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Abstract— In this paper, we prove a theorem of linearized
asymptotic stability for nonlinear fractional differential equations
with a time delay. By using the method of linearization of a
nonlinear equation along an orbit (Lyapunov’s first method), we
show that an equilibrium of a nonlinear Caputo fractional delay
differential equation is asymptotically stable if its linearization at
the equilibrium is asymptotically stable. Our approach is based
on a technique which converts the linear part of the equation
into a diagonal one. Then by using the properties of general-
ized Mittag-Leffler functions, the construction of an associated
Lyapunov–Perron operator and the Banach contraction mapping
theorem, we obtain the desired result.

Index Terms— Asymptotic stability, delay differential equa-
tions with fractional derivatives, existence and uniqueness, frac-
tional differential equations, growth and boundedness, stability.

I. INTRODUCTION

Delay fractional differential equations (DFDEs) have re-
ceived considerable research attention recently. They provide
mathematical models of practical systems in which the frac-
tional rate of change depends on the influence of their present
and hereditary effects (see, [1]-[8] and the references therein).
One of the simplest form of DFDEs is{

CDα
0+x(t) = f(x(t), x(t− τ)), t ∈ [0, T ],

x(t) = ϕ(t), ∀t ∈ [−τ, 0],
(1)

where α ∈ (0, 1) is the order of the Caputo fractional deriva-
tive CDα

0+, the initial condition ϕ is a continuous function on
the interval [−τ, 0] with τ, T > 0 are fixed real parameters.
For this equation, the first basic, important problem is to
show the existence and uniqueness of solutions under some
reasonable conditions. It is well known that in the case of
ordinary differential equations (α = 1), under some Lipschitz
conditions, a delay equation has a unique local solution (see
[9, Section 2.2]). Furthermore, by using continuation property
(see [9, Section 2.3]), one can derive global solutions as well.
However, in the fractional case, the problem of existence and
uniqueness of (local and global) solutions is more complex
because of the fractional order feature of the equation which
implies history dependence of the solutions. Hence, among
others, the continuation property is not applicable. With regard
to the existence of solutions to DFDEs, some results ([10],
[11]) have been reported in the literature.
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Furthermore, whenever the solutions exist, it is of particular
importance to know their asymptotic behavior. To the best of
our knowledge, there have been only very few contributions to
this problem until now. In [12] and [13], the authors considered
the stability of some particular types of fractional differential
equations with constant delays. In [6], the authors discussed
stability and asymptotic properties of linear fractional-order
differential systems involving both delayed and non-delayed
terms. The stability and bifurcation analysis of a generalized
scalar DFDE was discussed in [14]. The stability and perfor-
mance analysis for positive fractional-order systems with time-
varying delays was reported in [15]. However, the relationship
between the stability of the trivial solution to a nonlinear delay
fractional differential system and that of the linearized part is
still an open problem.

This paper is devoted to the investigation of the asymptotic
behavior for solutions near the equilibrium of (1) in the case
the function f : Rd × Rd → Rd has the form

f(x, y) = Ay + g(x, y).

Here, A ∈ Rd×d and the function g satisfies the following
conditions:

(H1) g(0, 0) = 0;
(H2) g is locally Lipschitz continuous in a neighborhood of

the origin and
lim
ϱ→0

ℓg(ϱ) = 0,

with

ℓg(ϱ) := sup
x,y,x̂,ŷ∈BRd (0,ϱ)

(x,y) ̸=(x̂,ŷ)

∥g(x, y)− g(x̂, ŷ)∥
∥x− x̂∥+ ∥y − ŷ∥

,

where BRd(0, ϱ) := {x ∈ Rd : ∥x∥ ≤ ϱ}.
Namely, we prove that the trivial solution to (1) is asymptot-
ically stable if the trivial solution to the linearized equation{

CDα
0+x(t) = Ax(t− τ), t ∈ (0,∞),

x(t) = ϕ(t), t ∈ [−τ, 0],

where ϕ : [−τ, 0] → Rd is a continuous function, is asymptot-
ically stable. This means that the small nonlinear perturbation
g does not affect the asymptotic stability of the trivial solution
to the equation (1).

The rest of this paper is organized as follows. In Section II,
we recall briefly a framework of delay fractional differential
systems. Section III is devoted to the main result of this
paper. In this section, we give a spectrum characterization
of the asymptotic stability to nonlinear fractional differential
systems.
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II. PRELIMINARIES

This section is devoted to recalling briefly a framework
of DFDEs. We first introduce some notation which is used
throughout this paper. Let K be the set of all real numbers
or complex numbers and Kd be the d-dimensional Euclidean
space endowed with a norm ∥·∥. Denote by I the real interval
[a, b] or [a,∞), let C(I;Kd) be the space of continuous
functions ξ : I → Kd with the sup norm ∥ · ∥∞, i.e.,

∥ξ∥∞ := sup
t∈I

∥ξ(t)∥, ∀ξ ∈ C(I;Kd).

