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Abstract

A viscosity approach is introduced for the Dirichlet problem associated to com-
plex Hessian type equations on domains in Cn. The arguments are modelled on the
theory of viscosity solutions for real Hessian type equations developed by Trudinger
[34]. As consequence we solve the Dirichlet problem for the Hessian quotient and
special Lagrangian equations. We also establish basic regularity results for the
solutions.
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1 Introduction

Partial differential equations play pivotal role in modern complex geometric analysis.
Their applications typically involve a geometric problem which can be reduced to the
solvability of an associated equation. This solvability can be deducted by various methods
yet most of the basic approaches exploit a priori estimates for suitably defined weak
solutions. Thus although geometers work in the smooth category, the associated weak
theory plays an important role.

One of the most successful such theories is the pluripotential theory associated to
the complex Monge-Ampère eqution developed by Bedford and Taylor [1, 2], Ko lodziej

1The first author was supported by the NCN grant 2013/08/A/ST1/00312. The second author
was supported in part by the Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under grant number 101.02-2017.306. The third author was supported by the CFM foun-
dation.
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[25], Guedj and Zeriahi [20] and many others. Roughly speaking pluripotential theory
allows to define (i∂∂̄u)k as a measure valued positive closed differential form (i.e. a closed
positive current) for any locally bounded plurisubharmonic function which in turn allows
to deal with non smooth weak solutions of Monge-Ampère equations. Unfortunately the
pluripotential approach is applicable only for a limited class of nonlinear operators, such
as the m-Hessian equations- see [14, 27].

Some of the most important examples on nonlinear operators for which pluripotential
tools do not seem to apply directly are the complex Hessian quotient operators. These are
not only interesting for themselves but also appear in interesting geometrical problems.
One such example is the Donaldson equation that we describe below.

Given a compact Kähler manifold (X,ω) equipped with another Kähler form χ one
seeks another Kähler form χ̃ cohomologous to χ such that

ω ∧ χ̃n−1 = cχ̃n (1)

with the constant c dependent only on the cohomology classes of χ and ω.
In [12] Donaldson introduced this equation in order to study the properness of the

Mabuchi functional. Its parabolic version known as the J-flow was introduced indepent-
tly by Donaldson [12] and Chen [8] and investigated afterwards by Song and Weinkove
[38, 39],[30]. It is known that the equation (1) is not always solvable ([30]) and a con-
jecture of Lajmi and Székelyhidi [26] predicts that its solvability is linked to positivity of
certain integrals. It was proved that, in general, these positivity conditions are equivalent
to the existence of C-subsolution of Székelyhidi [32], and also the existence of parabolic
C-subsolution for the corresponding flows (cf. [29]). It would be helpful to study the
boundary case when we only have nonnegativity conditions (see [16] for Donaldson equa-
tion on surfaces). For its resolution it seems crucial to develop the associated theory of
weak solutions for the given Hessian quotient equation. A major problem in applying
some version of pluripotential theory for this equation is that essentially one has to define
the quotient of two measure valued operators.

In order to circumvent this difficulty one can look for possibly different theory of weak
solutions. One such approach, known as the viscosity method was invented long ago in the
real setting [13], but was only recently introduced for complex Monge-Ampère equations
by Eyssidieux-Guedj-Zeriahi [15], Wang [37] and Harvey-Lawson [22].

In the current note we initiate the viscosity theory for general complex nonlinear
elliptic PDEs. As the manifold case is much harder we focus only on the local theory i.e.
we deal with functions defined over domains in Cn. Nevertheless we wish to point out
that nonlinear PDEs appear also in geometric problems which are defined over domains
in Cn- see for example [11], where a Dirichlet problem for the special Lagrangian type
equation is studied. We also illustrate in Section 6 that our method can be applied to
solve the Dirichlet problem for the special degenerate Lagrangian type equation.

In our investigations we heavily rely on the corresponding real theory developed by
Trudinger in [34]. Some of our results can be seen as complex analogues of the real results
that can be found there. In particular we have focused on various comparison principles
in Section 3, which we use later on to study existence, uniqueness and regularity of the
associated Dirichlet problems. One of our main result is the sharp regularity for viscosity
solutions to the Dirichlet problem for a very general class of operators including Hessian
quotient type equations.

Another interesting topic is the comparison between viscosity and pluripotential theory
whenever the latter can be reasonably defined. A guiding principle for us is the basic
observation made by Eyssidieux, Guedj and Zeriahi [15] that plurisubharmonic functions
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correspond to viscosity subsolutions to the complex Monge-Ampère equation. We prove
several analogous results for general complex nonlinear operators. It has to be stressed
that the notion of a supersolution, which does not appear in pluripotential theory, is a
very subtle one for nonlinear elliptic PDEs and several alternative definitions are possible.
We in particular compare these and introduce a notion of supersolution that unifies the
previously known approaches.

A large part of the note is devoted to complex Hessian quotient equations in domains
in Cn. One of our goals in this case was to initiate the construction of the undeveloped
pluripotential theory associated to such equations. We rely on connections with the
corresponding viscosity theory. Our findings yield in particular that the natural domain
of definition of these operators is strictly smaller than what standard pluripotential theory
would predict (see Section 5 for the details). We guess that this observation, rather obvious
in the case of smooth functions, will play an important role in the resolution of the issue
caused by the division of measures.

The note is organized as follows: in the next section we collect the basic notions
from linear algebra, viscosity and pluripotential theory. Then we investigate the various
notions of supersolutions in [15] and [27] and compare them with the complex analogue of
Trudinger’s supersolutions. Section 3 is devoted to the proof of a very general comparison
principle. Then in Section 4 we restrict our attention to operators depending on the
eigenvalues of the complex Hessian matrix of the unknown function. We show existence
and uniqueness of viscosity solutions under fairly mild conditions. One subsection is
devoted to the regularity of these weak solutions. Using classical methods due to Walsh
[36] (see also [1]) we show the optimal Hölder regularity for sufficiently regular data.
Secton 5 is devoted to comparisons between viscosity and pluripotential subsolutions and
supersolutions. Finally in Section 6, we solve the Dirichlet problem for the Lagrangian
phase operator.

Acknowledgements. We are grateful to Vincent Guedj, Duong H. Phong and Ahmed
Zeriahi for useful discussions. This work has been partially written during the first-named
author stay at the Institut de Mathematiques de Toulouse granted by prix Szolem Man-
delbrojt and the third author visits to the Department of Mathematics of Columbia Uni-
versity and the Institute of Mathematics of Jagiellonian University funded by ATUPS and
EDMITT travel grants. We would like to thank all these institutions for their hospitality.

2 Preliminaries

In this section we collect the notation and the basic results and definitions that will be
used throughout the note.

2.1 Linear algebra toolkit

We begin by introducing the notion of an admissible cone that will be used throughout
the note:

Definition 1. A cone Γ in Rn with vertex at the origin is called admissible if:

1. Γ is open and convex, Γ 6= Rn;

2. Γ is symmetric i.e. if x = (x1, · · · , xn) ∈ Γ then for any permutation of indices
i = (i1, · · · , in) the vector (xi1 , · · · , xin) also belongs to Γ;
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3. Γn ⊂ Γ, where Γn := {x ∈ Rn| xi > 0, i ∈ 1, · · · , n}.

From the very definition it follows that Γn is an admissible cone. Other examples
involve the Γk cones that we describe below:

Consider the m-th elementary symmetric polynomial defined by

σm(x) =
∑

1≤j1<...<jm≤n

xj1xj2 ...xjm .

We shall use also the normalized version

Sm(x) :=

(
n

m

)−1

σm.

Definition 2. For any m = 1, . . . n, the positive cone Γm of vectors x = (x1, · · · , xn) ∈ Rn

is defined by
Γm = {x ∈ Rn| σ1(x) > 0, · · · , σm(x) > 0}. (2)

It is obvious that these cones are open and symmetric with respect to a permutation
of the xi’s. It is a nontrivial but classical fact that Γm is also convex.

Exploiting the symmetry of Γ it is possible to discuss Γ positivity for Hermitian ma-
trices:

Definition 3. A Hermitian n × n matrix A is called Γ positive (respectively Γ-semi
positive) if the vector of eigenvalues λ(A) := (λ1(A), · · · , λn(A)) belongs to Γ (resp. to the
Euclidean closure Γ̄ of Γ). The definition is independent of the ordering of the eigenvalues.

Finally one can define, following [28], the notion of Γ-admissible and Γ-subharmonic
functions through the following definitions:

Definition 4. A C2 function u defined on a domain Ω ⊂ C is called Γ-admissible if for
any z ∈ Ω the complex Hessian Hu(z) := [ ∂2

∂zj∂z̄k
]nj,k=1 is Γ-positive.

