SOME PROPERTIES OF MAXIMAL PLURISUBHARMONIC **FUNCTION**

DO HOANG SON

Abstract. The purpose of this paper is to provide some properties of maximal plurisubharmonic functions in bounded domains in \mathbb{C}^n .

CONTENTS

2 DO HOANG SON

INTRODUCTION

Let $\Omega \subset \mathbb{C}^n$ be a bounded domain $(n \geq 2)$. A function $u \in PSH(\Omega)$ is called maximal if for every open set $G \in \Omega$, and for each upper semicontinuous function v on G such that $v \in PSH(G)$ and $v|_{\partial G} \leq u|_{\partial G}$, we have $v \leq u$. There are some equivalent descriptions of maximality which have been presented in [Sad81], [Kli91].

For the convenience, we denote

 $MPSH(\Omega) = \{u \in PSH(\Omega) | u$ is maximal $\},\$

$$
MPSH_{loc}(\Omega) = \{ u \in PSH(\Omega) | \forall z \in \Omega : u \in MPSH(U) \text{ for some } z \in U \Subset \Omega \}.
$$

The following question was given by Blocki [Blo04], [DGZ16]:

Question 0.1. Is $MPSH(\Omega)$ equal to $MPSH_{loc}(\Omega)$? (or is maximality a local notion?)

Denote by $D(\Omega)$ the domain of definition of Monge-Ampère operator in Ω . By [Blo04], a function $u \in D(\Omega)$ is maximal iff $(dd^c u)^n = 0$. Moreover, it follows from [Blo06] that to belong to the class D is a local property. Then

$$
MPSH(\Omega) \cap D(\Omega) = MPSH_{loc}(\Omega) \cap D(\Omega).
$$

In the general case, the question 0.1 is still open. It raises another question

Question 0.2. What information can be obtained from the condition $u \in MPS_{loc}(\Omega)$?

In this paper, we study on some subclass of $MPSH(\Omega)$ and use results on it to show some properties of the class $MPSH_{loc}(\Omega)$.

Our main results are following:

Theorem 0.3. If $u, v \in MPSSEH_{loc}(\Omega)$ and $\chi : \mathbb{R} \to \mathbb{R}$ is a convex non-decreasing function then $(z, w) \mapsto \chi(u(z) + v(w)) \in MPSH(\Omega \times \Omega)$.

Theorem 0.4. Let u be a negative maximal plurisubharmonic function in Ω and let U, U be open subset of Ω such that $U \in \tilde{U} \in \Omega$. Assume that $u_i \in PSH^{-}(\tilde{U}) \cap C(\tilde{U})$ is decreasing to u in \tilde{U} . Then

(1)
$$
\int\limits_{U} |u_j|^{-a} (dd^c u_j)^n \stackrel{j \to \infty}{\longrightarrow} 0, \forall a > n-1.
$$

Acknowledgements. I am thankful to Nguyen Quang Dieu and Nguyen Xuan Hong for useful discussion and comments.

1. A class of maximal plurisubharmonic functions

We say that a function $u \in PSH^{-}(\Omega)$ has M_1 property iff for every open set $U \in \Omega$, there are $u_j \in PSH^{-}(U) \cap C(U)$ such that u_j is decreasing to u in U and

(2)
$$
\lim_{j \to \infty} \left(\int_{U \cap \{u_j > -t\}} (dd^c u_j)^n + \int_{U \cap \{u_j > -t\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \right) = 0,
$$

for any $t > 0$. We denote by $M_1 PSH(\Omega)$ the set of negative plurisubharmonic functions in Ω satisfying M_1 property.

If $\chi : \mathbb{R} \to \mathbb{R}$ is a convex non-decreasing function, we denote $MPSH_{\chi}(\Omega)$ the set of negative plurisubharmonic functions in Ω such that $\chi(u) \in MPSH(\Omega)$.

