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Abstract. In [3] Baumslag introduced a family of parafree groups Gi,j which

share many properties with the free group of rank two. The isomorphism problem

for the family Gi,j is known to be difficult and a few small partial results have

been found so far. In this paper, we compute the twisted Alexander ideals of the

groups Gi,j associated to non-abelian representations into SL(2,Z2). Using the

twisted Alexander ideals, we can prove that several groups among Gi,j are not

isomorphic. As a consequences, we are able solve the isomorphism problem for

sub-families containing infinitely many groups Gi,j .

1. Introduction

The isomorphism problem is a fundamental problem in group theory in which one

have to decide whether two finitely presented groups are isomorphic. Because the

general isomorphism problem is unsolvable, people often restrict the problem to a

special class of groups. Recall that a group G is called parafree if it is residually

nilpotent and has the same nilpotent quotients as a given free group. As parafree

groups enjoy many common properties with free groups, the isomorphism problem

for parafree groups is known to be difficult.

In [2, 3], Baumslag study the family of parafree groups,

Gi,j :=
〈
a, b, c| a = [ci, a][cj, b]

〉
,

here [x, y] := x−1y−1xy. The isomorphism problem for the family Gi,j has gained

considerable interest. The family Gi,j is mentioned in [12] by Magnus and Chandler

to demonstrate the difficulty of the isomorphism problem for torsion free one-relator
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groups. They also note that as of 1980 it was unknown if any of the groups Gi,j are

non-isomorphic. Later on, several approaches to attack the isomorphism problem

for the family Gi,j were carried out. In 1994, Lewis and Liriano [11] distinguish

a number of parafree groups in the family Gi,j by counting the homomorphisms

between Gi,j and the finite groups SL(2,Z/4) and SL(2,Z/5). A group-theoretical

attack by Fine, Rosenberger, and Stille [6] is able to show that Gi,1 6∼= G1,1 for i > 1

and Gi,1 6∼= Gj,1 for distinct primes i, j. More recently, by using a computational

approach along the line of [11], Baumslag, Cleary and Havas [5] show that all the

groups Gi,j, 1 ≤ i, j ≤ 10 are distinct.

In our previous work [8], we use the Alexander ideal, an algebraic invariant

of groups which was originated from topology, to study the isomorphism prob-

lem for families of groups. Our approach can completely solve the isomorphism

problem for the Baumslag-Solitar groups and a family of parafree groups Ki,j :=

〈a, s, t| ai[s, a] = tj〉 introduced by Baumslag and Cleary in [4]. However, as noted

in [8], the Alexander ideals of all the group Gi,j are trivial.

In this paper, we develop our approach in [8] further to attack the isomorphism

problem for the family of groups Gi,j by using the twisted Alexander ideals. The

twisted Alexander ideal is a non-abelian generalization of the classical Alexander

polynomial. It turns out that, for certain values of i, j the twisted Alexander ideals

of Gi,j are non-trivial. By comparing the twisted Alexander ideals, we obtain sub-

families of Gi,j which contain infinitely many pairwise non-isomorphic groups.

Theorem 1.1. (i) Let p, q be two positive odd integers such that gcd(p, q) = 1. For

any d, d′ ≥ 1 the following holds

Gp(2d+1),q(2d+1)
∼= Gp(2d′+1),q(2d′+1) if and only if d = d′.

(ii) Let p, q be two positive integers such that gcd(p, q) = 1 and 3|(p + q). Then

for any d, d′ ≥ 1 and 36 | d, 36 | d′ the following holds

Gpd,qd
∼= Gpd′,qd′ if and only if d = d′.
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The rest of this paper consists of three sections. In section 2, we give a sketchy

review of the backgrounds on twisted Alexander ideals of a group. Section 3 contains

the computation of the twisted Alexander ideals of Gi,j associated to non-abelian

representations into SL(2,Z2). Section 4 is devoted to applications of the twisted

Alexander ideals to the isomorphism problem for the family Gi,j. In particular, we

show that several groups among Gi,j are non-isomorphic and, as a consequence, we

obtain Theorem 1.1 above.

2. Backgrounds on twisted Alexander ideals

The Alexander polynomial (see [1, 7]) is a topological invariant of knots which can

be computed from the information on the fundamental group of its complement. The

twisted Alexander ideals are non-abelian generalizations of the classical Alexander

polynomials. The twisted Alexander ideals for knots were introduced by Lin in [10].

In this paper, we use a version of twisted Alexander ideals by Wada which is defined

for a finitely presented group, more details can be found in [13] (see also [9]).

Suppose that Fk = 〈x1, . . . , xk|〉 is the free group on k generators. Let ε : ZFk → Z
be the augmentation homomorphism defined by ε(

∑
nigi) =

∑
ni. The jth partial

Fox derivative is a linear operator ∂
∂xj

: ZFk → ZFk which is uniquely determined

by the following rules:

∂

∂xj
(1) = 0;

∂

∂xj
(xi) =

0, if i 6= j

1, if i = j.

∂

∂xj
(uv) =

∂

∂xj
(u)ε(v) + u

∂

∂xj
(v).

As consequences of the above rules we get:

i)
∂

∂xi
(xni ) = 1 + xi + x2i + · · ·+ xn−1i for all n ≥ 1.

ii)
∂

∂xi
(x−ni ) = −x−1i − x−2i − · · · − x−ni for all n ≥ 1.
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Let G = 〈x1, . . . , xk|r1, . . . , rl〉 be a finitely presented group. We denote by ab(G)

the maximal free abelian quotient of G. From the sequence

Fk
φ→ G

α→ ab(G)

we get the sequence

ZFk
φ̃→ ZG α̃→ Z[ab(G)].

Suppose that we fix an isomorphism χ : ab(G)→ Zr, then the group ring Z[ab(G)]

can be identified with Z[t±11 , t±12 , . . . , t±1r ].

