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Abstract. In [Ar68], M. Armstrong proved a beautiful result describing fundamental
groups of quotient spaces. In this paper we prove an analogue of Armstrong’s theorem in
the setting of F -divided [dS07] and essentially finite [No76] fundamental group schemes.

1. Introduction

The goal here is to establish an analogue, in the theory of fundamental group schemes,
of a beautiful topological theorem found by M. A. Armstrong, which according to R. Ge-
oghegan [Ge] “is the kind of basic material that ought to have been in standard textbooks
on fundamental groups for the last fifty years”:

Theorem 1.1 ([Ar68, p. 299, Theorem]). Let X be a path connected, simply connected,
locally compact metric space. Given a group G acting discontinuously on X, the fun-
damental group of the quotient space G\X is isomorphic with the quotient G/I, where
I < G is the (necessarily normal) subgroup generated by all elements having at least one
fixed point.

The setting we have in mind is the following. Let X be a variety over k on which
a certain finite abstract group G acts (for unexplained notation, see the end of this
introduction). Under a mild condition on the orbits of G, it is a fact that a reasonable
quotient of X by G exists in the category of varieties [Mu, § 7, Theorem]; denote the
quotient by G\X. Now we can ask how the different fundamental groups of X relate
to those of G\X. In the present work, we address this question in two theories of the
fundamental group scheme: the F -divided [dS07] and the essentially finite [No76]. See
Theorem 5.1 and Theorem 8.1 for precise statements in these directions.

The mechanism behind these results is worth being made conspicuous as everything
hinges on two main ideas. The first one is very elementary and commonplace in number
theory: all ramification of an extension is concentrated on the inertia field. We present
a clear geometric picture of this in Section 4. The second one is more sophisticated and
based on the fact that the etale fundamental group has, in many cases, a mysterious
control over other fundamental group schemes. Here this is manifested through the fact
that as soon as a certain morphism Y −→ X realizes π1(X) as a quotient of π1(Y ), then
the same is true for the F -divided and for the essentially finite fundamental groups. We
offer a careful explanation in Theorem 5.2 and Theorem 8.2.

Let us now review the remaining sections of the paper.
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Section 2 explains how to develop the F -divided fundamental group scheme [dS07]
beyond the realm of algebraic k-schemes. This is essentially well-known as the technique
behind the main point (Lemma 2.2) works in more generality than stated in its first
appearance [dS07, Lemma 6].

Section 3 exists to fill a gap in the literature and deals with an unsurprising result
expressing the F-divided fundamental group of a quotient in the case of a free action; see
Proposition 3.3. As a recompense for the reader of this section, we offer a slight variation
of the criterion for exact sequences first presented in [EHS08, Appendix], see Proposition
3.4. (This variation is again used in developing the essentially finite theory.)

Section 4 introduces the concept of genuinely ramified finite morphisms, a terminology
due to Balaji and Parameswaran, and demonstrates that this very useful notion easily
connects to a number of other elementary ideas from the theory of coverings (in the broad
sense), see Proposition 4.3.

Section 5 offers one of our main results, an analogue of Armstrong’s theorem in the
setting of the F -divided fundamental group; see Theorem 5.1.

Starting from Section 6 on, we concentrate on the theory of the essentially finite fun-
damental group scheme [No76]. But the structure is very much the same as in the theory
of the F -divided group: we begin by proposing a slight generalization of Nori’s theory
to the case of non-proper varieties (Section 6) and conclude, in Section 8, by proving an
analogue of Armstrong’s theorem for this fundamental group scheme; see Theorem 8.1.

It should be pointed out that many results in this paper are consequences of the recent
work of Tonini and Zhang, [TZ17], [TZ17a], [TZ17b] (we have made these connections
explicit at the proper places). These authors study, in considerable generality, Tannakian
categories of sheaves and, in doing so, they produce not only broader conclusions, but
also more comprehensive frameworks.

As a final comment, we would like to call attention to the fact that Armstrong’s theorem
(Theorem 1.1) finds a very attractive description using groupoids, as R. Brown pertinently
points out in [Bro06]. Since this formalism is closely related to the theory of Tannakian
categories, we hope to re-examine our findings under this light in the future.
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Notations and standard terminology.

(1) We fix once and for all an algebraically closed field k of characteristic p > 0.
(2) A variety is an integral k-scheme of finite type. A curve is a one dimensional

variety.
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(3) To avoid repetitions, a point in a scheme X, unless otherwise said, means a closed
point of X.

(4) If X is a variety, x0 is a closed point in it, then π1(X, x0) is the etale fundamental
group of [SGA1].

(5) The absolute Frobenius morphism of a k-scheme X, respectively a k-algebra A,
shall be denoted by FX , respectively FA. If no confusion is likely, the subscript
will be suppressed.

(6) A finite-Galois morphism of integral schemes f : Y −→ X is a finite morphism
for which the associated extension of function fields is Galois. We refer to the
pertinent Galois group by Gal(f).

(7) A locally free coherent sheaf is called a vector-bundle. If E ⊂ F is an inclusion of
coherent sheaves which are also vector bundles, we say that E is a sub-bundle of
F if F/E is also a vector bundle.

(8) An open and dense subset of a scheme X is called big if its complement has
codimension at least two.

(9) A quotient morphism between affine group schemes over k is a faithfully flat mor-
phism (this terminology comes from [Wa79, 15.1]). We will employ many times
the Theorem of 14.1 from [Wa79].

(10) Our conventions on representations of group schemes follow [Jan87, Chapter 2,
Part 1].

Part I – The F -divided fundamental group schemes
2. Preliminaries on F -divided sheaves

In what follows, X stands for a noetherian k-scheme; we do not assume X to be of
finite type.

We wish to develop in the following lines some bases for a theory of F -divided sheaves
on X by employing the method of [dS07].

Definition 2.1. The category of F -divided sheaves is the category Fdiv(X) such that:
Objects are sequences {En, σn}n∈N where En is a coherent OX-module and

σn : F ∗XEn+1
∼−→ En

is an isomorphism.
Arrows between {En, σn}n∈N and {E ′n, σ′n}n∈N are families of morphisms αn : En −→ E ′n

such that σ′n ◦ (F ∗Xαn+1) = αn ◦ σn.

The construction of Fdiv is evidently functorial, and if f : Y −→ X is an arrow
of k-schemes, then the obvious functor Fdiv(X) −→ Fdiv(Y ) constructed from the
pull-back functor f ∗ : Coh(X) −→ Coh(Y ) is denoted by f#.

As expected, if X happens to be the spectrum of a noetherian k-algebra A, we shall
write Fidv(A) instead of Fdiv(X), and speak about F -divided modules.

Lemma 2.2. For any F -divided module E = {En}n∈N over X, the OX-module E0 is
locally free.

