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Abstract

In this paper, we study the asymptotic behavior of solutions to a scalar
fractional delay differential equations around the equilibrium points. More
precise, we provide conditions on the coefficients under which a linear frac-
tional delay equation is asymptotically stable and show that the asymp-
totic stability of the trivial solution is preserved under a small nonlinear
Lipschitz perturbation of the fractional delay differential equation.

1 Introduction

Let A,B ∈ Rd×d and f : Rd × Rd → Rd be locally Lipschitz continuous. The
existence of solutions of the Caputo fractional differential equation

CDα
0+x(t) = Ax(t) +Bx(t− τ) + f(x(t), x(t− τ)) (1)

of order α ∈ (0, 1) with delay τ > 0 and continuous initial condition x(t) = φ(t),
t ∈ [−τ, 0], has been studied in many papers. Abbas [1] used Krasnoselskii’s
fixed point theorem to show the existence of at least one local solution. Jalilian
and Jalilian [15] proved the existence of a global solution on a finite interval
by using a fixed point theorem of Leray–Schauder type. Using properties of
Mittag-Leffler functions, a weighted norm, and the Banach fixed point theorem,
Cong and Tuan [5] established the existence and uniqueness of global solutions
under a mild Lipschitz condition.

Whenever solutions exist, it is of particular importance to understand their
asymptotic behavior. To the best of our knowledge, up to now, there have
been only very few contributions to the qualitative theory of (1). For f = 0
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and B = 0, Matignon [12] has given a well-known stability criterion based on
the spectrum of the matrix A. Cermak, Hornicek and Kisela [3] studied the
case f = 0, A = 0, and obtained a necessary and sufficient condition for the
stability of this system. The stability of the system when A = 0 was discussed
by Tuan and Hieu in [18]. Regarding the asymptotic behavior of solutions to
(1) for f = 0, d = 1, Stamova [17], Cermak, Dosla, Kisela [4] and He et al. [10]
provided results to characterize the stability of solutions. In the case f = 0 and
d ≥ 1, Shen and Lam [16] considered the stability and performance analysis of
the system with the assumptions A is Metzler and B is nonnegative. Recently,
using the properties of Caputo fractional derivatives, the Laplace transform
and the Mittag-Leffler function, Thanh, Hieu and Phat [19] proposed sufficient
conditions for exponential boundedness, asymptotic stability and finite-time
stability of (1) for f = 0 and A,B arbitrary. However, in contrast to fractional
differential equations without delays, the stability theory of delay fractional
differential equations (1) is far from being fully understood.

In this paper we answer the open question about the relationship between the
stability of the trivial solution of (1) and that of its linearization in the scalar
case d = 1. More precise, we consider the scalar delay fractional differential
equation

CDα
0+x(t) = ax(t) + bx(t− τ) + f(x(t), x(t− τ)) (2)

where f : R2 → R is locally Lipschitz continuous and satisfies the following
conditions:

(H1) Trivial solution: f(0, 0) = 0,

(H2) Nonlinearity: lim%→0 `f (%) = 0 with

`f (%) := sup
x,y,x̂,ŷ∈BR(0,%)

(x,y) 6=(x̂,ŷ)

|f(x, y)− f(x̂, ŷ)|
max{|x− x̂|, |y − ŷ|}

.

As shown in [1, Theorem 2.6], for every continuous initial function φ : [−τ, 0]→
R, there exists a unique continuous solution ϕ(·, φ) : [−τ, tmax(φ)) → R to (2)
on the maximal interval of existence [−τ, tmax(φ)) which satisfies the initial
condition

x(t) = φ(t), t ∈ [−τ, 0]. (3)

By (H1), equation (2) admits the trivial solution

ϕ(·, 0) : [−τ,∞)→ R, t 7→ 0.

For an interval I ⊆ R, let C(I;R) denote the set of continuous functions x : I →
R with ‖x‖∞ := supt∈I |x(t)|. As in [18, Definition 1], the trivial solution of (2)
is called

stable :⇔ ∀ε > 0 ∃δ > 0 ∀φ ∈ C([−τ, 0];R) with ‖φ‖∞ ≤ δ :

tmax(φ) =∞ and |ϕ(t, φ)| ≤ ε for t ∈ [0,∞),
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attractive :⇔ ∃δ > 0 ∀φ ∈ C([−τ, 0];R) with ‖φ‖∞ ≤ δ :

tmax(φ) =∞ and lim
t→∞

ϕ(t, φ) = 0,

and

asymptotically stable :⇔ the trivial solution is stable and attractive.

