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Abstract. We study the polynomial optimization problem on an unbounded semialgebraic

set determined by a finite system of polynomial inequalities fi(X) ≤ ri; i = 1, 2, . . . ,m.

The method is to make a change of variables to obtain the compact case. Precisely, we

characterize the algebra of polynomials bounded on the semialgebraic to be the algebra of

polynomials whose supports contained in a convex cone. When the cone is unimodular, by

building the monomials mapping Φ(X) = XA, we can transform the problem on unbounded

sets into the one on bounded sets which have been solved by the Lasserre’s hierarchy of

semidefinite program.

1. Introduction

The Polynomial Optimization Problems (POP) on compact semialgebraic sets have been

solved thanks to Lasserre’s hierarchy of semidefinite programs ([3]) and Positivstellensatze

Theorems ([9], [8]). We can find details the application of ’sums of squares and moment

problem’ to POP in [4], [7] and the references therein.

For the case when the feasible set is a non-compact semialgebraic set, the Positivstellen-

satze Theorems mentioned above do not hold anymore. Moreover, there is a partial solution

in [2], where the associated quadratic module, that is generated in terms of both the objec-

tive function and the constraints, is Archimedean (hence, in particular, the intersection of

the sub-level set of the objective function and the constraints is compact).

In this paper, we consider the polynomial optimization problems on a class of noncom-

pact semi-algebraic feasible sets. Moreover, we restrict our attention to finding the optimal

value of polynomials which are bounded on the basic semi-algebraic feasible set. In general,

checking a polynomial which is bounded on a given semialgebraic feasible set and finding

its optimal values on that feasible set are NP hard unless the semialgebraic feasible set is
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a compact set, a two dimensional tentacle [6], a nondegenerate set [5], etc.. However, un-

der some conditions so that the semialgebraic feasible set is ’narrow at infinity’, the above

problems can be solved by semidefinite programming.

For F = {f1, . . . , fm} a family of polynomials in R[X] and positive numbers r1, r2, . . . , rm.

An interesting semi-algebraic set corresponding to F and r = (r1, . . . , rm) under considera-

tion is the set

[F ≤ r] := {X ∈ Rn | f1(X) ≤ r1; f2(X) ≤ r2, ..., fm(X) ≤ rm} .

(The system of inequalities can also be written as F ≤ r for short). We also mention

that throughout the paper, fi(0) is always assumed to be zero for every i. The support of a

polynomial f =
∑

α fαX
α is the finite set of the exponents α such that fα is nonzero. The

support of the family F is the union of the supports of every member in F. The cone C(F )

is the convex cone generated by the support of F. In this work, we study the optimization

problem on [F ≤ r] with the assumption that the system F is W -asymptotic (see Definition

2.1), where W ⊂ Nn generates the unimodular cone C(F ). The cone C(F ) is unimodular if

there exists a set of finite generators A ⊂ Nn such that det(A) = 1. Then after making the

change of variable U = XA, we obtain a compact semi-algebraic set [F̃ ≤ r], where F (X) =

F̃ (XA). Then, the infimum of a polynomial f on [F ≤ r] is the same as the infimum on

[F̃ ≤ r] of f̃ , where f̃(XA) = f(X), provided a density assumption (in general, the infimum

of f̃ on [F̃ ≤ r] is a below bound of the infimum of a polynomial f on [F ≤ r]). Furthermore,

calculating the infimum of f mentioned above is only applicable for the polynomial f which

is bounded on [F ≤ r]. We also characterize when the algebra B[F ≤ r] of polynomials which

are bounded on [F ≤ r] is equal to the algebra of the unimodular cone C(F ). Checking a

polynomial which is bounded on an unbounded semialgebraic set is hard in general, while

checking a polynomial which belongs to the algebra of a finitely generated convex cone can be

reduced to the problem of checking finitely many points (in the support of that polynomial)

to belong to the cone.