Proof. It suffices to show that any F -divided module E = {En, σn}∞n=0 over a noetherian
local ring A is free. Let m stand for the maximal ideal of A. If M is an A-module of finite
type, we write Fitti(M) for the i-th Fitting ideal of M [Ei94, 20.2, 492ff]. Then, for each
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n ∈ N, we know that Fitti(En)[p
m] = Fitti(E0), where for an ideal a ⊂ A, the notation

a[p
n] stands for the ideal of A generated by the image of a under the homomorphism

a 7−→ ap
n [Ei94, Corollary 20.5, p. 494]. We assume that Fitti(E0) 6= (1). In this case,

Fitti(En) 6= (1), so that Fitti(En) ⊂ m. But then

Fitti(E0) ⊂ m[pn] ⊂ mpn .

As the algebra A is separated with respect to the m-adic topology [Mat89, 8.10, p. 60],
we conclude that Fitti(E0) = (0). Hence E0 is projective [Ei94, Proposition 20.8, p. 495],
which implies that E0 is free because A is local. �

In [Gi75, Proposition 1.5], one finds a rather meaningful statement concerning F -divided
sheaves on formal schemes which, as a consequence, asserts that, up to isomorphism, only
the direct sums of the unit object appear in the category of F -divided modules over
kJx1, , . . . , xdK (cf. Corollary 1.6 of [Gi75]). We believe that another explanation, in a
simpler setting, might be useful (as it will be in the proof of Lemma 5.6 further ahead).

Lemma 2.3. Let (A,m, k) be a complete local k-algebra. Then, any F -divided module
over A is isomorphic to a trivial F -divided module {Ar, canonical}.

Proof. Let {En, σn}n∈N be an F -divided module over A. Let βn : Ar −→ En be an
isomorphism (see Lemma 2.2) and let ϕn : Ar −→ Ar correspond to σn under it; said
differently, each diagram

A⊗F,A En+1
σn // En

Ar

F ∗(βn+1)

OO

ϕn

// Ar

βn

OO

commutes. Clearly, proceeding inductively, it is possible to choose βn so that ϕn ≡ id
mod m. This being so, it follows that F n(ϕn) ≡ id mod m[pn], and hence the difference

ϕ0 · F (ϕ1) · · ·Fm(ϕm)− ϕ0 · F (ϕ1) · · ·F n(ϕn) =

= ϕ0 · F (ϕ1) · · ·Fm(ϕm) ·
[
id− Fm+1(ϕm+1) · · ·F n(ϕn)

]
is congruent to 0 modulo m[pm+1], and a fortiori modulo mpm+1 . Since End(Ar) is complete
for the m-adic topology, the limit

Φ0 := lim
n→∞

ϕ0 · F (ϕ1) · · ·F n(ϕn)

exists in End(Ar). It is not hard to see that in fact Φ0 belongs to Aut(Ar). More generally,
write

Φm := lim
n→∞

ϕm · F (ϕm+1) · · ·F n(ϕm+n);

this is an element of Aut(Ar). Then ϕm·F (Φm+1) = Φm, which gives an arrow in Fdiv(A):

{βnΦn} : 1r −→ {En, σn}.
It only takes a moments thought to see that {βnΦn} is in fact an isomorphism. �

Let {ϕn} : {En, σn} −→ {E ′n, σ′n} be a morphism of Fdiv(X) and write Cn =
Coker(ϕn), In = Im(ϕn) and Kn = Ker(ϕn). Then, the family Cn is also F -divided,
that is, there exist unique isomorphisms

τn : F ∗XCn+1 −→ Cn
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rendering the diagrams

F ∗XEn+1

σn

��

ϕn+1 // F ∗XE ′n+1

σ′n
��

// F ∗XCn+1

τn

��

// 0

En
ϕn // E ′n // Cn // 0

commutative. It then follows that for every n ∈ N, the coherent sheaf Cn is locally free.
This and the fact that every E ′n is locally free together imply that In is locally free (and
this shows that Kn is also locally free). Consequently, the pull-back sequences

0 −→ F ∗XKn −→ F ∗XEn −→ F ∗XE ′n
are exact ; because of this, each σn : F ∗XEn+1 −→ En induces an isomorphism F ∗XKn+1

∼−→
Kn. This proves:

Proposition 2.4. The category of F -divided modules on X is abelian, and the forgetful
functor

Fdiv(X) −→ Coh(X) , {En} 7−→ E0
is faithful and exact. �

Now, on Fidv(X) we have a tensor product defined term-by-term and also a unit
element. In view of Lemma 2.2, we can define the dual of each object E of Fdiv(X)
in a simple fashion. This being so, Fdiv(X) is a abelian rigid tensor category [DM82,
Definition 1.15]. In addition, as explained in [dS07, 2.2], this Fdiv(X) is canonically
k-linear. We therefore have the following:

Theorem 2.5. For any k-rational point x0 of X, the functor {En} 7−→ x∗0 E0 defines an
equivalence between Fdiv(X) and the category of representations of a certain affine group
scheme ΠFD(X, x0).

The affine group scheme ΠFD(X, x0) in Theorem 2.5 is called the F -divided fundamental
group scheme of X based at x0. But even in the absence of a k-point on X, we can say
something by verifying the infamous condition (cf. [Del90, 1.10])

End(1) = k . (2.1)

(This specialty will be used in proving Theorem 5.2.) We note that, in our particular
case, the ring End(1) is

O(X)§ := {a ∈ O(X) : a ∈ ∩n≥1O(U)p
n

for each affine open U}.

Lemma 2.6. Let (A, m) be a local noetherian k-algebra with residue field k and field of
fractions K. If X = SpecA, then O(X)§ = k. If U = SpecK and A is normal, then
O(U)§ = O(X)§ = k.

Proof. The equality O(X)§ = k follows immediately from Krull’s intersection theorem
[Mat89, 8.10]. Now take any a ∈ O(U)§. Let v : K∗ −→ Z be a discrete valuation.
Then v(a) = 0. In particular, if apnn = a, we also conclude that v(an) = 0. Combining
this with the fact that A is the intersection of a family of discrete valuation rings in K
dominating A [Mat89, Theorem 11.5], we conclude that a ∈ ∩nAp

n , which is k. �

Let us note in passing the following:
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Corollary 2.7. Let A and K be as before, and write f : SpecK −→ SpecA for the
obvious morphism. Then

f# : HomFdiv(A)(1
r, 1) −→ HomFdiv(K)(1

r, 1)

is bijective.

Remark 2.8. The results in this section follow from the work of Tonini and Zhang: Com-
pare Theorem 2.5 to [TZ17, Theorem I] and Lemma 2.6 to [TZ17, Proposition 6.19]. It
is also useful to note that [ES16, Section 3] also presents a swift development of the basis
of the theory of F -divided sheaves on schemes of finite type over a field.

3. The F -divided fundamental group scheme of a quotient: the case of a
free action

The main ideas leading to the findings of this section are folkloric and many of its forms
have already been published (see [Ka87, Proposition 1.4.4] or [EHS08, Theorem 2.9] for
example).