Given a homomorphism ρ : G → GLn(R), where R is an unique factorization

domain. We get the induced homomorphism of group ring ρ̃ : ZG→Mn(R).

Denote by ρ̃⊗α̃ : ZG→Mn([t±11 , t±12 , . . . , t±1r ]) the tensor product homomorphism

and

Φ := (ρ̃⊗ α̃) ◦ φ̃ : ZFk →Mn(R[t±11 , t±12 , . . . , t±1r ]).

We regard
(
Φ( ∂

∂xj
ri)
)
i=1,··· ,`,j=1,··· ,k as an n`× nk matrix whose entries belonging to

R[t±11 , t±12 , . . . , t±1r ] and call it the twisted Alexander matrix of G associated to the

representation ρ.

The dth twisted Alexander ideal of G associated to the representation ρ is defined

to be the ideal generated by all the (k−d)−minors of the twisted Alexander matrix.

The twisted Alexander ideal does not depend on the choice of the presentation

of G. It depends only on the group G, the representation ρ and the choice of the

isomorphism χ above. So the twisted Alexander ideal is an invariant of (G, ρ) defined

up to a monomial automorphism of R[t±11 , t±12 , . . . , t±1r ]. That is an automorphism

of the form ϕ(ti) = tai11 tai22 · · · tairr , i = 1, 2, · · · r, where (aij) ∈ GL(n,Z).

3. Computations of the twisted Alexander ideals

In this section we will present the computation of the twisted Alexander ideal

of the group Gij associated to a representation ρ : Gi,j → SL(2,Z2). It is easy to

see that, for all i, j, the maximal free abelian quotient of Gi,j is generated by the

images of b and c. We will fix an identification of Z[ab(Gi,j)] with the ring of Laurent
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polynomials Z[x±1, y±1] by mapping b to x and c to y. We denote by L the ring of

Laurent polynomials with Z2 coefficients Z2[x
±1, y±1].

As each group Gi,j is given by three generators and one relation, the twisted

Alexander matrix is of size 2× 6. We will compute the 4th twisted Alexander ideal

of Gi,j, that is the ideal in L generated by all the 2−minors of the twisted Alexander

matrix.

We only consider the ”twisting” given by non-abelian representations since the

abelian case reduces to the usual Alexander ideal which is trivial as noted above.

Note that by [9] Theorem 2.2, the twisted Alexander ideal only depends on the

conjugacy class of ρ. We have the following

Proposition 3.1. There are exactly 3 conjugacy classes of non-abelian representa-

tions ρ : Gi,j → SL(2,Z2), for every i, j.

Proof. It is well-known that the group SL(2,Z2) is isomorphic to the symmetric

gourp S3 and its structure is very simple.

If ρ is a respresentation, then ρ(a) = [ρ(ci), ρ(a)][ρ(cj), ρ(b)]. Because the commu-

tator subgroup of SL(2,Z2) is abelian, we get ρ(a) = [ρ(cj), ρ(b)][ρ(ci), ρ(a)]. From

that we easily find that ρ(a) = ρ(ci)[ρ(cj), ρ(b)]ρ(c−i). Therefore any representation

ρ is uniquely specified by the images ρ(b) and ρ(c). Direct calculation gives us that,

independent of i, j, there are 3 conjugacy classes each contains 6 representations.

The representative of each conjugacy class can be given in the following table

Type of Repr. ρ(b) ρ(c)

1

(
1 1

0 1

) (
0 1

1 0

)

2

(
0 1

1 1

) (
0 1

1 0

)

3

(
0 1

1 0

) (
0 1

1 1

)

�
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Choosing the relation r = a[cj, b]−1[ci, a]−1 = ab−1c−jbcja−1c−iaci, we compute

the Fox derivatives

∂r

∂a
= 1− a[cj, b]−1a−1 + a[cj, b]−1a−1c−i.

Now, as r = 1 in Gi,j, we can simplify to get

∂r

∂a
= 1− c−ia−1ci + c−ia−1.

Similarly, we can get the other Fox derivatives,

∂r

∂b
= −ab−1 + ab−1c−j.

∂r

∂c
= −ab−1(c−1 + · · ·+ c−j) + ab−1c−jb(1 + c+ · · ·+ cj−1)

−c−ia−1(1 + c+ · · ·+ ci−1) + (c−1 + · · ·+ c−i).

In each of the following sub-sections, we will find the twisted Alexander ideal

associated to each type of representations for the groups Gi,j.

3.1. Representation of type 1. This sub-section is devoted to the proof of the

following.

Proposition 3.2. Let I be the twisted Alexander ideal of Gi,j associated to a rep-

resentation of type 1 then

i) I = L in the case j is even or j is odd and i is even;

ii) I = (f2(d−1)) in the case both i, j are odd and 4|(i− j);
iii) I = (1 + y2d, f2(d−1) + xyf2(d−1)) in the case both i, j are odd and 46 | (i− j).
Here, d = gcd(i, j) and we define f2n := 1 + y2 + · · ·+ y2n for n ≥ 1, f0 := 1 and

f2n := 0 for n < 0.

Proof. Case 1: j is even. From the table above, we know ρ(b) and ρ(c). We find

that ρ(a) = ρ(ci)[ρ(cj), ρ(b)]ρ(c−i) =

(
1 0

0 1

)
. We deduce that Φ( ∂r

∂a
) = y−iρ(c)−i

and therefore det(Φ( ∂r
∂a

)) = y−i.

As y−i is a unit, we see that in this case I is the whole ring L.
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Case 2: i is even and j is odd. In this case, we can compute ρ(a) =

(
1 1

1 0

)
. Next,

we find that

Φ( ∂r
∂a

) =

(
1 1 + y−i

1 + y−i y−i

)
and Φ(∂r

∂b
) = x−1

(
1 y−j

1 + y−j 1 + y−j

)
Note that multiplying a column by a unit does not affect the twisted Alexander

ideal. So for simplicity, we can ignore the factor x−1 in Φ(∂r
∂b

). Consider two 2-minors

det

(
1 y−j

1 + y−i 1 + y−j

)
= 1 + y−i−j, det

(
1 + y−i 1

y−i 1 + y−j

)
= 1 + y−i−j + y−j.

