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Abstract

In this paper, we construct an open and dense set in the space of
bounded linear random dynamical systems (both discrete and contin-
uous time) equipped with the essential sup norm such that the Lya-
punov exponents depend analytically on the coefficients in this set. As
a consequence, analyticity for Lyapunov exponents of bounded linear
random dynamical systems is a generic property.

1 Introduction

The fundamental results on Lyapunov exponents for random dynamical sys-
tems on finite dimensional spaces were first obtained in [Ose68], which is now
called the Oseledets Multiplicative Ergodic Theorem, see also [Ar98].

Since the appearance of the paper [Ose68], exploring properties of Lyapunov
exponents of random dynamical systems has become one of a central task
in the theory of random dynamical systems. In this task, understanding
the stability of Lyapunov exponents under a small perturbation has been
received a lot of interests. Now, we would like to mention some publications
that are related to our work in this paper:

In [Rue79], Ruelle showed that the characteristic exponents of a random ma-
trix product over a compact base space endowed with a probability measure
depends real analytically on the data of the problem. This result was gener-
alized in [Dub08] to product of random linear operators having an invariant
cone over a measurable base space.

Concerning random dynamical systems without assuming to share an in-
variant cone, in general Lyapunov exponents do not depend continuously on
the coefficients, see [Kn90]. Using a similar technique as in [Kn90], Bochi
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gave a characterization of discontinuity for Lyapunov exponents of SL(2,R)-
cocycles in a unpublished preprint [Bo99]. Roughly speaking, it was showed
in [Bo99] that if a SL(2,R)-cocycle has a positive Lyapunov exponent and
has not a dominated splitting (integral separation), then the upper Lya-
punov exponent function is not continuous at this cocycle.

Although Lyapunov exponents are in general not continuous, it is proved
in [Co05] that continuity of Lyapunov eponents is a generic property on
the space of bounded linear cocycles. Thereafter, it is natural to investigate
higher regularity property than continuity property for Lyapunov exponents
of linear random dynamical systems such as Hölder continuity, smoothness
and analyticity.

In this paper, we show that analyticity of Lyapunov exponents is still a
generic property on the space of bounded linear random dynamical systems.
As far as we are aware, this result is neither stated nor proved elesewhere
and the main ingredient in the proof of this fact is to construct a suitable
cone being invariant under a long enough iteration of an integrally sepa-
rated linear random dynamical system. Note that generic bounded linear
random dynamical systems are integrally separated, see [Co05] and [CD16].
This fact together with results in [Rue79, Dub08] deduces the conclusion
that generically, the top Lyapunov exponent of random dynamical systems
depend analytically on the coefficients. To derive the same conclusion for
other Lyapunov exponents, we work with the generated random dynamical
systems on the exterior power space.

The paper is organized as follows: In Section 2, we present a basic back-
ground on Lyapunov exponents of product of random matrices and linear
random differential equations. In this section, we also recall a notion of an-
alytic functions defined in an arbitrary Banach space. Section 3 is devoted
to present the main results (Theorem 4 and Theorem 6) of this paper about
genericity for analyticity of Lyapunov exponents. The Appendix section is
divided into two subsections. In Subsection 4.1, we recall a basic background
on the exterior power of a finite dimensional vector space. A result proved
in [Cr90] about the structure of Lyapunov spectrum of induced random dy-
namical systems on the exterior power was also presented. Subsection 4.2 is
devoted to present the work in [AGD94] and [Dub08] about the simplicity
and analyticity of the top Lyapunov exponent of product of positive random
matrices.

To conclude this section, we introduce notations which are used throughout
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the paper: For a probability space (Ω,F ,P), let L∞(Ω,Rd×d) denote the
space of all essentially bounded random matrix-valued maps A : Ω→ Rd×d.
Let L∞(Ω,Rd×d) be endowed with the essential sup norm, i.e.

|A‖∞ := ess sup
ω∈Ω
‖A(ω)‖ for A ∈ L∞(Ω,Rd×d).

It is well known that (L∞(Ω,Rd×d), ‖ · ‖∞) is a Banach space.

2 Preliminaries

2.1 Discrete-time bounded linear random dynamical systems

Let (X,A,m) be a Lebesgue probability space and T : X → X an invertible
ergodic transformation preserving the probability m. Each random map A ∈
L∞(X,Rd×d) gives rise to an one-sided linear random dynamical system1

ΦA : N×X → Rd×d via

ΦA(n, x) :=

{
A(Tn−1x) . . . A(x), if n > 0,

id, if n = 0,

where id denotes the identity matrix in Rd×d. By virtue of the Multiplicative
Ergodic Theorem for one-sided linear random dynamical systems defined on
an invertible metric dynamical system, see e.g. [FGTQ15], there exist finite
numbers of Lyapunov exponents λ1(A) > · · · > λp(A)(A), where p(A) ∈
{1, . . . , d}, and a forward invariant decomposition

Rd = O1(A, x)⊕O2(A, x)⊕ · · · ⊕ Op(A)(A, x)

with the property that

lim
n→∞

1

n
log ‖ΦA(n, x)v‖ = λi iff v ∈ Oi(A, x) \ {0}.