Finally, we denote by BC([a,b];Kd)(0, ϱ) the closed ball
centered at the origin with radius ϱ in the space C([a, b];Kd)
and BC∞(0, ϱ) the closed ball with the center at the origin
and radius ϱ in the space C([a,∞);Kd).

For [a, b] ⊂ R and a measurable function x : [a, b] → R
such that

∫ b

a
|x(τ)| dτ < ∞, the Riemann–Liouville integral

operator of order α is defined by

(Iαa+x)(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1x(s) ds, t ∈ (a, b],

where Γ is the Gamma function. The Caputo fractional
derivative CDα

a+x of a function x ∈ AC([a, b];R) is defined
by

(CDα
a+x)(t) := (I1−α

a+ Dx)(t), t ∈ (a, b],

where AC([a, b];R) denotes the space of real functions x
which is absolutely continuous, D = d

dt is the usual derivative.
The Caputo fractional derivative of a d-dimensional vector
function x(t) = (x1(t), · · · , xd(t))

T is defined component-
wise as

(CDα
a+x)(t) := (CDα

a+x1(t), · · · ,CDα
a+xd(t))

T .

Let τ be an arbitrary positive constant, and ϕ ∈
C([−r, 0];Rd) be a given continuous function. Consider the
following delay Caputo fractional differential equations

CDα
0+x(t) = Ax(t−τ)+g(x(t), x(t−τ)), t ∈ [0,∞), (2)

with the initial condition

x(t) = ϕ(t), ∀t ∈ [−τ, 0], (3)

where x ∈ Rd, A ∈ Rd×d and g : Rd × Rd → Rd is locally
Lipschitz continuous in a neighborhood of the origin.

For any T > 0, a function φ(·, ϕ) ∈ C([−τ, T ];Rd)
is called a solution to the initial condition problem (2)–(3)
over the interval [−τ, T ] if CDα

0+φ(t, ϕ) = Aφ(t − τ, ϕ) +
g(φ(t, ϕ), φ(t − τ, ϕ)) for all t ∈ (0, T ], and φ(t, ϕ) = ϕ(t)
for all t ∈ [−τ, 0].

Since g is locally Lipschitz continuous in a neighborhood
of the origin, [11, Theorem 3.1] implies the existence and
uniqueness of solutions to the initial value problem (2)–(3)
for any ϕ ∈ C([−τ, 0];Rd). Let I := [−τ, tmax(ϕ)), where
0 < tmax(ϕ) ≤ ∞, be the maximal interval of existence to
the solution φ(·, ϕ). We now recall the definitions of stability
and asymptotic stability of the trivial solution to the equation
(2).

Fig. 1. Stability region Sα,τ (bounded by the grey curve) for α = 0.4 and
τ = 1.

Definition 1: (i) The trivial solution of (2) is called stable
if for any ε > 0 there exists δ = δ(ε) > 0 such that for
any ∥ϕ∥∞ ≤ δ, we have tmax(ϕ) = ∞ and

∥φ(t, ϕ)∥ ≤ ε, ∀t ≥ 0.

(ii) The trivial solution is called asymptotically stable if it is
stable and there exists δ̂ > 0 such that limt→∞ φ(t, ϕ) =
0 whenever ∥ϕ∥∞ ≤ δ̂.

In the case g = 0, the equation (2) is reduced to a linear
delay fractional equation

CDα
0+x(t) = Ax(t− τ), ∀t ≥ 0. (4)

Denote by Sα,τ the set containing the complex number λ ∈ C\
{0} such that |λ| <

(
| arg (λ)|−απ/2

τ

)α

and απ
2 < | arg (λ)| ≤

π. Due to [6, Theorem 2], we see that the trivial solution to
(4) is asymptotically stable if and only if all eigenvalues of
the matrix A are located in the domain Sα,τ . Fig. 1 shows
the stability region Sα,τ for α = 0.4 and τ = 1. For the
nonlinear equation (2), we first focus on the case where the
matrix A is diagonal and the function g is globally Lispchitz
continuous. We define the generalized Mittag-Leffler function
Eλ,τ

α,β(t) : [0,∞) → C by

Eλ,τ
α,β(t) :=

{∑∞
k=0

λk(t−kτ)αk+β−1

Γ(αk+β) H(t− kτ), if t > 0,

1, if t ≤ 0,

where β > 0, λ ∈ C and H is the Heaviside function defined
by

H(t) =

{
1, if t ≥ 0,

0, if t < 0.