Theorem 1.1. Let Ω be a bounded domain in \mathbb{C}^n and $u \in PSH^{-}(\Omega)$. Then the following conditions are equivalent

- (i) $u \in M_1 PSH(\Omega)$.
- (ii) $u \in MPS_{\chi}(\Omega)$ for any convex non-decreasing function $\chi : \mathbb{R} \to \mathbb{R}$.
- (iii) For any open sets U, U such that $U \\\in U \\\in \Omega$, for any $u_i \\in PSH^{-1}(U) \\cap C(U)$ such that u_j is decreasing to u in \tilde{U} , we have

$$
\lim_{j \to \infty} \left(\int_{U} |u_j|^{-a} (dd^c u_j)^n + \int_{U} |u_j|^{-a-1} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \right) = 0,
$$

for all $a > n - 1$.

In particular, M_1 property is a local notion and $M_1 PSH(\Omega) \subset MPSH(\Omega)$.

Proof. (*iii* \Rightarrow *i*): Obvious. $(i \Rightarrow ii)$:

Assume that $U \\\in \tilde{U} \\in \\Omega$. Let $u_j \\in PSH^-(U) \\cap C(U)$ such that u_j is decreasing to u in U and the condition (2) is satisfied.

If χ is smooth and χ is constant in some interval $(-\infty, -m)$ then

$$
(dd^c \chi(u_j))^n = (\chi'(u_j))^n (dd^c u_j)^n + n\chi''(u_j)(\chi'(u_j))^{n-1} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}
$$

$$
\leq C \mathbf{1}_{\{u_j > -t\}} (dd^c u_j)^n + C \mathbf{1}_{\{u_j > -t\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1},
$$

where $C, t > 0$ depend only on χ . Hence

$$
\int\limits_U(dd^c\chi(u_j))^n\stackrel{j\to\infty}{\longrightarrow}0.
$$

Then, by [Sad81] (see also [Ceg09]), $\chi(u)$ is maximal on U for any open set $U \in \Omega$. Thus $\chi(u) \in MPSH(\Omega)$.

In the general case, for any convex non-decreasing function χ , we can find $\chi_l \searrow \chi$ such that χ_l is smooth, convex and $\chi|_{(-\infty,-m)} = const$ for some m. By above argument, $\chi_l \in MPSH(\Omega)$ for any $l \in \mathbb{N}$. Hence $\chi(u) \in MPSH(\Omega)$.

$$
(ii \Rightarrow iii):
$$

For any $0 < \alpha < \frac{1}{n}$, the function

$$
\Phi_{\alpha}(t) = -(-t)^{\alpha}
$$

is convex and non-decreasing in \mathbb{R}^- . Assume that u satisfies (ii), we have $\Phi_\alpha \in$ $MPSH(\Omega)$.

By [Bed93] (see also [Blo09]), for any $0 < \alpha < \frac{1}{n}$, we have $\Phi_{\alpha}(u) \in D(\Omega)$. Then, for any $u_j \in PSH^{-}(\tilde{U}) \cap C(\tilde{U})$ such that u_j is decreasing to u in \tilde{U} , we have

$$
\int\limits_U(dd^c\Phi_\alpha(u_j))^n\stackrel{j\to\infty}\longrightarrow 0, \forall 0<\alpha<\tfrac1n,
$$

and it implies (iii).

Finally, by using $(i \Leftrightarrow iii)$, we conclude that M_1 property is a local notion.

The following proposition is an immediately corollary of Theorem 1.1

Proposition 1.2. Let Ω be a bounded domain in \mathbb{C}^n .

- (i) If $u \in M_1PSH(\Omega)$ then $\chi(u) \in M_1PSH(\Omega)$ for any convex non-decreasing function $\chi : \mathbb{R}^- \to \mathbb{R}^-$.
- (ii) If $u_j \in M_1PSH(\Omega)$ and u_j is decreasing to u then $u \in M_1PSH(\Omega)$.
- (iii) Let $u \in PSH^{-}(\Omega) \cap C^{2}(\Omega \setminus F)$, where $F = \{z : u(z) = -\infty\}$ is closed. If $(dd^c u)^n = du \wedge d^c u \wedge (dd^c u)^{n-1} = 0$

in
$$
\Omega \setminus F
$$
 then $u \in M_1PSH(\Omega)$.

