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Abstract. Let X ⊂ Cn be an affine variety and f : X → Cm be the restriction to X of a

polynomial map Cn → Cm. In this paper, we construct an affine Whitney stratification of X. The

set K(f) of stratified generalized critical values of f can be also computed. We show that K(f) is

a nowhere dense subset of Cm, which contains the set B(f) of bifurcation values of f by proving a

version of the isotopy lemma for non-proper polynomial maps on singular varieties.

1. Introduction

Ehresmann’s fibration theorem [3] states that a proper smooth surjective submersion f : X → N

between smooth manifolds is a locally trivial fibration. With some extra assumptions, this result

has been considered in different contexts.

Firstly, if we remove the assumption of properness or smoothness, in general, Ehresmann’s

fibration theorem does not hold since f might have “local singularities” or “singularities at infinity”.

The set of points inN where f fails to be trivial, denoted by B(f), is called the bifurcation set of f ,

which is the union of the set K0(f) of critical values and the set B∞(f) of bifurcation values at

infinity of f . So far, characterizing B∞(f) is still an open problem. In general, people use a bigger

set (but easier to describe), the set of asymptotic critical values of f , denoted by K∞(f), to

control B∞(f). The setK∞(f) is always a nowhere dense subset of Cm and it is a good aproximation

of the set B∞(f). For dominant maps on smooth complex affine varieties, the computation of

K∞(f), and hence of the set of generalized critical values, K(f) := K0(f) ∪K∞(f), is given

in [8].

Now if X is singular, we need to partition X into disjoint smooth manifolds and then apply

Ehresmann’s fibration theorem on each part. However, if we do not require any extra assumption,

then the trivialization on the parts may not match. This obstacle can be overcome by introducing

the Whitney conditions [17, 18]. Indeed, if f is proper and X admits a Whitney stratification,

then f is locally trivial if it is a submersions on stratas [14, 10, 16]. Moreover, if f is non proper

and non smooth, we can also define the bifurcation set of f such that f is locally trivial outside
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B(f). However, so far, to our knowledge, no connection between B(f) and the set of stratified

generalized critical values of f , defined byK(f) :=
⋃
Xα∈S K(f |Xα), for a Whitney stratification

S of X, has been established.

Let X ⊂ Cn be a singular algebraic set of dimension n − r with I(X) = {g1, . . . , gω} and let

f := (f1, . . . , fm) : X → Cm be a polynomial dominant map. Now restricting ourselves to the

cases of dominant polynomial maps on singular affine varieties, the main goals of this paper are

the following:

• Construct an affine Whitney stratification S of X.

• Establish some version of the Thom isotopy lemma for f which yield the inclusion B(f) ⊂⋃
Xα∈S K(f |Xα).

• Calculate the set of stratified generalized critical values of f given byK(f) :=
⋃
Xα∈S K(f |Xα).

The paper is organized as follows. In Section 2, we recall the definitions of Whitney regularity

and Whitney stratification, then we construct an affine stratification from a filtration of X by

means of some hypersurfaces, and refine it to get an affine Whitney stratification. Some versions

of the Thom isotopy lemma for non-proper polynomial maps (Theorem 3.1 and Corollary 3.1) will

be given in Section 3. Then we compute the set of stratified generalized critical values of f , which

contains the bifurcation values of f , where f := (f1, . . . , fm) : X → Cm is a polynomial dominant

map, in the last Section 4.

For the remainder of the paper, the differential of f at a point x is identified with its (row)

matrix, so we write dxf =
(
∂f
∂x1

(x), . . . , ∂f∂xn (x)
)

. Let

∇f(x) :=


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ,
the Hermitian transpose of dxf. For v, w ∈ Cn, denote by 〈v, w〉 =

∑n
i=1 viwi the Hermitian product,

and let v · w =
∑n

i=1 viwi. For the set A ⊂ Cn, set A := {x : x ∈ A} and let A
Z

be the Zariski

closure of A. For an algebraic variety X, the singular part and the regular part of X are denoted

respectively by sing(X) and reg(X).

2. Affine Whitney stratifications

2.1. Preliminaries. For any two different points x, y ∈ Cn, define the secant xy to be the line

passing through the origin which is parallel to the line through x and y.

A stratification S of X is a decomposition of X into a locally finite disjoint union X =
⊔
α∈I

Xα

of non-empty, non-singular, connected, locally closed subvarieties, called strata, such that the

boundary ∂Xα of any stratum Xα is a union of strata. If, in addition, for each α, the closure Xα

and the boundary ∂Xα := Xα \Xα are affine varieties, then we call S an affine stratification. It

is obvious that any affine stratification is finite.
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For linear subspaces F,G ⊆ Cn, let

δ(F,G) := sup
x∈F
‖x‖=1

dist(x,G),

where dist(x,G) is the Hermitian distance.

Let (Xα, Xβ) be a pair of strata of S such that Xβ ⊂ Xα and let x ∈ Xβ. We recall some

regularity conditions:

(a) The pair (Xα, Xβ) is said to be (a) Whitney regular at x ∈ Xβ if it satisfies the following

Whitney condition (a) at x: if xk ∈ Xα is any sequence such that xk → x and TxkXα → T ,

then T ⊃ TxXβ.

(w) The pair (Xα, Xβ) is said to be (w) regular at x ∈ Xβ (or (a) strict Whitney regular

at x with exponent 1) if it satisfies the following condition (w) at x: there exist a

neighborhood U of x in Cn and a constant c > 0 such that for any y ∈ Xα ∩ U and

x′ ∈ Xβ ∩ U , we have δ(Tx′Xβ, TyXα) 6 c‖y − x′‖.
(b) The pair (Xα, Xβ) is said to be Whitney regular at x ∈ Xβ if it satisfies the following

Whitney condition (b) at x: for any sequence xk ∈ Xα and yk ∈ Xβ, y
k 6= xk, such that

xk → x, yk → x, TxkXα → T and xkyk converges to a line ` in the projective space Pn−1,

we have ` ⊂ T.