Note that for β = 1, and 0 < t ≪ 1, we have Eλ,τ
α,1 = t0 = 1.

Hence, this function is continuous at t = 0.
The following result is a connection between the solutions

to the equation (2) and its linear part.
Lemma 1: Consider the initial problem (2)–(3). Assume

that g is globally Lipschitz continuous and

A = diag(λ1, . . . , λd),

where λi ∈ C, for i = 1, . . . , d. Then, for any initial condition
ϕ ∈ C([−τ, 0];Cd), this problem has a unique solution on
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[−τ,∞). Denote this solution by φ(·, ϕ). We have a repre-
sentation of φ(·, ϕ) as φ(·, ϕ) := (φ1(·, ϕ), . . . , φd(·, ϕ))T, in
which, for i ∈ {1, . . . , d}, the i-th component φi(·, ϕ) for
∀t ≥ 0 is as follows

Eλi,τ
α,1 (t)ϕi(0) + λi

∫ 0

−τ

Eλi,τ
α,α (t− τ − s)H(t− τ − s)ϕi(s)ds

+

∫ t

0

Eλi,τ
α,α (t− s)gi(φ(s, ϕ), φ(s− τ, ϕ))ds, (5)

and φ(t, ϕ) = ϕ(t) for all t ∈ [−τ, 0].
Proof: From [11, Corollary 3.2], we see that the initial

problem (2)–(3) has a unique solution with any initial con-
dition ϕ ∈ C([−τ, 0];Cd). On the other hand, due to [11,
Theorem 4.1], all solutions to this problem are exponentially
bounded. Using Laplace transform and similar arguments as
in [6, Section 4], we obtain the variation of constants formula
(5).

For the remainder of this section, we give some estimates
involving the scalar generalized Mittag-Leffler functions Eλ,τ

α,β

with λ ∈ Sα,τ and β = 1 or β = α.
Lemma 2: Assume that λ ∈ Sα,τ . Then, there exists a

positive constant Cα,λ such that the following statements hold:

(i) |Eλ,τ
α,α(t)| ≤

Cα,λ

tα+1 , ∀t ≥ 1;
(ii) |Eλ,τ

α,1(t)| ≤
Cα,λ

tα , ∀t ≥ 1;
(iii) supt≥0

∫ t

0
|Eλ,τ

α,α(s)| ds ≤ Cα,λ.
The proof of this lemma is given in the Appendix at the end
of the paper.

III. MAIN RESULT

Our aim in this section is to prove the following theorem.
This is a generalization of [7, Theorem 3.1] for the delay
fractional differential equations.

Theorem 1 (Linearized stability theorem): Consider the
initial problem (2)–(3). Assume that the spectrum σ(A) of
the matrix A satisfies

σ(A) ⊂ Sα,τ

and the function g satisfies the conditions (H1) and (H2).
Then, the trivial solution to this problem is asymptotically
stable.

To prove this theorem, we first transform the linear part
of (2) to a diagonal matrix; then we construct a Lyapunov–
Perron operator which is a contraction, and its fixed point is
the solution to the initial problem (2)–(3). We then exploit the
properties of the scalar generalized Mittag-Leffler function to
obtain the conclusion of the theorem.

Transformation of the linear part: Using [16, Theorem
6.37, pp. 146], there exists a nonsingular matrix T ∈ Cd×d

transforming the matrix A in the equation (2) into the Jordan
normal form, i.e.,

T−1AT = diag(A1, . . . , An),

for i = 1, . . . , n, the block Ai is of the following form

Ai = λi iddi×di + ηi Ndi×di ,

where iddi×di is the identity matrix having the size di × di,
ηi ∈ {0, 1} and the nilpotent matrix Ndi×di is given by

Ndi×di :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
0 0 · · · 0 0


di×di

.

Let γ be an arbitrary but fixed positive number. Using the
transformation Pi := diag(1, γ, . . . , γdi−1), we obtain that

P−1
i AiPi = λi iddi×di + γi Ndi×di ,

γi ∈ {0, γ}. Hence, under the transformation y := (TP )−1x,
the equation (2) becomes

CDα
0+y(t) = diag(J1, . . . , Jn)y(t−τ)+h(y(t), y(t−τ)), (6)

where Ji := λiiddi×di for i = 1, . . . , n and the function h is
given by

h(y(t), y(t− τ)) :=diag(γ1Nd1×d1 , . . . , γnNdn×dn)y(t− τ)

+ (TP )−1g(TPy(t), TPy(t− τ)). (7)

Remark 1: The function h in the equation (6) is locally
Lipschitz continuous in a neighborhood of the origin and

h(0, 0) = 0, and lim
ϱ→0

ℓh(ϱ) =

{
γ if there exists γi = γ,

0 otherwise.
Remark 2: If the trivial solution to equations (6) is stable

(or asymptotically stable), then the trivial solution to (2) is the
same, i.e., it is also stable (or asymptotically stable).