In some special cases, we can easily check M_1 property by the following criteria

Proposition 1.3. Let Ω be a bounded domain in \mathbb{C}^n . Let $\chi : \mathbb{R} \to \mathbb{R}$ be a smooth convex increasing function such that $\chi''(t) > 0$ for any $t \in \mathbb{R}$. Assume also that χ is lower bounded. If $u \in PSH^{-}(\Omega)$ and $\chi(u) \in MPSH(\Omega)$ then $u \in M_1PSH(\Omega)$.

Proof. Let $U \in \tilde{U} \in \Omega$ and $u_j \in PSH(\tilde{U}) \cap C(\tilde{U})$ such that u_j is decreasing to u. Then

$$
dd^c(\chi(u_j)) = \chi'(u_j)dd^c u_j + \chi''(u_j)du_j \wedge d^c u_j
$$

and

$$
(dd^c \chi(u_j))^n = (\chi'(u_j))^n (dd^c u_j)^n + n\chi''(u_j)(\chi'(u_j))^{n-1} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}.
$$

For any $t > 0$, there exists $C > 0$ depending only on t and χ such that

(3)
$$
(dd^c \chi(u_j))^n \ge C \mathbf{1}_{\{u_j > -t\}} (dd^c u_j)^n + C \mathbf{1}_{\{u_j > -t\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}.
$$

Note that $\chi(u) \in D(\Omega) \cap MPSH(\Omega)$. Hence

(4)
$$
\lim_{j \to \infty} \int_{U} (dd^c \chi(u_j))^n = 0.
$$

Combining (3) and (4), we have

$$
\lim_{j \to \infty} \left(\int_{U \cap \{u_j > -t\}} (dd^c u_j)^n + \int_{U \cap \{u_j > -t\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \right) = 0.
$$

Thus $u \in M_1 PSH(\Omega)$.

Example 1.4. (i) If u is a negative plurisubharmonic function in $\Omega \subset \mathbb{C}^n$ depending only on $n-1$ variables then u has M_1 property.

(ii) If $f: \Omega \to \mathbb{C}^n$ is a holomorphic mapping of rank $\lt n$ then $(dd^c|f|^2)^n = 0$ (see, for example, in [Ras98]). Then, by Proposition 1.3, $\log|f| \in M_1PSH(\Omega)$ if it is negative in Ω .

Question 1.5. Does Proposition 1.3 still hold if the assumption " χ is lower bounded" is removed from it?

2. Proof of the main theorems

2.1. Proof of Theorem 0.3. Without loss of generality, we can assume that $u, v \in$ $PSH^{-}(\Omega)$.

If $u, v \in MPS_{loc}(\Omega)$ then for any $z_0, w_0 \in \Omega$, there are hyperconvex domains $U, \tilde{U}, V, \tilde{V}$ such that $z_0 \in U \Subset \tilde{U} \Subset \Omega$, $w_0 \in V \Subset \tilde{V} \Subset \Omega$, $u \in MPSH(\tilde{U})$ and $v \in MPSH(\tilde{V})$. We need to show that $u(z) + v(w)$ have M_1 property in $U \times V$.

Let $u_j \in \overline{PSH}^-(\tilde{U}) \cap C(\tilde{U})$ and $v_j \in \overline{PSH}^-(\tilde{V}) \cap C(\tilde{V})$ such that u_j is decreasing to u in \tilde{U} and v_j is decreasing to v in \tilde{V} . By [Wal68], there are $\tilde{u}_j \in PSH^{-}(\tilde{U}) \cap C(\tilde{U})$, $\tilde{v}_i \in PSH^{-1}(V) \cap C(V)$ such that

$$
\begin{cases} \tilde{u_j} = u_j & \text{in } \tilde{U} \setminus U, \\ \tilde{v_j} = v_j & \text{in } \tilde{V} \setminus V, \\ (dd^c \tilde{u_j})^n = 0 & \text{in } U, \\ (dd^c \tilde{v_j})^n = 0 & \text{in } V. \end{cases}
$$

By the maximality of u and v, we conclude that \tilde{u}_j is decreasing to u in \tilde{U} and \tilde{v}_j is decreasing to v in V. In $U \times V$, we have

$$
(dd^c(\tilde{u}_j(z) + \tilde{v}_j(w)))^{2n} = C_{2n}^n (dd^c \tilde{u}_j)_z^n \wedge (dd^c \tilde{v}_j)_w^n = 0
$$