Let d1(A), . . . , dp(A)(A) denote the dimension of O1(A, x), . . . ,Op(A)(A, x),
respectively. The set of pairs

ΣLya(A) :=
{

(λ1(A), d1(A)), . . . , (λp(A), dp(A)(A))
}

1In this paper, we identify a random map in L∞(X,Rd×d) with its generated linear
random dynamical system.
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is called the Lyapunov spectrum of A. For a convenience of presentation in
the rest of the paper, let γd(A) ≤ γd−1(A) ≤ · · · ≤ γ1(A) denote the Lya-
punov exponents of A (counting with multiplicity), i.e. for i = 1, . . . , p(A)

γj(A) = λi(A) for d1(A) + · · ·+ di−1(A) + 1 ≤ j ≤ d1(A) + · · ·+ di(A).

The Lyapunov spectrum is said to be simple if p(A) = d, i.e. all Oseledets
subspaces O1(A, x), . . . ,Op(A)(A, x) are of dimension 1.

Let GL(d) be the set of all invertible matrices in Rd×d. Let L∞(X,GL(d))
denote the space of all A ∈ L∞(X,Rd×d) such that the inverse A−1(x)
exists for x ∈ X and A−1(·) ∈ L∞(X,Rd×d). Note that each random map
A ∈ L∞(X,GL(d)) generates a two-sided linear random dynamical system
which is also denoted by ΦA : Z×X → GL(d) via

ΦA(n, x) :=


A(Tn−1x) . . . A(x), if n > 0,

id, if n = 0,

A(Tnx)−1 ◦ · · · ◦ A(T−1x)−1, if n < 0.

In the following lemma, we show that L∞(X,GL(d)) is an open and dense
subset of L∞(X,Rd×d). Note that this result does not depend on the norm
equipped with Rd and the induced norm on Rd×d. Then, in what follows let
Rd be endowed with the standard Euclidean norm.

Lemma 1. The set L∞(X,GL(d)) is open and dense in the Banach space
(L∞(X,Rd×d), ‖ · ‖∞).

Proof. The openess of L∞(X,GL(d)) in (L∞(X,Rd×d), ‖ · ‖∞) is obvious
and we only need to prove the density of this set. Let A ∈ L∞(X,Rd×d)
and ε > 0 be arbitrary. Let A(x) = U(x)Σ(x)V (x) be a measurable singular
valued decomposition of A, where U(x) and V (x) are measurable orthogonal
matrices and Σ(x) = diag(δ1(x), . . . , δd(x)) is a diagonal matrix. Define
Â(x) := U(x)Σ̂(x)V (x), where Σ̂(x) := diag(δ̂1(x), . . . , δ̂d(x)) is defined by

δ̂i(x) :=

{
δi(x), if |δi(x)| ≥ ε

2 ,

ε
2 , if |δi(x)| < ε

2 .

Then, ‖A − Â‖∞ = ess supx∈X ‖Σ(x) − Σ̂(x)‖ ≤ ε. Furthermore, Â(x) is

invertible and ‖Â−1‖∞ = ess supx∈X ‖Â−1(x)‖ ≤ 2
ε . Hence, L∞(X,GL(d))

is dense in (L∞(X,Rd×d), ‖ · ‖∞) and the proof is complete.
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2.2 Bounded linear random differential equations

Let (Ω,F ,P) be a Lebesgue probability space and (θt)t∈R be an ergodic
flow from Ω into itself preserving the probability P. Suppose further that
(θt)t∈R has no fixed point. For each A ∈ L∞(Ω,Rd×d), we consider the
corresponding linear random differential equation of the following form

ξ̇ = A(θtω)ξ for ω ∈ Ω, t ∈ R. (1)

Let ΨA(t, ω)ξ denote the solution of (1) satisfying ξ(0) = ξ. The linear
mapping ΦA : R×Ω→ Rd×d is a continuous random dynamical system, i.e.
ΨA is (B(R)⊗F ,B(Rd×d)) measurable and the following properties hold:

(i) ΨA(0, ω) = id,

(ii) ΨA(t+ s, ω) = ΨA(t, θsω)ΨA(s, ω) for all t, s ∈ R, ω ∈ Ω,

(iii) For each ω ∈ Ω, the mapping t 7→ ΨA(t, ω) is continuous,

see e.g., [Ar98, Subsection 2.2]. It is well known (see e.g. [Ar98, CD16]) that
ΨA(t, ω) satisfies the integrability condition of the Multiplicative Ergodic
Theorem, i.e.