In particular, if Γ is an admissible cone, then Γ ⊂ Γ1 (see [6]), hence we have the
following corollary:

Corollary 1. Any Γ-admissible function is subharmonic.

Definition 5. An upper semicontinuous function v defined on a domain Ω ⊂ Cn is
called Γ-subharmonic if near any z ∈ Ω it can be written as a decreasing limit of local
Γ-admissible functions.

We refer to [22] for a detailed discussion and potential theoretic properties of general
Γ-subharmonic functions.

2.2 Viscosity sub(super)-solutions

Let Ω be a bounded domain in Cn. Consider the following equation:

F [u] := F (x, u,Du,Hu) = 0, on Ω, (3)

where Du = (∂z1u, . . . , ∂znu), Hu = (ujk̄) is the Hessian matrix of u and F is continuous
on Ω×R×Cn×Hn. The operator F is called degenerate elliptic at a point (z, s, p,M) if

F (z, s, p,M +N) ≥ F (z, s, p,M) for all N ≥ 0, N ∈ Hn, (4)

where Hn is the set of Hermitian matrices of size n × n. We remark that in our case
F (z, s, p,M) is not neccesarily degenerate elliptic everywhere on Ω× R× Cn ×Hn. Mo-
tivated by the paper of Trudinger [34] we pose the following definition:
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Definition 6. A function u ∈ L∞(Ω) is a viscosity subsolution of (3) if it is upper semi-
continuous in Ω and for any z0 ∈ Ω, and any C2 smooth function q defined in some
neighbourhood of z0 and satisfying u ≤ q, u(z0) = q(z0), the inequality

F [q](z0) ≥ 0 (5)

holds. We also say that F [u] ≥ 0 in the viscosity sense and q is an upper (differential)
test for u at z0.

A function v ∈ L∞(Ω) is a viscosity supersolution of equation (3) if it is lower semi-
continuous and there are no points z0 ∈ Ω and functions C2 smooth functions defined
locally around z0, such that v ≥ q in Ω, v(z0) = q(z0) and

inf
N≥0

F (z0, q(z0), Dq(z0), N +Hψ(z0)) > 0. (6)

We also say that F [u] ≤ 0 in the viscosity sense and q is a lower (differential) test for u
at z0.

For fixed (z, s, p) ∈ Ω × R × Cn the set of all Hermitian matrices M , such that F is
degenerate elliptic at (z, s, p,M) is called the ellipticity set A(z, s, p) for the data (z, s, p).
Note that the ellipticity set has the property that

A(z, s, p) + Γn ⊂ A(z, s, p),

but it may not be a cone. Throughout the note we shall however focus on the situation
when the ellipticity set is a cone which is moreover constant for all the possible data sets.
We then define the ellipticity cone associated to the operator F which is modelled on the
notion of a subequation coined by Harvey and Lawson in [22] :

Definition 7. An operator F (z, s, p,M) has an ellipticity cone Γ if for any M in the
ellipticity set the vector λ(M) of the eigenvalues of M belongs to the closure Γ̄ of Γ.
Furthermore Γ is the minimal cone with such properties.

Throughout the note we consider only the situation when Γ is an admissible cone in the
sense of Definition 1. We shall make also the following additional assumption (compare
with the Condition 2 in Subsection 4.1):

∀λ ∈ ∂Γ, ∀(z, s, p) ∈ Ω× R× Cn F (z, s, p, λ) ≤ 0. (7)

This condition arises naturally whenever one seeks solutions to

F (z, u(z), Du(z), Hu(z)) = 0

with pointwise Hessian eigenvalues in Γ (recall that F increases in the Γn directions).
It is evident that in Definition 6 the notion of a supersolution is different and sub-

stantially more difficult that the notion of a subsolution. The reason for this is that there
is no analog for the role of the positive cone Γn from the case of subsolutions in the su-
persolutions’ case. As an illustration we recall that while any plurisubharmonic function
is a subsolution for F (u) := det(H(u)) = 0 (see [15]) it is far from being true that all
supersolutions can be written as the negative of a plurisubharmonic function.

Below we also give another notion of a supersolution that was coined in [15] for the
Monge-Ampère equation (see also [27] for the case of m-Hessian operator). It can be
generalized for all operators admitting an elliptic admissible cone:
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Definition 8. A lower semicontinuous function u is said to be a supersolution for the
operator F (z, s, p,M) with the associated ellipticity cone Γ iff for any z0 ∈ Ω and every
lower differential test q at z0 for which λ(Hq(z0)) ∈ Γ̄ one has

F (z, q(z0), Dq(z0), Hq(z0)) ≤ 0.

Note that in the definition we limit the differential tests only to those for which
λ(Hq(z0)) ∈ Γ̄ .

The next proposition shows that under the assumption (7) the definition above coin-
cides with the one from Definition 6.

Proposition 1. Suppose that the operator F (z, s, p,M) satisfies (7). Then a lower semi-
continous function u defined on a domain Ω is a supersolution for F(z,s,p,M)= 0 in the
sense of Definition 8 if and only if it is a supersolution in the sense of Definition 6.

Proof. Suppose first that u is a supersolution in the sense of Definition 8. Fix any z0 in
Ω and q a lower differential test for u at z0. If λ(Hq(z0)) ∈ Γ then

F (z, q(z0), Dq(z0), Hq(z0)) ≤ 0,

hence taking N = 0 in Definition 6 we see that the condition is fulfilled. If λ(Hq(z0)) fails
to be in Γ then there is a positive definite matrix N and a positive number t such that
λ(Hq(z0) + tN) ∈ ∂Γ. But this implies that F (z, q(z0), Dq(z0), Hq(z0) + tN) ≤ 0 which
fulfills the condition in Definition 6 again.

Suppose now that u is a supersolution in the sense of Definition 6. Again choose z0 in
Ω and q a lower differential test for u at z0. We can assume that λ(Hq(z0)) is in Γ, for
otherwise such a differential test cannot be apllied in Definition 8. But then by ellipticity

F (z, q(z0), Dq(z0), Hq(z0)) ≤ F (z, q(z0), Dq(z0), Hq(z0) +N), ∀N ≥ 0, N ∈ Hn.

The infimum over N for the right hand side is non positive by definition which implies

F (z, q(z0), Dq(z0), Hq(z0)) ≤ 0

which was to be proved.

2.3 Aleksandrov-Bakelman-Pucci maximum principle

In this section, we recall a variant of Aleksandrov-Bakelman-Pucci (ABP) maximum prin-
ciple following [24]. We first recall the following definition (cf. [24]):

Definition 9. Let Ω be a bounded domain in Rn centered at the origion, and u ∈ C(Ω).
We define

Eδ = {x ∈ Ω| for some p ∈ B(0, δ), u(z) ≤ u(x) + p.(z − x),∀z ∈ Ω}.

Then we have the following lemma due to Jensen [24] which will be used in the proof of
Lemma 3. Recall that a function u is said to be semi-convex if u + k|z|2 is convex for a
sufficiently large constant k.

Lemma 1. Let u ∈ C(Ω) be semi-convex for some constant k > 0. If u has an interior
maximum and supΩ u− sup∂Ω u = δ0d > 0, where d = diam(Ω). Then there is a constant
C = C(n, k) > 0 such that

|Eδ| ≥ Cδn, for all δ ∈ (0, δ0). (8)
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Proof. As in Jensen [24], by regularization, we can reduce to the case when u ∈ C2(Ω).
Now, suppose that u has an interior maximum at x0 and

δ0 =
supΩ u− sup∂Ω u

d
=
u(x0)− sup∂Ω u

d
,

where d = diam(Ω).

We now prove that for δ < δ0 we have B(0, δ) ⊂ Du(Eδ). Indeed, for any p ∈ B(0, δ),
consider the hyperplane `p(x) = h+ 〈p, x〉 where h = supy∈Ω(u(y)−〈p, y〉). Then we have

u(x) ≤ `p(x) on Ω and u(x1) = `p(x1) for some x1 ∈ Ω. If we can prove that x1 ∈ Ω, then
Du(x1) = p, so B(0, δ) ⊂ Du(Eδ). Suppose by contradiction that x1 ∈ ∂Ω, then

sup
Ω
u = u(x0)

≤ `p(x1) + 〈p, x0 − x1〉
= u(x1) + 〈p, x0 − x1〉 ≤ sup

∂Ω
u+ δd < sup

∂Ω
u+ δ0d = sup

Ω
u,

hence we get a contradiction.

Next, as we have proved that B(0, δ) ⊂ Du(Eδ), then by comparing volumes, we infer
that

c(n)δn ≤
∫
Eδ

| det(D2u)|. (9)

Since u is semi-convex with the constant k > 0 and D2u ≤ 0 in Eδ, we have | det(D2u)| ≤
kn. It follows that |Eδ| ≥ c(n)k−nδn.