In Section 5 we provide conditions on a, b and f which imply asymptotic stability
of the trivial solution of (2). To prepare the proof of this main result, we show a
variation of constants formula for (2) in Section 2, properties of the characteristic
function in Section 3 and estimates for the Mittag-Leffler function in Section 4.

A reader who is familiar with fractional difference equations may skip the re-
mainder of this section, in which we recall notation. Let T > 0 and x : [0, T ]→ R
be a measurable function in L1([0, T ]), i.e.

∫ T
0
|x(s)| ds < ∞. Then, the

Riemann–Liouville integral of order α > 0 is defined by

Iα0+x(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1x(s) ds for t ∈ (0, T ],

where the Gamma function Γ : (0,∞)→ R is defined as

Γ(α) :=

∫ ∞
0

sα−1 exp(−s) ds,

see e.g., Diethelm [8]. The corresponding Riemann–Liouville fractional deriva-
tive of order α is given by

R-LDα
0+x(t) := (DI1−α0+ x)(t) for almost all t ∈ (0, T ],

where D = d
dt is the usual derivative. The Caputo fractional derivative CDα

0+x
of a continuous function x : [0, T ]→ R is defined by

CDα
0+x(t) := R-LDα

0+(x(t)− x(0)) for almost all t ∈ (0, T ].

In a normed space (X, ‖·‖) we denote the closed ball with radius % > 0 centered
at the origin by BX(0, %).

2 Variation of constants formula

In the case f = 0, the linear initial value problem (2), (3), with continuous
initial function φ : [−τ, 0]→ R, has the solution

ϕ(t, φ) = φ(0)Ea,b,τα,1 (t) + b

∫ t−τ

−τ
Ea,b,τα,α (t− τ − s)φ̃(s)ds,
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where

Ea,b,τα,β (t) := L−1
( sα−β

sα − a− b exp (−sτ)

)
(t),

β = 1 or β = α, L−1 is the inverse Laplace transform, φ̃ is the function defined
by

φ̃(t) =

{
φ(t), if t ∈ [−τ, 0],

0, if t > 0.

If f is globally Lipschitz continuous, using the Laplace transform and the argu-
ments as in [3, Theorem 3], [7, Lemma 3.1], and [18, Lemma 1], we obtain the
following variation of constants formula for (2).

Lemma 2.1 (Variation of constants formula for delay fractional differential
equations). Assume that f : R×R→ R is Lipschitz continuous and φ : [−τ, 0]→
R is continuous. Then, equation (2) with the initial condition (3) has a unique
solution ϕ(·, φ) on [−τ,∞). Moreover, this solution satisfies

ϕ(t, φ) = φ(0)Ea,b,τα,1 (t) + b

∫ t−τ

−τ
Ea,b,τα,α (t− τ − s)φ̃(τ)dτ

+

∫ t

0

Ea,b,τα,α (t− s)f(ϕ(s), ϕ(s− τ))ds for t > 0. (4)

Proof. From [5, Corollary 3.2], we see that for any continuous initial data φ,
equation (2) with the initial condition x(t) = φ(t) on [−τ, 0] has a unique
solution on [−τ,∞). Moreover, this solution is exponentially bounded, see [5,
Theorem 4.1]. Taking the Laplace transform on both sides of (2) and using the
facts that

L(CDα
0+x(t))(s) = sαL(x(t))(s)− sα−1x(0) = sαX(s)− sα−1φ(0),

L(x(t− τ)(s) = exp (−τs)L(x(t))(s) + exp (−τs)
∫ 0

−τ
exp (−su)x(u) du

= exp (−τs)X(s) + exp (−τs)
∫ 0

−τ
exp (−su)φ(u) du,

for s ∈ {z ∈ C : <z > c}, c large enough, we get

X(s) =
sα−1φ(0)

sα − a− b exp (−τs)
+
b exp (−τs)

∫ 0

−τ exp (−su)φ(u) du

sα − a− b exp (−τs)