The paper is organized as follows: Section 2 contains some results about the algebra

(denoted by B[F ≤ r]) of polynomials which are bounded on [F ≤ r]. We give a sufficient

and necessary conditions when B[F ≤ r] is the algebra of a convex cone. When F is W -

asymptotic and W generates the cone C(F ), the algebra B[F ≤ r] is equal to the algebra

of the cone C(F ). Section 3 presents the study of POP on [F ≤ r] when F is F is W -

asymptotic, W generates the cone C(F ) and C(F ) is unimodular.
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2. Algebra of polynomials bounded on a semialgebraic set

Let f ∈ R[X] be given by f(X) =
∑
fαX

α. The support of f, denoted by supp(f) defined

by

supp(f) = {α | fα 6= 0} .

Let A ⊂ R[X] be a sub-algebra. The support of A, denoted by supp(A), is a union of the

supports of all polynomials in A. Hence supp(A) is a subset of Nn. If C is a convex cone in

the first orthant, then the set of all polynomials whose supports lie in C is a sub-algebra of

R[X] and denoted by A(C). Then the support of A(C) is equal to C. Given a semi-algebraic

set K, denoted by B(K) the set of all polynomials in R[X] which are bounded on K. Then

B(K) is a real sub-algebra of R[X] and is sometime called the bounded algebra for short. In

this section, we will give some class of K for which B(K) is equal to A(C) for some convex

cone C. To check a polynomial belonging to B(K) is difficult in general. However, checking

a polynomial which belongs to A(C) reduces to check the vectors (in the support of the

polynomial) belonging to the cone C (the finitely generated convex cone). Hence, the later

is just a linear programming problem.

Let Z = {z1, z2, . . . , zm} be a finite subset of R[X]. Set

R[Z] = {f(z1, z2, . . . , zm) | f ∈ R[X1, X2, . . . , Xm]}

Let A be a sub-algebraic of R[X]. Z generates A if A = R[Z]. If we assume further that Z
is a set of monomials, A is momomial gennerated.

Let V be a finite subset of Nn, R[Xv | v ∈ V ] := R[Z], where Z = {Xv | v ∈ V } .

2.1. Algebra with a convex unimodular cone support. A convex cone, in this paper,

is always assumed to be a finitely generated convex cone in the first orthant. A convex cone

C generated by α1, . . . , αm in Nn is the cone:

C := {λ1α
1 + · · ·+ λmα

m | λ1 ≥ 0, . . . , λm ≥ 0}.

Let di be great common divisor of the coordinates of αi for i = 1, . . . , n. Then d−1
i αi belongs

to Nn and the cone generated by d−1
1 α1, . . . , d−1

n αn is equal to C. Thus, from now on, we can

always assume that the great common divisor of the coordinates of each αi is one for every

i = 1, . . . ,m. A convex cone C ⊂ Rn
+ is said to be unimodular if there exists a generator set

of n-vectors α1, . . . , αn ∈ Nn such that det[α1 α2 · · ·αn] = 1.
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Since C is a convex cone, A(C) is a subalgebra of R[X]. It is clear that

Supp(A(C)) = C ∩ Nn

is a sub-semigroup of Nn. In addition, we have

Proposition 2.1. Let C be a unimodular convex cone generated by n vectors α1, . . . , αn in

Nn with det[α1 α2 · · ·αn] = 1. Then

A(C) = R[Xα1

, Xα2

, . . . , Xαn

].

Proof. For any α ∈ C ∩Nn, by the definition of C, there exist li ≥ 0, i = 1, 2, ..., n such that

α =
n∑
i=1

liα
i.

Furthermore, [li, l2, . . . , ln]T is a solution of the linear systemAl = α, whereA = [α1 α2 · · ·αn].

Hence, [li, l2, . . . , ln]T = A−1α. Since det(A) = 1, A−1 is a matrix with integer coefficients.

So [li, l2, . . . , ln]T belongs to Nn. Hence,

Xα =
n∏
i=1

(
Xαi

)li
∈ R[Xα1

, Xα2

, . . . , Xαn

].

