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Abstract In this paper we discuss some aspects where frames of subspaces
behave differently from frames. Several examples to make clearer the behaviour
of frames of subspaces are given. We also improve some results on g-frames.
Moreover, we extend the notion of redundancy to g-frames and show that most
of the desirable properties of lower and upper redundancies on frames and frames
of subspaces can carry over g-frames. We also study the relationship between
redundancy of g-frames and their dual g-frames, redundancy for infinite g-frames
and the excess of g-frames.

1 Introduction and Preliminaries

Frames were first introduced by Duffin and Schaeffer [11] in 1952 in the con-
text of nonharmonic Fourier series, and today frames play important roles in
many applications in mathematics, science, and engineering (see e.g., [7],[8], [9],
[10],[12],[14],[15]).

Besides traditional applications as signal processing, image processing, data
compression, and sampling theory, frames are now used to mitigate the effect
of losses in packet-based communication systems and hence to improve the ro-
bustness of data transmission [12] and to design high-rate constellations with
full diversity in multiple-antenna code design [14]. To handle these emerging
applications of frames, new methods have to developed. One method is to first
build frames locally and then piece them together to obtain frames for the whole
space. With this idea, in [5] Casazza and Kutyniok introduced the definition of a
frame of subspaces. It turns out that in many ways frames of subspaces behave
as a generalization of frames. However, there are some aspects where frames
of subspaces behave differently from frames. In this paper we discuss some of
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these aspects. We also provide several examples to make clearer the behaviour of
frames of subspaces.

In [19] Sun introduced the notion of g-frame which is a generalization of frame
and showed that this includes more other cases of generalizations of frame concept
and proved that many basic properties can be derived within this more general
context. In this paper we deal with the question that when we get a g-frame
after deleting an element from a given g-frame and present some improvements
in results on g-frames in [13].

In [4] the authors introduced a quantitative notion of redundancy for finite
frames which they called upper and lower redundancies, that match better with
an intuitive understanding of redundancy for finite frames in a Hilbert space.
In 2016, Rahimi et al., in [18] extended the concept of redundancy of frames
to frames of subspaces. In this article we extend the notion of redundancy to
g-frames and show that most of the desirable properties on frames and frames
of subspaces can carry over g-frames. In addition, we also study the relationship
between redundancy of g-frames and their dual g-frames, redundancy for infinite
g-frames and the excess of g-frames.

First we briefly recall the definitions and some basic properties of frames for
a Hilbert space. For more information we refer to the monograph of Daubechies
[10] or the book of Christensen [7].

Throughout this paper, let H be a separable Hilbert space if not otherwise
specified and I be a countable index set. A family {fi}i∈I is a frame for H, if
there exist 0 < A ≤ B <∞ such that for all f ∈ H,

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2. (1)

The numbers A,B are called lower and upper frame bounds, respectively (the
largest A and the smallest B for which (1) holds are the optimal frame bounds).
The family {fi}i∈I is called a tight frame if in (1) the constants A and B can be
chosen so that A = B, a Parseval frame if A = B = 1. We call a frame {fi}i∈I
uniform (or equal norm), if there exists a constant c such that ‖fi‖ = c for all
i ∈ I. A frame is exact if it ceases to be a frame whenever any element is deleted
from the sequence {fi}i∈I . We say that a frame {fi}i∈I is a Riesz frame, if every
subfamily of the sequence {fi}i∈I is a frame for its closed linear span with uniform
frame bounds A and B.

The frame operator SF (g) :=
∑

i∈I 〈g, fi〉 fi associated with a frame F =
{fi}i∈I is a bounded, invertible, and positive operator mapping H onto itself.
This provides the reconstruction formula

g =
∑
i∈I

〈g, fi〉 f̃i =
∑
i∈I

〈
g, f̃i

〉
fi,∀g ∈ H
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where f̃i = S−1
F (fi). The family {f̃i}i∈I is also a frame for H, called the canonical

dual frame of {fi}i∈I . A frame {gi}i∈I satisfying

g =
∑
i∈I

〈g, fi〉 gi =
∑
i∈I

〈g, gi〉 fi, ∀g ∈ H

is called an alternate dual frame of {fi}i∈I .
We say that a sequence {fi}i∈I in H is complete if the span of {fi}i∈I is dense

in H. We can check that if {fi}i∈I is a frame for H then it must be complete.

Theorem 1. [7] The removal of a vector from a frame leaves either a frame or
an incomplete set.

In [4], Bodmann, Casazza, Kutyniok gave the definition of redundancy func-
tion, the upper redundancy and the lower redundancy for a frame in a finite-
dimensional Hilbert space as follows.

We denote the unit sphere in a Hilbert space H by S = {x ∈ H : ‖x‖ = 1}.
Let < y > denote the span of some y ∈ H and π<y> the orthogonal projection
onto < y >.

Definition 1. [4] Let F = {fi}ki=1 be a frame for a finite-dimensional real or
complex Hilbert space H. For each f ∈ S, the redundancy function RF : S→ R+

is defined by

RF (f) =
k∑
i=1

‖π<fi>(f)‖2 =
∑
{i:fi 6=0}

‖fi‖−2 |〈f, fi〉|2.

The redundancy function measures the concentration of frame vectors around
each point.

Since the redundancy function RF is continuous on the unit sphere S which
is compact in the finite-dimensional space H, the function assumes its maximum
and its minimum on S.

Definition 2. [4] Let F = {fi}ki=1 be a frame for a finite-dimensional real or
complex Hilbert space H. The upper redundancy of F is defined by

R+
F = max

f∈S
RF (f)

and the lower redundancy of F by

R−F = min
f∈S

RF (f).

Moreover, F has a uniform redundancy if R−F = R+
F .

3



The upper and lower redundancies obtained from the redundancy function
satisfy all of desirable properties (see [4]).

Now we briefly recall the definition of frames of subspaces (another name of
frame of subspaces also used in literature is fusion frame). For more information
we refer to the papers by Asgari and Khosravi [2], Casazza and Kutyniok [5],
Casazza, Kutyniok, and Li [6].

Let {Wi}i∈I be a family of closed subspaces of H and {vi}i∈I be a family of
weights, i.e., vi > 0 for all i ∈ I. Then {Wi}i∈I is called a frame of subspaces
with respect to {vi}i∈I for H if there exist constants 0 < A ≤ B < ∞ such that
for all f ∈ H,

A‖f‖2 ≤
∑
i∈I

v2
i ‖πWi

(f)‖2 ≤ B‖f‖2. (2)

where πWi
is the orthogonal projection onto the subspace Wi. The numbers A,B

are called lower and upper frame bounds for the frame of subspaces, respectively
(the largest A and the smallest B for which (2) holds are the optimal frame
bounds). The family {Wi}i∈I is called a A-tight frame of subspaces with respect
to {vi}i∈I if in (2) the constants A and B can be chosen so that A = B, a Parseval
frame of subspaces with respect to {vi}i∈I provided that A = B = 1. We call a
frame of subspaces with respect to {vi}i∈I v-uniform, if v = vi = vj for all i, j ∈ I.
Moreover, we say that a frame of subspaces {Wi}i∈I is a Riesz frame of subspaces
with respect to {vi}i∈I , if there exist constants A,B > 0 so that every subfamily
{Wi}i∈J with J ⊂ I is a frame of subspaces with respect to {vi}i∈J for its closed
linear span with uniform frame bounds A and B.