+
F (s)

sα − a− b exp (−τs)
, (5)

where X(s) := L(x(t))(s) and F (s) = L(f(x(t), x(t − τ)))(s). Applying the
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inverse Laplace transform on both sides of (5), we obtain

x(t) = Ea,b,τα,1 (t)φ(0) + b

∫ t−τ

−τ
Ea,b τα,α (t− τ − s)φ̃(s) ds

+

∫ t

0

Ea,b,τα,α (t− s)f(x(s), x(s− τ)) ds for t > 0. (6)

Here, to obtain (6), we used

L−1
(

F (s)

sα − a− b exp (−τs)

)
(t) = L−1

(
F (s)L(Ea,b,τα,α (t))(s)

)
(t)

= L−1
(
L(f(x(·), x(· − τ)) ∗ Ea,b,τα,α (·)(t))(s)

)
(t)

=

∫ t

0

Ea,b,τα,α (t− s)f(x(s), x(s− τ)) ds,

and

L−1
(

exp (−τs)
∫ 0

−τ exp (−su)φ(u) du

sα − a− b exp (−τs)

)
(t)

= L−1
(
L(Ea,b τα,α (t))(s)L(φ̃(t− τ))(s)

)
(t)

= L−1
(
L(Ea,b τα,α (·) ∗ φ̃(· − τ)(t))(s)

)
(t)

=

∫ t−τ

−τ
Ea,b τα,α (t− τ − s)φ̃(s) ds,

where ∗ denotes the convolution operator.

3 Properties of the characteristic function

To derive the asymptotic behavior of the solutions to (2) from (4), we need to

study the function Ea,b,τα,β (t). First, we recall some facts concerning the zeros of
the characteristic function Q(s) := sα − a− b exp (−sτ).

Lemma 3.1. Let α ∈ (0, 1), a, b ∈ R, τ > 0. Then the following statements
hold.

(i) If a+ b ≥ 0, then the equation Q(s) = 0 has at least one nonnegative real
root.

(ii) If s is a zero of Q, then its complex conjugate s̄ also satisfies Q(s̄) = 0.

(iii) Let 0 < ω < π. Then the equation Q(s) = 0 has at most finitely many
roots s such that | arg(s)| ≤ ω.

5



(iv) The equation Q(s) = 0 has no more than a finite number of roots in any
vertical strip of the complex plane given by

{z ∈ C : ρ1 ≤ <(z) ≤ ρ2}.

(v) There does not exist an s ∈ C \ {0} satisfying Q(s) = Q′(s) = Q′′(s) =
Q′′′(s) = 0.

Proof. For the proof of (i)–(iii), see [4, Proposition 2].

(iv) Assume that s = x+ iy ∈ {z ∈ C : ρ1 ≤ <(z) ≤ ρ2}. Choosing T0 > 0 such
that Tα0 > |a|+ |b| exp (−ρ1τ). Then, for any s = x+ iy ∈ {z ∈ C : ρ1 ≤ <(z) ≤
ρ2} ∩ {z ∈ C : |=(z)| ≥ T0}, we have

|sα| > |a|+ |b| | exp (−sτ)|,

which implies that the equation Q(s) = 0 has no solution in the set {z ∈
C : ρ1 ≤ <(z) ≤ ρ2} ∩ {z ∈ C : |=(z)| ≥ T0}. On the other hand, the function
Q(s) has only finitely many roots in the compact set {z = x+ iy ∈ C : ρ1 ≤ x ≤
ρ2, −T0 ≤ y ≤ T0} (the function Q is analytic in this domain). Hence, there
exist at most finitely many roots of Q(s) in {z ∈ C : ρ1 ≤ <(z) ≤ ρ2}.

(v) Now we assume that there exists s ∈ C \ {0} such that Q(s) = Q′(s) =
Q′′(s) = Q′′′(s) = 0. Using Q′(s) = Q′′(s) = 0, a direct computation shows

b exp (−τs) = −αs
α−1

τ
=
α(α− 1)sα−2

τ2
,

which implies

s =
1− α
τ

. (7)

Similarly, from the equality Q′′(s) = Q′′′(s) = 0, we have

b exp (−τs) =
α(α− 1)sα−2

τ2
= −α(α− 1)(α− 2)sα−3

τ3
,

which implies

s =
2− α
τ

,

a contradiction to (7). The proof of (iv) completes.