Let f : Y −→ X be a finite and etale morphism of k-varieties. We wish to com-
pare ΠFD(Y ) and ΠFD(X), and the method relies on constructing a right adjoint f# :
Fdiv(Y ) −→ Fdiv(X) to the functor f# : Fdiv(X) −→ Fdiv(Y ). As expected, f# is
built up from the usual adjoint f∗. Let us prepare the terrain.

Given a k-algebra, we write A′ to denote the k-algebra whose underlying commutative
ring is A, but whose multiplication by an element λ ∈ k is given through the formula
λ • a = λp

−1
a. With this definition, the Frobenius morphism FA : A′ −→ A is k-linear.

Lemma 3.1. Let A be a k-algebra and A −→ B a finite and etale morphism.The follow-
ing claims are true.

(1) Tthe natural morphism of A-algebras

θ : B′ ⊗
A′,FA

A −→ B, b′ ⊗ a 7−→ b′pa

is bijective. (The reader is required to write down the associated cartesian diagram
of affine schemes.)

(2) Let N ′ be a finitely presented B′-module. Then the natural morphism

θN ′ : N ′ ⊗
A′,FA

A −→ N ′ ⊗
B′,FB

B, n′ ⊗ a 7−→ n′ ⊗ a.

is an isomorphism of A-modules.

Proof. Let x : A −→ K be a morphism of k-algebras, where K is a field, and consider

θ ⊗A K : (B′ ⊗A′,FA
A)⊗A K −→ B ⊗A K.

Under the identification

(B′ ⊗A′,FA
A)⊗A K

∼−→ (B′ ⊗A′ K ′)⊗K′,FK
K,

it is clear that θ ⊗A K corresponds to

(B′ ⊗A′ K ′)⊗K′,FK
K −→ B ⊗A K, (b′ ⊗ 1)⊗ r 7−→ b′p ⊗ r.

Now B′⊗A′K ′ is an etale K ′-algebra and hence the arrow above is an isomorphism of K-
algebras due to [BA, V.6.7, Corollary on p. V.35]. We conclude that θ is an isomorphism
by means Nakayama’s Lemma.
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(2) Part (1) shows that if N ′ is a free B′-module, then θN ′ is an isomomorphism. Let

V ′ −→ W ′ −→ N ′ −→ 0

be a presentation of N ′ with V ′ and W ′ free B′-modules of finite rank. Then we arrive at
a commutative diagram with exact rows

V ′ ⊗A′ A //

θV ′
��

W ′ ⊗A′ A
θW ′
��

// N ′ ⊗A′ A
θN′
��

// 0

V ′ ⊗B′ B // W ′ ⊗B′ B // N ′ ⊗B′ B. // 0

Because θV ′ and θW ′ are isomorphisms, so is θN ′ . �

Corollary 3.2. Let f : Y −→ X be as above. Then, for any coherent OY -module N ,
the natural base-change arrow

θN : F ∗Xf∗(N ) −→ f∗(F
∗
Y (N ))

is an isomorphism of OX-modules. �

Now let {Nn, σn} ∈ Fdiv(Y ). Then

σfn := f∗(σn) ◦ θNn+1 : F ∗X(f∗(Nn+1))
∼−→ f∗(Nn)

defines an object {f∗(Nn), σfn} ∈ Fdiv(X), and in this way we arrive at an adjunction

(f#, f#) : Fdiv(X) −→ Fdiv(Y ).

As Fdiv(X) −→ Coh(X) reflects isomorphisms, the construction shows that f# is an
exact and faithful functor and the counit

f#f#(En, σn) −→ (En, σn)

is always an epimorphism (the third property is in fact a consequence of the second [ML71,
IV.3, Theorem 1, p.90]).

In addition, f#(f#(1)) is the trivial object 1⊗k O(G) of Fdiv(Y ).

Proposition 3.3. Let f : Y −→ X be a finite-Galois etale covering with group G. We
have an exact sequence of group schemes

1 −→ ΠFD(Y, y0) −→ ΠFD(X, x0) −→ G −→ 1 .

Proof. We wish to apply Theorem A.1(iii) of [EHS08]. In fact, since our situation has
an extra structure — the existence of the right-adjunct f# — we find it opportune to
take [EHS08, Theorem A.1(iii)] from a slightly different perspective, which we present
as Proposition 3.4 below. As we observed above, f# is faithful and f#f#(1) is trivial
(as an object of Fdiv(Y )) so that Proposition 3.4 can be applied to show that f\ :
ΠFD(Y, y0) −→ ΠFD(X, x0) is a closed and normal embedding. In addition, the cokernel
of f\ is defined by the category Fdiv(Y/X) := {V ∈ Fdiv(X) : f#V is trivial}. Now
the functor Repk(G) −→ Fdiv(Y/X) defined by V 7−→ Y ×G V induces an equivalence,
and Fdiv(Y/X) −→ Repk(G), given by E 7−→ HomFdiv(1, f#E), is an inverse. �

Proposition 3.4. Let ϕ : H −→ G be a morphism of affine group schemes over a field
k. Assume that the functor ϕ# : Repk(G) −→ Repk(H) has a faithful right adjoint
ϕ# : Repk(H) −→ Repk(G), which, in addition, is such that ϕ#(ϕ#(1)) is a trivial
object of Repk(H). Then ϕ is a closed and normal immersion.
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Moreover, if Q is the cokernel of ϕ, then Repk(Q) is the full subcategory of Repk(G)
consisting of those objects on which H acts trivially.

Proof. Since the co-unit ϕ#ϕ#(V ) −→ V is an epimorphism [ML71, Theorem 1, p.90], ϕ
is a closed immersion. Using the full sub-category {V ∈ Repk(G) : H acts trivially on V }
of Repk(G) we define a quotient morphism G −→ R. We set out to prove that (a), (b)
and (c) of [EHS08, Theorem A.1(iii)], henceforth called simply conditions (a), (b) and
(c), are satisfied for the diagram H −→ G −→ R. Condition (a) is assured by the
construction of R from its category of representations. Condition (c) is guaranteed by
the fact that the counit ϕ#ϕ#(V ) −→ V is an epimorphism for each V . We only need
to show that (b) holds. Let V ∈ Repk(G) and write D for its dual; we want to show that
DH = HomH(V,1), considered as a subspace of D, is stable under G. The validity of
condition (b) is then immediately confirmed.