 $d(\tilde{u}_j(z)+\tilde{v}_j(w)) \wedge d^c(\tilde{u}_j(z)+\tilde{v}_j(w)) \wedge (dd^c(\tilde{u}_j(z)+\tilde{v}_j(w)))^{2n-1}$

$$
= C_{2n-1}^{n-1} d_z \tilde{u}_j \wedge d_z^c \tilde{u}_j \wedge (dd^c \tilde{u}_j)_z^{n-1} \wedge (dd^c \tilde{v}_j)_w^n + C_{2n-1}^{n-1} d_w \tilde{v}_j \wedge d_w^c \tilde{v}_j \wedge (dd^c \tilde{v}_j)_w^{n-1} \wedge (dd^c \tilde{u}_j)_z^n
$$

= 0.

Then $u(z) + v(w)$ has M_1 property in $U \times V$. By Theorem 1.1, M_1 property is a local notion. Hence $u(z) + v(w) \in M_1PSH(\Omega \times \Omega)$. And it implies that $u(z) + v(w) \in$ $MPSH_{\chi}(\Omega \times \Omega)$ for any convex non-decreasing function χ .

2.2. **Proof of Theorem 0.4.** Let $v = |z_1|^2 + ... + |z_{n-1}|^2 + x_n + y_n - M$, where $M = \sup$ Ω $(|z|^2 + |x_n| + |y_n|)$. Then $v \in MPSH(\Omega)$. By Theorem 0.3, $\chi(u(z) + v(w)) \in$ $MPSH(\Omega \times \Omega)$ for any convex non-decreasing function χ .

By [Bed93], [Blo09], for any $0 < \alpha < \frac{1}{2n}$, we have $\Phi_{\alpha}(u(z)+v(w)) \in D(\Omega \times \Omega)$, where Φ_{α} is defined as in the proof of Theorem 1.1. Then

$$
\int_{U\times U} (dd^c \Phi(u_j(z) + v(w)))^{2n} \stackrel{j\to\infty}{\longrightarrow} 0,
$$

for any $0 < \alpha < \frac{1}{2n}$. Hence

(5)
$$
\int\limits_{U} |u_j|^{-2n-1+2n\alpha} (dd^c u_j)^n \xrightarrow{j \to \infty} 0, \forall 0 < \alpha < \frac{1}{2n}.
$$

Moreover, $\Phi_{\beta}(u) \in D(\Omega)$ for any $0 < \beta < \frac{1}{n}$. Then, for any $0 < \beta < \frac{1}{n}$, there is $C_{\beta} > 0$ such that

$$
\int\limits_U(dd^c\Phi_\beta(u_j))^n\leq C_\beta,\,\forall j>0.
$$

6 DO HOANG SON

Hence

(6)
$$
\int\limits_{U} |u_j|^{-n+n\beta} (dd^c u_j)^n \leq C_\beta, \forall j > 0, \forall 0 < \beta < \frac{1}{n}.
$$

Combining (5) , (6) and using Hölder inequality, we obtain (1) .

3. Relation between some class of maximal plurisubharmonic functions

Let Ω be a bounded domain in \mathbb{C}^n . Let $u \in PSH(\Omega)$. If there exists a sequence of convex non-decreasing functions $\chi^m : \mathbb{R} \to \mathbb{R}$ such that

- χ^m is lower bounded for every m ,
- χ^m is decreasing to Id as $m \to \infty$,
- $(dd^c\chi^m(u))^n \stackrel{m\to\infty}{\longrightarrow} 0$ in the weak sense,

then, by $[Sad81]$, u is maximal. We are interested in the following question

Question 3.1. If u is maximal, does there exist a sequence of convex non-decreasing function χ^m satisfying above conditions? If it exists, how to find it?

In this section we discuss about relation between some class of maximal plurisubharmonic functions in a bounded domain Ω in \mathbb{C}^n . It can be seen as the first step in approaching Question 3.1.