We conclude that the I contains y−j, which is a unit. Therefore part (i) is proved.

Case 3: i and j are odd. We find that ρ(a) =

(
0 1

1 1

)
. From that we get

Φ( ∂r
∂a

) =

(
1 + y−i 1

1 + y−i y−i

)
and Φ(∂r

∂b
) = x−1

(
y−j 1

1 y−j

)
.

Now we can write out the matrix of Φ(∂r
∂c

) :
x−1y−jfj−1 + y−jfj−1 + y−j+1fj−3+ x−1y−j+1fj−3 + y−j+1fj−3 + y−jfj−1+

y−ifi−1 + y−i+1fi−3 y−ifi−1 + y−i+1fi−3

x−1y−j+1fj−3 + y−j+1fj−3 + y−i+1fi−3 x−1y−jfj−1 + y−jfj−1 + y−ifi−1

 .

Now, we perform the elementary operations to simplify the Alexander matrix.

Notice that the second column of Φ( ∂r
∂a

) is

(
1

y−i

)
. We can use this column to make

all the entries in the first row of other columns zero. So we can bring the Alexander

matrix to the form(
0 1 0 0 0 0

1 + y−2i y−i 1 + y−i−j y−i + y−j A B

)
,

where

A = y−i−j(x−1fj−1+fj−1+yfj−3)+y−2i(fi−1+yfi−3)+x−1y−j+1fj−3+y−j+1fj−3+y−i+1fi−3.

B = y−i−j(x−1yfj−3+yfj−3+fj−1)+y−2i(fi−1+yfi−3)+x−1y−jfj−1+y−jfj−1+y−ifi−1.
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So I = (1 + y2i, 1 + yi+j, 1 + yi−j, A,B). To reduce the number of generators of I,

we first prove a lemma.

Lemma 3.3. In the ring L, we have

gcd(1 + ym, 1 + yn) = 1 + ygcd(m,n) for all positive integer m,n.

Proof. We prove by induction on m + n. The case m + n = 2 is obviously true.

Suppose that the lemma holds for all m + n < t, we now show that it also holds

for m + n = t. If m = n the lemma is also obviously true, so we may assume that

m > n. We see that

gcd(1 + ym, 1 + yn) = gcd(yn(1 + ym−n) + (1 + yn), 1 + yn) = gcd(1 + ym−n, 1 + yn).

By induction hypothesis, gcd(1 + ym−n, 1 + yn) = 1 + ygcd(m−n,n) = 1 + ygcd(m,n). So

the lemma is proved.

�

Writing i = kd, j = ld where gcd(k, l) = 1, as i, j are odd, we can easily deduce

that gcd(2i, i+j, i−j) = 2d. It follows from the Lemma 3.3 that I = (1+y2d, A,B).

We will simplify A and B to write I in a simpler form.

Note that I is unchanged if we replace the generator A by A′ ∈ L which satisfies

A′ = A+ f, where f is a multiple of 1 + y2d. For such an A′, we will write A ≡ A′.

As (1 + y2i) is a multiple of 1 + y2d, y−2ig = y−2i(1 + y2i)g + g ≡ g. So we can

replace the term y−2i in the generators A or B by 1. Similarly, other terms like

y2i, y±2j, y±i±j, . . . appearing in A or B can also be replaced by 1.

With this in mind, we find that

A ≡ x−1(fj−1 +y−j+1fj−3)+(fj−1 +y−j+1fj−3)+(fi−1 +y−i+1fi−3)+(yfi−3 +yfj−3).

B ≡ x−1(yfj−3 + y−jfj−1) + (yfj−3 + y−jfj−1) + (yfi−3 + y−ifi−1) + (fi−1 + fj−1).

Multiplying B by a factor y−j and replacing y−2j, y−j−i and yi−j by 1, we get

B ≡ x−1(y−2jfj−1 + y−j+1fj−3) + (y−2jfj−1 + y−j+1fj−3)

+(y−j−ifi−1 + yi−jy−i+1fi−3) + (yi−jy−ifi−1 + y−jfj−1).
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≡ x−1(fj−1+y−j+1fj−3)+(fj−1+y−j+1fj−3)+(fi−1+y−i+1fi−3)+(y−ifi−1+y−jfj−1).

We can simplify the terms in A and B as follows

fj−1 + y−j+1fj−3 = (1 + y2 + · · ·+ yj−1) + y−j+1(1 + y2 + · · ·+ yj−3)

≡ (1 + y2 + · · ·+ yj−1) + yj+1(1 + y2 + · · ·+ yj−3) ≡ f2(j−1).

Now since l is odd, we can write

f2(j−1) =
1 + y2j

1 + y2
=

(1 + y2d)(1 + y2d + · · · y2(l−1)d)
1 + y2

=
1 + y2d

1 + y2
+

1 + y2d

1 + y2
(y2d+y4d+· · ·+y2(l−1)d)

= f2(d−1)+(1+y2d)
[y2d(1 + y2d)

1 + y2
+
y6d(1 + y2d)

1 + y2
+· · ·+ y2(l−2)d(1 + y2d)

1 + y2
]
≡ f2(d−1).

So we obtain fj−1 + y−j+1fj−3 ≡ f2(d−1) and similarly, fi−1 + y−i+1fi−3 ≡ f2(d−1).

Moreover, we can write:

(yfi−3 + yfj−3) = y
(1 + yi−1)

1 + y2
+ y

(1 + yj−1)

1 + y2
=

(yi + yj)

1 + y2
.