For a proof, we employ the results and notations of [Jan87, Part I, Ch. 2]. We wish to
prove that for any k-algebra A, the set (DH)a(A) = (Da)

H(A) is invariant under G(A).
Let η ∈ HomH(ϕ#ϕ#(1),1) be the counit so that

HomG(V, ϕ#(1)) −→ HomH(ϕ#V,1), µ 7−→ ηµ,

is bijective. Let λ : V −→ 1 lie in DH and µ ∈ HomG(V, ϕ#(1)) be such that ηµ =
λ. Given g ∈ G(A), we obtain an element of HomA(V ⊗ A,A) = D ⊗ A defined by
(λ⊗ idA)◦g−1 = (η⊗ idA)◦ (µ⊗ idA)◦g−1. Then, for any A-algebra B and any h ∈ G(B),
we conclude that

(λ⊗ idB) ◦ g−1 ◦ h−1 = (η ⊗ idB) ◦ (µ⊗ idB) ◦ g−1 ◦ h−1 (definition of λ)

= (η ⊗ idB) ◦ g−1 ◦ h−1 ◦ (µ⊗ idB) (equivariance of µ)

= (η ⊗ idB) ◦ g−1 ◦ (µ⊗ idB) (H acts trivially on ϕ#(1))

= (η ⊗ idB) ◦ (µ⊗ idB) ◦ g−1

= (λ⊗ idB) ◦ g−1.

This shows that the action of G(A) takes
(
DH
)
a

(A) into (Da)
H(A) = (DH)a(A) (cf. Part

I, 2.10 in [Jan87]). �

4. Genuinely ramified finite morphisms

We reinterpret a theme brought to our attention by the work [BP11, § 6]. Since the
underlying assumptions in [BP11] are much too restrictive, and since a fundamental point
goes unmentioned (which is Proposition 4.3 below), we think it well to interpose this
section.

We remind the reader that if ϕ : N −→ M is a Galois-finite morphism of normal
k-varieties, then AutN(M) = Gal(ϕ).

Definition 4.1 ([BP11, § 6]). Let f : Y −→ X be a finite surjective morphism of
k-varieties. We say that f is genuinely ramified if f is generically etale and if the only
possible factorization of f as a composition

Y // X ′
etale // X

is
Y

f // X
id // X.
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Under this terminology, we can reinterpret a (probably well-known) exercise as follows:

Lemma 4.2. Let f : Y −→ X be a finite-Galois morphism between normal k-varieties.
The following statements hold:

(1) Assume that Gal(f) is generated by elements having at least one fixed point. Then
f is genuinely ramified.

(2) Write I /Gal(f) for the subgroup generated by all elements of Gal(f) fixing at least
one point. If χ : Y −→ M is the quotient of Y by I with u : M −→ X being
the canonical arrow, then χ is genuinely ramified while u is etale.

(3) If f is genuinely ramified, then Gal(f) is generated by the elements having at least
one fixed point.

Proof. (1) Let Y χ−→ M
u−→ X be a factorization of f with u finite and etale. Let us

firstly suppose that f is Galois. Then, the canonical homomorphism Gal(f) −→ Gal(u)
is surjective, so that Gal(u) is generated by the elements having at least one fixed point.
Since no α ∈ AutX(M)\{id} can have a fixed point [SGA1, I, Corollary 5.4], we conclude
that Gal(u) = {e}. Let us now deal with the general case; for that we shall require the
construction of the “Galois closure” of u [SGA1, V, § 4(g)].

Let Ω be an algebraic closure of k(Y ) and let y ∈ Y (Ω), m ∈ M(Ω), and x ∈ X(Ω)
be the associated Ω-points. If m1 = m, and {m1, . . . ,md} is the set of Ω-points of M
above x, basic Galois theory and the normality of Y allow us to find, for each i, an
X-automorphism gi : Y −→ Y such that χ(gi(y)) = mi. (In particular, g1 = idY .)
Consequently, we have constructed a morphism of X-schemes

χ̃ : Y −→ M ×X · · · ×X M︸ ︷︷ ︸
d

satisfying:
• The composition pr1 ◦ χ̃ is none other than χ, and
• the image of y is (m1, . . . ,md).

Now, the connected component of the above fiber product containing (m1, . . . ,md), call
it M̃ , is a finite-Galois etale covering of X. (This is explained in [SGA1, V, §4(g)], but
the reader should do an exercise on groups acting on finite sets). Using the factorization
Y

χ̃−→ M̃
ũ−→ X, we can apply our previous result to conclude that ũ is an isomorphism,

so that u is also an isomorphism.
(2) Let I /Gal(χ) be the (normal) subgroup generated by the automorphisms fixing at

least one point, and write χ : Y −→M for the quotient of Y by I [Mu, § 7, Theorem]. It
follows that the canonical morphism u : M −→ X is finite-Galois, and Gal(u) ' Gal(f)/I.
We contend that

(i) the morphism u is etale, and
(ii) χ is genuinely ramified.

To prove (i), it is suffices to show that Gal(u) acts freely on the points of M [Mu, § 7,
Theorem]. Since the set of points of M is just the quotient of the set of points of Y (loc.
cit.), the verification is quite straight-forward. So let I · y = m ∈M , and let s ∈ Gal(f)
be such that s(m) = m. This means that s(y) = i(y), where i ∈ I. Hence, we conclude
that s ∈ I, so that s : M −→M is just the identity map, which completes the verification
of (i).
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To establish (ii), we note that by construction, Gal(χ) = I, so that (1) can be directly
employed.

(3): This is in fact a consequence of (2). �

The next result is an exercise from the theory of covering spaces.

Proposition 4.3. Let f : Y −→ X be a finite and surjective morphism of k-varieties.
The morphism f is genuinely ramified if and only if the morphism between etale funda-
mental groups f\ : π1(Y ) −→ π1(X) is surjective.

Proof. We shall only prove the “only if” clause; the verification of the other one is very
simple. Hence we suppose that f is genuinely ramified. Let π1(X) −→ g be a finite
quotient, and let h < g be the image of π1(Y ). We endow E := g/h with the canonical
left action of π1(X). Let X ′ −→ X be the etale covering associated to E. Since π1(Y )
leaves one point of E fixed, it follows that the etale covering Y ′ := X ′ ×X Y −→ Y
(which is associated to the π1(Y )-set E) must have a connected component isomorphic
to Y . In this way, we obtain a section σ : Y −→ Y ′, and then a lifting of f : Y −→ X
to X ′. But this forces X ′ −→ X to be an isomorphism, and we conclude that #E = 1.
Since g is arbitrary, we conclude that f\π1(Y ) = π1(X). �

5. The F -divided group scheme of a quotient

Our aim in this section is to prove the following:

Theorem 5.1. Let G be a finite group acting on the normal variety Y with

f : Y −→ X

being the quotient [Mu, Theorem, § 7]. Choose y0 ∈ Y (k) above x0 ∈ X(k). Then, the
cokernel of the induced homomorphism

f\ : ΠFD(Y, y0) −→ ΠFD(X, x0)

is identified with G/I, where I is the subgroup (necessarily normal) generated by all ele-
ments of G having at least one fixed point.

The proof is a simple consequence of Theorem 5.2 below, which then becomes the main
object of our efforts.