We say that the pair (Xα, Xβ) is (a) Whitney regular (resp. Whitney regular) if it is (a)

Whitney regular (resp. Whitney regular) at every point of Xβ. We say that S is an (a) Whitney

stratification (resp. a Whitney stratification) if any pair of strata (Xα, Xβ) of S with Xβ ⊂ Xα

is (a) Whitney regular (resp. Whitney regular). It is well-known that Whitney regularity implies

(a) Whitney regularity [17, 18]. Moreover, in light of [13], the Whitney condition (b) is equivalent

to the condition (w) for the category of complex analytic sets, so to check the Whitney regularity,

we can verify either the condition (w) or the condition (b).

For the purpose of this paper, we also need the following notion of Whitney (resp. (a) Whitney)

regularity along a stratum. Let Xβ be a stratum of S and let x ∈ Xβ. We say that Xβ is Whitney

regular (resp. (a) Whitney regular) at x if for any stratum Xα such that Xβ ⊂ Xα, the pair

(Xα, Xβ) is Whitney (resp. (a) Whitney) regular at x. The stratum Xβ is Whitney regular

(resp. (a) Whitney regular) if it is Whitney (resp. (a) Whitney) regular at every point of Xβ.

It is clear that S is a Whitney (resp. an (a) Whitney) stratification if and only if each stratum of

S is Whitney (resp. (a) Whitney) regular.

2.2. Construction of affine stratifications. Let us, first of all, fix an affine stratification of X

whose construction is based on the following proposition.

Proposition 2.1. Let X ⊂ Cn be an affine subvariety of pure codimension r. Assume that I(X) =

{g1, . . . , gω}, where deg gi ≤ D. Let W be an affine subvariety of positive codimension in X with

I(W ) = {g1, . . . , gω, u1, . . . , uτ} where ui 6∈ I(X) and deg ui 6 D′. Then there exist a polynomial

pX,W on Cn of degree less than or equal to r(D − 1) + D′ such that W ⊆ V (pX,W ) := {x ∈ Cn :
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pX,W (x) = 0} and X \ V (pX,W ) is a smooth, dense subset of X. Moreover, the polynomial pX,W

can be constructed effectively.

Proof. Let X =
⋃m
i=1Xi, where Xi are irreducible (hence r-codimensional) components of X. Take

sufficiently generic (random) numbers αij ∈ C, i = 1, . . . , r, j = 1, . . . , ω and set

Gi =
ω∑
j=1

αijgj , i = 1, . . . , r.

Note that the set Z := V (G1, . . . , Gr) has pure codimension r and X ⊂ Z. Let γ1, . . . , γτ be some

(random) generic numbers and set

H :=

1 if W = ∅,∑τ
i=1 γiui otherwise.

Clearly dim
(
X∩V (H)

)
< dimX. Moreover, for a sufficiently general linear r-dimensional subspace

Lr ⊂ Cn the intersection Lr ∩ Z has only isolated smooth points and Lr ∩ Xi 6= ∅ for every i =

1, . . . ,m. We can assume that Lr is determined by the linear forms li =
∑n

j=1 βijxj , i = 1, . . . , n−r,
where βij sufficiently generic (random) numbers. Now take

pX,W = |Jac(G1, . . . , Gr, l1, . . . , ln−r)| ·H,

where Jac(.) denotes the Jacobian matrix. Then pX,W is a polynomial with the required properties.

The polynomial pX,W can be find by using a probabilistic algorithm. First recall the following.

Theorem 2.1 ([2]). Let I be an ideal in k[x1, . . . , xn] and let G = {g1, . . . , gs} be a Gröbner basis

for I with respect to a graded monomial order in k[x1, . . . , xn]. Then Gh = {gh1 , . . . , ghs } is a basis

for Ih ⊂ k[x0, x1, . . . , xn].

This theorem allows us to compute the set of points at infinity of an affine variety given by the

ideal I, to this aim it is enough to compute the Groebner basis {g1, . . . , gs} of the ideal I and

then to consider the ideal I∞ = {x0, g
h
1 , . . . , g

h
s }. Now we sketch the algorithm to compute the

polynomial pX,W . Note that for a given ideal I we can compute dim V (I) by [15].

INPUT: The ideal I = I(X) = {g1, . . . , gω} and the ideal J = I(W ) = {g1, . . . , gω, u1, . . . , uτ}
1) repeat

choose random numbers αi1, . . . , αiω, i = 1, . . . , r;

put Gi :=
∑ω

k=1 αikgk, i = 1, . . . , r;

put I = {G1, . . . , Gr};
compute the ideal I∞ = {H1, . . . ,Hm} ⊂ k[x0, . . . , xn]

until dimV (I∞) = n− r.
2) repeat

choose random numbers βi1, . . . , βin, i = 1, . . . , n− r;
put li :=

∑n
k=1 βikxk, i = 1, . . . , n− r;
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put I = {G1, . . . , Gr, l1, . . . , ln−r};
compute the ideal I∞ = {H1, . . . ,Hm} ⊂ k[x0, . . . , xn];

if dim V (I∞) = 0 then

begin

compute V (G1, . . . , Gr, l1, . . . , lr) := {a1, . . . , ap}
end

until dimV (I∞) = 0 and |Jac(G1, . . . , Gr, l1, . . . , ln−r)(ai)| 6= 0 for i = 1, . . . p.