Therefore,

A(C) = R[Xα1

, Xα2

, . . . , Xαn

].

�

2.2. Bounded algebras with convex cone supports. Logarithmic polyhedra are the in-

teresting examples of semi-algebraic sets whose bounded algebras are the same as the algebras

of the cones generated by the corresponding Newton polyhedra. Precisely,

Lemma 2.1. [5, Proposition 3.3] Let V be a finite set of nonzero vectors with positive even

coordinates. Set

L(V, r) := {X ∈ Rn | Xv ≤ rv, ∀v ∈ V },

where r = (rv)v∈V is a vector of positive numbers. Then the algebra of all polynomials in

R[X] which are bounded on L(V, r) is independent on the choice of r = (rv) and equal to

A(C(V )), where C(V ) is the cone generated by V.
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Next, we will introduce a large class of basic semi-algebraic sets with convex cone support

bounded algebras.

Let F = {f1, . . . , fm} ⊂ R[X] be represented by

fi =
∑
αi

fαiXαi

, αi ∈ Nn, fαi ∈ R; i = 1, 2, . . . ,m.

Denoted by supp(F ) the set of all exponents αi ∈ Nn where fαi is nonzero, for all i=1,2, . . . ,

m. We will use Γ(F ) (or Γ without confusing) to denote the convex polyhedron generated

by supp(F ) and call it the Newton polyhedron of F. Let V (F ) and C(V (F )) (or C(F ) for

short) be the set of all vertices of and the convex cone generated by the polyhedron Γ(F ),

respectively. Then every vertex in V (F ) is non-zero since fi(0) is assumed to be 0.

For any vector α ∈ Γ(F ) ∩ Nn, there exist nonnegative numbers λv, v ∈ V (F ) such that∑
v∈V (F ) λv = 1 and α =

∑
v∈V (F ) λvv. Hence, by Young’s inequality (or [1, Chapetr 1,

Lemma 2.1]), there is a positive constant M such that

|Xα| ≤MΞV (F )(|X|),

where ΞV (|X|) =
∑
v∈V
|Xv| for a finite set V ⊂ Nn. Therefore, there exists a constant C such

that

max
1≤i≤m

fi(X) ≤ CΞV (F )(|X|), ∀X ∈ Rn. (1)

Definition 2.1. Let F ⊂ R[X] be a finite family as above, W ⊂ Nn be a finite subset of

nonzero vectors. F is said to be W -asymptotic if there exists positive numbers c, R such that

c|Xα| ≤ max
1≤i≤m

fi(X), ∀α ∈ W, ∀X ∈ Rn, ||X|| ≥ R. (2)

The inequalities (2) are equivalent to

cΞW (|X|) ≤ max
1≤i≤m

fi(X), ∀X ∈ Rn, ||X|| ≥ R. (3)

Note that c in the equality (2) and (3) are not necessarily the same.

Proposition 2.2. Given a finite family F = {f1, f2, . . . , fm} ⊂ R[X] with Newton polyhe-

dron Γ(F ); W is a finite subset of Γ(F ); r = (r1, r2, . . . , rm) is a sequence of positive numbers.

If F is W -asymptotic then

A(C(W )) ⊂ B([F ≤ r]) ⊂ A(C(F )).

In particular, A(C(W )) = B([F ≤ r]) provided the convex cone generated by W is equal to

C(F ).
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Thanks to this proposition, from now on, we always assume that the convex cone generated

by W is equal to C(F ), i.e., W generates the cone C(F ) and so B([F ≤ r]) = A(C(F )).

Proof. Put r∗ := max {r1, r2, ..., rm} . We have

[F ≤ r] ⊂ [f1 ≤ r∗, f2 ≤ r∗, . . . , fm ≤ r∗] = [ max
1≤i≤m

fi ≤ r∗].