2.4 Γ-subharmonic functions

We have defined Γ subharmonic functions as limits of admissible ones. Below we present
the alternative viscosity and pluripotential points of view:

Let Ω ⊂ Cn be a bounded domain. Denote ω = ddc|z|2, where d := i(∂̄ + ∂) and
dc := i

2π
(∂̄ − ∂) so that ddc = i

π
∂∂̄. Let Γ ( Rn be an admissible cone as in Definition 1.

We first recall the definition of k-subharmonic function:

Definition 10. We call a function u ∈ C2(Ω) is k-subharmonic if for any z ∈ Ω, the
Hessian matrix (uij̄) has eigenvalues forming a vector in the closure of the cone Γk.

Following the ideas of Bedford-Taylor [2], Blocki [4] introduced the pluripotential
definition of the k-sh function.

Definition 11. Let u be subharmonic function on a domain Ω ⊂ Cn. Then u is called k-
subharmonic (k-sh for short) if for any collection of C2-smooth k-sh functions v1, . . . , vk−1,
the inequality

ddcu ∧ ddcv1 ∧ . . . ∧ ddcvk−1 ∧ ωn−k ≥ 0

holds in the weak sense of currents.

For a general cone Γ, we have the following definition in the spirit of viscosity theory:

Definition 12. An upper semicontinuous function u is called Γ-subharmonic (resp. strictly
Γ-subharmonic) if for any z ∈ Ω, and any upper test function q of u at z, we have

λ(Hq(z)) ∈ Γ (resp. λ(Hq(z)) ∈ Γ).
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By definition, if u is a Γ-subharmonic function, it is a Γ-subsolution in the sense of
Székelyhidi [32]. In particular, when Γ = Γk for k = 1, . . . n, u is a viscosity subsolution
of the equation

Sk(λ(Hu)) = 0,

where

Sk(λ(Hu)) =
(ddcu)k ∧ ωn−k

ωn
.

Then it follows from [15, 27] that u is a k-subharmonic function on Ω, hence u is a
subharmonic function if k = 1 and a plurisubharmonic function if k = n.

We also have the following definition generalizing the pseudoconvex domains (see also
[28] for similar definition for smooth domains):

Definition 13. Let Ω be a bounded domain in Cn, we say that Ω is a Γ-pseudoconvex
domain if there is a constant CΩ > 0 depending only on Ω so that −d(z) + CΩd

2(z) is
Γ-subharmonic on ∂Ω, where d(z) := dist(z, ∂Ω).

We recall the following lemma which was proved in [28, Theorem 3.1].

Lemma 2. Let Ω be bounded domain in Cn with C2 smooth boundary. Let ρ ∈ C2(Ω̄) be
a defining function of Ω so that λ(Hρ) ∈ Γ on ∂Ω. Then there exists a defining function
ρ̃ ∈ C2(Ω̄) for Ω such that λ(Hρ̃) ∈ Γ on Ω.

Finally we wish to recall the survey article [43] where the Reader may find a thorough
discussion of the viscosity theory associated to complex Monge-Ampère type equations.

3 Comparison principles

Comparison principles are basic tools in pluripotential theory- we refer to [25, 19] for
a thorough discussion of these inequalities. In viscosity theory one compares sub- and
supersolutions to the same equation. It is a crucial observation (cf. [15]) that even though
supersolutions may fail to have nice pluripotential properties a version of the comparison
principle holds for the complex Monge-Ampère equation. In this section we discuss under
what assumptions such comparison principles hold for general operators.

3.1 A preliminary comparison principle

Let Ω be a bounded domain in Cn. In this subsection we prove a comparison principle
for viscosity solutions of the following equation:

F [u] := F (x, u,Du,Hu) = 0. (10)

It is well known that mere ellipticity is insuffiecient to guarantee comparison type result.
Hence we add some natural structural conditions for the equation 10.

First of all we assume that F is decreasing in the s variable, namely

∀r > 0 F (z, s, p,M)− F (z, s+ r, p,M) ≥ 0. (11)

This is a natural assumption in the theory (see [43]) as it yields an inequality in the
”right” direction for the maximum principle.
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Next we assume certain continuity property with respect to the z and p variables:

|F (z1, s, p1,M)− F (z2, s, p2,M)| ≤ αz(|z1 − z2|) + αp(|p1 − p2|), (12)

for all z1, z2 ∈ Ω, σ ∈ R, p1, p2 ∈ Cn, M ∈ Hn. Here αz and αp are certain moduli
of continuity i.e. increasing functions defined for nonnegative reals which tend to zero as
the parameter decreases to zero.

We can now state the following general comparison principle for the equation (10).

Lemma 3. Suppose u ∈ L∞(Ω) (resp. v ∈ L∞(Ω)) satisfies F [u] ≥ δ (resp. F [v] ≤ 0) in
Ω in the viscosity sense for some δ > 0. Then

sup
Ω

(u− v) ≤ max
∂Ω
{(u− v)∗, 0} , (13)

with ∗ denoting the standard upper semicontinuous regularization.

Proof. The idea comes from [34]. We use Jensen’s approximation (cf. [24]) for u, v which
is defined by

uε(z) = sup
z′∈Ω

{
u(z′)− C0

ε
|z′ − z|2

}
,

vε(z) = inf
z′∈Ω

{
v(z′) +

C0

ε
|z′ − z|2

}
, (14)

where ε > 0 and C0 = max{oscΩu, oscΩv} with osc(u) = supuΩ − infΩ u. Then the
supermum and infimum in (14) are achieved at points z∗, z∗ ∈ Ω with |z− z∗|, |z− z∗| < ε
provided that z ∈ Ωε = {z ∈ Ω| dist(z, ∂Ω) > ε}. It follows from [5] (see also [37] for
an adaption in the complex case) that uε (resp. vε) is Lipschitz and semi-convex (resp.
semi-concave) in Ωε, with

|Duε|, |Dvε| ≤
2C0

ε
, Huε,−Hvε ≥ −

2C0

ε2
Id, (15)

whenever these derivatives are well defined.
Exploiting the definition of viscosity subsolution one can show that uε satisfies

F (z∗, uε(z), Duε(z), Huε(z)) ≥ δ (16)

in the viscosity sense for all z ∈ Ωε. Indeed, let q be an upper test of uε at z0, then the
function

q̃(z) := q(z + z0 − z∗0) +
1

ε
|z0 − z∗0 |2

is an upper test for u at z∗0 . Therefore we get (16) as u is a viscosity subsolution. This
also implies that

F (z∗, uε(z), Duε(z), N +Huε(z)) ≥ δ, (17)

in the viscosity sense for any fixed matrix N ≥ 0. Since any locally semi-convex (semi-
concave) function is twice differentiable almost everywhere by Aleksandroff’s theorem, we
infer that for almost all z ∈ Ωε, F is degenerate elliptic at (z∗, uε(z), Duε(z), Huε(z)) and

F (z∗, uε(z), Duε(z), N +Huε(z)) ≥ δ, (18)

for all N ∈ Hn such that N ≥ 0.
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We assume by contradiction that supΩ(u−v) = u(z0)−v(z0) = a > 0 for some z0 ∈ Ω.
For any ε sufficiently small the function wε := uε − vε has a positive maximum on Ωε at
some point zε ∈ Ωε such that zε → z0 as ε→ 0. So we can choose ε0 > 0 such that that
for any ε < ε0, wε := uε − vε has a positive maximum on Ωε at some point zε ∈ Ω with
d(zε, ∂Ω) > ε0. Applying the ABP maximum principle (Lemma 1), for the function wε
on Ωε0 and for any λ > 0 sufficiently small, there exist a set Eλ ⊂ Ωε0 containing zε with
|Eλ| ≥ cλn, where c is c(n)ε2n, such that |Dwε| ≤ λ and Hwε ≤ 0 almost everywhere
in Eλ. Since wε(zε) > 0, we can choose λ small enough such that wε ≥ 0 in Eλ. The
condition (11) and the fact that F is degenerate elliptic at (z∗, uε(z), Duε(z), Huε(z)) for
almost all z ∈ Eλ, imply that

F (z∗, uε(z), Duε(z), N +Huε(z)) ≤ F (z∗, vε(z), Duε(z), N +Hvε(z)). (19)

Using (12) and the fact that |D(uε − vε)| ≤ λ, we get

F (z∗, vε(z), Duε(z), N +Hvε(z)) ≤ F (z∗, vε(z), Dvε(z), N +Hvε(z)) + αp(λ).