The following lemma provides a condition which ensures that all solutions s ∈ C
of Q(s) = 0 satisfy <(s) < 0. It is stated without proof in [4, Proposition 4], we
give a simple and geometric proof for completeness.

Lemma 3.2. Let α ∈ (0, 1), a, b ∈ R and τ > 0. If a ≤ b < −a, then the
equation Q(s) = 0 has no root with non-negative real part.
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‘

Figure 1: The domains D1 and D2 in the case a < 0, |b| < |a|.

Proof. Define C+ := {z ∈ C : <(z) ≥ 0} and the functions w1 : C+ → C,
w1(s) = a + b exp (−τs) and w2 : C+ → C, w2(s) = sα. It is obvious that
D2 := w2(C+) = {s ∈ C : | arg(s)| ≤ απ

2 }. On the other hand, for any s ∈ C+,

|w1(s)− a| ≤ |b|.

Hence, D1 := w1(C+) = {s ∈ C : |s − a| ≤ |b|}. This shows that if a < 0
and |b| < |a| then D1 ∩ D2 = ∅ (see Figure 1), that is, there does not exist
s ∈ C+ such that w1(s) = w2(s). Now we consider a < 0 and a = b. In this
case D1 ∩D2 = {0}. Assume that there is a s ∈ C+ such that w1(s) = w2(s).
Then w2(s) = 0 which implies s = 0. However, w1(0) 6= 0, a contradiction.
Combining the arguments as above, we conclude that if a ≤ b < |a| then the
equation Q(s) = 0 has no solution with non-negative real part.

4 Asymptotics of Mittag-Leffler functions

In the following lemma, we provide some estimates involving Mittag-Leffler func-
tions Ea,b,τα,β (t) under assumptions which ensure that all roots of the equation
Q(s) = 0 have negative real parts.

Lemma 4.1. Let α ∈ (0, 1), τ > 0 and a, b ∈ R satisfying a ≤ b < −a. Then,
there exists a constant C > 0 such that the following estimates hold:
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Figure 2: The contour γ(µ, θ).

(i) |Ea,b,τα,1 (t)| ≤ C
tα for all t ≥ 1.

(ii) |Ea,b,τα,α (t)| ≤ C
tα+1 for all t ≥ 1.

(iii)
∫∞
0
|Ea,b,τα,α (s)|ds ≤ C.

Proof. In the case b = 0, the function Ea,0,τα,β (t) equals tβ−1Eα,β(atα) and this
lemma is proved in [6, Theorems 2 & 3]. Hence, we only discuss the remaining
case a ≤ b < −a, b 6= 0.

We define for µ > 0 and θ ∈ (0, π) an oriented contour γ(µ, θ) formed by three
segments:

• {s ∈ C : arg (s) = −θ, |s| ≥ µ},

• {s ∈ C : − θ ≤ arg (s) ≤ θ, |s| = µ},

• {s ∈ C : arg (s) = θ, |s| ≥ µ},

see Figure 2. By Lemma 3.1(iii), there exists a δ > 0 such that the function
sα − a− b exp (−τs) has no zeros si with | arg (si)| = π

2 + δ, and there are only
finitely many zeros si which satisfy | arg (si)| ≤ π

2 + δ. Hence, there exist R > 0
such that all zeros si lie to the left of γ(R, π2 + δ). Due to the fact that 0 is not
a root of Q(s) = 0, we can find 0 < ε < R such that Q(s) = 0 has no solutions
inside and on the circle {z ∈ C : |z| = ε}. For t ≥ 1, from [4, p. 346], we have

Ea,b,τα,β (t) =
1

2πi

∫
γ(R,π2 +δ)

sα−β exp (ts)

sα − a− b exp (−τs)
ds

= I1(t) + I2(t),
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where

I1(t) =
1

2πi

∫
γ( εt ,

π
2 +δ)

sα−β exp (ts)

sα − a− b exp (−τs)
ds,

and

I2(t) =
1

2πi

∫
γ(R,π2 +δ)−γ( εt ,

π
2 +δ)

sα−β exp (ts)

sα − a− b exp (−τs)
ds.