Assume that $\chi : \mathbb{R} \to \mathbb{R}$ is a smooth convex function such that $\chi|_{(-\infty,-2)} = -1$, $\chi|_{(0,\infty)} = Id_{(0,\infty)}$ and $\chi''(-1) > 0$. We denote

$$
M_2PSH(\Omega) = \{u \in PSH^{-}(\Omega) | (dd^c \max\{u, -k\})^n \stackrel{weak}{\longrightarrow} 0 \text{ as } k \to \infty \},
$$

$$
M_3PSH(\Omega) = \{u \in PSH^{-}(\Omega) | (dd^c \chi_k(u))^n \stackrel{weak}{\longrightarrow} 0 \text{ as } k \to \infty \},
$$

$$
M_4PSH(\Omega) = \{ u \in PSH^{-}(\Omega) | (dd^c \log(e^u + \frac{1}{k}))^n \stackrel{weak}{\longrightarrow} 0 \text{ as } k \to \infty \},
$$

where $\chi_k(t) = \chi(t + k) - k$. The main result of this section is following

Theorem 3.2. $M_2PSH(\Omega) \subset M_3PSH(\Omega)$ and $M_3PSH(\Omega) = M_4PSH(\Omega)$.

First, we introduce some characteristics of $M_2PSH(\Omega)$, $M_3PSH(\Omega)$ and $M_4PSH(\Omega)$.

Proposition 3.3. Let $u \in PSH^{-}(\Omega)$. Assume that $u_i \in PSH^{-}(\Omega) \cap C(\Omega)$ is decreasing to u. Then the following conditions are equivalent

- (i) $u \in M_2PSH(\Omega)$.
- (ii) If $U \in \Omega$ then for every $M > 0$

(7)
$$
\int\limits_{U \cap \{u_j > -M\}} (dd^c u_j)^n \stackrel{j \to \infty}{\longrightarrow} 0,
$$

and for any $\epsilon > 0$, there is $k_0 > 0$ such that

$$
(8) \quad \forall k \geq k_0, \exists l_0 > 0: \limsup_{j \to \infty} \int_{U \cap \{-k - \frac{1}{l} < u_j < -k + \frac{1}{l}\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} < \frac{\epsilon}{l}, \forall l > l_0.
$$

Proof. For any $k, l > 0$, we denote

$$
\chi_{k,l}(t) = \frac{1}{l}\chi((t+k-\frac{1}{l})l) - k + \frac{1}{l}.
$$

Then $\chi_{k,l}(u)$ converges to max $\{u, -k\}$ as $l \to \infty$. Moreover

$$
\chi_{k,l}(u) \ge \max\{u, -k\} + O(\frac{1}{l}).
$$

Hence, by [Ceg09],

(9)
$$
(dd^c \chi_{k,l}(u))^n \stackrel{l \to \infty}{\longrightarrow} (dd^c \max\{u, -k\})^n
$$

in the weak sense.

For any $j > 0$, we have

$$
(dd^c \chi_{k,l}(u_j))^n = (\chi'((u_j + k - \frac{1}{l})l))^n (dd^c u_j)^n + nl\chi''((u_j + k - \frac{1}{l})l)(\chi'((u_j + k - \frac{1}{l})l))^{n-1} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}.
$$

Then, there are $C_1, C_2, \delta > 0$ depending only on χ such that

$$
(dd^c \chi_{k,l}(u_j))^n \le C_1 \mathbf{1}_{\{u_j > -k - \frac{1}{l}\}} (dd^c u_j)^n + C_1 l \mathbf{1}_{\{-k - \frac{1}{l} < u_j < -k + \frac{1}{l}\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1},
$$

and

$$
(dd^{c}\chi_{k,l}(u_{j}))^{n} \geq C_{2} \mathbf{1}_{\{u_{j}>-k+\frac{1}{l}\}} (dd^{c}u_{j})^{n} + C_{2} \mathbf{1}_{\{-k-\frac{\delta}{l}
Moreover.
$$

loreover,

$$
(dd^c \chi_{k,l}(u_j))^n \stackrel{j \to \infty}{\longrightarrow} (dd^c \chi_{k,l}(u))^n
$$

in the weak sense.

