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Abstract

Under a mild Lipschitz condition we prove a theorem on the existence

and uniqueness of global solutions to delay fractional differential equa-

tions. Then, we establish a result on the exponential boundedness for

these solutions.
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1 Introduction

Recently, delay fractional differential equations (DFDEs) have received con-
siderable attentions because they provide mathematical models of real-world
problems in which the fractional rate of change depends on the influence of
their hereditary effects, see e.g., [L08, BHNO08, K11, YC13, CHK16] and the
references therein. The simplest form of DFDEs is

{

CDα
0+x(t) = f(t, x(t), x(t − r)), t ∈ [0, T ],

x(t) = φ(t), ∀t ∈ [−r, 0],
(1)

where α > 0 is the order of the Caputo fractional derivative CDα
0+, and the

initial condition φ is a continuous function on the interval [−r, 0], r, T > 0 are
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fixed real parameters. For this equation, the first basic and important problem
is to show the existence and uniqueness of solutions under some reasonable
conditions. It is well known that in the case of ordinary differential equations
(α is an integer), under some Lipschitz conditions a delay equation has an unique
local solution (see Hale and Lunel [HL93, Section 2.2]); furthermore, by using
continuation property (see [HL93, Section 2.3]) one can derive global solutions
as well. However, in the fractional case (non-integer α) the problem of existence
and uniqueness of (local and global) solutions is more complex because of the
fractional order feature of the equation which implies history dependence of the
solutions, hence, among others, the continuation property is not applicable.

Abbas [A11] has discussed the existence of solutions to the DFDE (1) and used
Krasnoselskii’s fixed point theorem to show the existence of at least one local
solution to (1). Y. Jalilian and R. Jalilian [JJ13] have proved the existence of a
global solution on a finite interval to (1) for a class of DFDEs by using a fixed
point theorem of Leray–Schauder type. Note that in the two papers [A11] and
[JJ13] the authors did not derive uniqueness of the solutions. Yang and Cao
[YC13] have dealt with the problem of existence and uniqueness of solution of
a general DFDE, they presented theorems on existence and uniqueness of solu-
tions to the initial values problems for DFDE, however the Lipschitz condition
they assume is restrictive and hard to verify because it is a Lipschitz condition
with respect to an infinite dimensional (functional) variable which varies in a
(big) functional space B. Recently, Wang et al. [WCZW16, Theorem 3.2] have
formulated and proved uniqueness of global solutions to the equation similar to
(1) by using the generalized Gronwall inequality. However their proof contain a
flaw which make the proof incomplete (see Remark 3.3).

In the investigation of long term behavior of the DFDEs, as in the classical
theory of dynamical systems, the understanding of growth rate of the solutions is
of basic importance. One needs to know whether the solutions are exponentially
bounded so that the theory of Lyapunov exponents as well as the tools of the
Laplace transform are applicable to the study of the qualitative behavior of the
systems. Wang et al. [WCZW16, Theorem 3.3] have formulated and proved a
theorem on exponential boundedness of solutions of DFDEs; however there are
flaws in the proof and the statement of their theorem is false (see Remak 4.2
for details).

This paper is devoted to the investigation of the existence, uniqueness and
growth rate of global solutions of DFDEs. Namely, we prove a general theorem
on the existence and uniqueness of global solutions to the equation (1) under a
mild Lipschitz condition on f (see Theorem 3.1). An interesting feature of our
result is the fact that for the existence and uniqueness of the global solutions
of (1) we do not need to require Lipschitz property of f with respect to the
third (delay) variable of f , but only the Lipschitz property of f with respect
to the second (non-delay) variable. As concerns the growth rate of solutions of
DFDEs, we derive a result on the exponential boundedness of solutions to the
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equation (1) (see Theorem 4.1).

The rest of this paper is organized as follows. In Section 2, we recall some basic
notations of fractional calculus and a lemma concerning the equivalence between
a DFDE and a Volterra integral equation. In Section 3, we show the existence
and uniqueness of global solutions to DFDEs (Theorem 3.1). Finally, in Sec-
tion 4 we establish a result on the exponential boundedness of these solutions
(Theorem 4.1).