A family of subspaces {Wi}i∈I for H is called complete if span {Wi}i∈I = H.
To check completeness of a frame of subspaces, we have the following useful

characterization.

Lemma 1. [5] Let {Wi}i∈I be a family of subspaces with respect to {vi}i∈I for
H and for each i ∈ I let {eij}j∈Ji be an orthonormal basis for Wi. Then the
following conditions are equivalent.

(1) {Wi}i∈I is complete.
(2) {eij}i∈I,j∈Ji is complete in H.

In 2016, Rahimi, Zandi, and Daraby [18] introduced the notion of redundancy
of frames of subspaces. Many results on redundancy of frames remain true in the
context of frames of subspaces.

Definition 3. [18] Let W = {Wi}ki=1 be a frame of subspaces with respect to
{vi}ki=1 for a finite-dimensional Hilbert space H . For each f ∈ S, the redundancy

function RW : S→ R+ is defined by RW (f) =
k∑
i=1

‖PWi
(f)‖2.
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This notion is reminiscent of the definition of redundancy function for finite
frames if dim Wi = 1 for all i.

Definition 4. [18] For the frame of subspaces W = {Wi}ki=1 with respect to
{vi}ki=1 for a finite-dimensional Hilbert space H, the upper redundancy is defined
by

R+
W = max

f∈S
RW (f)

and the lower redundancy of W by

R+
W = min

f∈S
RW (f).

We say W has a uniform redundancy if R−W = R+
W .

Definition 5. [5] We call a frame of subspaces {Wi}i∈I with respect to {vi}i∈I
for H a Riesz decomposition of H, if every f ∈ H has a unique representation
f =

∑
i∈I
fi, fi ∈ Wi.

Now we give a short review of g-frames. For more information we refer to
the papers [1, 13, 16, 17, 19]. Let H and K be two separable Hilbert spaces and
{Wi}i∈I be a sequence of closed subspaces of K and L(H,Wi) be the collection
of all bounded linear operators from H into Wi.

We call Λ = {Λi}i∈I , where Λi ∈ L(H,Wi), a generalized frame, or simply a
g-frame, for H with respect to {Wi}i∈I if there are two positive constants A and
B such that for all f ∈ H,

A‖f‖2 ≤
∑
i∈I

‖Λi(f)‖2 ≤ B‖f‖2. (3)

We call {Λi}i∈I a tight g-frame if in (3) the constants A and B can be chosen so
that A = B, a Parseval g-frame provided that A = B = 1. We call {Λi}i∈I an
exact g-frame if it ceases to be a g-frame whenever any element is deleted from
the sequence. We call this family a g-frame for H with respect to W whenever
Wi = W for all i ∈ I. A family {Λi}i∈I ,Λi ∈ L(H,Wi) is called g-complete, if
{f ∈ H : Λi(f) = 0, ∀i ∈ I} = {0}. If {Λi}i∈I is g-complete and there are positive
constants A and B such that for any finite subset I1 ⊂ I and gi ∈ Wi, i ∈ I1,

A
∑
i∈I1

‖gi‖2 ≤
∑
i∈I1

‖Λ∗i gi‖
2 ≤ B

∑
i∈I1

‖gi‖2,

then we say {Λi}i∈I is a g-Riesz basis for H with respect to {Wi}i∈I .
We say that two g-frames Λ = {Λi}i∈I , Λi ∈ L(H,Wi) and Φ = {Φi}i∈I ,

Φi ∈ L(K,Wi) are similar if there is a bounded invertible operator U : H → K
so that Λi = ΦiU for all i ∈ I.

In this paper, we call g-frame {Λi}i∈I equal norm if there is a constant c > 0
such that ‖Λi‖ = c for all i ∈ I and unit norm if c = 1.
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Proposition 1. [17] A family {Λi}i∈I ,Λi ∈ L(H,Wi) is a g-complete if and only
if

span{Λ∗i (Hi)}i∈I = H.

Definition 6. [19] We say that {Λi}i∈I is a g-orthonormal basis for H with
respect to {Wi}i∈I if it satisfies the following conditions:

1)
〈
Λ∗i1gi1 ,Λ

∗
i2
gi2
〉

= δi1,i2 〈gi1 , gi2〉 , ∀i1, i2 ∈ I, gi1 ∈ Wi1 , gi2 ∈ Wi2 ,
where Λ∗i is the adjoint operator of Λi.
2)
∑
i∈I
‖Λif‖2 = ‖f‖2.

Let Λ = {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I . Sun [19] defined
the g-frame operator SΛ associated with Λ as follows:

SΛ(f) =
∑
i∈I

Λ∗iΛi(f).

Similarly to the frame operator, the g-frame operator is a bounded, invertible,
and positive operator mapping H onto itself. In particular, when {Λi}i∈I is a
Parseval g-frame, the g-frame operator is the identity operator of H.

Let Λ̃i = ΛiS
−1. Then we also have the reconstruction formula

f =
∑
i∈I

Λ∗i Λ̃if =
∑
i∈I

Λ̃∗iΛif.

and {Λ̃i}i∈I is also a g-frame for H with respect to {Wi}i∈I . {Λ̃i}i∈I is called the
canonical dual g-frame of {Λi}i∈I .

Similarly to frames, a g-frame which is not a g-Riesz basis has an alternate
dual g-frame which is different from its canonical dual (see [1]).

Definition 7. [1] Let Λ = {Λi}i∈I and Φ = {Φi}i∈I be two g-frames of H with
respect to {Wi}i∈I such that f =

∑
i∈I Λ∗iΦi(f) =

∑
i∈I Φ∗iΛi(f) for all f ∈ H.

Then Φ is called an alternate dual of Λ.

For each sequence {Wi}i∈I , we define the space

(∑
i∈I
⊕Wi

)
l2

by

(∑
i∈I

⊕Wi

)
l2

=

{
{fi}i∈I : fi ∈ Wi and

∑
i∈I

‖fi‖2 < +∞
}
,

with the inner product defined by 〈{fi}i∈I , {gi}i∈I〉 =
∑
i∈I
〈fi, gi〉. Then

(∑
i∈I
⊕Wi

)
l2

is a Hilbert space with pointwise operators.
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The analysis operator for Λ = {Λi}i∈I is the operator

TΛ : H →

(∑
i∈I

⊕Wi

)
l2

defined by TΛ(f) = {Λi(f)}i∈I . The following Propositions show similar results
in frame theory can be extended to g-frames.

Proposition 2. [1] Let Λ = {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I .
Then Λ̃ is the canonical dual of Λ if and only if ‖TΛ̃(f)‖ ≤ ‖TΦ(f)‖ for all f ∈ H
and for each alternate dual g-frame Φ of Λ.