Remark 3: By using the change of variable y = (TP )−1x,
the original equation (2) is transformed into the equation (6).
In (6), the linear part is a diagonal matrix and the perturbation
h is a locally Lipschitz continuous function with the Lipschitz
coefficient γ which can be chosen small arbitrarily. This
means that to study the asymptotic stability of the trivial
solution to (2) in arbitrary finite dimensional spaces, we only
need to consider this problem for scalar fractional differential
equations which is simpler than the original one.

Construction of an appropriate Lyapunov–Perron op-
erator: We are now introducing a Lyapunov–Perron operator
associated with (6). Before doing this, we discuss some con-
ventions which are used in the remaining part of this section:
The space Cd can be written as Cd = Cd1×· · ·×Cdn . A vector
x ∈ Cd can be written component-wise as x = (x1, . . . , xn).

For any ϕ ∈ C([−τ, 0];Cd), the operator Tϕ,r from
C([−τ,∞);Cd) to C([−τ,∞);Cd) is defined by

(Tϕ,τξ)(t) = ((Tϕ,τξ)1(t), . . . , (Tϕ,τξ)n(t))T,

where for i = 1, . . . , n and t ≥ 0 the component (Tϕ,τξ)i(t)
as

Eλi,τ
α,1 (t)ϕi(0)+λi

∫ 0

−τ

Eλi,τ
α,α (t−τ−s)H(t−τ−s)ϕi(s) ds

+

∫ t

0

Eλi,τ
α,α (t− s)hi(ξ(s), ξ(s− τ)) ds,
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and (Tϕ,τ ξ)(t) = ϕ(t) for any t ∈ [−τ, 0], is called the
Lyapunov-Perron operator associated with (6). Next, we pro-
vide some estimates on the operator Tϕ,τ .

Proposition 1: Consider system (6) and suppose that

σ(A) ⊂ Sα,τ .

Let ε1 be a small positive parameter such that the function h
is Lipschitz continuous on BC∞(0, ε1) × BC∞(0, ε1). Then,
for any ξ, ξ̂ ∈ BC∞(0, ε1), we have

∥Tϕ,τ ξ − Tϕ̂,τ ξ̂∥∞ ≤ max
{

max
1≤i≤n

sup
t≥0

{
|Eλi,τ

α,1 (t)|+

+ |λi|
∫ t

t−τ

|Eλi,τ
α,α (s)| ds

}
× ∥ϕ− ϕ̂∥∞+

max
1≤i≤n

∫ ∞

0

|Eλi,τ
α,α (s)| ds× ℓh(ε̂1)× ∥ξ − ξ̂∥∞, ∥ϕ− ϕ̂∥∞

}
for all ϕ, ϕ̂ ∈ BC([−τ,0];Cd)(0, ε1).

Proof: For i = 1, . . . , n and t ≥ 0, we get

∥(Tϕ,τ ξ)i(t)− (Tϕ̂,τ ξ̂)
i(t)∥ ≤ ∥ϕ− ϕ̂∥∞

(
|Eλi,τ

α,1 (t)|+ |λi|×∫ t

t−τ

|Eλi,τ
α,α (s)| ds

)
+ ℓh(max{∥ξ∥∞, ∥ξ̂∥∞})× ∥ξ − ξ̂∥∞×∫ t

0

|Eλi,τ
α,α (s)| ds.

Hence, for any ξ, ξ̂ ∈ BC∞(0, ε1), we have

∥Tϕ,τ ξ − Tϕ̂,τ ξ̂∥∞ ≤ max
{

max
1≤i≤n

sup
t≥0

{
|Eλi,τ

α,1 (t)|+ |λi|×∫ t

t−τ

|Eλi,τ
α,α (s)| ds

}
× ∥ϕ− ϕ̂∥∞ + max

1≤i≤n

∫ ∞

0

|Eλi,τ
α,α (s)| ds

× ℓh(ε1)× ∥ξ − ξ̂∥∞, ∥ϕ− ϕ̂∥∞
}

for all ϕ, ϕ̂ ∈ BC([−τ,0];Cd)(0, ε1). The proof is complete.
From the proposition above, by letting C(λ, α) :=

max1≤i≤n

∫∞
0

|Eλi,τ
α,α (s)| ds, for any ξ, ξ̂ ∈ BC∞(0, ε1), we

have

∥Tϕ,τξ − Tϕ,τ ξ̂∥∞ ≤ C(λ, α)× ℓh(ε1)× ∥ξ − ξ̂∥∞,

for all ϕ ∈ C([−τ, 0];Cd). Note that the Lipschitz constant
C(α, λ) is independent of the constant ε1 which is hidden in
the coefficients of system (6). From now on, we choose and fix
the constant γ as γ = min{ε1, 1

2C(α,λ)}. The remaining ques-
tion is now to choose a ball with small radius in C∞(R≥0,Cd)
such that the restriction of the Lyapunov–Perron operator to
this ball is strictly contractive.