2 Preliminaries

This section is devoted to recalling briefly a framework of DFDEs. We first
introduce some notations which are used throughout this paper. Let R≥0 be
the set of all non-negative real numbers and R

d be the d-dimensional Euclidean
space endowed with a norm ‖ · ‖. For any [a, b] ⊂ [a,∞), let C([a, b];Rd) be the
space of continuous functions ξ : [a, b] → R

d with the sup norm ‖ · ‖∞, i.e.,

‖ξ‖∞ := sup
a≤t≤b

‖ξ(t)‖, ∀ξ ∈ C([a, b];Rd).

For α > 0, [a, b] ⊂ R and a measurable function x : [a, b] → R such that
∫ b

a
|x(τ)| dτ < ∞, the Riemann–Liouville integral operator of order α is defined

by

(Iαa+x)(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ, t ∈ (a, b],

where Γ(·) is the Gamma function. The Caputo fractional derivative CDα
a+x of

a function x ∈ ACm([a, b];R) is defined by

(CDα
a+x)(t) := (Im−α

a+ Dmx)(t), t ∈ (a, b],

where ACm([a, b];R) denotes the space of real functions x which has continuous
derivatives up to orderm−1 on the interval [a, b] and the (m− 1)th-order deriva-
tive x(m−1) is absolutely continuous,Dm = dm

dtm
is the usualmth-order derivative

and m := ⌈α⌉ is the smallest integer larger or equal to α. The Caputo frac-
tional derivative of a d-dimensional vector function x(t) = (x1(t), · · · , xd(t))

T is
defined component-wise as

(CDα
a+x)(t) := (CDα

a+x1(t), · · · ,
CDα

a+xd(t))
T.

From now on, we consider only the case α ∈ (0, 1). Let r be an arbitrary positive
constant, and φ ∈ C([−r, 0];Rd) be a given continuous function, we study the
delay Caputo fractional differential equations

CDα
0+x(t) = f(t, x(t), x(t − r)), t ∈ [0, T ], (2)
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with the initial condition

x(t) = φ(t), ∀t ∈ [−r, 0], (3)

where x ∈ R
d, T > 0 and f : [0, T ]× R

d × R
d → R

d is continuous.

We also consider the initial condition problem (2)-(3) on the infinite time interval
[−r,∞) as well with the obvious change from finite T to ∞.

A function ϕ(·, φ) ∈ C([−r, T ];Rd) is called a solution of the initial condition
problem (2)-(3) over the interval [−r, T ] if

{

CDα
0+ϕ(t, φ) = f(t, ϕ(t, φ), ϕ(t − r, φ)), t ∈ [0, T ],

ϕ(t, φ) = φ(t), ∀t ∈ [−r, 0].

To prove the existence of solutions to the initial condition problem (2)-(3) and
to investigate the asymptotic behavior of solutions to this problem we need to
convert it into an equivalent delay integral equation with the initial condition
(3). This is stated in the following lemma.

Lemma 2.1. The function ϕ ∈ C([−r, T ];Rd) is a solution of the initial condi-
tion problem (2)-(3) on the interval [−r, T ] if and only if it is a solution of the
delay integral equation

x(t) = φ(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ), x(τ − r)) dτ, ∀t ∈ [0, T ] (4)

with the initial condition

x(t) = φ(t), ∀t ∈ [−r, 0]. (5)

Proof. Using the same arguments as in the proof of [D10, Lemma 6.2, p. 86].

3 Existence and uniqueness of global solutions

to delay fractional differential equations

We show that under a mild Lipschitz condition a DFDE has unique global
solution.

Theorem 3.1 (Existence and uniqueness of global solutions to DFDEs). As-
sume that f : [0, T ] × R

d × R
d → R

d is continuous and satisfies the following
Lipschitz condition with respect to the second variable: there exists a non-
negative continuous function L : [0, T ]× R

d → R≥0 such that

‖f(t, x, y)− f(t, x̂, y)‖ ≤ L(t, y)‖x− x̂‖ (6)

for all t ∈ [0, T ], x, y, x̂ ∈ R
d. Then, the initial condition problem (2)-(3) has a

unique global solution ϕ(·, φ) on the interval [−r, T ].
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Proof. According to Lemma 2.1, the equation (2) with the initial condition (3)
is equivalent to the initial condition problem (4)-(5).

First we consider the case 0 < T ≤ r. In this case, the equation (4) has the
form

x(t) = φ(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ), φ(τ − r)) dτ, ∀t ∈ [0, T ].