Proposition 3. [1]Let Λ = {Λi}i∈I , Φ = {Φi}i∈I be g-frames for H with respect
to {Wi}i∈I . Λ and Φ are similar if and only if their analysis operators have the
same ranges.

In [19], Sun gave a characterization of g-frames and g-orthonormal bases as
follows.

Theorem 2. [19] Let Λi ∈ L(H,Wi), i ∈ I and {ei,j}j∈Ji is an orthonormal
basis for Wi where Ji is a subset of N, i ∈ I. Set ui,j = Λ∗i ei,j, i ∈ I, j ∈ Ji.
Then {Λi}i∈I is a g-frame (respectively g-orthonormal basis) for H with respect
to {Wi}i∈I if and only if {ui,j}i∈I,j∈Ji is a frame (respectively orthonormal basis)
for H.

2 Frames of subspaces

We start with the question whether Theorem 1 is still valid for frames of sub-
spaces? The answer is No. We consider the following examples.

Example 1. Let H be a Hilbert space with an orthonormal basis {ei}∞i=1. We
define

W0 := span{e2i}∞i=1, v0 = 1.

For even number i , Wi := span{ei}, vi =
1

i
.

For odd number i , Wi := span{ei}, vi = 1.
Then {Wi}∞i=0 is a frame of subspaces with respect to the above sequence of
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weights. Indeed, for all f ∈ H, we compute

∞∑
i=0

v2
i ‖πWi

(f)‖2
=

∞∑
i=1

|〈f, e2i〉|2 +
∞∑
i=1

|〈f, e2i〉|2
1

(2i)2
+
∞∑
i=0

|〈f, e2i+1〉|2

= ‖f‖2 +
∞∑
i=1

|〈f, e2i〉|2
1

(2i)2

≤ ‖f‖2 +
∞∑
i=1

|〈f, e2i〉|2

≤ 2 ‖f‖2 .

Therefore, ‖f‖2 ≤
∞∑
i=0

v2
i ‖πWi

(f)‖2 ≤ 2 ‖f‖2 and {Wi}∞i=0 is a frame of subspaces

with respect to the above sequence of weights.
However, {Wi}∞i=1 is complete but it is not a frame of subspaces with respect

to {vi}∞i=1. Indeed, for all f ∈ H, we have

∞∑
i=1

v2
i ‖πWi

(f)‖2
=
∞∑
i=1

|〈f, e2i〉|2
1

(2i)2
+
∞∑
i=0

|〈f, e2i+1〉|2 .

Choose f = e2l. Then
∞∑
i=1

v2
i ‖πWi

(f)‖2
=

1

(2l)2
which converges to 0 as l→∞.

In the above example, there is a subsequence (vi =
1

i
for even number i) of the

sequence of the weights converging to 0 as i → ∞ and it seems very important
to make the lower condition of the definition of frame of subspaces fail. One
question is that whether there is another example in which no subsequence of the
sequence of the weights converges to 0?

Example 2. Let H be a Hilbert space with an orthonormal basis {ei}∞i=1. We
define

W 1
i = span{e2i +

1

i
e2i+1}, i = 1, 2, 3, ...

W 2
i = span{e2i}, i = 1, 2, 3, ...

W 3 = span{e1}
W 4 = span{e2i+1}∞i=1.

Then the family {W 1
i }∞i=1, {W 2

i }∞i=1,W
3,W 4 forms a frame of subspaces for H

with
respect to vi = 1 for all i. Indeed,
∞∑
i=1

∥∥∥πW 1
i
(f)
∥∥∥2

+
∞∑
i=1

∥∥∥πW 2
i
(f)
∥∥∥2

+ ‖πW 3(f)‖2 + ‖πW 4(f)‖2

8



=
∞∑
i=1

∣∣∣∣〈f, e2i +
1

i
e2i+1

〉∣∣∣∣2
1 +

1

i2

+
∞∑
i=1

|〈f, e2i〉|2 +
∞∑
i=0

|〈f, e2i+1〉|2

=
∞∑
i=1

∣∣∣∣〈f, e2i +
1

i
e2i+1

〉∣∣∣∣2
1 +

1

i2

+ ‖f‖2

≤
∞∑
i=1

∣∣∣∣〈f, e2i〉+
1

i
〈f, e2i+1〉

∣∣∣∣2 + ‖f‖2

≤ 2(
∞∑
i=1

|〈f, e2i〉|2 +
1

i2
|〈f, e2i+1〉|2) + ‖f‖2

≤ 2(
∞∑
i=1

|〈f, e2i〉|2 + |〈f, e2i+1〉|2) + ‖f‖2

≤ 3 ‖f‖2 .
On the other hand,

∞∑
i=1

∣∣∣∣〈f, e2i +
1

i
e2i+1

〉∣∣∣∣2
1 +

1

i2

+ ‖f‖2 ≥ ‖f‖2 .

Therefore, the above family is a frame of subspaces for H.
However, the family {W 1

i }∞i=1, {W 2
i }∞i=1,W

3 is complete but it is not a frame
of subspaces for H with respect to vi = 1 for all i. Indeed, by using Lemma 1,
we can check that span{{W 1

i }∞i=1, {W 2
i }∞i=1,W

3} = H. Towards a contradiction
assume that there is a constant A > 0 such that

A ‖f‖2 ≤
∞∑
i=1

∥∥∥πW 1
i
(f)
∥∥∥2

+
∞∑
i=1

∥∥∥πW 2
i
(f)
∥∥∥2

+ ‖πW 3(f)‖2 , ∀f ∈ H.

Then A ‖f‖2 ≤
∞∑
i=1

∣∣∣∣〈f, e2i +
1

i
e2i+1

〉∣∣∣∣2
1 +

1

i2

+
∞∑
i=1

|〈f, e2i〉|2+|〈f, e1〉|2 for all f ∈ H.

Choosef = e2k+1, k ≥ 1. Then A ≤ 1

k2 + 1
→ 0 as k → ∞. We have a

contradiction.

Now we consider a problem relating to Riesz frames of subspaces. Suppose
that {Wi}i∈I is a Riesz frame of subspaces with respect to {vi}i∈I for H and
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{fij}i∈I,j∈Ji is a Riesz frame for Wi with Riesz frame bounds A and B for all
i ∈ I. We may ask whether {vifij}i∈I,j∈Ji is a Riesz frame for H. The following
example shows that this is not always the case.

Example 3. Let H be a Hilbert space with an orthonormal basis {ei}∞i=1. We
define Wi = span{ei, ei+1}, i = 1, 2, 3, ... Then {Wi}∞i=1 is a Riesz frame of sub-
spaces with respect to {vi} with vi = 1 for all i with Riesz frame bounds 1 and
2. For each i, {ei + ei+1, ei+1} is a Riesz frame for Wi and we can choose the
same Riesz frame bounds A and B for all i. But {ei + ei+1, ei+1}∞i=1 is not a Riesz
frame for H because {ei + ei+1}∞i=1 is not a frame for its closed linear span (By
Example 5.4.6 in [7], the sequence {ei + ei+1}∞i=1 is a complete sequence of H but
it is not a frame for H).