Since F is W -asymptotic,{
X ∈ Rn| max

1≤i≤m
fi(X) ≤ r∗; ||X| | ≥ R

}
⊂
{
X ∈ Rn| |Xα| ≤ r∗

c
, ∀α ∈ W ; ||X| | ≥ R

}
.

We note that

B

({
X ∈ Rn| max

1≤i≤m
fi(X) ≤ r∗; ||X| | ≥ R

})
= B

(
[ max
1≤i≤m

fi ≤ r∗]

)
,

B

({
X ∈ Rn| |Xα| ≤ r∗

c
, ∀α ∈ W ; ||X| | ≥ R

})
= B

({
X ∈ Rn| |Xα| ≤ r∗

c
,∀α ∈ W

})
.

By Lemma 2.1, B(
{
X ∈ Rn | |Xα| ≤ r∗

c
,∀α ∈ W

}
) = A(C(W )). So

A(C(W )) ⊂ B([ max
1≤i≤m

fi ≤ r∗]) ⊂ B([F ≤ r]).

On the other hand, put r0 := min {r1, r2, ..., rm} , since the equality (1), we have

[ΞV (F )(|X|) ≤ r0] ⊂ [ max
1≤i≤m

fi ≤ r0] ⊂ [F ≤ r].

Using the Lemma (2.1), it is straightforward to show that B([ΞV (F )(|X|) ≤ r0]) = A(C(F )).

Therefore, we get B([F ≤ r]) ⊂ (B([ΞV (F )(|X|) ≤ r0]) = A(C(F ))). Note that, this uper

bound of B([F ≤ r]) is independent of the difinition W - asymptotic of F.

�

Example 1. (i) If F is nondegenerate in the sense of [5, Definition 1] then F is V -asymptotic,

where V is the set of vertices of the Newton polyhedron Γ(F ).

(ii) Let W ⊂ Nn be an independent finite set of nonzero even vectors. Define

f(X) :=
∑
α∈W

Xα + g(X),

where g(X) is a nonnegative polynomial. Then f(X) is W -asymptotic.

(iii) Let h(x, y) = x2 + y2 + (x− y)4. By (ii), h is {(1, 0), (0, 1)}-asymptotic. However, we

can check by definition that h is not nondegenerate in the sense of [5, Definition 1]. More

general, suppose that a polynomial mapping H is proper, there exists a positive number

γ such that H is {(γ, 0, . . . , 0); . . . ; (0, . . . , 0, γ)}-asymptotic (since the  Lojasiewicz number
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of H at infinity is positive). However, H(x) need not be nondegenerate in the sense of [5,

Definition 1].

3. polynomial optimization

The polynomial optimazation problem on compact semi-algebraic sets is solved by the

Lasserre’s hierarchy SPD (see [3] and see [8], [9]). In this paper, we consider the polynomial

optimization on unbounded semi-algebraic sets. The method here is that by making the

change of variable, we can transform the problem on unbounded sets into the one on bounded

sets and then we can apply the Lasserre’s hierarchy SPD.

Let A be a square matrix whose coefficients are nonnegative integers. Set

Φ( or ΦA) : Rn −→ Rn, X 7−→ U = XA = (Xα1

, . . . , Xαn

),

where αi is the ith-column of A. For any polynomial f̃(U) in R[U ], let f(X) = f̃(XA).

Then f(X) belongs to R[XA], the algebra of the convex cone generated by the columns of

A. Conversely, for f(X) ∈ R[X], then f(X) belongs to R[XA] if there exists a polynomial

f̃(U) ∈ R[U ] such that f(X) = f̃(XA) (or, we can also write f(X) = f̃(Φ(X))).

Let F = (f1, . . . , fm) be a family of polynomials in R[X] and r = (r1, . . . , rm) ∈ Rn
+.