Proof of Theorem 5.1. Let χ : Y −→ M be the quotient of Y by I and u : M −→
X the morphism induced by f . Then u is finite-Galois and etale [Mu, Theorem, §7],
Gal(u) ' G/I, and χ is genuinely ramified (see Lemma 4.2-(2)). Now Theorem 5.2
guarantees that the homomorphism

χ\ : ΠFD(Y, y0) −→ ΠFD(M,χ(y0))

is faithfully flat, so that the cokernel of f\ is just the cokernel of u\, which is G/I as
guaranteed by Proposition 3.3. �

Theorem 5.2. Let
f : Y −→ X

be a finite Galois, genuinely ramified morphism between normal k-varieties. If y0 ∈ Y (k)
is taken by f to x0 ∈ X(k), then

f\ : ΠFD(Y, y0) −→ ΠFD(X, x0)

is a quotient morphism.
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The proof of Theorem 5.2 will rely on several subsidiary results. These are: Lemma 5.3,
which is a minor simplification of the standard criterion [DM82, Proposition 2.12, p. 139]
for a morphism of affine group schemes to be faithfully flat. Proposition 5.4, which notes
that condition (1) in Lemma 5.3 was already explained in [Gi75]. Proposition 5.5, which
gives us the means to deduce Theorem 5.2 from the case of etale morphisms. Notation
and assumptions are those of Theorem 5.2.

Lemma 5.3. Let ϕ : Π′ −→ Π be a homomorphism of affine group schemes over k.
Then ϕ is faithfully flat if and only if

(1) the functor ϕ# : Rep(Π) −→ Rep(Π′) is fully faithful,
and one among the following two equivalent conditions holds:

(2) Let V be a representation of Π and L ⊂ ϕ#(V ) a Π′–submodule of rank one.
Then L is also invariant under the action of Π.

(2bis) Let V be a representation of Π and q : ϕ#(V ) −→ L a quotient Π′–module of
rank one. Then L also has the structure of a Π-module and q is equivariant.

In addition, if Π is pro-finite, then condition (1) is already sufficient for ϕ to be faithfully
flat.

Proof. We start by noting that (2) and (2bis) are equivalent: all that is needed is to take
duals. In view of [DM82, p. 139, Proposition 2.21], we only need to show that (1) and
(2) together imply that ϕ is faithfully flat. Take any V ∈ Repk(Π). The aforementioned
result of [DM82] guarantees that it is sufficient to show that any Π′–submodule W ⊂ V
is also invariant under Π. Now, if r = dimkW , then

∧rW ⊂
∧r V is, by hypothesis,

invariant under Π. This means that for all k–algebras R, the rank one R–submodule∧rW ⊗ R ⊂
∧r V ⊗ R is invariant under all g ∈ AutR(V ⊗ R) belonging to the image

of Π(R). The standard argument in the last paragraph in Appendix 2 on page 152 of
[Wa79] proves that this is only possible if W ⊗R is invariant under all g ∈ Π(R).

Let us now deal with the case where Π and Π′ are pro-finite and show that condition
(1) is enough to show faithful flatness. Let u : Π → G be a finite quotient of Π and
consider the following commutative diagram where u and u′ are quotient morphisms and
i is a closed immersions:

Π′
ϕ //

u′

��

Π

u
��

G′
i
// G.

Now, if we endow O(G) with its right regular action and use (1), we conclude that
dimO(G)G

′
= dimkO(G)G = 1. But this is only possible if i is an isomorphism (say,

because O(G) is locally free over O(G)G
′ of rank dimkO(G′) [Mu, §12, Theorem 1]) and

the rest of the proof follows effortlessly. �

We now head towards a proof of Theorem 5.2 by employing Lemma 5.3. The first step
was already taken by Gieseker:

Proposition 5.4. The pull-back functor

f# : Fdiv(X) −→ Fdiv(Y )

is full.
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Proof. The proof of [Gi75, p. 11, Lemma 2.8] contains a proof of this claim. Let us give
more details. It is enough to show that for any E ∈ Fdiv(X), any arrow {σn} : 1 −→
f#E in Fdiv(Y ) comes from an arrow 1 −→ E in Fdiv(X). Let V = SpecB be an
affine open subset of Y above the affine open subset U = SpecA of X. We assume that
E0|U is free on {e1, . . . , er} so that we can write σ0 =

∑
bi ⊗ ei, with bi ∈ B. Let

y ∈ V be above x ∈ U and let ϕ1, . . . , ϕr ∈ Ôx ⊗ E0 be a trivializing frame. Then
f ∗(ϕi) is a trivializing frame for Ôy ⊗ E0. Hence σ =

∑
i λif

∗(ϕi). We conclude that
bi actually belongs to the image of Ôx. It is easy to see that the choice of the basis is
unimportant. �

From this point on we work to verify that condition (2) of Lemma 5.3 holds for the
morphism f\ : ΠFD(Y, y0) −→ ΠFD(X, x0) of Theorem 5.2. The strategy consists in
concentrating on the open subset of X above which f is a principal bundle and employ:

Proposition 5.5. Let X be as before (a normal variety). Then, for each open and dense
subset U ⊂ X, and each u0 ∈ U(k), the homomorphism

ΠFD(U, u0) −→ ΠFD(X, u0)

induced by the inclusion is a quotient morphism.

Proof. We first assume that the proposition is true for big open subsets and deduce the
general case from it.

Let U be an open subset of X. Let Xreg (respectively, U reg) be the open subset of
regular points of X (respectively, U). We note that X is normal because Y is so. So
Xreg and U reg are big open subsets of X and U respectively. Consider the commutative
diagram of affine group schemes

ΠFD(Xreg)
α // ΠFD(X)

ΠFD(U reg)
β
//

ξ

OO

ΠFD(U).

ζ

OO

Using differential operators, one comfortably shows that ξ is faithfully flat [Kin15, p. 6465,
Lemma 2.8]. Since Xreg ⊂ X and U reg ⊂ U are big open subsets, the assumption
implies that α and β are faithfully flat. Consequently, ζ is also faithfully flat as a simple
application of [Wa79, Chapter 14] demonstrates.

We now assume that U ⊂ X is a big open subset and set out to verify that the conditions
(1) and (2bis) appearing in Lemma 5.3 hold. As the restriction VB(X) −→ VB(U) is
fully faithful [SGA2, III, §3], so is the restriction Fdiv(X) −→ Fdiv(U); condition (1)
of Lemma 5.3 is then readily verified.

To verify the condition (2bis), we need to show that for E ∈ Fdiv(X) and each quotient
morphism

ϕ : E|U −→ L ,

where L is an object of rank one in Fdiv(U), there exists some L̃ ∈ Fdiv(X) that
extends L and furthermore there is a morphism ϕ̃ : E −→ L̃ of Fdiv(X) extending ϕ.
Two lemmas will be proved for that purpose.
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Lemma 5.6. Let X, U , E, L and ϕ be as before. Then, there exists a line bundle L̃0

extending L0, and furthermore there is a quotient morphism

ϕ̃0 : E0 −→ L̃0

extending ϕ0.

Proof. Let P(E0) −→ X be the projective bundle associated to E0. The existence of L0

implies that there is a section
P(E0)

��
U

σ
<<

// X.