For this integral equation, by Tisdell [T12, Theorem 6.4, p. 310], there exists a
unique solution on the interval [0, T ]. Denote that solution by ξ∗r and put

ϕT (t, φ) :=

{

φ(t), ∀t ∈ [−r, 0],

ξ∗r (t), ∀t ∈ [0, T ].

Then ϕT (t, φ) is the unique solution of the problem (4)-(5) on [−r, T ].

For the case T > r, we divide the interval [0, T ] into [0, r]∪· · ·∪ [(k0−1)r, k0r]∪
[k0r, T ], where k0 ∈ N and 0 ≤ T − k0r < r. On the interval [−r, r], using the
same arguments as above, we can find a unique solution of the initial condition
problem (4)-(5) which is denoted by ϕr(·, φ). We will prove the existence and
uniqueness of solution on the interval [−r, k0r] by induction. Assume that the
problem (4)-(5) has a unique solution on the interval [−r, kr] for some 1 ≤ k <

k0. We denote that solution by ϕkr(·, φ). On [kr, (k+1)r], we define an operator
T(k+1)r,φ : C([kr, (k + 1)r];Rd) → C([kr, (k + 1)r];Rd) as follows:

(T(k+1)r,φξ)(t) := φ(0) +
1

Γ(α)

∫ kr

0

(t− τ)α−1f(τ, ϕkr(τ, φ), ϕkr(τ − r, φ)) dτ

+
1

Γ(α)

∫ t

kr

(t− τ)α−1f(τ, ξ(τ), ϕkr(τ − r, φ)) dτ, ∀t ∈ [kr, (k + 1)r].

Let βk be a positive constant satisfying βk > 2maxt∈[kr,(k+1)r] L(t, ϕkr(t−r, φ)).

On the space C([kr, (k + 1)r];Rd), we define a new metric dβk
by

dβk
(ξ, ξ̂) := sup

t∈[kr,(k+1)r]

‖ξ(t)− ξ̂(t)‖

Eα(βktα)
, ∀ξ, ξ̂ ∈ C([kr, (k + 1)r];Rd),

here Eα : R → R is the Mittag-Leffler function which is defined by

Eα(z) =
∞
∑

k=0

zk

Γ(αk + 1)
, ∀z ∈ R.

Then, the space C(kr, (k + 1)r];Rd) equipped the metric dβk
is complete. We

will show that the operator T(k+1)r,φ is contractive on (C([kr, (k+1)r];Rd), dβk
).
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Indeed, for any ξ, ξ̂ ∈ C([kr, (k + 1)r];Rd) and any t ∈ [kr, (k + 1)r] we have

‖(T(k+1)r,φξ)(t)− (T(k+1)r,φξ̂)(t)‖

≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

Γ(α)

∫ t

kr

(t− τ)α−1‖ξ(τ)− ξ̂(τ)‖ dτ

≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

Γ(α)

∫ t

kr

(t− τ)α−1Eα(βkτ
α)

‖ξ(τ)− ξ̂(τ)‖

Eα(βkτα)
dτ.

This implies that

‖(Tkr,φξ)(t)− (Tkr,φξ̂)(t)‖

Eα(βktα)

≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

Eα(βktα)
dβk

(ξ, ξ̂)
1

Γ(α)

∫ t

kr

(t− τ)α−1Eα(βkτ
α) dτ

≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

Eα(βktα)
dβk

(ξ, ξ̂)
1

Γ(α)

∫ t

0

(t− τ)α−1Eα(βkτ
α) dτ

≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

Eα(βktα)
dβk

(ξ, ξ̂)Iα0+

(

CDα
0+

(

Eα(βkt
α)

βk

))

≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

βk

dβk
(ξ, ξ̂)

for all t ∈ [kr, (k + 1)r]. Therefore,

dβk
(T(k+1)r,φξ, T(k+1)r,φξ̂) ≤

max
t∈[kr,(k+1)r]

L(t, ϕkr(t− r, φ))

βk

dβk
(ξ, ξ̂)

≤
1

2
dβk

(ξ, ξ̂)

for all ξ, ξ̂ ∈ C([kr, (k + 1)r];Rd). By virtue of Banach fixed point theorem,
there exists a unique fixed point ξ∗(k+1)r of T(k+1)r,φ in C([kr, (k+1)r];Rd). Put

ϕ(k+1)r(t, φ) :=

{

ϕkr(t, φ), ∀t ∈ [−r, kr],

ξ∗(k+1)r(t), ∀t ∈ [kr, (k + 1)r].
(7)

Then, ϕ(k+1)r(t, φ) is the unique solution of the problem (4)-(5) on [−r, (k+1)r].