(y−ifi−1 + y−jfj−1) = y−i
(1 + yi+1)

1 + y2
+ y−j

(1 + yj+1)

1 + y2
=

(y−i + y−j)

1 + y2
≡ (yi + yj)

1 + y2
.

Therefore, we obtain

A ≡ x−1f2(d−1) +
(yi + yj)

1 + y2
and B ≡ x−1f2(d−1) +

(yi + yj)

1 + y2
.

To simplify further, we need to divide into two sub-cases.

Sub-case 3a: 4|(i− j). It follows that 4|(k− l). Without loss of generality, we can

assume that i− j > 0, then

(yi + yj)

1 + y2
= yj

(1 + yi−j)

1 + y2
= yj

1 + y2d

1 + y2
(1 +y2d+y4d · · ·+y2(

k−l
2
−1)d)

= yj(1 + y2d)
[(1 + y2d)

1 + y2
+
y4d(1 + y2d)

1 + y2
+ · · ·+ y2(

k−l
2
−2)d(1 + y2d)

1 + y2
]
.

So in this case (yi+yj)
1+y2

is a multiple of 1 + y2d. Therefore A ≡ B ≡ f2(d−1) and we

deduce (ii).

Sub-case 3b: 4 6 |(i− j). Similar to the previous sub-case,

(yi + yj)

1 + y2
= yj

(1 + yi−j)

1 + y2
= yj

1 + y2d

1 + y2
(1 +y2d+y4d · · ·+y2(

k−l
2
−1)d)
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= yj
(1 + y2d)

1 + y2
+yj(1+y2d)

[y2d(1 + y2d)

1 + y2
+
y6d(1 + y2d)

1 + y2
+· · ·+y

2( k−l
2
−2)d(1 + y2d)

1 + y2
]
.

So in this case A ≡ B ≡ x−1f2(d−1) +yjf2(d−1). Moreover, note that (1+y2)f2(d−1) =

1 + y2d, so y2f2(d−1) ≡ f2(d−1). As j is odd, we deduce that yjf2(d−1) ≡ yf2(d−1).

So I = (1 + y2d, f2(d−1) + xyf2(d−1)) and (iii) follows

�

3.2. Representation of type 2. The next proposition allows us to find the twisted

Alexander ideal associated to a representation of type 2.

Proposition 3.4. The twisted Alexander ideal of Gi,j associated to a representations

of type 2 can be obtained from that of a representation of type 1 by the change of

variables x 7→ xy−1, y 7→ y. .

Proof. It not hard to check that the map ψ below is a well-defined automorphism

of Gi,j :

ψ : Gi,j → Gi,j defined by ψ(b) = cb, ψ(c) = c, ψ(a) = a.

Notice that if ρ is a representation of type 2 then ρ ◦ ψ−1 is of type 1. By result in

[13], page 246, we deduce the result.

�

3.3. Representation of type 3. The case of type 3 representation, we obtain the

following result.

Proposition 3.5. We put i = kd, j = ld where d = gcd(i, j). Let I be the twisted

Alexander ideal of Gi,j associated to a representation of type 3 then

i) I = L in the case 3|j or both 36 | j and 36 | i+ j hold;

ii) I = (1 + yd + y2d) in the case 36 | j, 3|(i+ j) and l is even;

iii) I = (1+y
d+y2d

1+y+y2
) in the case 36 | j, 3|(i+ j) and l is odd.

Proof. Case 1: 3|j. Since ρ(c) has order 3, we have ρ(a) = ρ(ci)[ρ(cj), ρ(b)]ρ(c−i) =(
1 0

0 1

)
. Similar to the first case in the proof of Proposition 3.2, we also deduce

that Φ( ∂r
∂a

) = y−iρ(c)−i. So we get I = L.
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Case 2: 36 | j and 36 | i + j. We give the detail computations for j ≡ 1 mod 3, i ≡ 0

mod 3. For other values of i, j, the proof can be carried out in a similar way without

any difficulty.

We first find that ρ(a) =

(
0 1

1 1

)
. From that we get

Φ(∂r
∂b

) = x−1

(
1 + y−j y−j

1 1 + y−j

)
and Φ( ∂r

∂a
) =

(
y−i 1 + y−i

1 + y−i 1

)
.

Ignoring x−1 in Φ(∂r
∂b

), we consider two 2-minors:

det Φ(∂r
∂b

) = y−2j(1 + yj + y2j), det

(
1 + y−i 1 + y−j

1 1

)
= y−i(1 + yi−j).

Therefore I contains two polynomials 1+yj+y2j and 1+yi−j. Next, we will prove

a technical lemma

Lemma 3.6. Suppose that 36 | s, then in L we have

gcd(1 + yt + y2t, 1 + ys) = 1 for any t.

Proof. As, 36 | s, using Lemma 3.3 we obtain:

gcd((1+yt)(1+yt+y2t), 1+ys) = gcd(1+y3t, 1+ys) = 1+ygcd(3t,s) = 1+ygcd(t,s) (1).

On the other hand, since gcd(1 + yt, 1 + yt + y2t) = 1, we also have

gcd((1 + yt)(1 + yt + y2t), 1 + ys) = gcd(1 + yt, 1 + ys) gcd(1 + yt + y2t, 1 + ys)

= (1 + ygcd(t,s)) gcd(1 + yt + y2t, 1 + ys) (2).

From (1) and (2), it follows that gcd(1 + yt + y2t, 1 + ys) = 1. �

It follows immediately from Lemma 3.6 that I = L. So the assertion (i) holds.

