
.

So,

‖Dmf‖Lu
v
≥ Cmλσ

m+q+ 1
p
−v− 1

u ‖f‖Lp
q

= Cmλσm−λ‖f‖Lp
q
.

The proof is complete.

For σ > 0 we denote

Lu
v,σ = {f ∈ Lu

v(R) : suppf̂ ∩ (−σ, σ) = ∅}.

The norm of the derivative operator Dm is given by

‖Dm‖Lu
v,σ→L

p
q

= sup
‖f‖Lu

v,σ≤1

‖Dmf‖L
p
q
.

From Theorem 2, we have the following corollary about the norm of derivative operators.

Corollary 1. Let 1 < u, p < ∞, 0 < q + 1/p < v + 1/u < 1, v − q ≥ 0, m ≥ 3, σ > 0. Then

there exists a constant C > 0 independent of m, σ such that

‖Dm‖Lu
v,σ→Lp

q
≥ Cmλσm−λ,

where

λ = v +
1

u
− q − 1

p
> 0.

6



If p = u,using Theorem 2, we have the following result.

Corollary 2. Let 1 < p < ∞,−1/p < q < v < 1 − 1/p, m ≥ 3, σ > 0, and f ∈ S ′
(R) such

that it’s mth-generalized derivative Dmf ∈ Lp
v(R) and suppf̂ ∩ (−σ, σ) = ∅. Then f ∈ Lp

q(R)

and there exists a constant C > 0 independent of f, m, σ such that

‖Dmf‖Lp
v
≥ Cmλσm−λ‖f‖Lp

q
,

where

λ = v − q > 0.

If q = v, we have the following result from Theorem 2.

Corollary 3. Let 1 < u < p < ∞,−1/p < q < 1 − 1/u, m ≥ 3, σ > 0, and f ∈ S ′
(R)

such that it’s mth-generalized derivative Dmf ∈ Lu
q (R) and suppf̂ ∩ (−σ, σ) = ∅. Then there

exists a constant C > 0 independent of f, m, σ such that

‖Dmf‖Lu
q
≥ Cmλσm−λ‖f‖L

p
q
,

where

λ =
1

u
− 1

p
> 0.

Using Theorem 2 in the case q = 0, we have the following:

Corollary 4. Let 1 < u, p < ∞, 1/p < v + 1/u < 1, v ≥ 0, m ≥ 3, σ > 0, f ∈ S ′
(R) such

that it’s mth-generalized derivative Dmf ∈ Lu
v (R) and suppf̂ ∩ (−σ, σ) = ∅, f 6≡ 0. Then

there exists a constant C > 0 independent of f, m, σ such that

‖Dmf‖Lu
v
≥ Cmλσm−λ‖f‖Lp , (λ = v +

1

u
− 1

p
).

In particular,

lim
m→∞

‖Dmf‖Lu
v
/σm = ∞, lim inf

m→∞
‖Dmf‖1/m

Lu
v

≥ σ.

Further, if v = 0, we have

Corollary 5. Let 1 < u, p < ∞, 0 < q + 1/p < 1/u, q ≤ 0, m ≥ 3, σ > 0, f ∈ S ′
(R) such

that it’s mth-generalized derivative Dmf ∈ Lu(R) and suppf̂ ∩ (−σ, σ) = ∅, f 6≡ 0. Then

there exists a constant C > 0 independent of f, m, σ such that

‖Dmf‖Lu ≥ Cmλσm−λ‖f‖Lp
q
,

where

λ =
1

u
− q − 1

p
> 0.

In particular,

lim
m→∞

‖Dmf‖Lu/σm = ∞, lim inf
m→∞

‖Dmf‖1/m
Lu ≥ σ.

Moreover, if v = q = 0 then we have the following result from Theorem 2.
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Corollary 6. Let 1 < u < p < ∞, m ≥ 3, σ > 0, f ∈ S ′
(R) such that it’s mth-generalized

derivative Dmf ∈ Lu(R) and suppf̂ ∩ (−σ, σ) = ∅. Then f ∈ Lp(R) and there exists a
constant C > 0 independent of f, m, σ such that

‖Dmf‖Lu ≥ Cmλσm−λ‖f‖Lp,

where

λ =
1

u
− 1

p
> 0.

Remark 1. For comparison, using Bohr-Favard inequality for Lu(R), we get Km‖Dmf‖Lu ≥
σm‖f‖Lu and then the sequence {‖Dmf‖Lu/σm}∞m=1 is separated with the origin, while by
Corollary 5 we have the following stronger result: limm→∞ ‖Dmf‖Lu/(maσm) = ∞ for all

0 < a < 1
u −q− 1

p and for all f ∈ Lp
q(R), and then the sequence {‖Dmf‖Lu/σm}∞m=1 converges

to ∞.

Using Theorem 2 and the Bohr-Favard inequality, we can prove the following result.

Corollary 7. Let 1 < u < p < ∞, σ > 0. Denote

Nσ,u := {f ∈ S ′

(R) : suppf̂ ∩ (−σ, σ) = ∅, Dmf ∈ Lu(R) for all m = 0, 1, 2, ...}

and

γm := inf
f∈Nσ,u

‖Dmf‖Lu

σm‖f‖Lp
.

Then γm ≤ π
2γm+1 and

lim
m→∞

γm = ∞.