If there are no solutions of Q(s) = 0 in the domain bounded by γ(R, π2 + δ) −
γ(ε, π2 + δ), then

I2(t) = 0 for all t ≥ 1. (8)

Now assume that the roots of Q(s) = 0 in the domain bounded by γ(R, π2 +
δ)− γ(ε, π2 + δ) are s1, . . . , sN . Using the Cauchy residue theorem (see e.g., [21,
Theorem 6.16, p. 347]), we have

I2(t) =

N∑
i=1

Ress=si

(
sα−β exp (st)

sα − a− b exp (−τs)

)
for all t ≥ 1.

From the proof of [4, Lemma 2] we deduce that

I2(t) =

N∑
i=1

(
ai−1 + ai−2t+

ai−3t
2

2

)
exp (sit) for all t ≥ 1, (9)

where N , ai−1, a
i
−2, a

i
−3, i = 1, . . . , N , are independent of t. Note that <(si) < 0

for i = 1, . . . , N and the function exp (sit) converges exponentially to 0 as
t→∞.

(i) Let β = 1. For the term I1(t), by the change of variables s = u1/α

t , we have

I1(t) =
tβ−1

2απi

∫
γ(εα,απ2 +αδ)

u
1−β
α exp [(1 + τ/t)u1/α]

(u− atα) exp ( τu
1/α

t )− btα
du for all t ≥ 1.

Set D := {z ∈ C : |z| ≤ ε, | arg(z)| ≤ π/2 + δ} and ν := mins∈γ(ε,π/2+δ)∪D |sα −
a − b exp (−τs)|. Due to |sα − a − b exp (−τs)| ≥ ν for all s ∈ γ(ε/t, π/2 + δ)
and t ≥ 1, we have

|(u− atα) exp ( τu
1/α

t )− btα| ≥ νtα| exp ( τu
1/α

t )|

for all u ∈ γ(εα, απ2 + αδ) and t ≥ 1. This implies that

|I1(t)| ≤ 1

2απν

∫
γ(εα,απ2 +αδ)

| exp (u1/α)| |du| 1

tα

for all t ≥ 1, which together with (8) and (9) completes the proof of this part.
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(ii) Consider β = α. For all t ≥ 1, we have

I1(t) = −1

b

1

2πi

∫
γ( εt ,

π
2 +δ)

exp ((t+ τ)s) ds

+
1

b

1

2πi

∫
γ( εt ,

π
2 +δ)

(sα − a) exp ((t+ τ)s)

sα − a− b exp (−τs)
ds

= −1

b
J1(t) +

1

b
J2(t)− a

b
J3(t), (10)

where, using [14, Formula (1.52), p. 16],

J1(t) =
1

2πi

∫
γ( εt ,

π
2 +δ)

exp ((t+ τ)s) ds

=
1

2απi

∫
γ((1+τ/t)αεα,απ2 +αδ)

u(1−α)/α exp (u1/α) du
1

t+ τ

=

(
1

Γ(z)

)
|z=0

1

t+ τ

= 0, (11)

|J2(t)| =

∣∣∣∣∣ 1

2πi

∫
γ( εt ,

π
2 +δ)

sα exp ((t+ τ)s)

sα − a− b exp (−τs)
ds

∣∣∣∣∣
≤ 1

ν1απ

∫ ∞
0

r1/α exp (−r1/α sin δ) dr
1

tα+1
(12)

with ν1 = infs∈γ(0,π2 +δ) |sα − a− b exp (−τs)|, and

J3(t) = I1(t) +
1

2πi

∫
γ( εt ,

π
2 +δ)

exp (ts)[exp (τs)− 1]

sα − a− b exp (−τs)
ds

= I1(t) +G(t).

Note that

|G(t)| =

∣∣∣∣∣ 1

2πi

∫
γ(0,π2 +δ)

exp (ts)[exp (τs)− 1]

sα − a− b exp (−τs)
ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

2απi

∫
γ(0,απ2 +αδ)

exp (u1/α)[exp (τu1/α/t)− 1]

u/tα − a− b exp (−τu1/α/t)
u1/α−1 ds

1

t

∣∣∣∣∣
≤ τ

ν1απ

∫ ∞
0

r(2−α)/α exp (−r1/α sin δ) dr
1

t2
, (13)

for all t ≥ 1, where for z ∈ γ(0, π2 + δ), we used the inequality

| exp (z)− 1| ≤ |z|.
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On the other hand, from (10) we have

I1(t) = − 1

a+ b
J1(t) +

1

a+ b
J2 −

a

a+ b
G(t),

which together with (11), (12) and (13) shows that

|I1(t)| ≤ 1

|a+ b|ν1απ

∫ ∞
0

r1/α exp (−r1/α sin δ)dr
1

tα+1

+
|a|τ

|a+ b|ν1απ

∫ ∞
0

r(2−α)/α exp (−r1/α sin δ)dr
1

t2

for t ≥ 1. This combines with (8) and (9) to complete the proof of this part.