Remark 1. If {Wi}i∈I is a frame of subspaces with respect to {vi}i∈I for H and

for each i, W̃i is a closed subspace of Wi then it is not necessary that {W̃i}i∈I is
a frame of subspaces for its closed linear span with the same sequence of weights.
For example, let H be a Hilbert space with an orthonormal basis {ei}∞i=1 and

W 1
i := span{e2i +

1

i
e2i+1, e2i+1}, i = 1, 2, 3, ...

W 2
i := span{e2i}, i = 1, 2, 3, ...

W 3 := span{e1}.

W̃ 1
i := span{e2i+

1

i
e2i+1}, i = 1, 2, 3, ... Then the family {W 1

i }∞i=1, {W 2
i }∞i=1,W

3

forms a frame of subspaces forH with respect to vi = 1 for all i and span
i∈N
{W̃ 1

i ,W
2
i ,W

3} =

H. However, we can see as in Example 2, that {W̃ 1
i }∞i=1, {W 2

i }∞i=1,W
3 does not

form a frame of subspaces for H with respect to the above sequence of weights.

Let W = {Wi}ki=1 be a Riesz decomposition of H. We may ask if the re-
dundancy of W is equal to 1. The answer is No. We consider the following
example.

Example 4. Let H = R2, e1 = (0, 1)T , e2 = (1, 1)T , W1 = span{e1},W2 =
span{e2}, v1 = v2 = 1. Then W = {Wi}2

i=1 is a Riesz decomposition of H and

RW (f) = ‖PW1(f)‖2 + ‖PW2(f)‖2 = |〈f, e1〉|2 +
|〈f, e2〉|2

2
. It is not hard to see

that R−W =
1

2
and R+

W = 1.

3 G-frames

In [19] Sun introduced the notion of g-frames and proved that g-frames share
many useful properties with frames. However not all the properties are similar.
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Sun gave an example to show that Theorem 1 is not valid for g-frames and also
gave the following theorem.

Theorem 3. [19] Let {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I and
{Λ̃i}i∈I be the canonical dual g-frame. Suppose that i0 ∈ I.

1) If there is some g0 ∈ Wi0\{0} such that Λ̃i0Λ
∗
i0
g0 = g0 then {Λi}i∈I\i0 is

not g-complete in H.
2) If there is some f0 ∈ H\{0} such that Λ∗i0Λ̃i0f0 = f0 then {Λi}i∈I\i0 is not

g-complete in H.
3) If IWi0

−Λi0Λ̃
∗
i0

or IWi0
−Λ̃i0Λ

∗
i0

is bounded invertible on Wi0 then {Λi}i∈I\i0
is a g-frame for H.

From this theorem we get the following corollary.

Corollary 1. Suppose {Λi}i∈I is a g-frame for H with respect to {Wi}i∈I and
{Λ̃i}i∈I is its canonical dual g-frame. If {Λi}i∈I\i0 is a g-frame for H then

Ker(IH − Λ̃∗i0Λi0) = {0}.

Proof. Suppose that there is f0 ∈ H\{0} such that Λ̃∗i0Λi0(f0) = f0. By Theorem

3 part 2, {Λ̃i}i∈I\i0 is not g-complete in H. By definition, there is g0 ∈ H\{0}
such that Λ̃i(g0) = 0 for all i ∈ I\i0. Since for each i ∈ I, Λ̃i = ΛiS

−1
Λ , where

SΛ is the g-frame operator for {Λi}i∈I , we have ΛiS
−1
Λ (g0) = 0 for all i ∈ I\i0.

Since {Λi}i∈I\i0 is a g-frame for H, it follows that {Λi}i∈I\i0 is g-complete. Hence
S−1

Λ (g0) = 0. So g0 = 0 and we have a contradiction.

In 2015, Guo [13] received the following Lemma, which is an improvement of
Sun’s result.

Lemma 2. [13] Suppose {Λi}i∈I is a g-frame for H with respect to {Wi}i∈I and
{Λ̃i}i∈I is its canonical dual g-frame.

1) If Ker(IWi0
− Λ̃i0Λ

∗
i0

) 6= {0} or Ran(IWi0
− Λ̃i0Λ

∗
i0

) 6= Wi0 then {Λi}i∈I\i0 is
not g-complete in H.

2) If IWi0
−Λi0Λ̃

∗
i0

is surjective or IWi0
− Λ̃i0Λ

∗
i0

is surjective then {Λi}i∈I\i0 is
a g-frame for H.

From this lemma we get the following corollary.

Corollary 2. Suppose {Λi}i∈I is a g-frame for H with respect to {Wi}i∈I and
{Λ̃i}i∈I is its canonical dual g-frame. If {Λi}i∈I\i0 is a g-frame for H then

Ker(IWi0
− Λi0Λ̃

∗
i0

) = {0}.

Proof. Suppose that Ker(IWi0
− Λi0Λ̃

∗
i0

) 6= {0}. Since Ker(IWi0
− Λi0Λ̃

∗
i0

) =

Ran(IWi0
− Λ̃i0Λ

∗
i0

)⊥, it follows that Ran(IWi0
− Λ̃i0Λ

∗
i0

) 6= Wi0 . By Lemma 2
part 1, {Λi}i∈I\i0 is not g-complete in H. Thus {Λi}i∈I\i0 is not a g-frame for
H.
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When {Λi}i∈I is a Parseval g-frame for H with respect to {Wi}i∈I , we get the
following Propositions which are improvements of Lemma 2.13 in [13].

Proposition 4. Suppose that Λ = {Λi}i∈I is a Parseval g-frame for H with
respect to {Wi}i∈I and Ker(IH −Λ∗i0Λi0) = {0} and dim H <∞. Then {Λi}i∈I\i0
is a g-frame for H with respect to {Wi}i∈I\i0.

Proof. Since {Λi}i∈I is a Parseval g-frame, the g-frame operator SΛ is the identity
operator,

∑
i∈I

Λ∗iΛi = IH . Thus for all f ∈ H, we have

〈
Λ∗i0Λi0(f), f

〉
= 〈f, f〉 −

∑
i∈I\i0

〈Λ∗iΛif, f〉 ≤ 〈f, f〉 .

So
∥∥Λ∗i0Λi0

∥∥ = sup
‖f‖=1

〈
Λ∗i0Λi0f, f

〉
≤ 1. Since the unit sphere {f ∈ H : ‖f‖ = 1} is

compact, there is f0 ∈ H, ‖f0‖ = 1 such that sup
‖f‖=1

〈
Λ∗i0Λi0f, f

〉
=
〈
Λ∗i0Λi0f0, f0

〉
.

If
∥∥Λ∗i0Λi0

∥∥ = 1 then 1 =
〈
Λ∗i0Λi0f0, f0

〉
= ‖Λi0f0‖2. Therefore,

0 ≤
〈
f0 − Λ∗i0Λi0f0, f0 − Λ∗i0Λi0f0

〉
=
∥∥Λ∗i0Λi0f0

∥∥2 − 1 ≤
∥∥Λ∗i0Λi0

∥∥2 ‖f0‖2 − 1 = 0.