Case 3: j ≡ 1 mod 3, i ≡ 2 mod 3.We compute Φ(∂r
∂b

) = x−1

(
1 + y−j y−j

1 1 + y−j

)

and Φ( ∂r
∂a

) =

(
y−i 1

1 1 + y−i

)
. After some routine computations, we find that the

matrix for Φ(∂r
∂c

) is
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y−igi−2 + y−i+1gi−2 + x−1y−jgj−1+ y−igi−2 + y−i+2gi−5 + x−1y−jgj−1+

x−1y−j+1gj−4 + y−jgj−1 + y−j+1gj−4 x−1y−j+2gj−4 + y−jgj−1 + y−j+2gj−4

y−igi−2 + y−i+2gi−5 + x−1y−j+1gj−4+ y−i+1gi−2 + y−i+2gi−5 + x−1y−jgj−1+

x−1y−j+2gj−4 + y−jgj−1 + y−j+2gj−4 x−1y−j+1gj−4 + y−j+1gj−4 + y−j+2gj−4

 ,

where g3n := 1 + y3 + · · ·+ y3n for n ≥ 1, g0 := 1 and g3n := 0 for n < 0.

Now, using the elementary operations we can bring the Alexander matrix to the

form. (
y−i 1 + y−i + y−2i 1 + y−i−j y−i−j + y−i + y−j C D

1 0 0 0 0 0

)
.

Where C = yj−2igi−2 + yj−2i+2gi−5 + yj−igi−2 + yj−i+1gi−2 + y−igj−1 + y−i+2gj−4+

gj−1 + ygj−4 + x−1(y−i+1gj−4 + y−i+2gj−4 + gj−1 + ygj−4) and

D = yj−2i+1gi−2 + yj−2i+2gi−5 + yj−igi−2 + yj−i+2gi−5 + y−i+1gj−4 + y−i+2gj−4+

gj−1 + ygj−4 + x−1(y−i+1gj−4 + y−igj−1 + gj−1 + y2gj−4).

So I = (1 + yi + y2i, 1 + yi+j, 1 + yi + yj, C,D). We need the following lemma.

Lemma 3.7. Suppose that m = kd and n = ld where d = gcd(m,n). Assume further

that 36 | k, 36 | l, and 3|(k + l). Then in the ring L, the following holds

gcd(1 + ym + y2m, 1 + ym+n) = 1 + yd + y2d.

Proof. As 3|(k + l), By Lemma 3.3

gcd((1 + ym)(1 + ym + y2m), 1 + ym+n) = gcd(1 + y3kd, 1 + y(k+l)d) = 1 + yd gcd(3k,k+l)

= 1 + y3d gcd(k,k+l) = 1 + y3d.

On the other hand, as in the proof of Lemma 3.6 above,

gcd((1 + ym)(1 + ym + y2m), 1 + ym+n) = (1 + yd) gcd(1 + ym + y2m, 1 + ym+n).

It follows that gcd(1 + ym + y2m, 1 + ym+n) = 1 + yd + y2d. �

Corollary 3.8. Suppose that 36 | k then (1+yd+y2d)|(1+ykd+y2kd) for any positive

integer d.
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Proof. We can always reduce to the case k is odd, since if k is even then 1 + ykd +

y2kd = (1 + y
kd
2 + ykd)2. The corollary then follows by applying Lemma 3.7 for

m = kd, n = d if k ≡ 2 mod 3 and for m = kd, n = 2d if k ≡ 1 mod 3.

�

From Lemma 3.7, we know that the greatest common divisor of the first two

generators is 1 + yd + y2d. We now show that the third generator is also a divisible

by 1 + yd + y2d.

In fact, as 3d|(2j− i), by Lemma 3.3 we get (1 + yd)(1 + yd + y2d) = (1 + y3d)|(1 +

y2j−i). Moreover Corollary 3.8 implies that (1 + yd + y2d)|(1 + yj + y2j). Therefore

1 + yi + yj = (1 + yj + y2j) + yi(1 + y2j−i) is also divisible by 1 + yd + y2d.

It follows that I = (1 + yd + y2d, C,D).

We now proceed by simplifying the generators C and D as we did in Case 3 of

Proposition 3.2. Note that adding to C or D a multiple of 1 + yd + y2d will not

change the twisted Alexander ideal. For the rest of this section, we will use the

notation X ≡ Y if (X − Y ) is a multiple of 1 + yd + y2d. By writing g3n = 1+y3n+3

1+y3

and putting it into C,D we can simplify them as follows

C ≡ yj+1 + yj−2i + yj−2i+1

1 + y + y2
+

1 + y2j+1

1 + y + y2
+ x−1

1 + yj + y2j

1 + y + y2
.

D ≡ yj + yj−2i+1

1 + y + y2
+

1 + y + y2j

1 + y + y2
+ x−1

(1 + y)(1 + yj + y2j)

1 + y + y2
.

Note that

D + y2C ≡ (yj+yj+3)+yj−2i+1(1+y+y2)+(1+y+y2)+(y2j+y2j+3)
1+y+y2

+ x−1(1 + yj + y2j)

= yj(1 + y) + yj−2i+1 + 1 + y2j(1 + y) + x−1(1 + yj + y2j)

= (1 + y)(1 + yj + y2j) + y(1 + yj−2i) + x−1(1 + yj + y2j) ≡ 0.

So I is generated by 1 + yd + y2d and C only.

We’ll need the following technical lemma about polynomials.

Lemma 3.9. Let m be a positive integer such that m = ld and 36 | l. The followings

hold in L.

(i) If l is even then 1+ym+y2m

1+y+y2
≡ 0;

(ii) If l ≡ 1 mod 6 then 1+ym+y2m

1+y+y2
≡ 1+yd+y2d

1+y+y2
;
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(iii) If l ≡ 5 mod 6 then 1+ym+y2m

1+y+y2
≡ y−2d 1+y

d+y2d

1+y+y2
.

Proof. If l is even then m = 2td, and

1 + ym + y2m

1 + y + y2
=

(1 + ytd + y2td)

1 + y + y2
(1 + ytd + y2td).

It follows from Corollary 3.8 that 1 + ytd + y2td is divisible by both 1 + y + y2 and

1 + yd + y2d. So (i) holds. Now if l = 6t+ 1, using Corollary 3.8 repeatedly, we get

1 + y6td

1 + y + y2
=

(1 + ytd)(1 + ytd + y2td)

1 + y + y2
(1 + ytd)(1 + ytd + y2td) ≡ 0.