3) repeat

choose random numbers γ1, . . . , γτ ;

put H :=
∑τ

k=1 γiuk ;

put J = {G1, . . . , Gr, H};
compute the ideal J∞ ⊂ k[x0, . . . , xn]

until dimV (J∞) < n− r.

OUTPUT: pX,W = |Jac(G1, . . . , Gr, l1, . . . , ln−r)| ·H �

Remark 2.1. Let us assume that I(X) and I(W ) are generated by polynomials from the ring

F[x1, ..., xn], where F is a subfield of C. Then we can choose a polynomial pX,W in this way that

pX,W ∈ F[x1, ..., xn].

Thus with no loss of generality, we can assume that rankJac(g1, . . . , gr) = r on some non-empty

regular open subset X0 of X and that X = X0. It is clear that V (pX,W ) contains sing(X) ∪W
and the singular points of the projection (l1, . . . , ln−r) : X → Cn−r. Now to construct an affine

stratification of X, it is enough to construct an affine filtration X = X0 ⊃ X1 ⊃ · · · ⊃ Xn−r ⊃
Xn−r+1 = ∅ by induction with Xi+1 := Xi ∩ V (pXi,∅), i = 0, . . . , n− r. The degree of each Xi can

be calculated and depends only on D.

2.3. Construction of affine Whitney stratifications. In this section, we will construct an

affine Whitney stratification of a given affine variety X, with I(X) = {g1, . . . , gω} and deg gi ≤ D,

by refining the affine stratification given in Subsection 2.2 so that the resulting stratification is still

affine and moreover satisfies the Whitney condition.

First of all, inspired by the construction in [5, 13], let us describe the Whitney condition (b)

algebraically. Assume that Y ⊂ X is an affine subvariety of X of dimension n − p with dimY <

dimX defined by

Y := X ∩ {g̃r+1 = · · · = g̃p = 0}.

5



Set

Γ1 :=



(x, y, w, v, γ, λ) ∈ Cn × Cn × Cn × Cn × C× Cr :

g1(x) = · · · = gr(x) = 0

g1(y) = · · · = gr(y) = g̃r+1(y) = · · · = g̃p(y) = 0

w = γ(x− y)

v =
∑r

i=1 λidxgi


,

and let

π1 : Cn × Cn × Cn × Cn × C× Cr → Cn × Cn × Cn × Cn

be the projection on the first 4n coordinates. Let C(X,Y ) = π1(Γ1)
Z ⊂ (X ×Y ×Cn×Cn), where

the closure is taken in the Zariski topology. Of course, C(X,Y ) is an affine variety. We have the

following.

Lemma 2.1. For each (x, x, w, v) ∈ C(X,Y ), there are sequences xk ∈ X0, yk ∈ Y, γk ∈ C and

λk ∈ Cr such that

• xk → x,

• yk → x,

• wk := γk(xk − yk)→ w,

• vk :=
∑r

i=1 λ
k
i dxkgi → v.

Proof. By construction, there are sequences x̄k ∈ X, yk ∈ Y, γ̄k ∈ C and λk ∈ Cr such that

x̄k, yk → x, w̄k := γ̄k(x̄k − yk)→ w and
∑r

i=1 λ
k
i dx̄kgi → v. It is clear that by taking subsequences

if necessary, we may suppose that:

• either x̄k = yk for every k or x̄k 6= yk for every k,

• for each i, either λki 6= 0 for every k or λki = 0 for every k.

Set

γk =

0 if x̄k = yk for every k,

γ̄k if x̄k 6= yk for every k.

Suppose that λki 6= 0 for i = 1, . . . , r′ 6 r, k ∈ N and λki = 0 for i = r′ + 1, . . . , r, k ∈ N. Since

x̄k ∈ X0
, there exists a sequence xk ∈ X0 such that

‖xk − x̄k‖ 6

 1
k if x̄k = yk for every k,

‖x̄k−yk‖
k if x̄k 6= yk for every k,

so xk → x. By continuity, we can also choose xk so that ‖dxkgi − dx̄kgi‖ < 1
kλki

if λki 6= 0. Set

vk :=
∑r

i=1 λ
k
i dxkgi. Then∥∥vk −∑r

i=1 λ
k
i dx̄kgi

∥∥ =
∥∥∑r′

i=1 λ
k
i

(
dxkgi − dx̄kgi

)∥∥
6

∑r′

i=1 |λki |
∥∥dxkgi − dx̄kgi∥∥ < r′

k → 0,
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i.e., vk → v. Set wk := γk(xk − yk). Now if x̄k = yk for every k, then γk = 0 and w = w̄k = 0, so

we have wk = 0 = w. If x̄k 6= yk for every k, then

‖wk − w̄k‖ = |γk| · ‖(xk − x̄k)‖ 6 |γk| · ‖x̄
k − yk‖
k

=
‖w̄k‖
k
→ 0.

Hence wk → w. The lemma is proved. �

The following algebraic criterion permits us to check the Whitney regularity on Y 0 = Y \V (pY,W ),

where the notation V (pY,W ) is from Proposition 2.1, and the affine set W will be determined later.

Lemma 2.2. Let x ∈ Y 0. Then the pair (X0, Y 0) satisfies the Whitney condition (b) at x if and

only if for any (x, x, w, v) ∈ C(X,Y ), we have v · w = 0.

Proof. Suppose that (X0, Y 0) is Whitney regular at x and assume for contradiction that there is

(x, x, w, v) ∈ C(X,Y ) such that v ·w 6= 0. In view of Lemma 2.1, there are sequences xk ∈ X0, yk ∈
Y, γk ∈ C and λk ∈ Cr such that

• xk → x, yk → x,

• wk := γk(xk − yk)→ w,

• vk :=
∑r

i=1 λ
k
i dxkgi → v.