In this section, the cone C(F ) is assumed to be unimodular, that is C(F ) is generated by

n-vectors α1, . . . , αn ∈ Nn with det[α1 α2 · · ·αn] = 1. Assume that F is W -asymptotic where

C(W ) = C(F ), then by Proposition 2.2, B([F ≤ r]) is equal to A(C(F )) = R[XA], where

A = [α1 α2 ...αn]. Hence,

f ∈ B([F ≤ r])⇐⇒ ∃f̃ ∈ R[U ] : f(X) = f̃(Φ(X)).

For i = 1, 2, ...,m by fi ∈ A(C(F )), there exist f̃i ∈ R[U ] such that fi(X) = f̃i(X
A).

Put

K̃ :=
{
U ∈ Rn | f̃1(U) ≤ r1, f̃2(U) ≤ r2, ..., f̃m(U) ≤ rm

}
.

Then K̃ is a basic semi-algebraic set.

Theorem 3.1. Let K = [F ≤ r] be a basic closed semi-algebraic set as above. Assume that

F is W - asymptotic, C(W ) = C(F ) is unimodular and K̃ = K̃ ∩ (R∗)n. Then K̃ is compact

and, for every polynomial f bounded on K,

inf
K
f = inf

K̃
f̃ .
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We would like to mention that f is bounded on K if and only if supp(f) lies in the convex

cone C(W ) generated by W by Proposition 2.2. In order to prove the theorem above, we

need some more results as follows.

When C(W ) = C(F ) is unimodular, there are α1, . . . , αn ∈ Nn with det[α1 α2 · · ·αn] = 1

such that α1, α2, . . . , αn gennerate the cone C(W ). Consider the monomial mapping Φ(X) =

XA, where A = [α1 α2 · · ·αn]. We have

Remark 3.1. Let K = [F ≤ r] be a basic closed semi-algebraic set as above. Assume that F

is W - asymptotic, C(W ) = C(F ) is unimodular. Then the following statements hold true.

(i) Φ(K) ⊂ K̃.

(ii) The restriction Φ : K ∩ (R∗)n −→ K̃ ∩ (R∗)n is one-to-one and onto.

(iii) For any polynomial f ∈ R[X] which is bounded on K, we have f ∈ R[U ] such that

f(X) = f̃(XA) and

inf
K
f = inf

Φ(K)
f̃ ≥ inf

K̃
f̃ .

Proof. (i) Let U = Φ(X), for some X ∈ K. Then f̃i(U) = fi(X) ≤ ri for i = 1, 2, . . . ,m.

Thus Φ(K) ⊂ K̃. This implies (i).

(ii) Let U ∈ K̃ ∩ (R∗)n. Then X := UA−1
belongs to (R∗)n and fi(X) = f̃i(U) for every i.

Hence, X ∈ K.
(iii) Since f is bounded on K, f ∈ A(C(W )) by Proposition 2.2. Thus, there exists a

polynomial f̃ such that f(X) = f̃(XA). Let (yn)∞n=1 be a sequence in Φ(K). Then there

exists a sequence (xn)∞n=1 in K such that yn = Φ(xn). If, assume further that f̃(yn) converges

to l as n→∞, so does f(xn) = f̃(Φ(xn)). Hence,

inf
K
f = inf

Φ(K)
f̃ = inf

Φ(K)
f̃ .

�

Lemma 3.1. Let’s adopt the assumption of Theorem 3.1. Then K̃ is compact.

Proof. By Proposition 2.2, we have B(K) = A(C(W )) = R[Xα1
, . . . , Xαn

]. For all i =

1, 2, ..., n and X ∈ K, Xαi ∈ B(K) since αi ∈ C(F ). Hence, there exists Mi > 0 such that

|Xαi | < Mi for every i. Let U = (U1, U2, . . . , Un) ∈ K̃. Consider two cases:

• Case 1: Assume U ∈ (R∗)n. Put X = UA−1
where A = [α1 · · ·αn]. Then X ∈ K.