Combining with (12), (18), (19) and |z∗ − z∗| < ε that for almost all z ∈ Eλ,

F (z∗, vε(z), Dvε(z), N +Hvε(z)) ≥ δ − αz(ε)− αp(λ). (20)

By taking λ, and then ε sufficiently small and using the fact that vε is twice differentiable
almost everywhere on Ω, we can find at a fixed point z1 ∈ Eλ a lower test q of v at z1

such that

F (z0, q(z0), D(z0), N +Hq(z0)) ≥ 1

2
δ, (21)

for all N ≥ 0. This contradicts the definition of viscosity supersolution. Therefore we get
(13).

Remark. By assuming more properties of F , it is possible to obtain δ = 0 in the previous
result. This is the case for the Monge-Ampère equation. Otherwise we need to adjust
function u to achieve a strict inequality in order to use Lemma 3.

3.2 Comparison principle for Hessian type equations

We now consider the Hessian type equation of the form

F [u] = ψ(z, u), (22)

where ψ ∈ C0(Ω× R) and F [u] = f(λ(Hu)) such that

s 7→ ψ(·, s) is weakly increasing, (23)

f ∈ C0(Γ̄), f > 0 on Γ, f = 0 on ∂Γ, (24)

and
f(λ+ µ) ≥ f(λ), ∀λ ∈ Γ, µ ∈ Γn. (25)

First, In order to use Lemma 3, we extend f continuously on Rn by taking f(λ) = 0
for all λ ∈ Rn \ Γ. For a δ independent comparison principle we need more assumptions

on F . Similarly to [34], we can assume that the operator F [u] = f(λ(Hu)) satisfies

n∑
i=1

∂f

∂λi
λi =

n∑
i=1

fiλi ≥ ν(f) in Γ, infz∈Ωψ(z, ·) > 0 (26)

10



for some positive increasing function ν.
This condition is satisfied for example in the case of the complex Hessian equations

F [u] := σk(λ(Hu)), k ∈ {1, · · · , n}.
We also study a new condition namely

f is concave and homogeneous, (27)

i.e f(tλ) = tf(λ),∀t ∈ R+.

Theorem 1. Let u, v ∈ L∞(Ω) be viscosity subsolution and supersolution of equation (22)
in Ω. Assume that either f satisfies either (26) or (27). Then

sup
Ω

(u− v) ≤ max
∂Ω
{(u− v)∗, 0} . (28)

Proof. Assume first that f satisfies (26). Then following [34], we set for any t ∈ (1, 2),

ut(z) = tu(z)− C(t− 1),

where C = supΩ u. Therefore we have ut(z) ≤ u(z) on Ω for all t ∈ (1, 2). Then for any
z0 ∈ Ω and an upper test function qt(z) of ut at z0 we have q(z) := t−1qt(z)− C(t−1 − 1)
is also an upper test for u at z0. Set λ = λ[q](z0), then λ[qt](z0) = tλ and q(z0) ≥ qt(z0).
We also recall that the function s 7→ f(sλ) is increasing on R+ (by (26)) and f(λ) ≥
ψ(z, u(z0)) since q is an upper test for u at z0. It follows that at z0,

F [qt] = f(λ[qt]) = f(tλ)

≥ f(λ) + (t− 1)
∑

λifi(t
∗λ)

≥ ψ(z0, q(z0)) + (t− 1)
∑

λifi(t
∗λ)

≥ ψ(z0, qt(z0)) +
t− 1

2
ν(inf

Ω
ψ(z, inf

Ω
u))

for 1 ≤ t∗ < t, sufficiently close to 1. Therefore we have for some δ > 0

F [ut] ≥ ψ(z, ut) + δ,

in the viscosity sense in Ω. Thus the inequality (28) follows from Lemma 3.

Next, consider the second case when f is concave and homogeneous. Suppose, without
loss of generality, that 0 ∈ Ω. We set

uτ (z) = u(z) + τ(|z|2 −R),

where R = diam(Ω). Then for any qτ ∈ C2(Ω) such that qτ ≥ uτ near z0 and qτ (z0) =
uτ (z0), we have q = qτ−τ(|z|2−R) ≥ qτ , and q is also an upper test for u at z0. Therefore,
we have at z0,

F [qτ ] = 2df

(
λ(Hq) + τ1

2

)
(29)

≥ f(λ(Hq)) + f(τ1)

≥ ψ(z0, qτ ) + δ.

Therefore F [uτ ] ≥ ψ + δ in the viscosity sense. Applying Lemma 3 we get (28).
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By definition, we have the following properties of sub(super)-solutions. Their proofs
follow in a straightforward way from [13, Proposition 4.3].

Lemma 4. (a) Let {uj} be viscosity subsolutions of (22) in Ω, which are uniformly
bounded from above. Then (lim supΩ uj)

∗ is also a viscosity subsolution of (22) in Ω.
(b) Let {vj} be viscosity supersolutions of (22) in Ω, which are uniformly bounded from
below. Then (lim infΩ vj)∗ is also a viscosity supersolution of (22) in Ω.

Now using Perron’s method (see for instance [13]), we obtain the next result:

Lemma 5. Let u, u ∈ L∞(Ω) are a subsolution and a supersolution of (22) on Ω. Suppose
that u∗(z) = u∗(z) on the boundary of Ω. Then the function

u := sup{v ∈ L∞(Ω) ∩ USC(Ω) : v is a subsolution of (22), u ≤ v ≤ u}

satisfies u ∈ C0(Ω) and
F [u] = ψ(x, u) in Ω,

is the viscosity sense.

Proof. It is straightforward that u∗ is a viscosity subsolution of (22). We next prove that
u∗ is a supersolution of (22). Assume by contradiction that u∗ is not a supersolution of
(22), then there exists a point z0 ∈ Ω and a lower differential test q for u∗ at z0 such that

F [q](z0) > ψ(z0, q(z0)). (30)

Set q̃(z) = q(z) + b − a|z − z0|2, where b = (ar2)/6 with a, r > 0 small enough so that
F [q̃] ≥ ψ(x, q̃) for all |z − z0| ≤ r. Since u∗ ≥ q for |z − z0| ≤ r, we get u∗ ≥ u∗ > q̃ for
r/2 ≤ |z − z0| < r. Then the function

w(z) =

{
max{u∗(z), q̃(z)} if |z − z0| ≤ r,

u∗(z) otherwise

is a viscosity subsolution of (22). By choosing a sequence zn → z0 so that u(zn)→ u∗(z0),
we have q̃(zn) → u∗(z0) + b. Therefore, for n sufficiently large, we have w(zn) > u(zn)
and this contradicts the definition of u. Thus we have u∗ is also a supersolution. Then
it follows from Theorem 1 and u∗(z) = u∗(z) for z ∈ ∂Ω that u∗ ≤ u∗ on Ω, hence
u = u∗ = u∗.

4 Dirichlet problems

4.1 Viscosity solutions in Γ-pseudoconvex domains

Let Ω ⊂ Cn be a C2 bounded domain. In this section, we study the following Dirichlet
problem {

F [u] = f(λ(Hu)) = ψ(x, u) on Ω

u = ϕ on ∂Ω,
(31)

where ϕ ∈ C0(∂Ω) and ψ ∈ C0(Ω× R) such that ψ > 0 and

s 7→ ψ(., s) is weakly increasing.

Let Γ ( Rn be an admissible cone. We assume further that f ∈ C0(Γ) satisfies:

12



1. f is concave and f(λ+ µ) ≥ f(λ), ∀λ ∈ Γ, µ ∈ Γn.

2. sup∂Γ f = 0, and f > 0 in Γ.

3. f is homogeneous on Γ.

We remark that, the condition (2) and (3) imply that for any λ ∈ Γ we have

lim
t→∞

f(tλ) = +∞. (32)

We now can solve the equation (31) in the viscosity sense:

Theorem 2. Let Ω be a C2 bounded Γ-pseudoconvex domain in Cn. The the Dirichlet
problem

f(λ[u]) = ψ(x, u) in Ω, u = ϕ on ∂Ω.

admits a unique admissible solution u ∈ C0(Ω̄).

In particular, we have a L∞ bound for u which only depends on ||ϕ||L∞ and ||ψ(x,C)||L∞
and Ω, where C is a constant depending on Ω.

Proof. By Lemma 2, there is a defining function ρ ∈ C2(Ω) for Ω such that λ(Hρ) ∈ Γ
on Ω. The C2-smoothness of the boundary implies the existence of a harmonic function
h on Ω for arbitrary given continuous boundary data ϕ. Set

u = (A1ρ+ h) + A2ρ,

where A1 > 0 is chosen so that A1ρ+ h is admissible and A2 will be chosen later.

By the concavity of f and (32), for A2 sufficiently large we get

f(λ[u]) ≥ 1

2
f(2λ[A1ρ+ h]) +

1

2
f(2A2λ[ρ])

≥ max
Ω

ψ(x, h) ≥ ψ(x, u).

Therefore u is a subsolution of (31).