Note that w 6= 0, so w determines the limit of the sequence of secants xkyk and it follows that

xk 6= yk for k large enough. By taking a subsequence if necessary, we may assume that TxkX
0 → T.

By assumption, w ∈ T. For each k, let {bk1, . . . , bkr} be an orthonormal basis of NxkX
0; recall that

NxkX
0 := span{dxkg1, . . . , dxkgr} is the conormal space of X0 at xk. Obviously 〈bk1, . . . , bkr 〉⊥ =

TxkX
0. By compactness, each sequence bki has an accumulation point bi. Without loss of generality,

suppose that bki → bi. It is clear that the system {b1, . . . , br} is also orthonormal and 〈b1, . . . , br〉⊥ =

T. Let λ̃k = (λ̃k1, . . . , λ̃
k
r ) be such that vk :=

∑r
i=1 λ̃

k
i b
k
i . Then λ̃k is convergent to a limit λ̃ and it

is clear that v =
∑r

i=1 λ̃ibi. Finally, we have w ∈ T = 〈b1, . . . , br〉⊥ ⊂ 〈v〉⊥, i.e., v · w = 0, which is

a contradiction.

Now suppose that v · w = 0 for any (x, x, w, v) ∈ C(X,Y ) and assume, that (X0, Y 0) is not

Whitney regular at x. So there are sequences xk ∈ X0 and yk ∈ Y 0 with the following properties:

• xk 6= yk, xk → x, yk → y;

• TxkX0 → T ;

• the sequence of secants xkyk tends to a line ` 6⊂ T .

For each k, let {bk1, . . . , bkr} be an orthonormal basis of NxkX
0 so 〈bk1, . . . , bkr 〉⊥ = TxkX

0. As above,

we may assume that bki → bi. Then the system {b1, . . . , br} is also orthonormal and 〈b1, . . . , br〉⊥ = T.

Let wk := xk−yk
‖xk−yk‖ ; we can assume that the limit w := limwk exists and clearly w is a direction

vector of `. By assumption, w 6∈ T = 〈b1, . . . , br〉⊥, i.e., there exists an index j such that bj ·w 6= 0.

To get a contradiction, it is enough to show that there is a sequence vk :=
∑r

i=1 λ
k
i dxkgi such that

vk → bj , but this is clear since bj ∈ span{dxkg1, . . . , dxkgr} so such a sequence always exists. The

lemma is proved. �
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Now according to [9, 4, 7, 6], it is possible to calculate a basis for the ideal I(Γ1) by calculating

the radical of the following ideal in C[x, y, w, v, γ, λ]:
g1(x) = · · · = gr(x) = 0

g1(y) = · · · = gr(y) = g̃r+1(y) = · · · = g̃p(y) = 0

w = γ(x− y)

v =
∑r

i=1 λidxgi

 .

Then by Buchberger’s algorithm, we can calculate a Gröbner basis of I(Γ1). So in view of [8,

Theorem 5.1], [11], we can compute a Gröbner basis of the ideal I
(
C(X,Y )

)
. Now we give another

criterion for Whitney regularity.

Lemma 2.3. Let {h1(x, y, w, v), . . . , hq(x, y, w, v)} be a Gröbner basis of I
(
C(X,Y )

)
and set

Γ2 :=


(x, x, w, v, γ, λ) ∈ Cn × Cn × Cn × Cn × C× C :

h1(x, x, w, v) = · · · = hq(x, x, w, v) = 0

γ
∑n

j=1 vjwj = 1

λpY,∅(x) = 1

 ,

where pY,∅(x) is the polynomial determined in Proposition 2.1. Then the pair (X0, Y 0) is not Whit-

ney regular at x if and only if there exists (w, v, γ, λ) ∈ Cn×Cn×C×C such that (x, x, w, v, γ, λ) ∈
Γ2.

Proof. Note that x ∈ Y 0 if and only if pY,∅(x) 6= 0, i.e., there exists λ ∈ C such that λpY,∅(x) = 1.

In view of Lemma 2.2, the pair (X0, Y 0) is not Whitney regular at x if and only if there exist w, v

with v · w 6= 0 such that (x, x, w, v) ∈ C(X,Y ). The lemma follows easily. �

Now we determine an algebraic set W = W (X,Y ) in Y with dimW < dimY and V (pY,∅) ⊂ W
such that the pair (X0, Y \W ) is Whitney regular. Let

π2 : Cn × Cn × Cn × Cn × C× C→ Cn

be the projection on the first n coordinates. By Lemma 2.3, π2(Γ2) is the set of points where the

Whitney condition (b) fails to be satisfied. By construction, π2(Γ2)
Z

is affine, where π2(Γ2)
Z

is the

Zariski closure of π2(Γ2). It follows from [17, 18] that dimπ2(Γ2) < dimY , so dimπ2(Γ2)
Z
< dimY .

Set

W = W (X,Y ) := π2(Γ2)
Z

;

then obviously dimW < dimY . Again, applying [9, 4, 7], [8, Theorem 5.1], [11], we can compute

a Gröbner basis of the ideal I(W ).

Finally, let

• X0 := X,

• X1 := X0 ∩ V (pX0,∅),

• X2 := X1 ∩ V (pX1,W (X0,X1)),

• X3 := X2 ∩ V (pX2,W (X0,X2)∪W (X1,X2)), . . . ,
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• Xi := Xi−1 ∩ V (pXi−1,
⋃i−2
j=0W (Xj ,Xi−1)), . . .

By induction, we can construct a finite filtration of algebraic sets X = X0 ⊃ X1 ⊃ · · · ⊃ Xn−r ⊃
Xn−r+1 = ∅ with dimXi > dimXi+1. Let Bi := Xi \ Xi+1. Then S := {Bi}i=1,...,q is a Whitney

stratification of X. Note that the degree of Xi can be determined explicitly and depends only on

D.