Let 1 ≤ p < ∞ and s ∈ R. The weighted Lebesgue space Lp
s := Lp

s(Rn) consists of all

measurable functions such that

‖f‖L
p
s

=
( ∫

Rn

|f(x)|p
n∏

j=1

|xj|psdx
)1/p

< ∞,

where x = (x1, x2, . . . , xn). Consecutively applying Theorem 2 to each variable, we get the
following result for the n-dimensional case.

Theorem 3. Let 1 < u, p < ∞, 0 < q + 1/p < v + 1/u < 1, v − q ≥ 0, m ≥ 3, σ =
(σ1, . . . , σn) ∈ Rn

+, and f ∈ S ′
(Rn) such that it’s αth-generalized derivative Dαf ∈ Lu

v (Rn)

and suppf̂ ∩ (−σ1, σ1) × · · · × (−σn, σn) = ∅. Then f ∈ Lp
q(R

n) and there exists a constant

C > 0 independent of f, α, σ such that

‖Dαf‖Lu
v
≥ C‖f‖Lp

q

n∏

j=1,αj 6=0

αj
λσm−λ

j , (17)

where

λ = v +
1

u
− q − 1

p
> 0.

In the following theorem, we give a result for the sequence of Lp
q−norm of primitives of a

function (see the notion of primitives of functions in [2, 16]).
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Theorem 4. Let 1 < u, p < ∞, 0 < q + 1/p < v + 1/u < 1, v − q ≥ 0, f ∈ Lu
v(R),

σ = inf{|ξ| : ξ ∈ suppf̂} > 0, and {Imf}∞m=0 ⊂ L
p
q(R), where I0f = f , Imf is a primitive of

Im−1f , m = 1, 2, . . . . Then for 0 < a < λ = v + 1
u − q − 1

p we have the following limit

lim
m→∞

maσm‖Imf‖Lp
q

= 0

and

lim
m→∞

‖Imf‖1/m

Lp
q

= 1/σ. (18)

Proof. Similar to the proof in [2] we have

suppÎmf = suppf̂ ∀m ∈ N.

Therefore, suppÎmf ∩ (−σ, σ) = ∅ and then it follows from Theorem 2 that

‖f‖Lu
v

= ‖Dm(Imf)‖Lu
v
≥ Cmλσm−λ‖Imf‖Lp

q
.

Hence,
lim

m→∞
maσm‖Imf‖Lp

q
= 0

for all 0 < a < λ. Consequently,

lim sup
m→∞

‖Imf‖1/m

Lp
q

≤ 1/σ.

To complete the proof, we have to obtain

lim inf
m→∞

‖Imf‖1/m

Lp
q

≥ 1/σ. (19)

To do that, we consider 0 < ε < σ. Without loss of generality we may assume that σ ∈ suppf̂ .

Then there exists a function ϕ ∈ C∞
0 (R), suppF−1ϕ ⊂ [σ−ε, σ+ε] such that

〈
f, ϕ

〉
6= 0. Hence,

0 <
∣∣〈f, ϕ

〉∣∣=
∣∣〈Imf, Dmϕ

〉∣∣=
∫

R

Imf(x)Dmϕ(x)dx ≤
∫

R

|xqImf(x)||x−qDmϕ(x)|dx.

Using Hölder inequality, we have

0 <
∣∣〈f, ϕ

〉∣∣≤
(∫

R

|xqImf(x)|pdx
)1/p(

∫

R

|x−qDmϕ(x)|p′dx
)1/p′

= ‖Imf‖L
p
q
‖Dmϕ‖

Lp′

−q

,

where
1

p
+

1

p′
= 1.

So,

lim inf
m→∞

‖Imf‖1/m

Lp
q

≥ 1/ lim sup
m→∞

‖Dmϕ‖1/m

L
p′

−q

. (20)

Note that

sup
x∈R

(1 + x2)|Dmϕ(x)| ≤
∫

[σ−ε,σ+ε]
(|xm(F−1ϕ)(x)|+ |(xm(F−1ϕ)(x))

′′|)dx

≤ Cm2(σ + ε)m,

9



where C is independent of m, and so,

lim sup
m→∞

‖Dmϕ‖1/m

L
p′

−q

≤ σ + ε.

Then it follows from (20) that

lim inf
m→∞

‖Imf‖1/m

L
p
q

≥ 1/(σ + ε).

Letting ε → 0, we confirm (19). The proof is complete.

Acknowledgments. This work was supported by Vietnamese Academy of Science and

Technology under grant number NCVCC01.05/18-18. The authors would like to thank the
referees for useful remarks and comments.

References

[1] H.H. Bang, An inequality of Bohr and Favard for Orlicz spaces, Bull. Polish Acad. Sci.

Math. 49 (2001), 381-387.

[2] H.H. Bang and V.N. Huy, Behavior of the sequence of norms of primitives of a function,
J. Approximation Theory 162 (2010), 1178-1186.

[3] H.H. Bang and V.N. Huy, A Bohr-Nikolskii inequality, Integral transforms and special

functions, 27 (2016), 55-63.

[4] A. G. Baskakov and K. A. Sintyaeva, The Bohr-Favard inequalities for operators, Russian

Mathematics 53 (12) (2009), 11-17.

[5] H. Bohr, Ein allgemeiner Satz über die integration eines trigonometrischen Polynoms,

Prace Matem.-Fiz, 43(1935), 273-288.

[6] J. Favard, Application de la formule sommatoire d’Euler a la démonstration de quelques
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