Since h is harmonic, for each z ∈ Ω there is a Hermitian matrix N ≥ 0 so that
λ(N + H(h)(z)) ∈ ∂Γ. But then then f(λ(N + H(h)(z))) = 0. Therefore, v̄ := h is a
supersolution of (31).

Finally, the existence of solution follows from Perron’s method. We set

u := sup{w is subsolution of (31) on Ω, u ≤ w ≤ v}.

As in the argument from Lemma 5 we have u∗ (resp. u∗) is a subsolution (resp. superso-
lution) of (31). It follows from the comparison principle (Theorem 1) that

u∗(z)− u∗(z) ≤ lim sup
w→∂Ω

(u∗ − u∗)+(w).

Since u and v are continuous and u = v = ϕ on ∂Ω we infer that u∗ ≤ u∗ on Ω and
u∗ = u∗ on ∂Ω. Therefore u = u∗ = u∗ is a viscosity solution of (31). The uniqueness
follows from the comparison principle (Theorem 1).
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As a corollary of Theorem 2, we solve the following Dirichlet problem for Hessian
quotient equations {

Sk,`(λ(Hu)) := Sk
S`

(λ(Hu)) = ψ(x, u) on Ω

u = ϕ on ∂Ω
, (33)

where Ω ⊂ Cn be a smooth bounded Γk-pseudoconvex domain, 1 ≤ ` < k ≤ n and

Sk(λ(Hu)) =
(ddcu)k ∧ ωn−k

ωn
.

Note that the operator S
1/(k−l)
k,` is concave and homogeneous (see [31]).

Corollary 2. The Dirichlet problem (33) admits a unique viscosity solution u ∈ C0(Ω̄)
for any continuous data ϕ.

We also remark that a viscosity subsolution is always a Γ-subharmonic function.

Lemma 6. Any viscosity subsolution of the equation f(λ(Hu)) = ψ(z, u) is a Γ-subharmonic
function. In particular, if u is a viscosity subsolution of the equation

Sk,`(λ(Hu)) = ψ(z, u), (34)

then u is k-subharmonic.

Proof. Let z0 ∈ Ω and q ∈ C2
loc({z0}), such that u − q attains its maximum at z0 and

u(z0) = q(z0). By definition we have

f(λ(Hq)(z0)) > 0.

Observe that for any semi-positive Hermitian maxtrix N , the function

qN(z) := q(z) + 〈N(z − z0), z − z0〉

is also an upper test function for u at z0. By the definition of viscosity subsolutions we
have

f(λ(Hq̃)(z0)) > 0. (35)

Suppose that λ(Hq)(z0) /∈ Γ̄. Then we can find N ≥ 0 so that λ(Hq̃)(z0) ∈ ∂Γ, so
f(λ(Hq̃)(z0)) = 0 by the condition (3) above, this contradicts to (35). Hence we always
have λ[q](z0) ≥ 0, and so u is Γ-subharmonic.

4.2 Hölder continuity of Hessian type equations

In this subsection, we study the Hölder continuity of the viscosity solution obtained in
Section 4.1 to the Dirichlet problem{

F [u] = f(λ(Hu)) = ψ(x, u) on Ω

u = ϕ on ∂Ω,
(36)

where f, ϕ and ψ satisfy the conditions spelled out in the previous subsection. We prove
the following result:
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Theorem 3. Let Ω be a strictly Γ pseudoconvex domain. Let u be the viscosity solution
of (36). Suppose that ϕ ∈ C2α(∂Ω) for some α ∈ (0, 1). If additionally ψ(z, s) satisfies

1. |ψ(z, s)| ≤M1(s) for some L∞loc function M1;

2. |ψ(z, s)− ψ(w, s)| ≤M2(s)|z − w|α for some L∞loc function M2;

Then u ∈ Cα(Ω).

Remark. Classical examples (see [1]) show that the claimed regularity cannot be
improved. Conditions 1 and 2 can be regarded as a weak growth conditions and seem to
be optimal. If ψ does not depend on the second variable then these conditions mean that
ψ is globally bounded and contained in Cα.

Proof. The proof relies on the classical idea of Walsh-[36]. Similar agrument was used
by Bedford and Taylor- [1] who dealt with the complex Monge-Ampère operator. We
shall apply a small adjustment in the construction of the local barriers which is due to
Charabati [7].

Suppose for definiteness that 0 ∈ Ω. Assume without loss of generality that the Γ-
subharmonic function ρ = −dist(z, ∂Ω)+CΩdist(z, ∂Ω)2 satisfies F (ρ) ≥ 2 (multiply ρ by
a constant if necessary and exploit the homogeneity of F ). Recall ρ vanishes on ∂Ω. As
∂Ω ∈ C2 we know that ρ ∈ C2 near the boundary. Then it is easy to find a continuation
of ρ in the interior of Ω (still denoted by ρ), so that ρ is Γ-subharmonic and satisfies
F (ρ) ≥ 1.

Fix ξ ∈ ∂Ω. There is a uniform C >> 1 (dependent on Ω, but independent on ξ) such
that the function

gξ(z) := Cρ(z)− |z − ξ|2

is Γ-sh. In particular gξ ≤ 0 in Ω.
By definition there is a constant C̃, such that for any z ∈ ∂Ω

ϕ(z) ≥ ϕ(ξ)− C̃|z − ξ|2α.

Consider the function hξ(z) := −C̃(−gξ(z))α. Then

H(hξ(z)) ≥ C̃α(1− α)(−gξ(z))α−2H(gξ(z)), (37)

where λ(H(gξ(z))) ∈ Γ, thus hξ is Γ-subharmonic.
Observe that

hξ(z) ≤ −C̃|z − ξ|2α ≤ ϕ(z)− ϕ(ξ).

Thus hξ(z)+ϕ(ξ) are local boundary barriers constructed following the method of Chara-
bati from [7] (in the paper [1], where the Monge-Ampère case was considered, hξ was
simply chosen as −(xn)α in a suitable coordinate system, but this is not possible in the
general case).

At this stage we recall that u is bounded a priori by Theorem 2. Hence we know that
for some uniform constant A one has F [u] ≤ A in the viscosity sense.

From the gathered information one can produce a global barrier for u in a standard
way (see [1]). Indeed, consider the function h̃(z) := supξ{ahξ(z) + ϕ(ξ)} for a large but
uniform constant a. Using the balayage procedure it is easy to show that F (h̃(z)) ≥ A in
the viscosity sense once a is taken large enough. Thus h̃ majorizes u by the comparison
principle and so is a global barrier for u matching the boundary data given by ϕ. By
construction h̃ is globally α-Hölder continuous.
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Note on the other hand that u is subharmonic as Γ ⊂ Γ1, thus the harmonic extenstion
uϕ of ϕ in Ω majorizes u from above. Recall that uϕ is α-Hölder continuous by classical
elliptic regularity.

Coupling the information for both the lower and the upper barrier one obtains

∀z ∈ Ω, ∀ξ ∈ ∂Ω |u(z)− u(ξ)| ≤ K|z − ξ|α (38)

Denote by K1 the quantity K2diam
2(Ω)max{1, f(1)}+K, where 1 = (1, . . . , 1) ∈ Rn

is the vector of the eigenvalues of the identity matrix, while K2 := C̃f(1)−1 and finally C̃
is the α-Lipschitz constant of ψ. Consider for a small vector τ ∈ Cn the function

v(z) := u(z + τ) +K2|τ |α|z|2 −K1|τ |α

defined over Ωτ := {z ∈ Ω|z + τ ∈ Ω}.
It is easy to see by using the barriers that if z + τ ∈ ∂Ω or z ∈ ∂Ω then

v(z) ≤ u(z) +K|τ |α +K2diam
2Ω|τ |α −K1|τ |α ≤ u(z).

We now claim that v(z) ≤ u(z) in Ωτ . By the previous inequality this holds on
∂(Ωτ ). Suppose the claim is false and consider the open subdomain Uof Ωτ defined by
Uτ = {z ∈ Ωτ | v(z) > u(z)}.

We will now prove that v is a subsolution to F [u] = f(λ(Hu)) = ψ(z, u(z)) in U . To
this end pick a point z0 and an upper differential test q for v at z0. Observe then that
q̃(z) := q(z) − K2|τ |α|z|2 − K1|τ |α is then an upper differential test for u(τ + .) at the
point z0. Hence

F [q(z0)] = f(λ(Hq̃(z0)) +K2|τ |α1)

≥ f(λ(Hq̃(z0)) +K2|τ |αf(1)

≥ ψ(z0 + τ, u(z0 + τ)) +K2|τ |αf(1),

where we have used the concavity and homogeneity of f in the first inequality and the
fact that q̃ is an upper differential test for u(τ + .) for the second one.