(iii) First we consider t ∈ [0, 1]. For R > 0 and δ > 0 chosen as above, we split
the contour γ(R, π2 + δ) into three parts: γ(R, π2 + δ) = γ1(R, π2 + δ)∪γ2(R, π2 +
δ) ∪ γ3(R, π2 + δ), where

γ1(R, π2 + δ) :=
{
r(cosϕ+ i sinϕ) ∈ C : R ≤ r <∞, ϕ = π

2 + δ
}
,

γ3(R,
π

2
+ δ) :=

{
r(cosϕ+ i sinϕ) ∈ C : R ≤ r ≤ ∞, ϕ = −(π2 + δ)

}
,

and

γ2(R, π2 + δ) :=
{
R(cosϕ+ i sinϕ) ∈ C : − (π2 + δ) ≤ ϕ ≤ π

2 + δ
}
.

Taking R1 > R such that |sα − a − b exp (−τs)| > |b exp (−τs)|
2 for all s =

r exp (iϕ) ∈ γi(R, π2 + δ), r ≥ R1, i = 1 or i = 3. On γi(R,
π
2 + δ), we obtain

the estimate∣∣∣∣∣
∫
γi(R,

π
2 +δ)

exp (st)

sα − a− b exp (−τs)
ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫
{s=r exp (iϕ)∈γi(R,π2 +δ):R≤r≤R1}

exp (st)

sα − a− b exp (−τs)
ds

∣∣∣∣∣
+

∣∣∣∣∣
∫
{s=r exp (iϕ)∈γi(R,π2 +δ):r≥R1}

exp (st)

sα − a− b exp (−τs)
ds

∣∣∣∣∣
≤ R1 −R

η
+

2

|b|τR1 sin δ
(14)

for all t ∈ [0, 1], and i = 1 or i = 3, where η := infs∈γ(R,π2 +δ){|sα − a −
b exp (−τs)|}. Moreover, on γ2(R, π2 + δ), we have∣∣∣∣∣

∫
γ2(R,

π
2 +δ)

exp (ts)

sα − a− b exp (−τs)
ds

∣∣∣∣∣ ≤ 2πR exp (R)

η
, (15)

11



for all t ∈ [0, 1]. Combining (14) and (15) leads to the estimate∫ t

0

|Ea,b,τα,α (s)|ds ≤ R1 −R
πη

+
2

π|b|τR1 sin δ
+
R exp (R)

η
(16)

for all t ∈ [0, 1].

To complete the proof of this part, we will show that the statement also holds
for t > 1. Using (16) and Lemma 4.1(ii), there exists a constant C3 > 0 such
that the following estimate holds∫ t

0

|Ea,b,τα,α (s)|ds ≤
∫ 1

0

|Ea,b,τα,α (s)|ds+

∫ t

1

|Ea,b,τα,α (s)|ds

≤ R1 −R
πη

+
2

π|b|τR1 sin δ
+
R exp (R)

η
+

∫ t

1

C3

sα+1
ds

≤ R1 −R
πη

+
2

π|b|τR1 sin δ
+
R exp (R)

η
+
C3

α
.

Thus, there exists C > 0 such that∫ ∞
0

|Ea,b,τα,α (s)|ds = sup
t≥0

∫ t

0

|Ea,b,τα,α (s)|ds ≤ C.