So

1 + ym + y2m

1 + y + y2
=

1 + yd + y2d + yd(1 + y6td) + y2d(1 + y12td)

1 + y + y2
≡ 1 + yd + y2d

1 + y + y2

and (ii) follows. We also get (iii) by similar method.

�

We now divide further into 3 cases:

• If l is even, then as j ≡ 1 mod 3, i ≡ 2 mod 3 we see that j−2i = (l−2k)d

is divisible by 6d. We can write

C ≡ (1 + y)(1 + yj−2i)

1 + y + y2
+
y(1 + yj + y2j)

1 + y + y2
+ x−1

1 + yj + y2j

1 + y + y2
.

Now by Lemma 3.9 and the fact that 1+y6td

1+y+y2
≡ 0 we see that C ≡ 0. So I is

generated by 1 + yd + y2d.

• If l = 6t+1, then 3d | j−2i but 6d6 | j−2i. So (1+yj−2i)
1+y+y2

≡ (1+y3d)
1+y+y2

. Combining

with Lemma 3.9, we deduce that

C ≡ (1 + y)(1 + y3d)

1 + y + y2
+
y(1 + yd + y2d)

1 + y + y2
+ x−1

1 + yd + y2d

1 + y + y2

=
(1 + yd + yd+1)

1 + y + y2
(1 + yd + y2d) + x−1

1 + yd + y2d

1 + y + y2
.

Note that since l = 6t + 1 and j ≡ 1 mod 3, we have d ≡ 1 mod 3. So

1+yd+yd+1 = 1+y+y2+y(1+yd−1)+y2(1+yd−1) is a multiple of 1+y+y2.

So in this case I is generated by 1+yd+y2d

1+y+y2
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• If l = 6t+ 5, then 3d | j − 2i but 6d6 | j − 2i. Similar to the previous case, we

obtain

C ≡ (1 + y)(1 + y3d)

1 + y + y2
+
y1−2d(1 + yd + y2d)

1 + y + y2
+ x−1y−2d

1 + yd + y2d

1 + y + y2

=
(1 + y)(1 + yd) + y1−2d

1 + y + y2
(1 + yd + y2d) + x−1y−d

1 + yd + y2d

1 + y + y2
.

Note that since l = 6t + 5 and j ≡ 1 mod 3, we have d ≡ 2 mod 3. So

(1+y)(1+yd)+y1−2d = 1+y+y2 +y2(1+yd−2)+y1−2d(1+y3d) is a multiple

of 1 + y + y2.

So in this case I is generated by 1+yd+y2d

1+y+y2

Case 4: j ≡ 2 mod 3, i ≡ 1 mod 3. In this case we get Φ(∂r
∂b

) = x−1

(
y−j + 1 1

y−j y−j + 1

)

and Φ( ∂r
∂a

) =

(
y−i + 1 1

1 y−i

)
. After some lengthy computation, we get the matrix

for Φ(∂r
∂c

) :
y−i+2gi−4 + y−i+1gi−4 + x−1y−jgj−2+ y−igi−1 + y−i+1gi−4 + x−1y−j+1gj−2+

x−1y−j+2gj−5 + y−j+1gj−2 + y−j+2gj−5 x−1y−j+2gj−5 + y−jgj−2 + y−j+1gj−2

y−igi−1 + y−i+1gi−4 + x−1y−jgj−2+ y−igi−1 + y−i+2gi−4 + x−1y−jgj−2+

x−1y−j+1gj−2 + y−jgj−2 + y−j+1gj−2 x−1y−j+2gj−5 + y−jgj−2 + y−j+2gj−5

 .

Now, using the elementary operations we can simplify the Alexander matrix. The

Alexander matrix can be brought into the form(
0 1 0 0 0 0

1 + y−i + y−2i y−i y−i−j + y−i + y−j 1 + y−i + y−j E F

)
,

where

E = yj−2i+1gi−4 + yj−2i+2gi−4 + yj−igi−1 + yj−i+1gi−4 + y−i+1gj−2 + y−i+2gj−5+

gj−2 + ygj−2 + x−1(y−igj−2 + y−i+2gj−5 + gj−2 + ygj−2),

F = yj−2igi−1 + yj−2i+1gi−4 + yj−igi−1 + yj−i+2gi−4 + y−igj−2 + y−i+1gj−2+

gj−2 + y2gj−5 + x−1(y−i+1gj−2 + y−i+2gj−5 + gj−2 + y2gj−5).

By analogous arguments as in the case 3, we deduce that I = (1 + yd + y2d, E, F ).
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We now proceed by simplifying the generators E and F as we did above.

E =
yj + yj+1 + yj−2i+1

1 + y + y2
+ (1 + y−i−j)(yj+1gj−2 + yj+2gj−5) + yj+1gj−2 + yj+2gj−5 + gj−2

+ygj−2 + x−1((1 + y−i−j)(yjgj−2 + yj+2gj−5) + yjgj−2 + yj+2gj−5 + gj−2 + ygj−2)

≡ yj + yj+1 + yj−2i+1

1 + y + y2
+

1 + y2j + y2j+1

1 + y + y2
+ x−1

1 + yj + y2j

1 + y + y2
.

F =
yj+1 + yj−2i

1 + y + y2
+ (1 + y−i−j)(yjgj−2 + yj+1gj−2) + yjgj−2 + yj+1gj−2 + gj−2 + y2gj−5

+x−1((1 + y−i−j)(yj+1gj−2 + yj+2gj−5) + yj+1gj−2 + yj+2gj−5 + gj−2 + y2gj−5)

≡ yj+1 + yj−2i

1 + y + y2
+

1 + y + y2j+1

1 + y + y2
+ x−1

(1 + y)(1 + yj + y2j)

1 + y + y2
.