Lemma 3: The following statements hold:
(i) There exists ε > 0 such that

q := C(α, λ)× ℓh(ε) < 1. (8)

(ii) Choose and fix ε > 0 satisfying (8). Define δ by the
maximum value according to index i of the set below

ε(1− q)

supt≥0

{
|Eλi,τ

α,1 (t)|+ |λi|
∫ t

t−τ
|Eλi,τ

α,α (s)|ds+ 1
} .

Then, for any ϕ ∈ BC([−τ,0];Cd)(0, δ), we have
Tϕ,τ (BC∞(0, ε)) ⊂ BC∞(0, ε) and ∥Tϕ,τξ − Tϕ,τ ξ̂∥∞ ≤
q∥ξ − ξ̂∥∞ for all ξ, ξ̂ ∈ BC∞(0, ε).
Proof: (i) By Remark 1, limϱ→0 ℓh(ϱ) ≤ γ. Hence, we

can choose a positive constant ε such that

q := C(α, λ)× ℓh(ε) < 1,

and the assertion (i) is proved.
(ii) According to Proposition 1, for any ϕ ∈ BC([−τ,0];Cd)(0, δ)
and any ξ ∈ BC∞(0, ε), we obtain that

∥Tϕ,τ ξ∥∞ ≤ max
1≤i≤n

sup
t≥0

{
|Eλi,τ

α,1 (t)|+ |λi|
∫ t

t−τ

|Eλi,τ
α,α (s)| ds

+ 1
}
× ∥ϕ∥∞ + C(α, λ)× ℓh(ε)× ∥ξ∥∞

≤ (1− q)ε+ qε,

which proves that Tϕ,τ (BC∞(0, ε)) ⊂ BC∞(0, ε). Further-
more, we also have

∥Tϕ,τ ξ − Tϕ,τ ξ̂∥∞ ≤ C(α, λ)× ℓh(ε)× ∥ξ − ξ̂∥∞

≤ q∥ξ − ξ̂∥∞,

which concludes the proof.
We are now in a position to give the proof of Theorem 1.

Proof: Due to Remark 2, it is sufficient to prove the asymp-
totic stability for the trivial solution of system (6). For this
purpose, let δ be defined as in (9) and ϕ ∈ BC([−τ,0];Cd)(0, δ)
be arbitrary. Using Lemma 3 and the Contraction Mapping
Principle, there exists a unique fixed point ξ ∈ BC∞(0, ε) of
Tϕ,τ . According to Lemma 1, this point is also a solution to
(6) with the initial condition ξ(t) = ϕ(t) for all t ∈ [−τ, 0].
Since the equation (6) has unique global solution in BC∞(0, ε)
for each initial condition ϕ ∈ BC([−τ,0];Cd)(0, δ), the trivial
solution is stable. To complete the proof of the theorem, we
have to show that the trivial solution is attractive. Suppose
that ξ(t) = (ξ1(t), . . . , ξn(t)) is the solution to (6) which
satisfies ξ(t) = ϕ(t) for every t ∈ [−τ, 0], where ϕ ∈
BC([−τ,0];Cd)(0, δ). From Lemma 3, we see that ∥ξ∥∞ ≤ ε.
Put a := lim supt→∞ ∥ξ(t)∥, then a ∈ [0, ε]. Let ε̂ be a
positive number small enough. Then, there exists T (ε̂) > 0
such that

∥ξ(t)∥ ≤ (a+ ε̂) for any t ≥ T (ε̂).