So f0 = Λ∗i0Λi0f0. Hence, Ker(IH − Λ∗i0Λi0) 6= {0}. Thus,
∥∥Λ∗i0Λi0

∥∥ < 1. Because∥∥Λi0Λ
∗
i0

∥∥ = ‖Λi0‖
2 =

∥∥Λ∗i0
∥∥2

=
∥∥Λ∗i0Λi0

∥∥, we get
∥∥Λi0Λ

∗
i0

∥∥ < 1 and I − Λi0Λ
∗
i0

is

invertible. Since Λ̃i0 = Λi0 , it follows that I −Λi0Λ̃
∗
i0

is invertible. By Theorem 3
part 3, {Λi}i∈I\i0 is a g-frame for H.

One natural question is that if H is an infinite-dimensional space then whether
Proposition 4 remains valid. The answer is No. Let us consider the following
example.

Example 5. Let H be a Hilbert space with an orthonormal basis {ei}∞i=1 and
consider W0 := l2(N) and Λ0 : H → l2(N) defined by

Λ0(f) :=

{〈
f,

e2√
2

〉
,

〈
f,

e3√
3

〉
,

〈
f,

e3√
3

〉
,

〈
f,

e4√
4

〉
,

〈
f,

e4√
4

〉
,

〈
f,

e4√
4

〉
, ...

}

where each vector

〈
f,

ei√
i

〉
is repeated i− 1 times.

Let Wi := C for each i ∈ N and Λi : H → C be defined by Λi(f) :=

〈
f,

ei√
i

〉
for each i ∈ N. We can check that the operators Λi, i = 0, 1, 2, ..., are linear
bounded and

∞∑
i=0

‖Λi(f)‖2 =
∞∑
i=0

|〈f, ei〉|2 = ‖f‖2 .

12



Therefore, {Λi}∞i=0 is a Parseval g-frame for H.

Suppose that f − Λ∗0Λ0(f) = 0. Then f −
∞∑
i=2

(i− 1)

〈
f,

ei√
i

〉
ei√
i

= 0. So

f ∈ span{ei}∞i=2. Thus, f =
∞∑
i=2

〈f, ei〉 ei =
∞∑
i=2

i− 1

i
〈f, ei〉 ei. Therefore, 〈f, ei〉 =

i− 1

i
〈f, ei〉 for all i = 2, 3, 4.... So 〈f, ei〉 = 0 for all i = 2, 3, 4.... Hence, f = 0.

Thus Ker(I − Λ∗i0Λi0) = {0}.
However, {Λi}∞i=1 is not a g-frame for H with respect to C. Indeed,

∞∑
i=1

‖Λi(f)‖2 =
∞∑
i=1

∣∣∣∣〈f, ei√i
〉∣∣∣∣2 =

∞∑
i=1

1

i
|〈f, ei〉|2.

Choose f = ek. Therefore,
∞∑
i=1

‖Λi(ek)‖2 =
1

k
→ 0.

Proposition 5. Suppose that {Λi}i∈I is a Parseval g-frame for H and IH−Λ∗i0Λi0

is surjective from H onto H. Then {Λi}i∈I\i0 is a g-frame for H.

Proof. Since
∑
i∈I

Λ∗iΛi = IH , it follows that
∑

i∈I\i0
Λ∗iΛi = IH − Λ∗i0Λi0 which is the

g-frame operator associated with {Λi}i∈I\i0 . By Proposition 2.7 in [17], {Λi}i∈I\i0
is a g-frame for H.

4 Redundancy of g-frames

4.1 Redundancy of finite g-frames

Now we introduce the notion of redundancy of g-frames. First we present the
definition of the redundancy function.

Definition 8. Let Λ = {Λi}ki=1 be a g-frame for a finite-dimensional real or
complex Hilbert spaceH with respect to {Wi}ki=1. For each f ∈ S, the redundancy
function RΛ : S→ R+ is defined by

RΛ(f) :=
∑
{i:Λi 6=0}

‖Λi(f)‖2

‖Λi‖2

We note that in the special case, when Λi(f) = 〈f, fi〉 for all i = 1, 2, 3, ..., k
then the definition of the redundancy function RΛ of g-frame is precisely the
definition of the redundancy function RF of frame F = {fi}ki=1.

Since the redundancy function RΛ is continuous on the unit sphere S which
is compact in the finite-dimensional space H, the function attains its maximum
and its minimum on S.

13



Lemma 3. If Λ = {Λi}ki=1 is a g-frames for a finite-dimensional real or complex
Hilbert space H with respect to {Wi}ki=1 then the redundancy function RΛ attains
its maximum and its minimum on the unit sphere in H.

Definition 9. Let Λ = {Λi}ki=1 be a g-frame for a finite-dimensional real or
complex Hilbert space H with respect to {Wi}ki=1. The upper redundancy of Λ
is defined by

R+
Λ = max

f∈S
RΛ(f),

and the lower redundancy of Λ by

R−Λ := min
f∈S

RΛ(f).

Moreover, Λ has a uniform redundancy if R−Λ = R+
Λ .

When Λ is an equal norm g-frame, the upper and the lower redundancies are
computed from the frame bounds.

Lemma 4. Let Λ = {Λi}ki=1 be an equal norm g-frame for a finite-dimensional
real or complex Hilbert space H with respect to {Wi}ki=1 with g-frame bounds A

and B. Suppose ‖Λi‖2 = c 6= 0 for all i = 1, 2, 3, ..., k. Then R−Λ =
A

c
and

R+
Λ =

B

c
.

Proof. It follows immediately from the definition of g-frame and the definition of
the upper and lower redundancies of g-frame.

Theorem 4. Let Λ = {Λi}ki=1 be a g-frame for a finite-dimensional real or com-
plex Hilbert space H with respect to {Wi}ki=1 with lower and upper g-frame bounds
A and B, respectively. Then the following statements hold:

(1) 0 < R−Λ ≤ R+
Λ <∞.

(2) The unit norm g-frame Λ is an A-tight if and only if R−Λ = R+
Λ = A.

(3) Additivity. For each orthonormal basis E = {Θj}lj=1 for H with respect to
{Hj}lj=1,

R±Λ∪E = R±Λ + 1.

Moreover, for each g-frame Φ = {Φj}lj=1 for H with respect to {Hj}lj=1, we
have

R−Λ∪Φ ≥ R−Λ + R−Φ, R+
Λ∪Φ ≤ R+

Λ + R+
Φ.

In particular, if Λ and Φ have uniform redundancy then

R−Λ∪Φ = RΦ + RΛ = R+
Λ∪Φ.
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(4) Invariance. Redundancy is invariant under application of a unitary operator
U on H, i.e.,

R±ΛU = R±Λ ,

where ΛU := {ΛiU}ki=1.

Redundancy is invariant under scaling, i.e.,

R±{ciΛi}ki=1
= R±Λ ,

and under permutations, i.e.,

R±Λσ = R±Λ ,

where Λσ := {Λσ(i)} where σ is a permutation of {1, 2, 3, ..., k}.