Next

ψ(z0 + τ, u(z0 + τ)) +K2|τ |αf(1)

≥ ψ(z0 + τ, u(z0 + τ) +K2|τ |α|z0|2 −K1|τ |α) +K2|τ |αf(1)

= ψ(z0 + τ, v(z0)) +K2|τ |αf(1)

≥ ψ(z0 + τ, u(z0)) +K2|τ |αf(1),

where we have exploited twice the monotonicity of ψ with respect to the second variable
(and the fact that z0 ∈ Uτ ).

Exploiting now the Hölder continuity of ψ with respect to the first variable we obtain

ψ(z0 + τ, u(z0 + τ)) +K2|τ |αf(1) ≥ ψ(z0 + τ, u(z0)) +K2|τ |αf(1) ≥ ψ(z0, u(z0)).

This proves that F [q(z0)] ≥ ψ(z0, u(z0)) and hence F [v(z)] ≥ ψ(z, v(z)) in the viscosity
sense.

Thus over Uτ , v is subsolution and u is a solution, which implies by comparison
principle that v ≤ u there, a contradiction unless the set Uτ is empty.

We have thus proven that

∀z ∈ Ωτ u(z + τ) +K2|τ |α|z|2 −K1|τ |α ≤ u(z),

which implies the claimed α- Hölder continuity.
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5 Viscosity vs. pluripotential solutions

Let Ω be a bounded smooth strictly pseudoconvex domain in Cn. Let 0 < ψ ∈ C(Ω̄×R)
be a continuous function non-decreasing in the last variable. In this section, we study the
relations between viscosity concepts with respect to the inverse σk equations

(ddcu)n

(ddcu)n−k ∧ ωk
= ψ(z, u) in Ω, (39)

and pluripotential concepts with respect to the equation

(ddcu)n = ψ(z, u)(ddcu)n−k ∧ ωk in Ω. (40)

For the regular case, the following result was shown in [17]:

Theorem 4 (Guan-Sun). Let 0 < h ∈ C∞(Ω̄) and ϕ ∈ C∞(∂Ω). Then, there exists a
smooth strictly plurisubharmonic function u in Ω̄ such that

(ddcu)n

(ddcu)n−k ∧ ωk
= h(z) in Ω, u = ϕ in ∂Ω. (41)

Note that the function u in Theorem 4 is a viscosity solution of (39) in the case when
ψ(z, u) = h(z). Using Theorem 4, we obtain

Proposition 2. If u ∈ C(Ω̄)∩PSH(Ω) is a viscosity solution of (39) then there exists a
sequence of smooth plurisubharmonic functions uj in Ω such that uj is decreasing to u and

the function
(ddcuj)

n

(ddcuj)n−k ∧ ωk
converges uniformly to ψ(z, u) as j → ∞. In particular, u

is a solution of (40) in the pluripotential sense.

Proof. Let ϕj ∈ C∞(∂Ω) and 0 < ψj ∈ C∞(Ω̄) be sequences of smooth functions such
that ϕj ↘ ϕ and ψj ↗ ψ(z, u) as j →∞. Then, by Theorem 4, for any j = 1, 2, ..., there
exists a smooth strictly plurisubharmonic function uj in Ω̄ such that

(ddcuj)
n

(ddcuj)n−k ∧ ωk
= ψj(z) in Ω, uj = ϕj in ∂Ω. (42)

By the comparison principle, we have

u1 ≥ u2 ≥ ... ≥ uj ≥ ... ≥ u.

Let C > sup
Ω
|z|2. By the homogeneity and the concavity of S

1/k
n,n−k, we have

(ddc(uj + ε|z|2))n

(ddc(uj + ε|z|2))n−k ∧ ωk
≥ (ddcuj)

n

(ddcuj)n−k ∧ ωk
+ εk.

Then, by the comparison principle, for any ε > 0, there exists N > 0 such that

uj + ε(|z|2 − C) ≤ u,

for any j > N . Hence, uj is decreasing to u as j →∞.
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Observe that a continuous solution of (40) in the pluripotential sense may not be
a viscosity solution of (39). For example, if a continuous plurisubharmonic function
u : Ω → R depends only on n − k − 1 variables then u is a solution of (40) in the
pluripotential sense but u is not a viscosity solution of (39). Moreover, by Corollary 6,
we know that a viscosity solution of (39) has to sastisfy (ddcu)k ≥ aβk for some a > 0.
The following question is natural:

Question. If u ∈ PSH(Ω) ∩ C(Ω̄) satisfies (40) in the pluripotential sense and

(ddcu)k ≥ aβk (43)

for some a > 0, does u satisfy (39) in the viscosity sense?

At the end of this section, we will give the answer to a special case of this question.
Now, we consider the relation between viscosity subsolutions of (39) and pluripotential
subsolutions of (40). Recall that according to the definition in subsection 2.1 for any n×n
complex matrix A and k ∈ {1, ..., n}, Sk(A) denotes the coefficient with respect to tn−k

of the polynomial
(
n
k

)−1
det(A+ tIdn).

Next we prove the following technical result:

Lemma 7. Assume that A,B are n× n complex matrices and k ∈ {1, ..., n}. Then

Sk(AA
∗)Sk(BB

∗) ≥ |Sk(AB∗)|2.
Proof. Denote by a1, ..., an and b1, ..., bn, respectively, the row vectors of A and B. Then

Sk(AA
∗) = (Ck

n)−1
∑
]J=k

det (〈ap, aq〉)p,q∈J ,

Sk(BB
∗) = (Ck

n)−1
∑
]J=k

det (〈bp, bq〉)p,q∈J ,

and

Sk(AB
∗) = (Ck

n)−1
∑
]J=k

det (〈ap, bq〉)p,q∈J .

We will show that, for any J = {p1, ..., pk} with 1 ≤ p1 < ... < pk ≤ n,

det (〈ap, aq〉)p,q∈J . det (〈bp, bq〉)p,q∈J ≥ | det (〈ap, bq〉)p,q∈J |
2. (44)

Indeed, if either {ap1 , ..., apk} or {bp1 , ..., bpk} are linearly dependent then both sides of
(44) are equal to 0. Otherwise, exploiting the Gramm-Schmidt process, we can assume
that {ap1 , ..., apk} and {bp1 , ..., bpk} are orthogonal systems (observe that the quantities
in question do not change during the orthogonalization process). Next normalizing the
vectors apj and bpj , j = 1, · · · , n to unit length both sides change by the same factor.
Hence it suffices to prove the statement for two collections of orthonormal bases.

Under this assumption we have

(〈ap, aq〉)p,q∈J = (〈bp, bq〉)p,q∈J = Idk. (45)

Let M = (〈ap, bq〉)p,q∈J . Then MM∗ is semi-positive Hermitian matrix, and

Tr(MM∗) =
k∑
l=1

k∑
j=1

|〈bpj , apl〉|2

=
k∑
j=1

〈bpj ,
k∑
l=1

〈bpj , apl〉apl〉

≤
k∑
j=1

‖bpj‖2 = k.
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Therefore, | det(M)| =
√

det(MM∗) ≤ 1, hence we obtain (44). Finally, using (44) and
the Cauchy-Schwarz inequality, we infer that

Sk(AA
∗)Sk(BB

∗) ≥ |Sk(AB∗)|2,

as required.

For any n× n Hermitian matrix A = (aj ¯̀), we denote

ωA =
n∑

j,`=1

aj ¯̀
i

π
dzj ∧ dz̄`,

and

B(A, k) := {B ∈ Hn
+|
ωkB ∧ ωn−kA

ωn
= 1},

where k = 1, 2..., n.

Theorem 5. Let u ∈ PSH(Ω) ∩ L∞loc(Ω) and 0 < g ∈ C(Ω). Then the following are
equivalent:

(i)
(ddcu)n

(ddcu)n−k ∧ ωk
≥ gk(z) in the viscosity sense.

(ii) For all B ∈ B(Id, n− k),

(ddcu)k ∧ ωn−kB2 ≥ gk(z)ωn,

in viscosity sense.

(iii) For any open set U b Ω, there are smooth plurisubharmonic functions uε and func-
tions 0 < gε ∈ C∞(U) such that uε are decreasing to u and gε converge uniformly
to g as ε↘ 0, and

(ddcuε) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ gεωn, (46)

pointwise in U for any B ∈ B(Id, n− k) and A1, ..., Ak−1 ∈ B(B2, k).

(iv) For any open set U b Ω, there are smooth strictly plurisubharmonic functions uε
and functions 0 < gε ∈ C∞(U) such that the sequence uε is decreasing to u and the
sequence gε converges uniformly to g as ε↘ 0, and

(ddcuε)
n

(ddcuε)n−k ∧ ωk
≥ (gε)k, (47)

pointwise in U for any B ∈ B(Id, n− k).

Proof. (iv ⇒ i) is obvious. It remains to show (i⇒ ii⇒ iii⇒ iv).