Let x ∈ X \U and write D (respectively, D◦) for the spectrum of the complete local ring
Ôx (respectively, field of fractions of Ôx). It should be emphasized that Ôx is a normal
domain; see [Mat80, Theorem 79, p.258]. We then arrive at a commutative diagram

D◦ //

��

U

��

σ // P(E0)

D // X.

Since E|D is isomorphic to 1⊕rD , it follows that E|Do is isomorphic to 1⊕rD◦ ; hence L|D◦
is a quotient of 1⊕rD◦ , which implies that L|D◦ is isomorphic to 1Do (see Corollary 2.7).
Consequently, we obtain the dotted arrow in the following commutative diagram:

D◦ //

��

U

��

σ // P(E0)

D

II

// X.

In view of Lemma 5.7 below, there is some open neighborhood x ∈ V ⊂ X and a
morphism V −→ P(E0) which extends D −→ P(E0). Therefore, it is possible to find an
extension of the morphism

ϕ : E0|U −→ L0

to V . As x is arbitrary, we arrive at a desired conclusion. �

Lemma 5.7. Let (A, m) be a noetherian local ring whose completion Â is a domain (note
that in this case A is also a domain). If K (respectively, K̂), stands for the fractions field
of A (respectively, Â), and if h ∈ K is such that its image in K̂ belongs to Â, then h ∈ A.

In particular, if R is any ring and u : R −→ K is a morphism whose image belongs to
Â, then u(R) ⊂ A.

Proof. We write h = h1 · h−12 , where h1 ∈ A and h2 ∈ m (otherwise h ∈ A× and there
is nothing to be done). The fact that h ∈ Â means simply that Âh2 ⊃ Âh1. Since
A −→ Â is faithfully flat [Mat89, p. 62, 8.14], we conclude that Âa ∩ A = Aa for each
a ∈ A [Mat89, p. 49, 7.5(ii)], an hence Ah2 ⊃ Ah1. �

Continuing with the proof of Proposition 5.5, we employ Lemma 5.6 to find epimor-
phisms

ϕ̃n : En −→ L̃n
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extending ϕn : En|U −→ Ln. From the fact that

VB(X) −→ VB(U)

is fully faithful [SGA2, III.3], the isomorphisms

τn : F ∗U(Ln+1)
∼−→ Ln

used in the definition of L ∈ Fdiv(U) can be extended to isomorphisms τ̃n : F ∗XL̃n+1 −→
L̃n. Another application of the fully faithfulness of VB(X) −→ VB(U) shows that the
arrows ϕ̃n give rise to an epimorphisms of Fdiv(X). �

We can now present our

Proof of Theorem 5.2. We put G := Gal(f) and set out to verify that condition (2) of
Lemma 5.3 is valid. Take E ∈ Fdiv(X), and let L −→ f#E be a sub-object of rank
one. Let now I ⊂ f#E be the image of

⊕
g g

#L in f#E (this is an object of Fdiv(Y )).
Then, there exist an open dense subscheme U of X with pre-image V in Y , an object
M ∈ Fdiv(U), and an isomorphism

(f |V )#M ∼−→ I|V .
We now consider the commutative diagram of affine group schemes obtained by choosing
y0 ∈ V (k) and x0 := f(y0):

ΠFD(V, y0)

��

// ΠFD(Y, y0)

��
ΠFD(U, x0) // ΠFD(X, x0).

Since the horizontal arrows are all faithfully flat (Proposition 5.5), the subspace y∗0(I) =
x∗0(M) remains fixed under the action of ΠFD(X, x0) on x∗0(E) because it remains fixed
under the action of ΠFD(U, x0). It then follows that there exits M ∈ Fdiv(X) and an
isomorphism

f#M ∼−→ I .
We now observe that y∗0(I) is a semisimple ΠFD(Y, y0)-module, and hence there is an
epimorphism of ΠFD(Y, y0)-modules:

ψ : I −→ L .
Consequently, L = Im(ψ); since ψ is an arrow from I = f#M to f#E , Proposition 5.4
tells us that ψ is the image of an arrow M −→ E , so that L belongs to the essential
image of f#. This completes the proof of Theorem 5.2. �

Remark 5.8. A more general result than Proposition 5.5 appears as Theorem 3.1 in
[TZ17a].

Remark 5.9. It is essential that X be a normal variety for Proposition 5.5 to hold. Indeed,
pick x1, x2 distinct closed points of P2

k and let ψ : P2
k −→ X be the identification of them

[Fe03, Theorem 5.4, p.570]. We know that on P2 \ {x1, x2}, which is thought of as an
open and dense subset of X, there are no non-trivial F -divided sheaves (see Proposition
2.7 and then Theorem 2.2 in [Gi75]). On the other hand, we now show that ΠFD(X) 6= 0
by exhibiting a non-trivial F -divided sheaf of rank one.
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Take the trivial line bundle L := OP2
k
and any λ ∈ k∗ = k \ {0}. Identify the fiber

Lx1 = k with Lx2 = k by sending any c ∈ Lx1 to cλ ∈ Lx2 . This produces a line bundle
on X, which we will be denoted by L(λ). Then we have F ∗L(λ) = L(λp), where p is the
characteristic of k. Since k is perfect, the line bundle L(λ) admits an F -divided structure.
On the other hand, L(λ) is nontrivial if λ 6= 1.

Part II – The essentially finite fundamental group scheme

6. Extending the Tannakian interpretation of the essentially finite
fundamental group

In this section we set out to extend Nori’s theory of essentially finite vector-bundles
[No76] to a slightly larger class of k-algebraic schemes other than the proper ones. It
should be noted that such an enterprise has received attention from other geometers in
recent times (cf. [BV15] and [TZ17b]) and our modest contribution is to throw light on
a variation of Nori’s initial method: connect points via projective curves. It is a simple
alternative to the more formal condition on global sections of vector bundles [BV15,
Definition 7.1].

Definition 6.1. Let X be an algebraic k-scheme. A chain of proper curves on X is a
family of morphisms from proper curves {γi : Ci −→ X}mi=1 such that the associated
closed subset ∪i Im(γi) is connected. For the sake of brevity, we shall refer to the closed
subset ∪i Im(γi) as “a chain of projective curves”.

The algebraic k-scheme is said to be connected by proper chains (CPC for short) if any
two points belong to a chain of proper curves.

As Ramanujam’s Lemma guarantees (see the Lemma of Section 6, p. 56 of [Mu]), each
proper k-scheme is connected by proper chains (CPC). Another easily available way to
produce CPC algebraic schemes is to note:

Lemma 6.2. Let f : Y −→ X be a surjective morphism of algebraic k-schemes. Then, if
Y is CPC, is X likewise. �

Also, with a bit more work, we can say:

Lemma 6.3. Let U −→ X be an open embedding of algebraic k-schemes. Assume that
X is projective and that U is big in X. Then, if U is connected, it is CPC.