Proof. (1) It is obvious that R−Λ ≤ R+
Λ . By Lemma 3, RΛ attains its minimum at

some f0 ∈ S and its maximum at some f1 ∈ S. So f0 6= 0 and

R−Λ = RΛ(f0) =
∑
{i:Λi 6=0}

‖Λi(f0)‖2

‖Λi‖2 .

Since 0 <
A ‖f0‖2

max
i=1,2,...,k

{‖Λi‖2}
≤

∑
{i:Λi 6=0}

‖Λi(f0)‖2

‖Λi‖2 , it follows that R−Λ > 0. We have

R+
Λ = RΛ(f1) =

∑
{i:Λi 6=0}

‖Λi(f1)‖2

‖Λi‖2 <∞.

(2) If the unit norm g-frame Λ is an A-tight then by Lemma 4, R±Λ = A.
Conversely, assume that R±Λ = A. Then RΛ(f) = A for all f ∈ S. Therefore

A =
k∑
i=1

‖Λi(f)‖2

‖Λi‖2 =
k∑
i=1

‖Λi(f)‖2.

Hence, Λ is a tight g-frame with the frame bound A.
(3) By definition, for f ∈ S,

RΛ∪E(f) =
∑
{i:Λi 6=0}

‖Λi(f)‖2

‖Λi‖2 +
∑

{j:Θj 6=0}

‖Θj(f)‖2

‖Θj‖2 = RΛ(f) + ‖f‖2 .

Thus,
R±Λ∪E = R±Λ + 1.
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Moreover,

R−Λ∪Φ = min
f∈S

RΛ∪Φ(f)

≥ min
f∈S

∑
{i:Λi 6=0}

‖Λi(f)‖2

‖Λi‖2 + min
f∈S

∑
{j:Φj 6=0}

‖Φj(f)‖2

‖Φj‖2

= R−Λ + R−Φ.

Similarly, R+
Λ∪Φ ≤ R+

Λ + R+
Φ.

In particular, suppose Λ and Φ have uniform redundancy. On the one hand,

R−Λ∪Φ ≥ R−Λ + R−Φ = R+
Λ + R+

Φ ≥ R+
Λ∪Φ.

On the other hand, R−Λ∪Φ ≤ R+
Λ∪Φ. So the statement follows.

(4) Let Θi = ΛiU and Θ = {Θi}ki=1. Then for f ∈ S,

RΘ(f) =
∑

{i:ΛiU 6=0}

‖ΛiU(f)‖2

‖ΛiU‖2 =
∑

{i:ΛiU 6=0}

‖Λiy‖2

‖ΛiU‖2

where y = U(f). Since ‖y‖ = 1 and ‖ΛiU‖ = supf∈S ‖ΛiU(f)‖ = supy∈S ‖Λiy‖ =
‖Λi‖, it follows that RΘ(f) = RΛ(y). Hence, R±ΛU = R±Λ .

For f ∈ S,

R{ciΛi}ki=1
(f) =

∑
{i:Λi 6=0}

‖ciΛi(f)‖2

‖ciΛi‖2 =
∑
{i:Λi 6=0}

‖Λi(f)‖2

‖Λi‖2 = RΛ(f).

Therefore,
R±{ciΛi}ki=1

= R±Λ .

It is obvious that redundancy is invariant under permutations.

Corollary 3. If Λ = {Λi}i∈I is a g-orthonormal basis for H then R±Λ = 1 and
‖Λi‖ = 1 for all i.

Proof. By definition of g-orthonormal basis, Λ∗i is isometric for every i. So ‖Λ∗i ‖ =
1 for every i. Hence ‖Λi‖ = 1 for every i. Therefore, by Theorem 4 part (2) we
get R±Λ = 1.

A natural question is that whether the converse statement is true. The answer
is No. Let us consider the following example.
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Example 6. Let H be a separable Hilbert space with an orthonormal basis
{ei}∞i=1. Put Wi = span{ei, ei+1} for every i ∈ N. For each i ∈ N we define a
bounded linear operator Λi : H → Wi as follows: Λi(f) = 〈f, ei〉 ei for all f ∈ H.

We can check that
∞∑
i=1

‖Λi(f)‖2 = ‖f‖2 for all f ∈ H. We have

‖Λi‖ = sup
‖f‖=1

‖Λi(f)‖ = sup
‖f‖=1

|〈f, ei〉| ≤ 1.

Choose f = ei. Then |〈f, ei〉| = 1. Thus, ‖Λi‖ = 1. Hence, R±Λ = 1.
Suppose that gi = ciei + ci+1ei+1 ∈ Hi. Then

〈Λ∗i gi, f〉 = 〈gi,Λi(f)〉 = 〈ciei + ci+1ei+1, 〈f, ei〉 ei〉 = 〈ciei, f〉 ,∀f ∈ H.

So Λ∗i gi = ciei. Thus, ui1 := Λ∗i ei = ei, ui2 := Λ∗i ei+1 = 0 for all i ∈ N. Since
{uij}i∈N,j∈{1,2} is a Parseval frame for H but it is not an orthonormal basis for H.
By Theorem 2, {Λi}i∈N is not a g-orthonormal basis.

Lemma 5. Let G be the set of g-frames for a finite-dimensional real or complex
Hilbert space H. Then the relation ∼ on G defined by

Λ ∼ Φ⇔ RΛ = RΦ

is an equivalent relation on G.

Proof. The proof is obvious.

For a g-frames Λ = {Λi}ki=1 in H, we denote S̃Λ =
∑

{i:Λi 6=0}

Λ∗iΛi

‖Λi‖2 . We denote

the associated quadratic form by QΛ(f) =
〈
S̃Λ(f), f

〉
and note that QΛ extend

RΛ to all f ∈ H.
By using the same arguments as in the proof of Corollary 3.3 in [4] we can

prove the following corollary.

Corollary 4. If Φ,Λ are two g-frames for a finite-dimensional real or complex
Hilbert space H then the following statements are equivalent:

(1) RΛ = RΦ on S.
(2) S̃Λ = S̃Φ on H.

Proposition 6. Let Λ = {Λi}ki=1 be a g-frame for a finite-dimensional real or
complex Hilbert space H and T be an invertible operator on H. Then

(k(T ))−2R±Λ ≤ R±ΛT ≤ (k(T ))2R±Λ ,

where ΛT := {ΛiT}ki=1, k(T ) := ‖T‖ ‖T−1‖.
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In particular, if we denote Φ = {ΛiS
−1/2
Λ }ki=1, where SΛ denotes the g-frame

operator associated with Λ, then

(k(SΛ))−1R±Λ ≤ R±Φ ≤ (k(SΛ))R±Λ .