Indeed, fi(X) = f̃i(X
A) = f̃i(U) ≤ ri, since U = XA. Therefore, |Ui| = |Xαi | ≤ Mi

for all i = 1, 2, ..., n.
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• Case 2: Assume U /∈ (R∗)n. From K̃ = K̃ ∩ (R∗)n, there exists a sequence {Um} ⊂
K̃ ∩ (R∗)n such that Um −→ U as m → ∞. By Case 1, |Um

i | ≤ Mi. Let m tend to

infinity, we get |Ui| ≤Mi for all i = 1, 2, ..., n.

Finally, we have K̃ ⊂ {|Ui| ≤Mi}, so K̃ is compact. �

Proof of Theorem 3.1. By Lemma 3.1, K̃ is compact. By Remark 3.1, Φ(K ∩ (R∗)n) =

K̃ ∩ (R∗)n and, combining with the hypothesis, we obtain

K̃ ∩ (R∗)n ⊂ Φ(K) ⊂ K̃ = K̃ ∩ (R∗)n.

So,

K̃ = Φ(K) = [f̃1 ≤ r1, . . . , f̃m ≤ rm].

According to Remark 3.1, we get

inf
K
f = inf

K̃
f̃ .

�

Note that, according the proof above, we always have

inf
K̃
f̃ ≤ inf

K
f

without hypothesis K̃ = K̃ ∩ (R∗)n.

Corollary 3.1. Let L = L(V, r) be as in Lemma 2.1. Suppose that the cone C(V ) is unimod-

ular and is generated by the column vectors of A with det(A) = 1. Let Ṽ = {A−1v | v ∈ V } .
Then L̃ = L(Ṽ , r) is a compact basic semi-algebraic set and, for any polynomial f with

supp(f) ⊂ C(V ),

inf
L
f = inf

L̃
f̃ .

Proof. It is straightforward to show that L̃ = L̃ ∩ (R∗)n. �

Corollary 3.2. Let K = [F ≤ r] be a basic closed semi-algebraic set as above. Suppose that

F is W - asymptotic, the cone C(W ) = C(F ) is unimodular and 0 is not a local minimal

value of max1≤i≤m f̃i − ri. Then K̃ = [F̃ ≤ r] is compact and

inf
K
f = inf

K̃
f̃ .

To prove this corollary, we need some lemmas.
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Lemma 3.2. Let’s adopt the notations above. Suppose that C(F ) = C(W ) is unimodular.

If U∗ ∈ K̃ and Λ(U∗) < 0 then U∗ belongs to the closure (in the usual topology) of K̃∩(R∗)n,
where

Λ(U) := max
1≤i≤m

(f̃i(U)− ri), U ∈ Rn.

Proof. We have K̃ =
{
U ∈ Rn | f̃i(U) ≤ ri ∀1 ≤ i ≤ m

}
= {U ∈ Rn | Λ(U) ≤ 0} . Since Λ

is continuous, Λ−1(−∞, 0) is an open neighborhood of U∗. There exists an open ball S(U∗, η)

centered at U∗ with radius η > 0 such that Λ(S(U∗, η)) ⊂ (−∞, 0). So, for every 0 < ε ≤ η,

there exists Uε ∈ S(U∗, ε)∩(R∗)n,Λ(Uε) < 0. That is, Uε ∈ K̃∩(R∗)n. Let ε −→ 0, Uε −→ U∗.

Hence, U∗ ∈ K̃ ∩ (R∗)n. �

Proof of Corollary 3.2. By Theorem 3.1, it remains to prove that K̃ is equal to K̃ ∩ (R∗)n.
Suppose on the contrary that the closure of K̃ ∩ (R∗)n is not the same as K̃. There exists

a point U∗ ∈ K̃ and a positive number ε such that the ball S(U∗, ε) centered at U∗ with

radius ε does not intersect K̃ ∩ (R∗)n. By Lemma 3.2, Λ(U) ≥ 0 for every U in S(U∗, ε).