Note that

F + y2E = yj+1(1+y+y2)+yj−2i(1+y3)+y2j+1(1+y+y2)+(1+y+y2)
1+y+y2

+ x−1(1 + yj + y2j)

= y(1 + yj + y2j) + (1 + y)(1 + yj−2i) + x−1(1 + yj + y2j) ≡ 0.

This follows that I is generated by 1 + yd + y2d and F only. We can rewrite F as:

F ≡ y(1 + yj + y2j)

1 + y + y2
+

1 + yj−2i

1 + y + y2
+ x−1

(1 + y)(1 + yj + y2j)

1 + y + y2
.

We can now obtain the twisted Alexander ideal in each of the following cases.

• If l is even, then as j ≡ 2 mod 3, i ≡ 1 mod 3. We see that j−2i = (l−2k)d

is divisible by 6d. By Lemma 3.9, we get F ≡ 0 and I is generated by

1 + yd + y2d.

• If l = 6t+1, then 3d | j−2i but 6d6 | j−2i. So (1+yj−2i)
1+y+y2

≡ (1+y3d)
1+y+y2

. Combining

this with Lemma 3.9, we deduce that

F ≡ y(1 + yd + y2d)

1 + y + y2
+

(1 + y3d)

1 + y + y2
+ x−1(1 + y)

1 + yd + y2d

1 + y + y2

=
(1 + y + yd)

1 + y + y2
(1 + yd + y2d) + x−1(1 + y)

1 + yd + y2d

1 + y + y2
.

Note that since l = 6t + 1 and j ≡ 2 mod 3, we have d ≡ 2 mod 3. So

1 + y + yd = 1 + y + y2 + y2(1 + yd−2) is a multiple of 1 + y + y2.

We deduce that in this case I is generated by 1+yd+y2d

1+y+y2
.
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• If l = 6t + 5, then 3d | j − 2i but 6d6 | j − 2i. Also by using Lemma 3.9, we

get

F ≡ y1−2d(1 + yd + y2d)

1 + y + y2
+

(1 + y3d)

1 + y + y2
+ x−1(1 + y)y−2d

1 + yd + y2d

1 + y + y2

=
1 + yd + y1−2d

1 + y + y2
(1 + yd + y2d) + x−1y−2d

1 + yd + y2d

1 + y + y2
.

Note that since l = 6t + 5 and j ≡ 2 mod 3, we have d ≡ 1 mod 3. We

obtain 1 +yd+y1−2d = y−2d(1 +y+y2 +y2(1 +y2d−2) + 1 +y3d) is a multiple

of 1 + y + y2.

So in this case I is generated by 1+yd+y2d

1+y+y2

The assertions (ii) and (iii) of the proposition are proved.

�

4. Applications to the isomorphism problem

In this section, we will apply the computation results obtained above to deduce

that several groups Gi,j are non-isomorphic. For each group Gi,j, we will denote

by I1i,j, I
2
i,j, I

3
i,j its twisted Alexander ideals associated to representations of type 1,

2 and 3 respectively. We know that if two groups Gi,j and Gi′,j′ are isomorphic

then there should be a monomial isomorphism of L under which the set of twisted

Alexander ideals of one group is mapped to that of the other. Note that the mono-

mial isomorphism does not need to preserve the representation type, i.e. I1i,j could

be mapped to I3i′,j′ . From this fact, we obtain the following result.

Proposition 4.1. Consider the following three disjoint sets

A := {(i, j)| i is even or j is even}∪{(i, j)| i, j are both odd, gcd(i, j) = 1 and 4|(i−j)}

B := {(i, j)| i, j are both odd, gcd(i, j) > 1 and 4|(i− j)}

C := {(i, j)| i, j are both odd and 46 | (i− j)}.

If (i, j) and (i′, j′) do not belong to the same set among A,B and C then Gi,j 6∼= Gi′,j′ .
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Proof. By Proposition 3.2 and 3.4 if (i, j) belongs to A then the twisted Alexander

ideals I1i,j and I2i,j both coincides with L. On the other hand if (i′, j′) belongs to

B then the twisted Alexander ideals I1i′,j′ and I2i′,j′ both are the (f2(d−1)). As d =

gcd(i′, j′) > 1, the ideal (f2(d−1)) is not the whole ring. It is obvious that there

exists no automorphism that maps the set of three ideals, two of which are trivial,

to a set of three ideals, two of which are non-trivial. Therefore, we conclude that

Gi,j 6∼= Gi′,j′ .

We first need the following claim.

Claim. The ideals (1 + y2, 1 +xy) and (1 + y2, 1 +x) are neither principal nor the

whole ring L.

Proof of the claim. We present the proof for (1 +y2, 1 +xy), for (1 +y2, 1 +x) the

same argument can be applied. Notice that the ideal (1+y2, 1+xy) does not coincide

with L because for any f(x, y) ∈ (1 + y2, 1 + xy) we have f(1, 1) ≡ 0. Moreover,

the ideal (1 + y2, 1 + xy) can not be principal because if (1 + y2, 1 + xy) = (g) then

g| gcd(1 + y2, 1 +xy) = 1 and this contradicts the fact that the ideal (1 + y2, 1 +xy)

is not the whole ring. So the claim follows. �

Now suppose that (i′, j′) belongs to C. By Proposition 3.2 and 3.4, the twisted

Alexander ideals I1i′,j′ = (f2(d−1))(1 + y2, 1 + xy) and I2i′,j′ = (f2(d−1))(1 + y2, 1 + x).

So by the Claim they are neither principal nor the whole ring. On the other hand,

if (i, j) belongs to A then two twisted Alexander ideals of Gi,j are the whole ring

and if (i, j) belongs to B then two twisted Alexander ideals of Gi,j are principal. So

we deduce that for either (i, j) belongs to A or (i, j) belongs to B then Gi,j 6∼= Gi′,j′ .