Remark 4.2. In [4, Lemma 2, p. 346], the authors also studied the asymp-

totic behavior of the generalized Mittag-Leffler function Ea,b,τα,β (t) for β = 1 and
β = α. The key point in the proof of this result is to estimate the quanti-
ties ω(1−β)/α+1,3(t) and ω(1−β)/α,3(t), see [4, l. 18, p. 347]. Those estimates
are based on [4, Proposition 5(ii)]. However, there is a gap in the proof of [4,
Proposition 5(ii)]. Indeed, they first give the following inequality as t→∞

|ωx,n(t)| ≤ Cx
tα
, (17)

where x > −1, n = 2, 3, . . . , and

Cx =
1

2παη0

(
α(π + 2δ) +

αΓ(α(x+ 1))

(sin δ)α(x+1)

)
,

see [4, l. 18, p. 345]. Then, they use the representation

ωx,n+m(t) = ωx,n(t) +

∞∑
j=1

(mτ)j

j!tj
ωj/α+x,n(t), (18)

where m ∈ Z+ is arbitrary. Finally, they apply (17) for the term ωj/α+x,n(t) in
(18) to show that

∞∑
j=1

(mτ)j

j!tj
ωj/α+x,n(t) = O(t−α−1) as t→∞.

In our opinion, this argument maybe not true due to the fact that the coefficients
Cj/α+x in the estimate for ωj/α+x,n(t) (by using (17) as above) are not bounded
as j →∞.
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5 Asymptotic stability

Our aim in this section is to prove the following theorem.

Theorem 5.1 (Stability of scalar nonlinear fractional differential equation with
linearly dominated delay). Let τ > 0, a, b ∈ R with a ≤ b < −a and f satisfy
(H1) and (H2). Then, the trivial solution of the initial value problem (2), (3),
is asymptotically stable.

Proof. From the assumption (H2), we have a constant ε0 > 0 such that

q := `f (ε) C < 1

for all ε ∈ (0, ε0), where C is the constant chosen in Lemma 4.1. Let ε > 0
(w.l.o.g. ε ≤ ε0) and choose δ > 0 satisfying

δ =
(1− q)ε

supt≥0 |E
a,b,τ
α,1 (t)|+ |b|

∫∞
0
|Ea,b,τα,α (t)|dt+ 1

.

Let F : R2 → R be a Lipschitz continuous function with Lipschitz constant
`f (ε) and F (x, y) = f(x, y) for all (x, y) ∈ R2 such that max{|x|, |y|} ≤ ε. Such
a Lipschitz extension always exists, see e.g., [11, Theorem 2.5]. Consider the
equation

CDα
0+x(t) = ax(t) + bx(t− τ) + F (x(t), x(t− τ)), t ≥ 0, (19)

with the initial condition x(t) = φ(t) for all t ∈ [−τ, 0], where φ ∈ BC([−τ,0];R)(0, δ).
From Lemma 4, we see that the unique solution ϕ̂(·, φ) of (19) has the repre-
sentation

ϕ̂(t, φ) = φ(0)Ea,b,τα,1 (t) + b

∫ t−τ

−τ
Ea,b,τα,α (t− τ − s)φ̃(s)ds

+

∫ t

0

Ea,b,τα,α (t− s)F (ϕ̂(s), ϕ̂(s− τ))ds for all t ≥ 0,

and ϕ̂(t, φ) = φ(t) on [−τ, 0].

Next, we introduce a Lyapunov–Perron operator on C([−τ,∞);R) as follows.
Given any φ ∈ C([−τ, 0];R), the operator Tφ,τ on C([−τ,∞);R) is defined by

Tφ,τξ(t) = φ(0)Ea,b,τα,1 (t) + b

∫ t−τ

−τ
Ea,b,τα,α (t− τ − s)φ̃(s)dτ

+

∫ t

0

Ea,b,τα,α (t− s)F (ξ(s), ξ(s− τ))ds for all t ≥ 0,

Tφ,τξ(t) = φ(t) for all t ∈ [−τ, 0].

13



For φ ∈ BC([−τ,0];R)(0, δ), it is easy to see that for ξ ∈ BC∞(0, ε)

‖Tφ,τξ‖∞ ≤
(

sup
t≥0
|Eλi,τα,1 (t)|+ |b|

∫ ∞
0

|Eλi,τα,α (s)| ds+ 1
)
‖φ‖∞ + C `f (ε) ‖ξ‖∞

≤ (1− q)ε+ qε

= ε,

which proves that Tφ,τ (BC∞(0, ε)) ⊆ BC∞(0, ε), and

‖Tφ,τξ − Tφ,τ ξ̂‖∞ ≤ C `f (ε) ‖ξ − ξ̂‖∞

≤ q‖ξ − ξ̂‖∞ for all ξ, ξ̂ ∈ BC∞(0, ε).