This means that U∗ is a local minimal point of Λ and Λ(U∗) = 0 is a local minimal value,

which contradicts the hypothesis. �

3.1. Checking a polynomial f bounded on K and finding its infimum. Let K =

[F ≤ r] be a basic closed semi-algebraic set as above. Assume that F is W - asymptotic,

C(W ) = C(F ) is unimodular generated by the column vectors of matrix A = [α1, . . . , αn],

where det(A) = 1.

Step 1: A polynomial f is bounded on K if and only if supp(f) ⊂ C(W ) = C(α1, . . . , αn).

This is equivalent to

∀b ∈ supp(f),∃ci ∈ N; ; i = 1, 2, . . . , n : b =
n∑
i=1

ciα
i,

which, in turn, is equivalent to the systems of equations Ac = b having solution c ∈ Nn for

every b ∈ supp(f).

Step 2: We make change of variables U = XA to obtain f̃ such that f̃(XA) = f(X),

where f(X) =
∑

b fbX
b. If we write f̃ =

∑
c∈supp(f̃) f̃cU

c, then

supp(f̃) = {A−1b | b ∈ suppf} and f̃c = fb,∀c = A−1b.

Step 3: Using SOStools, we can find the infimum of f̃ on K̃. Then

inf
K̃
f̃ ≤ inf

K
f. (4)
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If K̃ = K̃ ∩ (R∗)n holds then the equality in (4) holds by Theorem 3.1.

Example 2. Consider the following two-dimensional optimization problem

f ∗ = inf
K
f,

where f(x, y) = x6y2 + x6y4 − x4y2;K = [F ≤ 4] = {(x, y) ∈ R2 |F (x, y) = x2 + x2y2 ≤ 4} .

We see that F is W = {(1, 0); (1, 1)}− asymptotic and C(F ) = C(W ) is unimodular since

det(A) = 1, where

A =

(
1 1

0 1

)
By Proposition 2.2 and Proposition 2.1, B(K) = A(C(W )) = R[x, xy].

We have supp(f) = {(6, 2); (6, 4); (4, 2)} . We can use Matlab to check f ∈ B(K) = A(C(F ))

by the following simple code

A = [1 1; 0 1]

b1 = [6; 2]

b2 = [6; 4]

b3 = [4; 2]

c1 = A \ b1
c2 = A \ b2
c3 = A \ b3
We obtain c1 = [4; 2], c2 = [2; 4], c3 = [2; 2]. So f ∈ B(K). We change the variables

(u, v) = (x, y)A = (x, xy).

Since f̃((x, y)A) = f(x, y), we have supp(f̃) = {c1, c2, c3} , so f̃(u, v) = u4v2 + u2v4 −
u2v2 = u2v2(u2 + v2 − 1). F̃ ((x, y)A) = F (x, y), so F̃ (u, v) = u2 + v2 and K̃ = [F̃ ≤ 4] =

{(u, v) ∈ R2 | u2 + v2 ≤ 4} sastifying K̃ = K̃ ∩ (R∗)n. Now the problem is transformed into

the optimization problem: Find f ∗ = min
K̃

f̃ . According to [4, Example 5.3], we obtain the

optimal value is f ∗ = − 1

27
with global minimizers (u∗, v∗) = (±

√
3

3
;±
√

3
3

). Furthermore, the

global minimizers of the initial problem are (x∗, y∗) = (u∗, v∗)A
−1

= (u∗, u
∗

v∗
) = (±

√
3

3
;±1).

Hence

min
K

f = f(±
√

3

3
;±1) = − 1

27
.
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[9] Schmüdgen, K.: The K-moment problem for compact semialgebraic sets. Math. Ann. 289 (1991), 203-

206.

University of Transport and Communications, 3 Cau Giay Street, Lang Thuong Ward,

Dong Da District, Hanoi, Vietnam

E-mail address: dutrang1986@utc.edu.vn

Institute of Mathematics, VAST, 18 Hoang Quoc Viet, Ha Noi, Vietnam

E-mail address: hmtoan@math.ac.vn

12