(i ⇒ ii) Assume that q ∈ C2 is an upper test for u from at z0 ∈ Ω. Then q is strictly
plurisubharmonic in a neighborhood of z0 and

(ddcq)n

(ddcq)n−k ∧ ωk
≥ gk,

at z0.
By using Lemma 7 for

√
Hq and (

√
Hq)−1B, we have
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(ddcq)n−k ∧ ωk

(ddcq)n
(ddcq)k ∧ ωn−kB2

ωn
=

(ddcq)n−k ∧ ωk

ωn
(ddcq)k ∧ ωn−kB2

(ddcq)n
≥
(
ωn−kB ∧ ωk

ωn

)2

,

for any B ∈ Hn
+, (observe that Sk(CC

∗) =
(ddcq)k ∧ ωn−kB2

(ddcq)n
and Sk(

√
HqC∗) =

ωn−kB ∧ ωk

ωn

for C = (
√
Hq)−1B.)

Then, for any B ∈ B(Id, n− k) we have

(ddcq)k ∧ ωn−kB2 ≥ gkωn,

at z0. Hence

(ddcu)k ∧ ωn−kB2 ≥ gkωn,

in the viscosity sense.

(ii ⇒ iii) Assume that q ∈ C2 touches u from above at z0 ∈ Ω. Then, for any B ∈
B(Id, n− k),

(ddcq)k ∧ ωn−kB2 ≥ gkωn,

at z0. By the same arguments as in [27], we have

(ddcq) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ gωn,

for any B ∈ B(Id, n− k), A1, ..., Ak−1 ∈ B(B2, k). Hence

(ddcu) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ gωn, (48)

in the viscosity sense for any B ∈ B(Id, n− k), A1, ..., Ak−1 ∈ B(B2, k).
Let gj be a sequence of smooth functions in Ω such that gj ↗ g as j →∞. Then

(ddcu) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ gjω

n, (49)

in the viscosity sense for any j ∈ N, B ∈ B(Id, n − k) and A1, ..., Ak−1 ∈ B(B2, k). By
the same arguments as in [15] (the proof of Proposition 1.5), u satisfies (49) in the sense
of positive Radon measures. Using convolution to regularize u and setting uε = u ∗ ρε, we
see that uε is smooth strictly plurisubharmonic and

(ddcuε) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ (gj)εω

n,

pointwise in Ωε. Choosing gε := (g[1/ε])ε, we obtain (46).

(iii⇒ iv) At z0 ∈ Ωε, choosing

B =
Huε(z0)

(Sn−k(Huε(z0)))1/(n−k)

and

A1 = A2 = ... = Ak−1 =

(
(ddcuε(z0))k ∧ ωn−kB2

ωn

)−1/k

Huε(z0),
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we get,

gε ≤

(
(ddcuε(z0))k ∧ ωn−kB2

ωn

)1/k

=

(
(ddcuε(z0))n

ωn
1

Sn−k(Huε(z0))

)1/k

=

(
(ddcuε(z0))n

ωn
ωn

(ddcuε)n−k ∧ ωk

)1/k

=

(
(ddcuε)

n

(ddcuε)n−k ∧ ωk

)1/k

,

pointwise in Ωε. Then

(ddcuε)
n

(ddcuε)n−k ∧ ωk
≥ (gε)k.

The proof is completed.

As a consequence, our result implies that a viscosity subsolution is a pluripotential
subsolution.

Theorem 6. Assume that ψ(z, s) = ψ(z) with ψ ∈ C0(Ω) and u ∈ PSH(Ω) ∩ L∞loc(Ω) is
a viscosity subsolution of (39). Then

(ddcu)n ≥ ψ(ddcu)n−k ∧ ωk, (50)

and

(ddcu)k ≥
(
n

k

)−1

ψωk, (51)

in the pluripotential sense. If u is continuous then the conclusion still holds in the case
where ψ depends on both variables.

Proof. By Theorem 5, for any open set U b Ω, there are strictly plurisubharmonic func-
tions uε ∈ C∞(U) and functions 0 < hε ∈ C∞(U) such that uε is decreasing to u and hε

converges uniformly to ψ as ε↘ 0, and

(ddcuε)
n

(ddcuε)n−k ∧ ωk
≥ hε, (52)

pointwise in U . Choosing B = Idn and letting ε→ 0, we obtain (50).

It also follows from Theorem 5 that we can choose uε and hε so that

(ddcuε)
k ∧ ωn−kB2 ≥ hεωn, (53)

pointwise in U for any B ∈ B(Id, n − k). Fix z0 ∈ U and 0 < ε � 1. We can choose
complex coordinates so that Huε(z0) = diag(λ1, . . . , λn), where 0 ≤ λ1 ≤ . . . ≤ λn.
Choosing

B =
(
n
k

)1/(n−k)
diag(0, . . . , 0︸︷︷︸

k−th

, 1, . . . , 1),

we get
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λ1 . . . λk ≥
(
n
k

)−1
hε.

Then

(ddcuε)
k ≥

(
n
k

)−1
hεωk,

pointwise in U . Letting ε→ 0, we obtain (51).

Remark Note that for strictly positive ψ (51) implies that the natural space of func-
tions to consider for the Hessian quotient problem (39) is not the space of bounded
plurisubharmonic functions but a considerably smaller one.

By assuming an additional conditions, we can also prove that a pluripotential subso-
lution is a visocsity one.

Corollary 3. Assume that ψ(z, s) = ψ(z) > 0 with ψ ∈ C0(Ω) and u is a local bounded
plurisubharmonic function in Ω satisfying

(ddcu)k ≥ ψωk,

in the pluripotential sense. Then

(ddcu)n

(ddcu)n−k ∧ ωk
≥ ψ,

in the viscosity sense.

Proof. By the assumption, for any A ∈ Hn
+,

(ddcu)k ∧ ωn−kA ≥ ψωk ∧ ωn−kA , (54)

in the pluripotential sense. By [27], (54) also holds in the viscosity sense. If A = B2 for
some B ∈ B(Id, n− k) then, by using Lemma 7, we have

ωk ∧ ωn−kB2 ≥
(
ωn−kB ∧ ωk

ωn

)2

ωn = ωn.

Then

(ddcu)k ∧ ωn−kB2 ≥ ψωn,

in the viscosity sense, for any B ∈ B(Id, n− k). Applying Theorem 5, we obtain

(ddcu)n

(ddcu)n−k ∧ ωk
≥ ψ,

in the viscosity sense.

We now discuss the notion of a supersolution. By the same argument as in [18],
(relying on the Berman’s idea from [3]) we obtain the following relation between viscosity
supersolutions of (39) and pluripotential supersolutions of (40):

Proposition 3. Let u ∈ PSH(Ω)∩C(Ω̄) be a viscosity supersolution of (39). Then there
exists an increasing sequence of strictly psh functions uj ∈ C∞(Ω̄) such that uj converges
in capacity to u as j →∞, and

(ddcuj)
n

(ddcuj)n−k ∧ ωk
≤ ψ(z, u),

pointwise in Ω. In particular,
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(ddcu)n ≤ ψ(z, u)(ddcu)n−k ∧ ωk,

in the pluripotential sense.
If there exists a > 0 such that (ddcu)k ≥ aωk then uj can be chosen such that

(ddcuj)
n

(ddcuj)n−k ∧ ωk
≥ b,

pointwise in Ω for some b > 0.

For the definition of convergence in capacity, we refer to [19] and references therein.

Proof. Denote ϕ = u|∂Ω and g(z) = ψ(z, u(z)). Then, for any j ≥ 1, there exists a unique
viscosity solution vj of

(ddcvj)
n

(ddcvj)n−k ∧ ωk
= ej(vj−u)g(z) in Ω,

vj = ϕ in ∂Ω.
(55)

Applying the comparison principle to the equation

(ddcv)n

(ddcv)n−k ∧ ωk
= ej(v−u)g(z),

we get u ≥ vj and vj+1 ≥ vj for any j ≥ 1.
Note that, by Theorem 2,

(ddcvj)
n = ej(vj−u)g(z)(ddcvj)

n−k ∧ ωk,

in the pluripotential sense. For any h ∈ PSH(Ω) such that −1 ≤ h ≤ 0, we have,

εn
∫

{vj<u−2ε}

(ddch)n ≤
∫

{vj<u+εh−ε}

(ddc(u+ εh))n

≤
∫

{vj<u+εh−ε}

(ddcvj)
n

≤
∫

{vj<u−ε}

ej(vj−u)g(z)(ddcvj)
n−k ∧ ωk

≤ e−jε
∫

{v1<u−ε}

g(z)(ddcvj)
n−k ∧ ωk

≤ Ce−jε,

where C > 0 is independent of j. The last inequality holds by the Chern-Levine-Nirenberg
inequalities (cf. [19]). This implies that vj converges to u in capacity.