Finally, on the interval [k0r, T ], we construct an operator Tφ : C([k0r, T ];R
d) →

C([k0r, T ];R
d) by

(Tφ)(t) := φ(0) +
1

Γ(α)

∫ k0r

0

(t− τ)α−1f(τ, ϕk0r(τ, φ), ϕk0r(τ − r, φ)) dτ

+
1

Γ(α)

∫ t

k0r

(t− τ)α−1f(τ, ξ(τ), ϕk0r(τ − r, φ)) dτ, ∀t ∈ [k0r, T ].
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Let βk0
be a positive number satisfying

βk0
> 2 max

t∈[k0r,T ]
L(t, ϕk0r(t− r, φ)).

By constructing a new metric dβk0
on C([k0r, T ];R

d) as

dβk0
(ξ, ξ̂) := sup

t∈[k0r,T ]

‖ξ(t)− ξ̂(t)‖

Eα(βk0
tα)

and repeating arguments as above, we can show that the operator Tφ has a
unique fixed point ξ∗ on [k0r, T ]. Define a function

ϕT (t, φ) :=

{

ϕk0r(t, φ), ∀t ∈ [−r, k0r],

ξ∗(t), ∀t ∈ [k0r, T ].

It is evident that ϕT (·, φ) is the unique solution of the problem (4)-(5) on the
interval [−r, T ].

Corollary 3.2 (Existence and uniqueness of global solutions to DFDEs on half
line). If the assumptions of Theorem 3.1 hold on the half line [−r,∞) then
the initial condition problem (2)-(3) has a unique global solution ϕ(·, φ) on the
infinite interval [−r,∞).

Proof. Suppose that the assumptions of the corollary are satisfied. Note that
if T1 > T2 > 0 are arbitrary two positive numbers. Then the assumptions of
Theorem 3.1 hold on both intervals [−r, T1] and [−r, T2] implying that we find
unique global solutions ϕ1 on [−r, T1] and ϕ2 on [−r, T2]. Due to uniqueness the
function ϕ1 coincides with the function ϕ2 on [−r, T2]. To complete the proof
we establish a new function ϕ(·, φ) on [−r,∞) as below

ϕ(t, φ) :=

{

φ(t), if t ∈ [−r, 0],

ϕt(t, φ), if t > 0,

where ϕt(·, φ) is the function defined as in the proof of Theorem 3.1. Then,
this function is the unique solution to the initial condition problem (2)-(3) on
[−r,∞).

Remark 3.3. Wang et al. [WCZW16, Theorem 3.2, p. 48] have proved a result
on the uniqueness of solutions to a DFDE like the problem (2)-(3) under the
Lipschitz assumption

‖f(t, x, y)− f(t, x̂, ŷ)‖ ≤ L(‖x− x̂‖+ ‖y − ŷ‖), ∀ t ∈ R≥0, ∀ x, y, x̂, ŷ ∈ R.

Their approach is based on the generalized Gronwall inequality, and the key
point in their proof is the inequality (18) of [WCZW16, p. 49]. They deduce
this inequality from the inequality (17) of [WCZW16, p. 49]. However, this
deduction is incorrect due to the fractional nature of the equations. Thus, the
proof of Wang et al. is incomplete.
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4 Exponential boundedness of solutions to delay

fractional differential equations

For the qualitative theory of DFDEs the study of growth rate of solutions is
of basic importance. In this section we show that solutions of DFDEs are
exponentially bounded.

Let φ ∈ C([−r, 0];Rd) be an arbitrary continuous function. We consider the
initial condition problem (2)-(3) on the semi real axis [−r,∞). A solution
ϕ(·, φ) of the initial condition problem (2)-(3) is called exponentially bounded if
there exist positive constants C and λ such that

‖ϕ(t, φ)‖ ≤ C exp (λt), ∀t ≥ 0.

The main result in this section is the following theorem on exponential bound-
edness of solutions of the initial condition problem (2)-(3).