Proof. We give a proof by assuming U irreducible; the general case can easily be obtained
from this. As U is assumed to be dense in X, this implies that X is also irreducible. Let
d stand for the dimension of X. If d = 1, then Ured is a proper curve, so that nothing
needs to be demonstrated. We now proceed by induction on d, which is then ≥ 2.

Let us denote by Z the reduced closed subscheme of X whose underlying topological
space is X \ U . Given distinct points x, y of U , let ϕ : X ′ −→ X stand for the blowup
of {x, y}; the inverse image of U (respectively, Z) is denoted by U ′ (respectively, Z ′).
Clearly, ϕ : Z ′ −→ Z is an isomorphism and codim(Z ′, X ′) ≥ 2. This being so, U ′ is big
in X ′. Let us now choose a closed immersion X ′ −→ PN and then a hyperplane H ⊂ PN
enjoying the following properties

a) both and H ∩ U ′ and H ∩X ′ are irreducible of dimension d− 1. (Apply (1) and
(3) of [Jou83, Corollary 6.11].)
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b) The intersections H ∩ ϕ−1(x) and H ∩ ϕ−1(y) are non-empty. (Apply (1b) of loc.
cit.)

c) If W ′ ⊂ Z ′ has dimension zero, then H ∩W ′ = ∅, and if W ′ ⊂ Z ′ is an irreducible
component of dimension ≥ 1, we have dimH ∩W ′ = dimZ ′− 1. (Apply (1a) and
then (3) and (1b) of loc. cit.)

We then see that H∩U ′ ⊂ H∩X ′ is big and of dimension d−1. Hence, if x′ ∈ H∩ϕ−1(x)
and y′ ∈ H ∩ ϕ−1(y), there exists a chain of proper curves containing them both and a
fortiori there exits a chain of proper curves containing x = ϕ(x′) and y = ϕ(y′). �

Definition 6.4. Let E be a vector-bundle on an algebraic k-scheme X. We say that E is
Nori-semistable if, for each morphism from a smooth projective curve γ : C −→ X, the
vector-bundle γ∗E is semistable and of degree zero. The category of Nori-semistable
vector-bundles on X is the full subcategory of VB(X) having as objects the Nori-
semistable ones. This category will be denoted by NS(X).

Remark 6.5. It is not (yet) universally accepted to call the above defined vector-bundles
Nori-semistable. This is because in [No76], the author introduces a slightly different
category.

The next result is a straightforward application of Nori’s method in [No76, § 3].

Lemma 6.6. Let X be a reduced algebraic k-scheme which is connected by proper chains.
Let ϕ : E −→ F be a morphism of NS(X). Then, both Ker(ϕ) and Im(ϕ) are vector-
bundles. Furthermore, they are Nori-semistable.

Proof. Let γ : C −→ X be a morphism from a smooth proper curve and let x, y be
points of C. Since γ∗E and γ∗F are semistable vector-bundles on C, we know that

rank γ∗(ϕ)(x) = rank γ∗(ϕ)(y)

(this is a simple exercise [Se82, Proposition 8, p. 18]). But one easily shows that γ∗(ϕ)(x) =
ϕ(γ(x)) and γ∗(ϕ)(y) = ϕ(γ(y)), so that the function u 7−→ rankϕ(u) is constant on
Im(γ). Now, if instead of assuming C to be smooth we simply take it to be projective,
the same conclusion can be achieved by considering the normalization.

Since by definition any two points of X can be joined by a chain of projective curves,
u 7−→ rankϕ(u) is allover constant. Consequently, Coker(ϕ) is a vector-bundle [Har77,
Exercise 5.8, Chapter II] and employing the exact sequence

0 −→ Im(ϕ) −→ F −→ Coker(ϕ) −→ 0 ,

we see that Im(ϕ) is a vector-bundle. An analogous reasoning shows that Ker(ϕ) is a
vector-bundle. �

Theorem 6.7. Let X be a reduced algebraic k-scheme which is connected by proper chains.
Then, once a point x0 ∈ X(k) is chosen, the category NS(X), together with the functor
x∗0 : NS(X) −→ k-mod, is neutral Tannakian.

Definition 6.8. The affine group scheme associated to NS(X) via the fibre functor x∗0 is
denoted by πS(X, x0).

The category NS(X) is rather large and its understanding is less sound than that of
its “largest pro-finite quotient”, now our main topic of interest. In order to present the
theory in a different light, we shall make a brief digression which is certainly well-known
to the cognoscenti (see the discussion on page 331 of [BV15]).
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Let T be a small tensor category over k; its set of isomorphisms classes carries an
evident structure of commutative semi-ring, with addition and multiplication constructed
from direct sums and tensor products. Let K(T ) stand for the associated commutative
ring [BA, I.2.4]. We say that V ∈ T is finite if its class in K(T ) is integral over the prime
sub-ring (which is Z). By standard knowledge from the theory of integral extensions
[Mat89, Theorem 9.1], we see that the set of finite objects is stable by tensor products
and direct sums. With a bit more effort, one sees also that the dual of a finite object
is necessarily finite. We then define the essentially finite category, EF(T ), as the full
subcategory of T having{

V ∈ T :
there exists a finite object Φ and sub-objects

V ′′ ⊂ V ′ ⊂ Φ such that V = V ′/V ′′

}
for set of objects. One easily sees that EF(T ) is an abelian subcategory which is stable
by tensor products and duals.

Proposition 6.9. Let G be an affine group scheme over k and ω : Repk(G) −→ k-mod
the forgetful functor. If ωEF denotes the restriction of ω to the the essentially finite
category, then Aut⊗(ωEF) is a pro-finite affine group scheme, and the composite morphism

G
∼−→ Aut⊗(ω) −→ Aut⊗(ωEF)

is universal [ML71, III.1] from G to the category of pro-finite affine group schemes. In
particular, it is faithfully flat.

Sketch of proof. If H is a finite group scheme over k and R is its right-regular representa-
tion, then R⊗R ' R⊕r. Since any representation of H is a sub-object of a certain direct
sum R ⊕ · · · ⊕ R [Wa79, 3.5, Lemma], we conclude that EF(Repk(H)) = Repk(H). The
case of a profinite group scheme H is proved in the same manner since any representation
H −→ GLn must factor through a finite quotient H −→ H. �

Given Proposition 6.9, we can put forward the

Definition 6.10. The category of essentially finite vector-bundles is, in the above nota-
tion, EF(NS(X)). We shall abuse terminology and write EF(X) instead. If x0 ∈ X(k),
then πEF(X, x0) stands for the pro-finite group scheme constructed from Proposition 6.9.

Let us end this section with comments on simple structural results which shall prove
useful further ahead. Let X be a CPC variety and V an essentially finite vector bundle on
it. We then derive the existence of a finite group scheme G, a representation V ∈ Repk(G)
and a G-torsor P → X such that P ×G V = V . Now, if V (1) is the Frobenius twist of
V [Jan87, Part I, 2.16], we know that F ∗(P ×G V ) ' P ×G V (1). Hence, for a certain
h ∈ N, the vector bundle F ∗h(V) is of the form P et ×Get

V (h) for a certain etale covering
P et −→ X. The least integer h enjoying this property is to be called the height of V .