Proof. Assume without loss of generality that Λi 6= 0 for all i. Since for each
f ∈ S,

RΛT (f) =
k∑
i=1

‖ΛiTf‖2

‖ΛiT‖2 ≥
k∑
i=1

‖ΛiTf‖2

‖Λi‖2 ‖T‖2

we have

R+
ΛT = max

f∈S
RΛT (f) ≥ max

f∈S

k∑
i=1

‖ΛiTf‖2

‖Λi‖2 ‖T‖2 =
1

‖T‖2 max
f∈S
‖Tf‖2

RΛ

(
Tf

‖Tf‖

)
≥ 1

‖T‖2 max
f∈S

‖f‖2

‖T−1‖2RΛ

(
Tf

‖Tf‖

)
=

1

‖T‖2 ‖T−1‖2 max
f∈S

RΛ

(
Tf

‖Tf‖

)
= (k(T ))−2R+

Λ .

Similarly,

R−ΛT = min
f∈S

RΛT (f) ≥ min
f∈S

k∑
i=1

‖ΛiTf‖2

‖Λi‖2 ‖T‖2 =
1

‖T‖2 min
f∈S
‖Tf‖2

RΛ

(
Tf

‖Tf‖

)
≥ 1

‖T‖2 min
f∈S

‖f‖2

‖T−1‖2RΛ

(
Tf

‖Tf‖

)
=

1

‖T‖2 ‖T−1‖2 min
f∈S

RΛ

(
Tf

‖Tf‖

)
= (k(T ))−2R−Λ .

We have R±Λ = R±ΛTT−1 ≥ (k(T−1))−2R±ΛT = (k(T ))−2R±ΛT . Therefore, (k(T ))−2R±Λ ≤
R±ΛT ≤ (k(T ))2R±Λ .

Since Φi = ΛiS
−1/2
Λ for every i and

∥∥∥S±1/2
Λ

∥∥∥ =
∥∥S±1

Λ

∥∥1/2
and let T = S

−1/2
Λ ,

we get the result immediately.

Corollary 5. Let Λ = {Λi}ki=1 be a g-frame for a finite-dimensional real or
complex Hilbert space H and Λ̃ = {Λ̃i}ki=1, where Λ̃i = ΛiS

−1
Λ , be the canonical
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dual g-frame of Λ. Then

(k(SΛ))−2R±Λ ≤ R±
Λ̃
≤ (k(SΛ))2R±Λ ,

where k(SΛ) := ‖SΛ‖
∥∥S−1

Λ

∥∥.

Corollary 6. Let Λ = {Λi}ki=1 be a tight g-frame for a finite-dimensional real
or complex Hilbert space H and Λ̃ = {Λ̃i}ki=1 be the canonical dual g-frame of Λ.
Then for each f ∈ S, RΛ(f) = RΛ̃(f) and hence, R±Λ = R±

Λ̃
.

Proof. Since Λ is a tight g-frame, SΛ = cI for c > 0. So Λ̃i =
1

c
Λi. The

conclusions follow immediately.

The following results are similar to the results for frames of subspaces (see
[18]).

When Λ is a general equal norm g-frame, the bounds for the ratio between
RΛ(f) and RΛ̃(f) can be given as follows. Suppose that Λ = {Λi}ki=1 is a g-frame
with bounds A and B. Then the canonical dual g-frame Λ̃ = {Λ̃i}ki=1 has bounds
1/B and 1/A (see [19]). Suppose that Λ and Λ̃ are equal norm, ‖Λi‖ = c > 0 for

all i and
∥∥∥Λ̃i

∥∥∥ = d > 0 for all i. Then for each f ∈ S,

A ‖f‖2

c2
≤ RΛ(f) =

k∑
i=1

‖Λi(f)‖2

c2
≤ B ‖f‖2

c2

and

1

B

‖f‖2

d2
≤ RΛ̃(f) =

k∑
i=1

∥∥∥Λ̃i(f)
∥∥∥2

d2
≤ 1

A

‖f‖2

d2
.

Therefore,

A2d
2

c2
≤ RΛ(f)

RΛ̃(f)
≤ B2d

2

c2
.

Let Φ = {Φi}ki=1 be an alternate dual of the g-frame Λ = {Λi}ki=1 and Λ̃ = {Λ̃i}ki=1

be the canonical dual of Λ. Suppose that Λ̃ and Φ are equal norm, i.e.
∥∥∥Λ̃i

∥∥∥ = c

and ‖Φi‖ = d for some c, d > 0 for all i. Then for each f ∈ S,

RΛ̃(f) =
k∑
i=1

∥∥∥Λ̃i(f)
∥∥∥2

∥∥∥Λ̃i

∥∥∥2 =
k∑
i=1

∥∥∥Λ̃i(f)
∥∥∥2

c2
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and

RΦ(f) =
k∑
i=1

‖Φi(f)‖2

‖Φi‖2 =
k∑
i=1

‖Φi(f)‖2

d2
.

By Proposition 2,
k∑
i=1

∥∥∥Λ̃i(f)
∥∥∥2

≤
k∑
i=1

‖Φi(f)‖2. Thus, RΛ̃(f) ≤
(
d

c

)2

RΦ(f).

Now we consider two examples which are similar to the examples in [4] for
finite frames and in [18] for frames of subspaces.

Let Λ = {Λi}ki=1 be a g-orthonormal basis for a finite-dimensional real or
complex Hilbert space H with respect to {Wi}ki=1. We consider

Θ = {Λ1, ...,Λ1,Λ2, ...,Λk}

where Λ1 occurs k + 1 times. Then R+
Θ = k + 1 and R−Θ = 1 when Λ1 is not

a unitary operator. This can be seen as follows. Let f ∈ S. By Corollary 3,
‖Λi‖ = 1 for every i = 1, 2, ..., k. Therefore,

RΘ(f) = k ‖Λ1(f)‖2 +
k∑
i=1

‖Λi(f)‖2 = k ‖Λ1(f)‖2 + 1.

Hence, R+
Θ = max

f∈S
RΘ(f) = k+1. If Λ1 is not a unitary operator then there exists

f ∈ S such that Λ1(f) = 0 because if otherwise, Λ1 is injective. So Ran(Λ∗1) = H.
Since by definition of g-orthonormal basis, Λ∗1 is an isometric, Λ∗1 have a closed
range. So Λ∗1 is a unitary operator. It follows that Λ1 is a unitary operator. We
get a contradiction. Hence, R−Θ = min

f∈S
RΘ(f) = 1.

Let Φ = {Λ1,Λ1,Λ2,Λ2, ...,Λk,Λk}, where each Λi, i = 1, 2, 3, ..., k, occurs 2
times. Then Φ possesses a uniform redundancy, R−Φ = R+

Φ = 2.

4.2 Redundancy of infinite g-frames

Now we consider the redundancy of infinite g-frames in an infinite-dimensional
Hilbert spaces. Let Λ = {Λi}i∈I be a g-frame for H. Similarly, for each f ∈ H,
we define the redundancy function RΛ : S→ R+ by

RΛ(f) :=
∑

{i∈I:Λi 6=0}

‖Λi(f)‖2

‖Λi‖2 .

In contrast to the finite case, this redundancy function may not assume its max-
imum or minimum on the unit sphere and in general both the max and min of
this function could be infinite.
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Let Λ = {Λi}i∈I be a g-frame for H. Then the upper redundancy of Λ is
defined by

R+
Λ = sup

f∈S
RΛ(f)

and the lower redundancy of Λ by

R−Λ = inf
f∈S

RΛ(f).