Theorem 4.1 (Exponential boundedness of solutions to delay fractional dif-
ferential equations). Assume that f is continuous and satisfies the following
conditions:

(H1) there exists a positive constant L such that

‖f(t, x, y)− f(t, x̂, ŷ)‖ ≤ L(‖x− x̂‖+ ‖y− ŷ‖), ∀t ∈ R≥0, x, y, x̂, ŷ ∈ R
d;

(H2) there exists a constant β > 2L such that

sup
t≥0

∫ t

0
(t− τ)α−1‖f(τ, 0, 0)‖ dτ

Eα(βtα)
< ∞.

Then the global solution ϕ(·, φ) on the interval [−r,∞) of the initial condition
problem (2)-(3) is exponentially bounded. More precisely, there exists a constant
C > 0 such that

‖ϕ(t, φ)‖ ≤ CEα(βt
α), ∀t ≥ 0.

Proof. We denote by Cβ([0,∞);Rd) the set of all continuous functions ξ ∈
C([0,∞);Rd) satisfying the condition

‖ξ‖β := sup
t≥0

‖ξ(t)‖

Eα(βtα)
< ∞.

It is easily seen that ‖·‖β is a norm in Cβ([0,∞);Rd) and (Cβ([0,∞);Rd), ‖·‖β)
is a Banach space.
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For any φ ∈ C([−r, 0];Rd), we construct a operator Tφ on (Cβ([0,∞);Rd), ‖·‖β)
as follows:

(Tφξ)(t) := φ(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, ξ(τ), φ(τ − r)) dτ, ∀t ∈ [0, r],

(Tφξ)(t) := φ(0) +
1

Γ(α)

∫ r

0

(t− τ)α−1f(τ, ξ(τ), φ(τ − r)) dτ

+
1

Γ(α)

∫ t

r

(t− τ)α−1f(τ, ξ(τ), ξ(τ − r)) dτ, ∀t > r.

First we consider the case t ∈ (0, r]. In this case we have

‖(Tφξ)(t)‖ ≤ ‖φ(0)‖+
L

Γ(α)

∫ t

0

(t− τ)α−1
(

‖ξ(τ)‖

+ ‖φ(τ − r)‖
)

dτ +
1

Γ(α)

∫ t

0

(t− τ)α−1‖f(τ, 0, 0)‖ dτ

≤

(

1 +
Lrα

Γ(α+ 1)

)

‖φ‖∞ +
L

Γ(α)

∫ t

0

(t− τ)α−1Eα(βτ
α)

‖ξ(τ)‖

Eα(βτα)
dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1‖f(τ, 0, 0)‖ dτ,

where ‖φ‖∞ := sup−r≤s≤0 ‖φ(s)‖ < ∞. This implies that

sup
t∈[0,r]

‖(Tφξ)(t)‖

Eα(βtα)
≤

(

1 +
Lrα

Γ(α + 1)

)

‖φ‖∞ +
L

β
‖ξ‖β

+
1

Γ(α)
sup
t≥0

∫ t

0 (t− τ)α−1‖f(τ, 0, 0)‖ dτ

Eα(βtα)
< ∞.

Next, consider the case t ≥ r. In this case we have

‖(Tφξ)(t)‖ ≤ ‖φ(0)‖+
L‖φ‖∞
Γ(α)

∫ r

0

(t− τ)α−1 dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1‖f(τ, 0, 0)‖ dτ

+
L

Γ(α)

∫ t

0

(t− τ)α−1Eα(βτ
α)

‖ξ(τ)‖

Eα(βτα)
dτ

+
L

Γ(α)

∫ t

r

(t− τ)α−1‖ξ(τ − r)‖ dτ.

9



Hence,

‖(Tφξ)(t)‖ ≤ ‖φ‖∞

(

1 +
Ltα

Γ(α+ 1)

)

+
1

Γ(α)

∫ t

0

(t− τ)α−1‖f(τ, 0, 0)‖ dτ

+
L‖ξ‖β
Γ(α)

∫ t

0

(t− τ)α−1Eα(βτ
α) dτ

+
L

Γ(α)

∫ t

r

(t− τ)α−1Eα(β(τ − r)α)
‖ξ(τ − r)‖

Eα(β(τ − r)α)
dτ.