3. Thom isotopy lemma for non-proper maps

Let f : X → Cm be a polynomial dominant map where X is an algebraic set with I(X) =

{g1, . . . , gω}. If S = {Xα}α∈I is a stratification of X, then we denote by sing(f,S) the set of

stratified singular points of f , i.e.,

sing(f,S) =
⋃
α∈I

sing(f,Xα), (1)

where sing(f,Xα) is the set of points where f |Xα is not a submersion. Let K(f) = K(f,S) be the

set of stratified generalized critical values of f given by

K(f) :=
⋃
α∈I,

dimXα>m

K∞(f |Xα) ∪ sing(f,S) (2)

Assume that S is an affine Whitney stratification of X, we prove that K(f) contains the set of

bifurcation values of f .

Theorem 3.1 (First isotopy lemma for non-proper maps). Let X ⊂ Cn be an affine variety with

an affine Whitney stratification S and let f : X → Cm be a polynomial dominant map. Let K(f)

be the set of stratified generalized critical values of f given by (2). Then f is locally trivial outside

K(f).

Before proving Theorem 3.1, recall that the Whitney condition (b) is equivalent to the condition

(w) (see [13, V.1.2]), so it is more convenient to use the condition (w) since we will need to construct

rugose vector fields in the sense of [16]. In what follows, it is more convenient to work with the

underlying real algebraic set of X in R2n, denoted also by X; the affine Whitney stratification S
of X induces a semialgebraic Whitney stratification of the underlying set with the corresponding

strata denoted by the same notations Xβ. We also identify the polynomial map f with the real

polynomial map (Ref1, . . . ,Refm, Imf1, . . . , Imfm) : X → R2m.

Let us recall the definitions pertaining to rugosity. Let ϕ : X → R be a real function. We say

that ϕ is a rugose function if the following conditions are fulfilled:

• The restriction ϕ|Xβ to any stratum Xβ is a smooth function.

• For any stratum Xβ and for any x ∈ Xβ, there exist a neighborhood U of x in C2n and a

constant c > 0 such that for any y ∈ X ∩ U and x′ ∈ Xβ ∩ U , we have |ϕ(y) − ϕ(x′)| 6
c‖y − x′‖.

9



A rugose map is a map whose components are rugose functions. A vector field v on X is called a

rugose vector field if v is a rugose map and v(x) is tangent to the stratum containing x for any

x ∈ X.

Proof of Theorem 3.1. Let z ∈ Cm\K(f) where we identify Cm with R2m and let B be an open box

centered at z such that B ∩K(f) = ∅. To prove the theorem, it is enough to prove that f is trivial

on B. Without loss of generality, we may suppose that z = 0 and B = (−1, 1)2m. Let ∂1, . . . , ∂2m

be the restrictions of the coordinate vector fields (on R2m) to B. Set U := f−1(B), Uβ = U ∩Xβ

and

I ′ := {β ∈ I : Xβ ∩ U 6= ∅}.

First of all, let us give a sufficient condition for trivializing a rugose vector field.

Lemma 3.1. For i = 1, . . . , 2m, let vi be vector fields on X which are rugose in a neighborhood of

U . Assume that df(vi) = ∂i and there is a positive constant c > 0 such that ‖vi(x)‖ 6 ‖x‖+1
c for

any x ∈ U . Then f is a topological trivial fibration over B.

Proof. It is enough to prove that there is a homeomorphism φ : f−1(B) → f−1(0) × B such that

the following diagram commutes:

f−1(B)
φ−→ f−1(0)×B

f ↘ ↙ π

B

where π denotes the projection on the second factor. We note the following facts:

(i) The flow of vi preserves the stratification. This is a consequence of rugosity.

(ii) For each i and any x ∈ U , there is a unique integral curve of vi passing through x (see [16]).

Set Y i
t := (y1, . . . , yi−1, t, yi+1, . . . , yn) and Y i = {Y i

t : t ∈ [−1, 1]}. First of all, we will prove that

the flow of vi induces a homeomorphism φi : f−1(Y i)→ f−1(Y i
0 )× [−1, 1] such that the following

diagram commutes:

f−1(Y i)
φi−→ f−1(Y i

0 )× [−1, 1]

pi ◦ f ↘ ↙ πi

[−1, 1]

where π denotes the projection on the second factor and pi denotes the projection on the ith

coordinate. This follows from the following claim which states that there is no trajectory of vi

going to infinity.

Claim 3.1. For each x ∈ f−1(Y i
0 ), let γ be the integral curve of vi such that γ(0) = x. Then γ

reaches any level f−1(Y i
t ) at time t for t ∈ [−1, 1].

10



Proof. By assumption, ‖γ̇(t)‖ 6 ‖γ(t)‖+1
c . Without loss of generality, suppose that t > 0. In light

of the Gronwall Lemma, by repating the calculation of [1, Theorem 3.5], we get

‖γ(t)‖ 6 ‖γ(0)‖+

∫ t

0

‖γ(s)‖+ 1

c
ds

= ‖x‖+
t

c
+

∫ t

0

‖γ(s)‖
c

ds

6
(
‖x‖+

t

c

)
exp

∫ t

0

ds

c
=
(
‖x‖+

t

c

)
e
t
c < +∞,

which implies that the trajectory γ does not go to infinity at time t. The claim follows. �

For any x ∈ f−1(Y i
0 ), let hi(x, t) = x+

∫ t
0

.
γ (s)ds. Then hi defines a homeomorphism f−1(Y i

0 )×
[−1, 1]→ f−1(Y i). Then φi = h−1

i is the required homeomorphism.