By using the Banach fixed point theorem, we see that there exists a unique fixed
point ξ∗ of Tφ,τ in BC∞(0, ε). The uniqueness of the solution to (19) implies
that ϕ̂(t, φ) = ξ∗(t) for all t ∈ [−τ,∞). Thus, ‖ϕ̂(·, φ)‖∞ ≤ ε and

CDα
0+ϕ̂(t, φ) = aϕ̂(t, φ) + bϕ̂(t− τ, φ) + F (ϕ̂(t, φ), ϕ̂(t− τ, φ))

= aϕ̂(t, φ) + bϕ̂(t− τ, φ) + f(ϕ̂(t, φ), ϕ̂(t− τ, φ)) for all t ≥ 0,

which implies that the trivial solution to (2) is stable. Finally, we will show that
the trivial solution to (2) is attractive. Suppose that ξ(t) is the solution of (2),
(3) which satisfies ξ(t) = φ(t) for every t ∈ [−τ, 0], where φ ∈ BC([−τ,0];R)(0, δ).
As shown above, we see that ‖ξ‖∞ ≤ ε. Let a := lim supt→∞ |ξ(t)|, then
a ∈ [0, ε]. Let ε̂ > 0 small enough. Then, there exists T (ε̂) > 0 such that

|ξ(t)| ≤ a+ ε̂ for all t ≥ T (ε̂).

According to Lemma 4.1, we obtain

(i) limt→∞Ea,b,τα,1 (t) = 0,

(ii) limt→∞
∫ t−τ
−τ Ea,b,τα,α (t− τ − s)φ̂(s) ds = 0,

(iii)

lim sup
t→∞

∣∣∣∣∣
∫ T (ε̂)

0

Ea,b,τα,α (t− s)f(ξ(s), ξ(s− τ)) ds

∣∣∣∣∣
≤ max

t∈[0,T (ε)]
|f(ξ(t), ξ(t− τ))| lim sup

t→∞

∫ T (ε̂)

0

C

(t− s)α+1
ds

= 0.

Therefore, from the fact that ξ(t) = (Tφ,τξ)(t), we have

lim sup
t→∞

|ξ(t)| = lim sup
t→∞

∣∣∣∣∣
∫ t

T (ε̂)

Ea,b,τα,α (t− s)f(ξ(s), ξ(t− τ))ds

∣∣∣∣∣
≤ `f (ε) C (a+ ε̂),
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where we use the estimate∣∣∣∣∣
∫ t

T (ε̂)

Ea,b,τα,α (t− s) ds

∣∣∣∣∣ =

∫ ∞
0

|Ea,b,τα,α (u)| du

≤ C,

see Lemma 4.1(iii), to obtain the inequality above. Thus,

a ≤ `f (ε)C(a+ ε̂).

Letting ε̂→ 0, we have
a ≤ `f (ε)Ca.

Due to the fact `f (ε)C < 1, we get that a = 0 and the proof is complete.

To complete this paper, we give an example to illustrate the main result.

Example 5.2. The fractional differential equation

CD0.5
0+x(t) = −5x(t) + 0.5x(t− 1) + x2(t) + x3(t− 1) (20)

is of the form (2) with a = −5, b = 0.5, f(x, y) = x2 + y3, and satisfies the
assumptions of Theorem 5.1. Its trivial solution is therefore asymptotically
stable.

Figure 3: The solutions ϕ(·, φi), i = 1, 2, 3, 4, from Example 5.2.

Using an Adams-Bashforth-Moulton predictor-corrector scheme for fractional
differential equations [2, 9], solutions ϕ(·, φi) to the equation (20) are computed
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for the initial conditions ϕ(t, φi) = φi(t) for t ∈ [−1, 0], i = 1, 2, 3, 4, with the
initial functions φi : [−1, 0]→ R defined by

φ1(t) = 0.6,

φ2(t) = −0.05t+ 0.2,

φ3(t) = 0.05t+ 0.25,

φ4(t) = 0.1t− 0.15,

see Figure 3.
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