Since Eα(·) is a monotone increasing function on real line, this implies that

‖(Tφξ)(t)‖

Eα(βtα)
≤ ‖φ‖∞

(

1 + sup
t≥r

Ltα

Γ(α+ 1)Eα(βtα)

)

+ sup
t≥r

∫ t

0
(t− τ)α−1‖f(τ, 0, 0)‖ dτ

Γ(α)Eα(βtα)
+

2L

β
‖ξ‖β

< ∞, ∀t ≥ r.

To summarize, the following estimate is true

sup
t≥0

‖(Tφξ)(t)‖

Eα(βtα)
< ∞, ∀ξ ∈ (Cβ([0,∞);Rd), ‖ · ‖β).

Thus, Tφ((Cβ([0,∞);Rd), ‖ · ‖β)) ⊂ (Cβ([0,∞);Rd), ‖ · ‖β). We now show that

the operator Tφ is contractive on (Cβ([0,∞);Rd), ‖ · ‖β). Indeed, for any ξ, ξ̂ ∈
Cβ([0,∞);Rd), ‖ · ‖β), on [0, r] we have the estimate

‖Tφξ(t)− Tφξ̂(t)‖ ≤
L

Γ(α)

∫ t

0

(t− τ)α−1‖ξ(τ)− ξ̂(τ))‖ dτ

≤
L‖ξ − ξ̂‖β

Γ(α)

∫ t

0

(t− τ)α−1Eα(βτ
α) dτ, ∀t ∈ (0, r].

This implies that

sup
t∈[0,r]

‖Tφξ(t)− Tφξ̂(t)‖

Eα(βtα)
≤

L

β
‖ξ − ξ̂‖β. (8)

Furthermore, for all t ≥ r, we have

‖Tφξ(t)− Tφξ̂(t)‖ ≤
L

Γ(α)

∫ t

0

(t− τ)α−1‖ξ(τ) − ξ̂(τ))‖ dτ

+
L

Γ(α)

∫ t

r

(t− τ)α−1‖ξ(τ − r) − ξ̂(τ − r)‖ dτ.

By using the same arguments as above, we obtain

sup
t≥r

‖Tφξ(t)− Tφξ̂(t)‖

Eα(βtα)
≤

2L

β
‖ξ − ξ̂‖β (9)
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for all t ≥ r. Combining (8) and (9), we get

‖Tφξ − Tφξ̂‖β ≤
2L

β
‖ξ(τ) − ξ̂(τ)‖β

for all ξ, ξ̂ ∈ (Cβ([0,∞);Rd), ‖ · ‖β). Since 2L
β

< 1, according to the Banach
fixed point theorem, there exists a unique fixed point ξ∗ of Tφ in the space
(Cβ([0,∞);Rd), ‖ · ‖β). Put

ϕ(t, φ) :=

{

φ(t), ∀t ∈ [−r, 0],

ξ∗(t), ∀t ∈ [0,∞).

It is obvious that ϕ(·, φ) is the unique global solution of the initial condi-
tion problem (2)-(3) on the interval [−r,∞). From the definition of the space
(Cβ([0,∞);Rd), ‖ · ‖β), we can find a constant C > 0 such that

‖ϕ(t, φ)‖ = ‖ξ∗(t)‖ ≤ CEα(βt
α), ∀t ≥ 0.

Due to the asymptotic growth rate of the Mittag-Leffler function Eα(βt
α), the

solution ϕ(·, φ) is exponentially bounded. The proof is complete.

Remark 4.2. Wang et al. [WCZW16] stated a theorem on exponential bounded-
ness of solutions of delay fractional differential equations. In particular, they as-
serted that under the condition (H1), solutions of (2) are exponentially bounded
for any initial condition φ ∈ C([−r, 0];Rd) (see [WCZW16, Theorem 3.3, p. 49]).
However, their statement is false. For an easy counterexample let us consider
the equation

{

CDα
0+x(t) = exp(t2), t > 0,

x(t) = x0 ∈ R≥0 for t ∈ [−r, 0],
(10)

where the fractional order α ∈ (0, 1). In this case, the function exp(t2) satisfies
the condition (H1) above as well as the condition (H1) in the statement of
[WCZW16, Theorem 3.3, p. 49]. By Theorem 3.1, the equation (10) has a
unique global solution on [0,∞), which can be computed explicitly as

ϕ(t, x0) = x0 +
1

Γ(α)

∫ t

0

(t− τ)α−1 exp(τ2) dτ.

It is easily seen that the solution ϕ(·, x0) is not exponential bounded.
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