Now for x ∈ f−1(0), let h : f−1(0)×B → f−1(B) be defined by

h(x, t1, . . . , t2m) = h2m(. . . (h2(h1(x, t1), t2), . . . , t2m).

Then φ := h−1 is a homeomorphism, as required. The lemma is proved. �

For each β ∈ I ′, it is clear that f |Xβ is a submersion on (f |Xβ )−1(B), so for x ∈ Uβ, the

differential dx(f |Xβ ) : TxXβ → R2m is surjective, which induces an isomorphism of vector spaces

d̃x(f |Xβ ) : TxXβ/ ker dx(f |Xβ ) ∼= R2m.

Thus for each i = 1, . . . , 2m, the vector field ∂i can be lifted uniquely and smoothly on each stratum

Xβ with β ∈ I ′, to the vector field called the horizontal lift of ∂i and denoted by vβi . Clearly, vβi (x)

is the unique vector in TxXβ which lifts ∂i and is orthogonal to ker dx(f |Xβ ). Each vβi has the

following important properties.

Lemma 3.2. Let c > 0 be such that (‖x‖ + 1)ν
(
dx(f |Xβ )

)
> c for any β ∈ I ′ and any x ∈ Uβ;

recall that ν is the Rabier function [12]. For each x ∈ Xβ with β ∈ I ′, we have

‖vβi (x)‖ 6 ‖x‖+ 1

c
.

Proof. Let Bβ be the closed unit ball centered at the origin in TxXβ. Then dx(f |Xβ )(Bβ) is an

ellipsoid in R2m with ν
(
dx(f |Xβ )

)
as the length of shortest semiaxis. Let B be the closed unit ball

centered at the origin in R2m. Then
(
d̃x(f |Xβ )

)−1
(
ν
(
dx(f |Xβ )

)
B
)

is an ellipsoid in TxXβ with 1

as the lenght of longest semiaxis. Therefore the longest semiaxis of the ellipsoid
(
d̃x(f |Xβ )

)−1
(B)

is 1/ν
(
dx(f |Xβ )

)
. Consequently,

‖vβi (x)‖ 6 1

ν
(
dx(f |Xβ )

) 6 ‖x‖+ 1

c
,

which yields the lemma. �
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Lemma 3.3. Let x ∈ U , let Xβ be the stratum containing x and let Xα be a stratum such that

Xβ ⊂ Xα. Then there exists an open neighborhood W of radius not greater than 1 of x such that

for all y ∈W ∩Xα, we have

‖vαi (y)‖ < 2‖vβi (x)‖,

for i = 1, . . . , 2m.

Proof. Assume for contradiction that there are an index i0, a stratum Xα0 and a sequence xk ∈ Xα0

such that xk → 0 and ‖vα0
i (xk)‖ > 2‖vβi (x)‖. Taking a subsequence if necessary, we may assume

that TxkXα0 → T . Since the stratification is Whitney regular, it is (a) Whitney regular, which

yields T ⊃ TxXβ. The following claims are straightforward.

Claim 3.2. Let L : H → Rm be a surjective linear map and let L̃ : H/ kerL ∼= Rm be the induced

linear isomorphism. Let H ′ ⊂ H be a linear subspace and assume that L|H′ is also surjective. Then

for any w ∈ Rm, we have

‖(L̃)−1(v)‖ 6 ‖(L̃|H′)−1(v)‖.

Claim 3.3. The sequence vα0
i (xk) is convergent.

By Claim 3.3, let wi := limk→∞ v
α0
i (xk). Then it is clear that ‖wi‖ > 2‖vβi (x)‖ and wi =

(d̃xf |T )−1(∂i) where d̃xf |T is given by the linear isomorphism T/ ker(dxf |T ) ∼= R2m. Since T ⊃
TxXβ, it follows from Claim 3.2 that

‖wi‖ 6 ‖(d̃xf |TxXβ )−1(∂i)‖ = ‖vβi (x)‖.

This is a contradiction, which ends the proof of the lemma. �

Note that, for fixed i, the vector field on U which coincides with vβi on each Uβ is not necessarily

a smooth vector field. In what follows, we will try to deform these fields to produce a rugose vector

field in the sense of [16], which satisfies the assumption of Lemma 3.1. The process is carried out

by induction on dimension.

For 2m 6 d 6 2 dimCX, let I ′d := {β ∈ I ′ : 2m 6 dimXβ 6 d}, Bd :=
⋃
i∈I′d

Xβ and Ud = Bd∩U .

By induction on d, we construct a rugose vector field on a neighborhood of U2 dimCX in X with the

property of Lemma 3.1. For d = 2m, let v2m
i be the restriction to an open neighborhood of U2m in

X of the smooth vector field on B2m which coincides with each vβi on Xβ for β ∈ I ′2m. Then v2m
i

is clearly rugose, df(v2m
i ) = ∂i and by Lemma 3.2, ‖v2m

i (x)‖ 6 ‖x‖+1
c for any x ∈ U2m.

For each i, assume that we have constructed a rugose vector field, denoted by vdi , on a neighbor-

hood Ũd of Ud in Bd such that dxf
(
vdi (x)

)
= ∂i and ‖vdi (x)‖ 6 ‖x‖+1

cd
for every x ∈ Ũd, where cd

is a positive constant. We need to extend each vdi to a rugose vector field vd+2
i on a neighborhood

of Ud+2 in Bd+2 such that ‖vd+2
i (x)‖ 6 ‖x‖+1

cd+2
for every x ∈ Ud+2, where cd+2 is also a positive

constant (recall that the strata of S have even dimension). Note that to construct vd+2
i , it is enough

to construct vd+2
i separately on each stratum Xα with α ∈ I ′d+2 \ I ′d. Without loss of generality,

suppose that I ′d+2 \ I ′d = {α}.
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By similar arguments as in [16], for each i = 1, . . . , 2m, there is a rugose vector field on a

neighborhood Ũd+2 of Ud+2 in Bd+2 = Bd ∪Xα, denoted by wd+2
i , which extends vdi , such that:

(i) The restriction wd+2
i |Uα is a smooth vector field.