Now we can verify that Theorem 4 holds in the infinite-dimensional setting.

Theorem 5. Let Λ = {Λi}i∈I be a g-frame for an infinite-dimensional real or
complex Hilbert space H with respect to {Wi}i∈I with lower and upper g-frame
bounds A and B, respectively. We assume that R+

Λ < ∞. Then the following
statements hold:

(1) 0 < R−Λ ≤ R+
Λ <∞.

(2) The unit norm g-frame Λ is an A-tight if and only if R−Λ = R+
Λ = A.

(3) Additivity. For each orthonormal basis E = {Θj}j∈J for H with respect to
{Hj}j∈J ,

R±Λ∪E = R±Λ + 1.

Moreover, for each g-frame Φ for H with respect to {Hj}j∈J , we have

R−Λ∪Φ ≥ R−Λ + R−Φ, R+
Λ∪Φ ≤ R+

Λ + R+
Φ.

In particular, if Λ and Φ have uniform redundancy then

R−Λ∪Φ = RΦ + RΛ = R+
Λ∪Φ.

(4) Invariance. Redundancy is invariant under application of a unitary operator
U on H, i.e.,

R±ΛU = R±Λ ,

where ΛU := {ΛiU}i∈I .
Redundancy is invariant under scaling, i.e.,

R±{ciΛi}i∈I = R±Λ ,

and under permutations, i.e.,

R±Λσ = R±Λ ,

where Λσ := {Λσ(i)} where σ is a permutation of I.
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Proof. For (1), we need only check that 0 < R−Λ . Suppose the contrary R−Λ = 0.

Then there exists a sequence {fk} in S such that
∑

{i∈I:Λi 6=0}

‖Λi(fk)‖2

‖Λi‖2 goes to 0

as k → ∞. Since
∑

i∈I ‖Λi(f)‖2 ≤ B‖f‖2 for every f ∈ H, it follows that

‖Λi(f)‖2 ≤ B‖f‖2 for every i ∈ I and for every f ∈ H. Therefore, ‖Λi‖ ≤
√
B

for every i ∈ I. Hence,

A

B
=
A ‖fk‖2

B
≤
∑
i∈I

‖Λi(fk)‖2

B
=

∑
{i∈I:Λi 6=0}

‖Λi(fk)‖2

B
≤

∑
{i∈I:Λi 6=0}

‖Λi(fk)‖2

‖Λi‖2

which goes to 0 as k →∞. The contradiction implies that 0 < R−Λ .
Other properties are proved similarly to the finite case.

5 Excess of g-frames

Now we introduce a notion of excess of g-frames and show that some basic prop-
erties of excess of frames still remain valid for g-frames.

Definition 10. Let Λ be a g-frame for H with respect to {Wi}i∈I with analysis
operator TΛ. The excess of Λ is defined as e(Λ) = dim(RanTΛ)⊥.

Proposition 7. Let Λ and Φ be two similar g-frames. Then e(Λ) = e(Φ).

Proof. It follows immediately by Proposition 3.

As in the case of ordinary frames, we have the following result for g-Riesz
bases.

Proposition 8. Λ is a g-Riesz basis for H with respect to {Wi}i∈I if and only if

e(Λ) = 0.

Proof. By [1], Λ is a g-Riesz basis for H with respect to {Wi}i∈I if and only if

Ran(TΛ) =

(∑
i∈I

⊕Wi

)
l2

,

which is equivalent to e(Λ) = 0.

Similar to Proposition 5.5 in [3] for frames, we obtain the following result for
g-frames.
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Proposition 9. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I with
the canonical dual g-frame Λ̃ = {Λ̃i}i∈I . Then the excess of Λ is

e(Λ) =
∑
i∈I

(
dimWi − traceΛ̃iΛ

∗
i

)
Proof. For each i ∈ I, let {eij}j∈Ji be an orthonormal basis for Wi and for each

i ∈ I, j ∈ Ji, let Eij be an element of

(∑
i∈I
⊕Wi

)
l2

defined by

(Eij)k =

{
eij if i = k
0 if i 6= k.

It is obvious that {Eij}i∈I,j∈Ji is an orthonormal basis for

(∑
i∈I
⊕Wi

)
l2

.

By definition, e(Λ) = dim(RanTΛ)⊥. The orthogonal projection of

(∑
i∈I
⊕Wi

)
l2

onto (Ran TΛ)⊥ is given by P = I − TΛS
−1
Λ T ∗Λ where SΛ is the g-frame operator

for Λ. Since T ∗Λ(Eij) = Λ∗i (eij), we have

e(Λ) = dim(RanTΛ)⊥ = trace(P)

=
∑

i∈I,j∈Ji

〈Eij, PEij〉

=
∑

i∈I,j∈Ji

〈
Eij, Eij − TΛS

−1
Λ T ∗ΛEij

〉
=

∑
i∈I,j∈Ji

(
1−

〈
T ∗ΛEij, S

−1
Λ T ∗ΛEij

〉)
=

∑
i∈I

(
dimWi −

∑
j∈Ji

〈
Λ∗i (eij), S

−1
Λ Λ∗i (eij)

〉)

=
∑
i∈I

(
dimWi −

∑
j∈Ji

〈
Λ∗i (eij), Λ̃

∗
i (eij)

〉)
=

∑
i∈I

(
dimWi − traceΛ̃iΛ

∗
i

)
.

We note that if for each i ∈ I, Λi : H → C is given by Λi(f) = 〈f, fi〉 where
{fi}i∈I is a frame for H then Proposition 9 is precisely Proposition 5.5 in [3] for
frames.
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We can characterize a g-frame Λ by the sequences {ui,j}i∈I,j∈Ji defined as in
Theorem 2. One natural question is that whether the excess of Λ is equal to the
excess of every associated sequence {ui,j}i∈I,j∈Ji . The answer is Yes.

Proposition 10. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I and
ui,j := Λ∗i (ei,j), i ∈ I, j ∈ Ji, where {ei,j}i∈I,j∈Ji be an orthonormal basis for Wi.
Then the excess of g-frame Λ is equal to the excess of the sequence {ui,j}i∈I,j∈Ji.

Proof. We denote the excess and the analysis operator of the sequence {ui,j}i∈I,j∈Ji
by e(U) and TU , respectively. It is proved in [3] that e(U) = dim(Ker(T ∗U)).
But dim(Ker(T ∗U)) = dim(RanTU)⊥. So e(U) = dim(RanTU)⊥. By definitions,
for any f ∈ H we have TU(f) = {〈f, ui,j〉}i∈I,j∈Ji , TΛ(f) = {Λi(f)}i∈I . Since
〈f, ui,j〉 = 〈Λi(f), ei,j〉, it follows that Λi(f) =

∑
j∈Ji 〈f, ui,j〉 ei,j. Therefore,

dim(RanTΛ) = dim(RanTU). Thus,
dim(RanTΛ)⊥ = dim(RanTU)⊥ and e(Λ) = e(U).
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