7. The essentially finite fundamental group scheme of a quotient: the
case of a free action

This section functions as did Section 3 and we show that the exact analogue of Propo-
sition 3.3 holds true:
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Proposition 7.1. Let f : Y −→ X be a finite-Galois etale covering of CPC varieties
over k. Let G := Gal(f). We then have exact sequences of affine group schemes

1 −→ πS(Y, y0) −→ πS(X, x0) −→ G −→ 1

and
1 −→ πEF(Y, y0) −→ πEF(X, x0) −→ G −→ 1 .

Proof. We start by observing that if E ∈ NS(Y ), then
(a) f∗E belongs to NS(X) and,
(b) f ∗f∗E lies in EF(Y ).

(One copies the proof of [EHS08, Lemma 2.8]). Hence, f ∗ : NS(X) −→ NS(Y ) has
an exact and faithful right adjoint f∗ : NS(Y ) −→ NS(X) such that f ∗f∗ takes values
in EF(Y ). Clearly, f ∗f∗(OY ) is trivial (isomorphic to OY ⊗k O(G)) and the twisting
functor V −→ Y ×G V defines an equivalence between Repk(G) and {V ∈ NS(X) :
f ∗V is trivial}; an inverse is V 7−→ H0(Y, f ∗(V)). We then conclude, applying Proposi-
tion 3.4, that πS(Y, y0) −→ πS(X, x0) is a normal closed immersion and that the cokernel
is isomorphic to G.

To prove that the sequence concerning essentially finite fundamental group schemes is
exact, we only need minor adjustments: first we note that if F ∈ NS(X) is such that
f ∗(F) ∈ EF(Y ), then πS(Y, y0) −→ GL(x∗0F) has a finite image, which proves that
πS(X, x0) −→ GL(x∗0F) has finite image, and this means that F actually belongs to
EF(X). Consequently, because of (b) above, f∗ takes objects in EF(Y ) to objects in
EF(X), which allows us to see that the requirements of Proposition 3.4 are fulfilled. �

8. The essentially finite fundamental group of a quotient

In this section we wish to prove the following theorem.

Theorem 8.1. Let Y be a normal CPC variety. Let G be a finite group of automorphisms
of Y , and write

f : Y −→ X

for the quotient of Y by G [Mu, § 7, Theorem]. Choose y0 ∈ Y (k) above x0 ∈ X(k).
Then, the cokernel of the induced homomorphism

f\ : πEF(Y, y0) −→ πEF(X, x0)

is identified with G/I, where I is the subgroup (necessarily normal) generated by all ele-
ments of G having at least one fixed point.

The proof of Theorem 8.1 follows precisely the same path as that of Theorem 5.1, except
that in place of Theorem 5.2 and Proposition 3.3 (the etale case), we apply Theorem 8.2
below and Proposition 7.1. We shall then concentrate on proving Theorem 8.2.

Theorem 8.2. Let f : Y −→ X be a genuinely ramified morphism between CPC normal
varieties taking the k-point y0 ∈ Y (k) to the k-point x0 ∈ X(k). Then

f\ : πEF(Y, y0) −→ πEF(X, x0)

is a quotient morphism.
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Proof. We employ the criterion explained by Lemma 5.3, so that it is enough to show
that for each E ∈ EF(X), the natural morphism

H0(E) −→ H0(f ∗E)

is bijective. We begin by proving the lemma in the special case where E is of height zero.
This being so, let E = T ×gE, where g is finite and etale, T −→ X is a connected g-torsor,
and E is a representation of g. Then, by definition,

H0(X,T ×g E) = {g-equivariant morphisms ϕ : T −→ Ea}.
Using proper chains in X, we see that for any ϕ ∈ H0(X,T ×g E) and any two points
t1, t2 in T , ϕ(t1) and ϕ(t2) lie on the same g-orbit. As T is connected, this is impossible
unless ϕ(t1) = ϕ(t2) and we see that Eg = H0(X,T ×g E). Since f−1T −→ Y is also
connected (by Proposition 4.3), the same argument shows that Eg = H0(Y, f ∗(T ×g E)),
so that the proof of the special case is complete.

We now introduce the following set of vector-bundles on X:

S :=

{
V :

for any τ ∈ H0(f ∗V), its image F ∗Y (τ) in H0(F ∗Y f
∗V)

belongs to the image of f ∗ : H0(F ∗XV) −→ H0(F ∗Y f
∗V)

}
.

We note that if V ∈ EF(X) is of height one—in the sense of the discussion after Definition
6.10—then V ∈ S because in this case F ∗XV is of height zero and therefore H0(F ∗XV)

∼−→
H0(f ∗F ∗XV). This last observation, together with a simple induction argument, shows
that the lemma is a consequence of the:

Claim. If E ∈ S, then the pull-back H0(E) −→ H0(f ∗E) is bijective.
Let then τ be a section of f ∗E ; by assumption, we have

F ∗Y (τ) = f ∗(σ) , with σ ∈ H0(F ∗XE) . (8.1)

If X0 ⊂ X stands for the smooth locus of X (so that codim(X \X0;X) ≥ 2), we contend
that

σ|X0 = F ∗X0
(ρ) , for some ρ ∈ H0(E|X0) . (8.2)

Let∇ be the canonical connection on F ∗X(E)|X0 = F ∗X0
(E|X0) [Ka70, Theorem 5.1, p. 370].

Denote by X1 and open dense subset of X such that the restriction of f to Y1 := f−1(X1)
is etale. Then,

∇(σ|X1) = 0

since f ∗(σ|X1) = F ∗Y (τ)|Y1 and f ∗Ω1
X1
' Ω1

Y1
. Hence, ∇(σ|X0) = 0, and Cartier’s theorem

[Ka70, Theorem 5.1, p.370] guarantees the existence of ρ as in (8.2). Since X is normal,
ρ extends to ρ ∈ H0(E) [SGA2, III, Corollary 3.5], and (8.2) gives

σ|X0 = F ∗X0
(ρ|X0) . (8.3)

From this point, letting Y0 = f−1(X0), equations (8.1) and (8.3) show that

F ∗Y (τ)|Y0 = F ∗Y (f ∗(ρ))|Y0 . (8.4)

As Y0 ⊂ Y is dense in the variety Y , equation (8.4) guarantees that

F ∗Y (τ) = F ∗Y (f ∗(ρ)) .

As F ∗Y : H0(V) −→ H0(F ∗Y V) is always injective for a vector-bundle V , we conclude that
f ∗(ρ) = τ . This finishes the proof of the Claim. �

Remark 8.3. The reader should compare Theorem 8.2 with Theorem II of [TZ17b].
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