(ii) For x ∈ Uα, we have dxf
(
wd+2
i (x)

)
= ∂i.

For each x ∈ Ud, let Xβ be the stratum containing x, and let Wx be a neighborhood of x given by

Lemma 3.3. Since wd+2
i is continuous, by shrinking Wx if necessary, we may assume that

‖wd+2
i (y)‖ < 2‖vdi (x)‖, (3)

for any y ∈Wx. Let Vd :=
⋃
x∈UdWx, then Vd is an open neighborhood of radius not bigger than 1

of Ud. By a smooth version of Urysohn’s lemma, there is a smooth function ϕ : R2n → [0, 1] such

that ϕ−1(0) = R2n \ Vd and ϕ−1(1) = Ud. For x ∈ Ũd+2, set

vd+2
i (x) :=

{
wd+2
i (x) = vdi (x) if x ∈ Ũd+2 ∩ Ũd(
1− ϕ(x)

)
vαi (x) + ϕ(x)wd+2

i (x) if x ∈ Ũd+2 \ Ũd.

Clearly, the restriction of vd+2
i on each stratum is a smooth vector field. Moreover for x ∈ Ũd+2\Ũd,

we have

dxf
(
vd+2
i (x)

)
= dxf

((
1− ϕ(x)

)
vαi (x) + ϕ(x)wd+2

i (x)
)

=
(
1− ϕ(x)

)
dxf

(
vαi (x)

)
+ ϕ(x)dxf

(
wd+2
i (x)

)
=
(
1− ϕ(x)

)
∂i + ϕ(x)∂i = ∂i.

Let us prove that vd+2
i is a rugose vector field. For any x ∈ Ũd+2 ∩ Ũd, let Xβ be the stratum

containing x. For x′ ∈Wx ∩Xβ and y ∈Wx ∩Xα with β ∈ I ′d, we have

‖vd+2
i (y)− vd+2

i (x′)‖ =
∥∥(1− ϕ(y)

)
vαi (y) + ϕ(y)wd+2

i (y)− vdi (x′)
∥∥

=
∥∥(1− ϕ(y)

)
vαi (y)−

(
1− ϕ(y)

)
wd+2
i (y) + wd+2

i (y)− vdi (x′)
∥∥

6
(
1− ϕ(y)

)
‖vαi (y)− wd+2

i (y)‖+ ‖wd+2
i (y)− vdi (x′)‖

6
(
1− ϕ(y)

)
(‖vαi (y)‖+ ‖wd+2

i (y)‖) + ‖wd+2
i (y)− vdi (x′)‖.

We note the following facts:

• Since 1−ϕ(y) is a smooth function, it is locally Lipschitz; with no loss of generality, assume

that 1− ϕ(y) is Lipschitz on Wx with constant c1. Then

1− ϕ(y) =
(
1− ϕ(y)

)
−
(
1− ϕ(x′)

)
6 c1‖y − x′‖.

• By Lemma 3.3 and by the continuity of wd+2
i , there is a positive constant c2 depending only

on x such that ‖vαi (y)‖+ ‖wd+2
i (y)‖ 6 c2

(we can take c2 := max
{

2‖vβi (x)‖, supy∈Wx∩Xα ‖w
d+2
i (y)‖

}
).

• Since wd+2
i is rugose, it follows that there is a positive constant c3 depending only on x

such that ‖wd+2
i (y)− vdi (x′)‖ 6 c3‖y − x′‖.

Hence

‖vd+2
i (y)− vd+2

i (x′)‖ 6 (c1c2 + c3)‖y − x′‖,
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i.e., vd+2
i is rugose. Now it remains to show that there is a positive constant cd+2 such that

‖vd+2
i (y)‖ 6 ‖y‖+1

cd+2
for every y ∈ Ũd+2. Obviously, the statement holds for y ∈ (Ũd+2 ∩ Ũd)

by the induction assumption and for y ∈ (Ũd+2 \ V ) by Lemma 3.2, so we can suppose that

y ∈ (V ∩ Ũd+2) \ Ũd, which clearly implies that y ∈ Xα. By construction and by Lemma 3.3, there

are a point x ∈ Ud and an open neighborhood Wx of radius not greater than 1 of x containing y

such that ‖vαi (y)‖ < 2‖vβi (x)‖, where β is the index of the stratum Xβ containing x. By Lemma

3.2, it follows that

‖vαi (y)‖ < 2
‖x‖+ 1

c
6 2
‖y‖+ ‖x− y‖+ 1

c
6 2
‖y‖+ 2

c
6 4
‖y‖+ 1

c
, (4)

where c is the constant in the same lemma. Similarly, in view of (3) and the induction assumption,

we have

‖wd+2
i (y)‖ < 2‖vdi (x)‖ 6 2

‖x‖+ 1

cd
6 2
‖y‖+ ‖x− y‖+ 1

cd
6 2
‖y‖+ 2

cd
6 4
‖y‖+ 1

cd
. (5)

Thus (4) and (5) yield

‖vd+2
i (y)‖ =

∣∣(1− ϕ(y)
)
vαi (y) + ϕ(y)wd+2

i (y)
∥∥

6
(
1− ϕ(y)

)
‖vαi (y)‖+ ϕ(y)‖wd+2

i (y)‖
6

(
1− ϕ(y)

)
4‖y‖+1

c + ϕ(y)4‖y‖+1
cd

<
(

4
c + 4

cd

)
(‖y‖+ 1).