Then (ii) is equivalent to

$$
\limsup_{l\to\infty}\int\limits_{U}(dd^c\chi_{k,l}(u))^{n}\stackrel{k\to\infty}{\longrightarrow}0,
$$

for any $U \in \Omega$.

Hence, by (9), we conclude that (*i*) is equivalent to (*ii*).

Proposition 3.4. Let $u \in PSH^{-}(\Omega)$. Assume that $u_i \in PSH^{-}(\Omega) \cap C(\Omega)$ is decreasing to u. Then the following conditions are equivalent

- (i) $u \in M_3PSH(\Omega)$.
- (ii) If $U \in \Omega$ then

(10)
$$
\int_{U \cap \{u_j > -M\}} (dd^c u_j)^n \stackrel{j \to \infty}{\longrightarrow} 0,
$$

and

(11)
$$
\limsup_{j \to \infty} \int_{U \cap \{-k-1 < u_j < -k\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \stackrel{k \to \infty}{\longrightarrow} 0.
$$

The proof of Proposition 3.4 is similar to the proof of Proposition 3.3. We leave the details to the reader.

In [Sad12], Sadullaev has proved a characteristic of $M_4PSH(\Omega)$:

Theorem 3.5. Let $u \in PSH^{-}(\Omega)$. Denote $v = e^{u}$. Then $u \in M_4PSH(\Omega)$ iff

8 DO HOANG SON

$$
v(dd^cv)^n - ndv \wedge d^cv \wedge (dd^cv)^{n-1} = 0,
$$

and

$$
\lim_{t \to 0} \frac{1}{t^n} \int_{U \cap \{v < t\}} (dd^c v)^n = 0,
$$

for any $U \in \Omega$.

Using Theorem 3.5, it is easy to show that

Proposition 3.6. Let $u \in PSH^{-}(\Omega)$. Assume that $u_i \in PSH^{-}(\Omega) \cap C(\Omega)$ is decreasing to u. Then the following conditions are equivalent

- (i) $u \in M_4PSH(\Omega)$.
- (ii) If $U \in \Omega$ then

(12)
$$
\int_{U \cap \{u_j > -M\}} (dd^c u_j)^n \stackrel{j \to \infty}{\longrightarrow} 0,
$$

and

(13)
$$
\limsup_{j \to \infty} \int_{U \cap \{u_j < -k\}} e^{n(u_j + k)} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \stackrel{k \to \infty}{\longrightarrow} 0.
$$

Now, by using Propositions 3.3, 3.4 and 3.6, we will prove Theorem 3.2.

Proof of Theorem 3.2. Let $u \in PSH^{-}(\Omega)$. By replacing Ω by an exhaustive sequence of relative compact subsets of Ω , we can assume that there exists a sequence $u_i \in$ $PSH^{-}(\Omega) \cap C(\Omega)$ such that u_j decreasing to u in Ω .

Assume that $u \in M_2PSH(\Omega)$. By Proposition 3.3, for any $\epsilon > 0$, there exist $k_0 > 0$ such that

$$
\forall k \geq k_0, \exists l_0 > 0 : \limsup_{j \to \infty} \int_{U \cap \{-k - \frac{1}{l} < u_j < -k + \frac{1}{l}\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} < \frac{\epsilon}{l}, \forall l > l_0.
$$

Let $k > k_0$. By Besicovitch's covering theorem [Matt95], there are $k_1, l_1, ..., k_m, l_m... > 0$ such that

$$
\limsup_{j \to \infty} \int_{U \cap \{-k_m - \frac{1}{l_m} < u_j < -k_m + \frac{1}{l_m}\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} < \frac{\epsilon}{l_m}, \forall m > 0,
$$

and

$$
\mathbf{1}_{(-k-1,-k)} \leq \sum_{m} \mathbf{1}_{(-k_m - \frac{1}{l_m}, -k_m + \frac{1}{l_m})} = \sum_{m} \frac{2}{l_m} \leq C,
$$

where $C > 0$ is a universal constant. Hence

$$
\limsup_{j \to \infty} \int_{U \cap \{-k-1 < u_j < -k\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \leq C\epsilon.
$$

By Proposition 3.4, we get $u \in M_3PSH(\Omega)$.