For each i = 1, . . . , n, we will estimate
lim supt→∞ ∥ξi(t)∥. According to Lemma 2(i) and 2(ii), we
obtain
(i) limt→∞ Eλi,τ

α,1 (t) = 0;
(ii) limt→∞

∫ 0

−τ
Eλi,τ

α,α (t− τ − s)H(t− τ − s)ϕi(s) ds = 0;
(iii)

lim sup
t→∞

∥∥∥∥∥
∫ T (ε̂)

0

Eλi,τ
α,α (t− s)hi(ξ(s)) ds

∥∥∥∥∥
≤ max

t∈[0,T (ε)]
∥hi(ξ(t))∥ lim sup

t→∞

∫ T (ε̂)

0

Cα,λi

(t− s)α+1
ds

= 0.
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Therefore, from the fact that ξi(t) = (Txξ)i(t), we have

lim sup
t→∞

∥ξi(t)∥ = lim sup
t→∞

∥∥∥∥∥
∫ t

T (ε̂)

Eλi,τ
α,α (t− s)hi(ξ(s))ds

∥∥∥∥∥
≤ ℓh(ε)× Cα,λi × (a+ ε̂),

where we use the estimate∣∣∣∣∣
∫ t

T (ε̂)

Eλi,τ
α,α (t− s) ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t−T (ε̂)

0

Eλi,τ
α,α (u) du

∣∣∣∣∣
≤ Cα,λi ,

see Lemma 2(iii), to obtain the inequality above. Thus,

a ≤ max

{
lim sup
t→∞

∥ξ1(t)∥, . . . , lim sup
t→∞

∥ξn(t)∥
}

≤ ℓh(τ)× C(α, λ)× (a+ ε̂).

Letting ε̂ → 0, we have

a ≤ ℓh(ε)× C(α, λ)× a.

Due to the fact ℓh(ε) × C(α, λ) < 1, we get that a = 0 and
the proof is complete.

Remark 4: Consider the equation (2). If the function g also
depends on the time t, i.e. g = g(t, x, y), then by using the
same arguments as above, Theorem 1 is still true provided that
the following conditions are satisfied:

(H1)’ g(t, 0, 0) = 0 for all t ≥ 0;
(H2)’ for any t ≥ 0, g(t, ·, ·) is locally Lipschitz continuous in

a neighborhood of the origin and

lim
ϱ→0

ℓg(t,·,·)(ϱ) = 0, ∀t ≥ 0,

where for any t ≥ 0,

ℓg(t,·,·)(ϱ) := sup
x,y,x̂,ŷ∈BRd (0,ϱ)

(x,y) ̸=(x̂,ŷ)

∥g(t, x, y)− g(t, x̂, ŷ)∥
∥x− x̂∥+ ∥y − ŷ∥

.

IV. ILLUSTRATIVE EXAMPLE

Let us consider the following nonlinear delay fractional
differential equation

CD0.5
0+x(t) = −x(t− 1) + x2(t) + x2(t− 1), t > 0, (9)

with the initial condition x(t) = 0.5 for all t ∈ [−1, 0].
In this case, we see that −1 ∈ S0.5,1 and the perturbation

x2(t) + x2(t − 1) satisfies the conditions (H1) and (H2) in
Theorem 1. Hence, the trivial solution to (9) is asymptotically
stable. In particular, the solution φ(·, 0.5) to (9) tends to zero
as t → ∞. Denote by φ̂(·, 0.5) the solution to the linearized
part

CD0.5
0+x(t) = −x(t− 1), ∀t > 0,

with the initial condition x(t) = 0.5 for all t ∈ [−1, 0]. The
trajectories of φ̂(·, 0.5) and φ(·, 0.5) are depicted in Fig. 2.

0 1 2 3 4 5 6 7 8 9 10

Time(sec)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 2. Trajectories of the solutions φ̂(·, 0.5) (the dotted line) and φ(·, 0.5)
(the solid line).

V. CONCLUSION

This paper has studied the asymptotic behavior of solu-
tions to nonlinear fractional differential equations with a time
delay. We have shown that an equilibrium of a nonlinear
Caputo fractional differential equation with a time delay is
asymptotically stable if its linearization at the equilibrium
is asymptotically stable. That is, we have given a sufficient
condition of the asymptotic stability based on the characteristic
spectrum of the linear part to the original equation. This
is a new contribution in the qualitative theory of nonlinear
fractional differential equations with delays. In the future,
we hope to obtain a characteristic spectrum for the stability
of fractional differential equations with multi-delays in high
dimensional spaces.
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APPENDIX

In this section, we will prove Lemma 2.
Proof: For µ > 0 and θ ∈ (0, π), we denoted by γ(µ, θ) the
oriented contour formed by three segments:

• arg (z) = −θ, |z| ≥ µ;
• −θ ≤ arg (z) ≤ θ, |z| = µ;
• arg (z) = θ, |z| ≥ µ.