If there exists a > 0 such that (ddcu)k ≥ aωk then, by Corollary 3,

(ddcu)n

(ddcu)n−k ∧ ωk
≥ a,

in the viscosity sense. Choosing M � 1 such that e−M sup
Ω
g < a, we get

(ddcvj)
n

(ddcvj)n−k ∧ ωk
≤ aej(vj−u)+M .
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Applying the comparison principle to the equation

(ddcv)n

(ddcv)n−k ∧ ωk
= aej(v−u),

we get vj +
M

j
≥ u for any j ≥ 1. Then

(ddcvj)
n

(ddcvj)n−k ∧ ωk
= ej(vj−u)g(z) ≥ e−Mg(z),

for any j ≥ 1. Hence, by Corollary 6,

(ddcvj)
k ≥

(
n
k

)−1
e−Mg(z) ≥

(
n
k

)−1
e−M min

Ω̄
g,

for any j ≥ 1.
Now, by Theorem 2, for any j we can choose a strictly plurisubharmonic function uj ∈
C∞(Ω̄), such that

vj −
1

2j
≤ uj ≤ vj −

1

2j+1

and

− 1

2j
≤ (ddcuj)

n

(ddcuj)n−k ∧ ωk
− ej(vj−u)g(z) ≤ 0.

It is easy to see that uj satisfies the required properties.

The next result gives the answer to a special case of Question 5:

Theorem 7. Let u ∈ PSH(Ω) ∩ C(Ω) such that

(ddcu)n

(ddcu)n−k ∧ ωk
≤ ψ(z, u), (56)

in the viscosity sense and

(ddcu)n ≥ ψ(z, u)(ddcu)n−k ∧ ωk, (57)

in the pluripotential sense. If there exists a > 0 such that (ddcu)k ≥ aωk then u is a
viscosity solution of the equation

(ddcu)n

(ddcu)n−k ∧ ωk
= ψ(z, u). (58)

Proof. It remains to show that u is a viscosity subsolution of (58) in any smooth strictly
pseudoconvex domain U b Ω.

Let V be a smooth strictly pseudoconvex domain such that U b V b Ω. By
Proposition 3, there exists an increasing sequence of strictly plurisubharmonic functions
uj ∈ C∞(V̄ ), such that uj converges in capacity to u as j →∞, and

b ≤ (ddcuj)
n

(ddcuj)n−k ∧ ωk
≤ ψ(z, u),

pointwise in V , where b > 0. By Corollary 6, we have (ddcuj)
k ≥

(
n
k

)−1
bωk. Then, there

exists C > 0 such that
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(ddcuj)
n−k ∧ ωk ≥ 1

ψ(z, u)
(ddcuj)

n ≥ Cωn.

Denote

fj(z) :=
(ddcuj)

n

(ddcuj)n−k ∧ ωk
.

Then fj(z) ≤ ψ(z, u) for any z ∈ V , and (ψ−fj)(ddcuj)n−k∧ωk ≥ C(ψ−fj)ωn converges
weakly to 0. Hence fj converges in Lebesgue measure to ψ in V as j →∞.
Now, by Theorem 5, we have

(ddcuj) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ (fj)

1/kωn,

pointwise in V for any B ∈ B(Id, n− k) and A1, ..., Ak−1 ∈ B(B2, k). Letting j →∞, we
get

(ddcu) ∧ ωA1 ∧ ... ∧ ωAk−1
∧ ωn−kB2 ≥ ψ1/kωn,

in the sense of Radon measures. It follows from [27] that

(ddcu)k ∧ ωn−kB2 ≥ ψ1/kωn,

in the viscosity sense. Using Theorem 5, we get that u is a viscosity subsolution of (58)
in U . The proof is completed.

6 Dirichlet problem for the Lagrangian phase opera-

tor

In this section, we prove the existence of unique viscosity solution to the Dirichlet problem
for the Lagrangian phase operator. The existence and uniqueness of the smooth version
was obtained recently by Collins-Picard-Wu [11]. Let Ω ⊂ Cn be a bounded domain.
Consider the Dirichlet problemF [u] :=

n∑
i=1

arctanλi = h(z), on Ω

u = ϕ on ∂Ω.

(LA)

where λ1, . . . , λn is the eigenvalues of the complex Hessian Hu. We can also write F [u] =
f(λ(Hu)). We assume that ϕ ∈ C0(∂Ω) and h : Ω̄→ [(n− 2)π

2
+ δ, nπ

2
) is continuous, for

some δ > 0.

The Lagrangian phase operator F in (LA) arises in geometry and mathematical
physics. We refer to [11, 21, 23, 10, 42, 40, 41] and references therein for the details.

Since h ≥ (n− 2)π
2
, this case is called the supercritical phase following [42, 23, 10, 11].

Recall first the following properties (cf. [42, 41, 11]);

Lemma 8. Suppose λ1 ≥ λ2 ≥ . . . ≥ λn satisfying
∑

i arctanλi ≥ (n− 2)π
2

+ δ for some
δ > 0. Then we have

(1) λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0 and |λn| ≤ λn−1,

(2)
∑

i λi ≥ 0, and λn ≥ −C(δ),

(3)
∑
λ−1
i ≤ − tan(δ) when λn < 0.
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(4) for any σ ∈ ((n − 2)π
2
, nπ

2
), the set Γσ := {λ ∈ Rn |

∑
i arctanλi > σ} is a convex

set and ∂Γσ is a smooth convex hypersurface.

It follows form Lemma 8 that the function f can be defined on a cone Γ satisfying
Γn ⊂ Γ ⊂ Γ1. We also remark that if h ≥ (n − 1)π

2
, then F is concave while F have

concave level sets if (n−2)π
2
h ≤ (n−1)π

2
, but in general F may not be concave (cf. [11]).

Therefore we can not apply Theorem 1 directly. Fortunately, we still have a comparison
principle for the Lagrangian operator using Lemma 3.

Lemma 9. Let u, v ∈ L∞(Ω) be viscosity subsolution and supersolution of equation F [u] =
f(λ(Hu)) = h on Ω. Then

sup
Ω

(u− v) ≤ max
∂Ω
{(u− v)∗, 0} . (59)

Proof. We first define ε > 0 by maxΩ̄ h = nπ
2
− ε. Now for any 0 < τ ≤ ε/2, set

uτ = u + τ |z|2. Let qτ be any upper test for uτ at any point z0 ∈ Ω, then q = qτ − τ |z|2
is also an upper test for u at z0. By the definition we have

F [q](z0) =
n∑
i=1

arctanλi(z0) ≥ h(z0),

where λ(z0) = λ(Hq(z0)). We also have

F [qτ ](z0) =
n∑
i=1

arctan(λi(z0) + τ). (60)

Next, if F [q](z0) ≥ nπ
2
− ε

2
, then F [q](z0) ≥ h(z0) + ε

2
hence

F [qτ ](z0) ≥ h(z0) +
ε

2
. (61)

Conversely, if F [q](z0) < nπ
2
− ε

2
, this implies that arctan(λn(z0)) ≤ π

2
− ε

2n
. Combining

with Lemma 8 (2), we get −C(δ) ≤ λn(z0) ≤ C(ε). Using the Mean value theorem, there
exists λ̂n ∈ (λn(z0), λn(z0) + τ) such that

arctan(λn(z0) + τ)− arctanλn(z0) =
1

1 + λ̂2
n

τ ≥ C(δ, ε, τ) > 0.

It follows that

F [qτ ](z0) ≥ F [q](z0) + C(δ, ε, τ) ≥ h(z0) + C(δ, ε, τ). (62)

Combing with (61) yields
F [qτ ](z0) ≥ h(z0) + C,

where C > 0 depending only on δ, ε, τ . We thus infer that uτ satisfies F [uτ ] ≥ h(z) +C in
the viscosity sense. Therefore applying Lemma 3 to uτ and v, then let τ → 0, we obtain
the desired inequality.

Theorem 8. Let Ω is a bounded C2 domain. Let u is an bounded upper semi-continuous
function on Ω satisfying F [u] ≥ h(z) in Ω in the viscosity sense and u = ϕ on ∂Ω. Then
the Dirichlet problem (LA) admits a unique viscosity solution u ∈ C0(Ω).

Proof. It suffices to find a viscosity supersolution ū for the equation F [u] = h(z), satisfying
ū = ϕ on ∂Ω. The C2-boundary implies the existence of a harmonic function φ on Ω for
arbitrary given continuous boundary data ϕ. Since

∑
i λi(Hφ) = 0, it follows from Lemma

8 that we have F [φ] < (n− 2)π
2

+ δ ≤ h, hence φ is a supersolution for (LA). The rest of
the proof is similar to the one of Theorem 2, by using Lemma 9.
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