Thus $M_2PSH(\Omega) \subset M_3PSH(\Omega)$.

Now, assume that u is an arbitrary element of $M_3PSH(\Omega)$. By Proposition 3.4, for any $\epsilon > 0$, there exists $k_0 > 0$ such that

$$
\limsup_{j \to \infty} \int_{U \cap \{-k-1 < u_j < -k\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} < \epsilon.
$$

for every $k > k_0$. Then

$$
\limsup_{j \to \infty} \int_{U \cap \{u_j < -k\}} e^{n(u_j + k)} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}
$$
\n
$$
\leq \sum_{l=0}^{\infty} \limsup_{j \to \infty} \int_{U \cap \{-k - l - 1 < u_j < -k - l\}} e^{n(u_j + k)} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}
$$
\n
$$
\leq \sum_{l=0}^{\infty} \limsup_{j \to \infty} \int_{U \cap \{-k - l - 1 < u_j < -k - l\}} e^{-nl} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1}
$$
\n
$$
\leq \epsilon \sum_{l=0}^{\infty} e^{-nl},
$$

for any $k > k_0$. Hence

$$
\limsup_{j \to \infty} \int_{U \cap \{u_j < -k\}} e^{n(u_j + k)} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \xrightarrow{k \to \infty} 0.
$$

By Proposition 3.6, we get $u \in M_4PSH(\Omega)$. Thus $M_3PSH(\Omega) \subset M_4PSH(\Omega)$. Conversely, if $u \in M_4PSH(\Omega)$ then

$$
\limsup_{j \to \infty} \int_{U \cap \{-k-1 < u_j < -k\}} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \\
\leq e^n \limsup_{j \to \infty} \int_{U \cap \{-k-1 < u_j < -k\}} e^{n(u_j + k)} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \\
\leq e^n \limsup_{j \to \infty} \int_{U \cap \{u_j < -k\}} e^{n(u_j + k)} du_j \wedge d^c u_j \wedge (dd^c u_j)^{n-1} \\
\xrightarrow{k \to \infty} 0.
$$

Hence $M_4PSH(\Omega) \subset M_3PSH(\Omega)$. The proof is completed.

REFERENCES

- [Bed93] E. BEDFORD: Survey of pluri-potential theory, Several complex variables (Stockholm, 1987/1988), 48–97, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993.
- [Blo04] Z. BLOCKI: On the definition of the Monge-Ampère operator in \mathbb{C}^2 . Math. Ann. 328 (2004), no.3, 415–423.
- [Blo06] Z. BLOCKI: The domain of definition of the complex Monge-Amp'ere operator. Amer. J. Math. 128 (2006), no.2, 519–530.
- [Blo09] Z. BLOCKI: Remark on the definition of the complex Monge-Ampre operator. Functional analysis and complex analysis, 17–21, Contemp. Math., 481, Amer. Math. Soc., Providence, RI, 2009.
- [Ceg09] U. CEGRELL: Maximal plurisubharmonic functions. Uzbek. Mat. Zh. 2009, no.1, 10–16.
- [DGZ16] S. DINEW, V. GUEDJ, A. ZERIAHI: Open problems in pluripotential theory. Complex Var. Elliptic Equ. 61 (2016), no. 7, 902–930.
- [Kli91] M. KLIMEK: *Pluripotential theory*, Oxford Univ. Press, Oxford, 1991.
- [Ras98] A. RASHKOVSKII: Maximal plurisubharmonic functions associated with holomorphic mappings. Indiana Univ. Math. J. 47 (1998), no. 1, 297–309.
- [Matt95] P.MATTILA: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
- [Sad81] A. SADULLAEV: Plurisubharmonic measures and capacities on complex manifolds. Russian Math. Surv. 36 (1981), 61–119.
- [Sad12] A. SADULLAEV: A class of maximal plurisubharmonic functions. Ann. Polon. Math. 106 (2012), 265–274.
- [Wal68] J. B. WALSH: Continuity of envelopes of plurisubharmonic functions. J. Math. Mech. 18 (1968), 143–148.

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang QUOC VIET, HANOI, VIETNAM

E-mail address: hoangson.do.vn@gmail.com E-mail address: dhson@math.ac.vn