From [6, Proposition 1 (ii)], we can choose a positive constant
δ such that all zeros zi of the function sα−λ exp (−τs) satisfy
| arg (zi)| ̸= π

2 + δ, and there are only finitely many of them
satisfying | arg (zi)| ≤ π

2 + δ. Hence, there exist R > ε > 0
such that all zi lie to the left of γ(R, π

2+δ) and those satisfying
| arg (zi)| ≤ π

2 + δ are located to the right of γ(ε, π
2 + δ), see

[6, p. 116]. Let β ∈ {1, α}. For t ≥ 1, from [6, p. 116], we
have

Eλ,τ
α,β(t) =

1

2πi

∫
γ(R,π2 +δ)

sα−β exp (ts)

sα − λ exp (−τs)
ds

= I1(t) + I2(t),

5



where

I1(t) =
1

2πi

∫
γ( ε

t ,
π
2 +δ)

sα−β exp (ts)

sα − λ exp (−τs)
ds,

and

I2(t) =
1

2πi

∫
γ(R,π2 +δ)−γ( ε

t ,
π
2 +δ)

sα−β exp (ts)

sα − λ exp (−τs)
ds.

For I1(t), we use the representation

I1(t) = I11 (t) + I12 (t) + I13 (t),

where

I11 (t) = − 1

λ2πi

∫
γ( ε

t ,
π
2 +δ)

sα−β exp ((τ + t)s) ds,

I12 (t) = − 1

λ22πi

∫
γ( ε

t ,
π
2 +δ)

s2α−β exp ((2τ + t)s) ds,

I13 (t) =
1

λ22πi

∫
γ( ε

t ,
π
2 +δ)

s3α−β exp ((2τ + t)s)

sα − λ exp (−τs)
ds.

Using the change of variable s = u1/α

t , we have

I11 (t) =− 1

λ

1

2απi

∫
γ(εα,απ

2 +αδ)

u
1−β
α exp ((1 +

τ

t
)u1/α) du

× 1

tα−β+1
,

which, by changing the variable ν = (1 + τ
t )

αu, implies

I11 (t) =− 1

λ

1

2απi

∫
γ((1+ τ

t )
αεα,απ

2 +αδ)

ν
1−β
α exp (ν1/α)

(1 + τ
t )

α−β+1
dν

× 1

tα−β+1

=− 1

λ

1

2απi

∫
γ((1+ τ

t )
αεα,απ

2 +αδ)

ν
1−β
α exp (ν1/α) dν

× 1

(t+ τ)α−β+1

=− 1

λ
×
( 1

Γ(z)

)
|z=β−α

× 1

(t+ τ)α−β+1
, ∀t ≥ 1,

(10)

where we used the integral representation

( 1

Γ(z)

)
|z=β−α

=

∫
γ((1+ τ

t )
αεα,απ

2 +αδ)
ν

1−β
α exp (ν1/α)

(1+ τ
t )

α−β+1 dν

2απi
,

see e.g. [17, Formula (1.52), p. 16].
For I12 (t), by using the variable s = u1/α

t , we have

I12 (t) =− 1

λ2

1

2πi

∫
γ(εα,απ

2 +αδ)

u
2α−β

α exp ((1 + 2τ
t )u

1/α)

t2α−β

× 1

αt
u

1
α−1 du

=− 1

λ2

∫
γ(εα,απ

2 +αδ)
u

α−β+1
α exp ((1 + 2τ

t )u
1/α) du

2απi

× 1

t2α−β+1
.

Put ν = (1 + 2τ
t )

αu, we obtain

I12 (t) =− 1

λ2

1

2απi

∫
γ((1+ 2τ

t )αεα,απ
2 +αδ)

ν
α−β+1

α exp (ν1/α) dν

× 1

(t+ 2τ)2α−β+1

=− 1

λ2
×
( 1

Γ(z)

)
|z=β−2α

× 1

(t+ 2τ)2α−β+1
(11)

for all t ≥ 1. For I13 (t), we have

I13 (t) =
1

λ2
×

∫
γ(εα,απ

2 +αδ)

u
2α−β+1

α exp ((1+ 3τ
t )u1/α)

u exp ( τu1/α

t )−λtα
du

2απi

× 1

t2α−β+1
. (12)

Note that there exists a positive constant C1 such that

|sα − λ exp (−τs)| ≥ C1, ∀s ∈ γ(
ε

t
,
π

2
+ δ), ∀t ≥ 1.

Thus, for any u ∈ γ(εα, απ
2 + αδ), we have∣∣∣∣u exp (τu1/α

t
)− λtα

∣∣∣∣ ≥ C1t
α| exp (τu

1/α

t
)|.

On the other hand, there exists a constant positive C2 satisfy-
ing∫
γ(εα,απ

2 +αδ)

|u|
2α−β+1

α | exp ((1 + 2τ

t
)u1/α)||du| ≤ C2, ∀t ≥ 1.