Set cd+2 = min
{

1
4
c
+ 4
cd

, c, cd

}
, then ‖vd+2

i (y)‖ 6 ‖y‖+1
cd+2

for every y ∈ Ũd+2. By induction, there

exists a rugose vector field on a neighborhood of U2 dimCX in X with the property of Lemma 3.1.

Then the theorem follows by applying Lemma 3.1. �

The following corollary follows immediately from Theorem 3.1.

Corollary 3.1. Let X ⊂ Cn be an affine variety with an affine Whitney stratification S and let

f : X → Cm be a polynomial dominant map. Assume that for any stratum Xβ ∈ S, the restriction

f |Xβ is a submersion and K∞(f |Xβ ) = ∅. Then f is a locally trivial fibration.

4. Computation of the sets of stratified generalized critical values

In this section, we will compute the set K(f) of stratified generalized critical values of f , for

which we need to construct an affine Whitney stratification of X and then apply [8] for each stratum

of this stratification. The process is a bit different from the construction in Subsection 2.3 since we

only need to construct such an affine Whitney stratification “partially”, by remarking the following

facts:

• As the construction of Whitney stratifications is by induction on dimension, we only need

to proceed until the dimension shrinks below m since the restriction of f to any stratum of

dimension < m is always singular.
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• For any algebraic set Z ⊆ X, let

rZ := max
x∈Z\V (pZ,∅)

rankJacx(f |Z) and H(Z) := {x ∈ Z \ V (pZ,∅) : rankJacx(f |Z) < rZ}
Z
.

Then at any step of the induction process, the construction in Subsection 2.3 can be omitted

if rY < m.

Let us now construct such a stratification. With the same notations as in Lemma 2.3, let

Γ3 :=
t⋃

k=1



(x, x, w, v, γ, λ, µ) ∈ Cn × Cn × Cn × Cn × C× C× Ct :

h1(x, x, w, v) = · · · = hq(x, x, w, v) = 0

γ
∑n

j=1 vjwj = 1

λpY,∅(x) = 1

µkM
(m,p)
k (x) = 1


,

where each M
(m,p)
k (x) is a minor of the matrix

A(x) :=



dxf1

...

dxfm

dxg1

...

dxgr

dxg̃r+1

...

dxg̃p



,

obtained by deleting n − m − p columns. So Γ3 differs from Γ2 in the last t equations since we

are only interested in finding the points where the Whitney condition (b) is not satisfied, outside

P (Y, ∅). Let

π3 : Cn × Cn × Cn × Cn × C× C× Ct → Cn

be the projection on the first n coordinates. By Lemma 2.3, π3(Γ3) is the set of points where

the Whitney condition (b) fails. Obviously π3(Γ3) ⊂ reg(f |Y \P (Y )) and dimπ3(Γ3) < dimY. Set

W̃ := π3(Γ3)
Z

. Then obviously dim W̃ < dimY . Again, we can compute a Gröbner basis of the

ideal I(W̃ ).

Finally, set

• X0 := X,

• X1 := X0 ∩ V (pX0,∅), S1 = sing(f |X0\X1
), . . . ,

• Xi := Xi−1 ∩ V (p
Xi−1,

⋃i−2
j=0 W̃ (Xj ,Xi−1)

), Si = sing(f |Xi−1\Xi), . . .

By induction, we can construct a finite filtration of algebraic sets X = X0 ⊃ X1 ⊃ · · · ⊃ Xq ⊃
Xq+1 ⊇ ∅ with dimXi > dimXi+1 and rXq+1 < m. It is clear that this filtration does not induce an
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affine Whitney stratification of X. However, it shows that there is an affine Whitney stratification

S such that

sing(f,S) =

q⋃
i=1

Si ∪Xq+1.

Let Bi := Xi \ Xi+1. Then {Bi}i=0,...,q is an affine Whitney stratification of X \ Xq+1. Ev-

ery variety Bi can be realized as a closed affine variety in Cn+1, by the embedding Bi 3 x 7→(
x, 1/P

Xi,
⋃i−1
j=0 W̃ (Xj ,Xi)

(x)
)
∈ Cn+1 for i > 0 or the embedding B0 3 x 7→

(
x, 1/PX0,∅(x)

)
∈ Cn+1.

Let K∞(f |Bi) be the set of asymptotic critical values of f |Bi , which now can be computed by

applying [8]. Then from the construction, it is clear that the set of stratified generalized critical

values of f is given by

K(f) :=

q⋃
i=1

K∞(f |Bi) ∪ sing(f,S),

and K(f) can be computed effectively. Note that Remark 2.1 and elementary properties of Gröbner

basis implies:

Corollary 4.1. Let X ⊂ Cn be an affine variety of pure dimension and let f = (f1, ..., fm) : X →
Cm be a polynomial mapping. Let F ⊂ C be a subfield generated by coefficients of generators of I(X)

and all coefficients of polynomials fi, i = 1, ...,m. Then there is a nowhere dense affine variety

K(f) ⊂ Cm, which is described by polynomials from F[x1, ..., xm], such that all bifurcation values

B(f) of f are contained in K(f). In particular, for m = 1, if X and f are described by polynomials

from Q[x1, ..., xn], then all bifurcation values of f are algebraic numbers.
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geometry (La Ràbida, 1981), 314–491, Lecture Notes in Math., 961, Springer, Berlin, 1982.

[14] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284.

[15] M. S. Uddin, Computing dimension of affine varieties using Groebner basis approach, IOSR Journal of Mathe-

matics, vol. 8, issue 3, (2013), 36–39.
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E-mail address: najelone@cyf-kr.edu.pl

17