�

We could not distinguish all the groups Gi,j for (i, j) belongs to the same set B

or C. However, the following proposition gives a necessary condition for two groups

to be isomorphic.

Proposition 4.2. If i, j, i′, j′ are positive odd integers then

Gi,j
∼= Gi′,j′ implies gcd(i, j) = gcd(i′, j′).
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Proof. We put d := gcd(i, j) and d′ := gcd(i′, j′). As Gi,j
∼= Gi′,j′ , there must be a

monomial automorphism ϕ of L which maps the set of twisted Alexander ideals of

one group to that of the other. By Proposition 4.1, one of the following cases must

happen.

Case 1: 4|(i− j) and 4|(i′ − j′). By Proposition 3.2 and 3.4, the first two twisted

Alexander ideals of Gi,j and Gi′,j′ are I1i,j = I2i,j = (f2(d−1)) and I1i′,j′ = I2i′,j′ =

(f2(d′−1)) respectively. The following auxiliary result will be used a couple of time

below.

Lemma 4.3. Suppose that f = 1 + ya1 + · · ·+ yam and g = 1 + yb1 + · · ·+ ybn are

Laurent polynomials in L such that they both consist of only non-negative powers

of y and have the constant terms equal 1. If there exists a monomial automorphism

of L which maps the ideal (f) to the ideal (g) then am = bn and either f = g or

f(y−1)yam = g.

Proof. Suppose that the monomial automorphism is of the form ϕ(x) = xayb and

ϕ(y) = xuyv. From the hypothesis, we get f(xayb, xuyv) = 1 + xa1uya1v + · · · +
xamuyamv and g must generate the same ideal. This means that two polynomials only

differ by a factor of the form xmyn. But this can not happen unless u = 0, v = ±1.

So we obtain that either f = g or f(y−1)yam = g. In either case we get am = bn. �

From Lemma 4.3 we get d = d′.

Case 2: 46 | (i− j), 46 | (i′ − j′). In this case the first two twisted Alexander ideals

of Gi,j and Gi′,j′ are I1i,j = (1 + y2d, (1 + xy)f2(d−1)), I
2
i,j = (1 + y2d, (1 + x)f2(d−1))

and I1i′,j′ = (1 + y2d
′
, (1 + xy)f2(d′−1)), I

2
i′,j′ = (1 + y2d

′
, (1 + x)f2(d′−1)) respectively.

We know that ϕ maps either I1i,j or I2i,j to one of the ideals of the set {I1i′,j′ , I2i′,j′}.
So 1 + y2d

′
must belong to the image under ϕ of either I1i,j or I2i,j. In any case

(1+y2)f2(d′−1) = f2(d−1)(x
ayb, xuyv)g = (1+x2uy2v+· · ·+x2(d−1)uy2(d−1)v)g, for some g.

Notice that the left-hand side does not contain x and this is impossible unless

u = 0. Therefore v = ±1 and we get f2(d−1)|(1 + y2)f2(d′−1). It is easy to see that
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gcd(1 + y2, f2(d−1)) = 1 as d is odd. So f2(d−1)|f2(d′−1) and we deduce that d ≤ d′.

The same argument also gives us d′ ≤ d. So the proposition is proved.

�

Using the twisted Alexander ideal of a type 3 representation, we can prove the

following.

Proposition 4.4. Let i, j, i′, j′ be positive integers such that 3|(i+ j), 3|(i′+ j′) and

36 | j, j′. The following holds

Gi,j
∼= Gi′,j′ implies gcd(i, j) = gcd(i′, j′).

Proof. We put i = kd, j = ld, i′ = k′d′, j′ = l′d′ where gcd(k, l) = 1, gcd(k′, l′) = 1.

We first show that l and l′ must have the same parity. Suppose contrary that l is

even and l′ is odd. Then by Propositions 3.2, 3.4, 3.5 the twisted Alexander ideals

of Gi,j are I1i,j = I2i,j = L and I3i,j = (1+yd+y2d). Since Gi,j
∼= Gi′,j′ , two of the three

twisted Alexander ideals of Gi′,j′ must be trivial. The only way for this to hold is

I1i′,j′ = I2i′,j′ = L and I3i′,j′ = (1+y
d′+y2d

′

1+y+y2
). There should be an automorphism which

maps I3i,j to I3i′,j′ . From the proof of Lemma 4.3, we get 1 + yd + y2d = 1+yd
′
+y2d

′

1+y+y2
and

this is impossible. So we arrive at a contradiction.

So now l and l′ have the same parity. Consider the first case where l and l′ are

both even. By Proposition 3.5 the twisted Alexander ideals of Gi,j and Gi′,j′ are

I1i,j = I2i,j = L, I3i,j = (1 +yd+y2d) and I1i′,j′ = I2i′,j′ = L, I3i′,j′ = (1 +yd
′
+y2d

′
). Using

Lemma 4.3 we deduce that d = d′.

Now assume that l and l′ are both odd. Suppose that 1 ≤ d < d′, we will

arrive at a contradiction. There exists a twisted Alexander ideal of Gi,j which are

mapped to I3i′,j′ = (1+y
d′+y2d

′

1+y+y2
) by a monomial automorphism. We know that the

twisted Alexander ideals of Gi,j must be of the following forms: L, (f2(d−1)), (1 +

y2d, f2(d−1) + xyf2(d−1)), (1 + y2d, f2(d−1) + xf2(d−1)) and (1+y
d+y2d

1+y+y2
). Since d′ > 1, I3i′,j′

is a non-trivial principal ideal, so the twisted Alexander ideal of Gi,j which are

mapped to I3i′,j′ is either (f2(d−1)) or (1+y
d+y2d

1+y+y2
). In either case, by Lemma 4.3, we

arrive at the contradiction that d = d′. So the proposition follows. �
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Proof of Theorem 1.1. Part (i) and (ii) are immediate corollaries of Proposition

4.2 and Proposition 4.4 respectively. �
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