This implies that

|I13 (t)| ≤
C2

C1|λ|22απt3α−β+1
, ∀t ≥ 1. (13)

We now estimate the quantity I2(t). Because the domain
bounded by γ(R, π

2 + δ)−γ( εt ,
π
2 + δ) is a compact set in the

complex plane C and sα−λ exp (−τs) is analytic in this set,
there is a finite number of zeros of sα − λ exp (−τs) in this
domain. Let us denote these zeros by z1, . . . , zk. According to
[6, Lemma 2], z1, . . . , zk are single zeros of sα−λ exp (−τs).
From [4, p. 101], we have

I2(t) =

k∑
i=1

Reszi

{
exp (ts)

sβ−α(sα − λ exp (−τs))

}

=
k∑

i=1

exp (tzi)

βziβ−1 − ((β − α)λzβ−α−1
i − τλzβ−α

i ) exp (−τzi)
,

(14)

where Reszi is the residue at zi of sα − λ exp (−τs). Hence,
there is a constant C3 > 0 such that

|I2(t)| ≤ C3

k∑
i=1

| exp (zit)|, ∀t ≥ 1.

(i) Note that ( 1

Γ(z)

)
|z=0

= 0.

For β = α, from (10), (11), (13) and (14), we can find a
constant Cα,λ > 0 such that

|Eλ,τ
α,α(t) ≤

Cα,λ

tα+1
, ∀t ≥ 1.
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(ii) Similarly, For β = 1, from (10), (11), (13) and (14), there
exists a constant Cα,λ > 0 such that

|Eλ,τ
α,1(t)| ≤

Cα,λ

tα
, ∀t ≥ 1.

(iii) First, from the representation of the function Eλ,τ
α,α, we

see that ∫ 1

0

|Eλ,τ
α,α(s)| ds

is bounded. Indeed, Consider the following cases.
The case τ ≥ 1. We have∫ 1

0

|Eλ,τ
α,α(s)| ds

≤
∫ 1

0

∑
0≤kτ≤s

|λ|k(s− kτ)αk+α−1

Γ(αk + α)
H(s− kτ) ds

=

∫ 1

0

sα−1

Γ(α)
ds

=
1

Γ(α+ 1)
.

The case 0 ≤ τ < 1. Let k0 ∈ N be the number satisfying
k0τ < 1 and (k0+1)τ ≥ 1. We can partition the interval [0, 1]
into k0 + 1 subintervals as [0, τ ], . . . , [k0τ, 1]. Then,∫ 1

0

|Eλ,τ
α,α(s)| ds

≤
∫ 1

0

∑
0≤kτ≤s

|λ|k(s− kτ)αk+α−1

Γ(αk + α)
H(s− kτ) ds

=

k0−1∑
i=0

∫ (i+1)τ

iτ

∑
0≤kτ≤s

|λ|k(s− kτ)αk+α−1

Γ(αk + α)
H(s− kτ) ds

+

∫ 1

k0τ

∑
0≤kτ≤s

|λ|k(s− kτ)αk+α−1

Γ(αk + α)
H(s− kτ) ds.

Furthermore, for 0 ≤ i ≤ k0 − 1, we see that∫ (i+1)τ

iτ

∑
0≤kτ≤s

|λ|k(s− kτ)αk+α−1

Γ(αk + α)
H(s− kτ) ds

=

i∑
k=0

|λ|k

Γ(αk + α)

∫ (i+1)τ

iτ

(s− kτ)αk+α−1 ds

=
i∑

k=0

|λ|k

Γ(αk + α+ 1)

(
((i+ 1− k)τ)αk+α − ((i− k)τ)αk+α

)
,

and∫ 1

k0τ

∑
0≤kτ<s

|λ|k(s− kτ)αk+α−1

Γ(αk + α)
H(s− kτ) ds

=

k0∑
k=0

∫ 1

k0τ

|λ|k(τ − kτ)αk+α−1

Γ(αk + α)
ds

=

k0∑
k=0

|λ|k

Γ(αk + α+ 1)

(
(1− kτ)αk+α − ((k0 − k)τ)αk+α

)
,

which imply that ∫ 1

0

|Eλ,τ
α,α(s)| ds

is bounded. Now, for t > 1, we use the representation∫ t

0

|Eλ,τ
α,α(s)| ds =

∫ 1

0

|Eλ,τ
α,α(s)| ds+

∫ t

1

|Eλ,τ
α,α(s)| ds.

From (i), there exists a positive constant Ĉ such that∫ t

1

|Eλ,τ
α,α(s)| ds ≤ Ĉ

∫ t

1

1

sα+1
ds

≤ Ĉ

α
.

Put Cα,λ :=
∫ 1

0
|Eλ,τ

α,α(s)| ds+ Ĉ
α . Then,

sup
t≥0

∫ t

0

|Eλ,τ
α,α(s)| ds ≤ Cα,λ.

The proof is complete.
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