log+ ‖α+(·)‖, log+ ‖α−(·)‖ ∈ L1(Ω,F ,P),

where log+ x := max(0, log x) and α+(ω) := sup0≤t≤1 ‖ΨA(t, ω)‖, α−(ω) :=
sup−1≤t≤0 ‖ΨA(t, ω)‖. So, there exist p, where 1 ≤ p ≤ d, non-random Lya-
punov exponents λp(A) < λp−1 < · · · < λ1(A) and an invariant measurable
decomposition

Rd = O1(ω,A)⊕O2(ω,A)⊕ · · · ⊕ Op(ω,A)

with the property that for k = 1, . . . , p the linear measurable subspace
Ok(ω,A) is dynamically characterized by

lim
t→±∞

1

t
log ‖ΨA(t, ω)v‖ = λk iff v ∈ Ok(ω,A) \ {0}.

Analog to Subsection 2.1, let γd(A) ≤ γd−1(A) ≤ · · · ≤ γ1(A) denote the
Lyapunov exponents (counting with multiplicity) of (1).
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2.3 Analytic functions

Let X,Y be Banach spaces. For k ∈ N, a function p : X → Y is called a
continuous homogeneous polynomial of degree k if there exists a continuous
k-multilinear symmetric function ϕ : Xk → Y such that p(x) = ϕ(x, . . . , x).

A function f : X → Y is said to be real analytic at x ∈ X if there exists
δ > 0 and a sequence of continuous homogeneous polynomials (pk)k≥0, where
pk : X → Y is of degree k, such that

∑∞
k=0 ‖pk‖δk <∞ and

f(x+ ∆) =
∞∑
k=0

pk(∆) for ∆ ∈ X with ‖∆‖ ≤ δ.

In the following lemma, we collect some fundamental properties of analytic
functions which are used in the next section.

Lemma 2. The following statements hold:

(i) Let X,Y be Banach spaces. Then, the composition, the summation
and the subtraction of two analytic functions from X to Y are again
analytic.

(ii) Let X,Y be Banach spaces. A bounded linear operator T : X → Y is
analytic.

(iii) Let f, g : L∞(Ω,Rd×d) → L∞(Ω,Rd×d) be analytic functions. Then,
the product function fg : L∞(Ω,Rd×d) → L∞(Ω,Rd×d), A 7→ fg(A)
defined by fg(A)(ω) := f(A)(ω)g(A)(ω), is also analytic.

Proof. We can find a proof of (i) in e.g. [Whit65]. Meanwhile, the statements
(ii) and (iii) follow directly from the definition of analytic function.

3 Analyticity of Lyapunov exponents

3.1 Discrete-time linear random dynamical systems

This subsection is devoted to study discrete-time bounded linear random
dynamical systems introduced in Subsection 2.1. The main result in this
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subsection is to show that generically Lyapunov exponents of discrete-time
bounded linear random dynamical systems depends analytically on the gen-
erators. To achieve this result, we show that in the set of integrally separated
bounded linear random dynamical systems the Lyapunov exponents depends
analytically on the generator. This assertion together with the result on the
genericity of integral separation in the space of bounded invertible random
matrices (see [Co05]) and Lemma 1 implies that analyticity of Lyapunov
exponents is a generic property.

Recall that a bounded linear random dynamical system A ∈ L∞(X,GL(d))
is said to be integrally separated if there exist K,α > 0 and an invariant
measurable decomposition Rd = ⊕di=1Ei(x), where Ei(x) is a linear subspace
of dimension 1, such that for all n ∈ N and m-a.e. x ∈ X the following
inequality

‖ΦA(n, x)u‖
‖u‖

≥ Keαn ‖ΦA(n, x)v‖
‖v‖

(2)

holds for u ∈ ⊕ij=1Ej(x)\{0}, v ∈ ⊕dj=i+1Ej(x)\{0}, where i = 1, . . . , d−1.

In what follows, we introduce and prove some fundamental properties of a
specific cone in the exterior power space ΛkRd. This cone is a key object in
the proof of the main result in which we show that the generated random
dynamical system of any integrally separated bounded linear random dy-
namical system on ΛkRd after a long enough iteration and a random change
of coordinate preserves this cone.

Lemma 3. For each k ∈ {1, . . . , d}, we define a subset Ck ⊂ ΛkRd by

Ck :=
{ ∑

1≤i1<···<ik≤d
: αi1...ikei1 ∧ · · · ∧ eik : α1...k = max

1≤i1<···<ik≤d
|αi1...ik |

}
.

(3)
Then, the following statements hold:

(i) Ck is a closed proper convex cone.

(ii) The dual cone C′k of Ck is given by

C′k :=
{ ∑

1≤i1<···<ik≤d
: αi1...ikei1 ∧· · ·∧eik : α1...k ≥

1

2

∑
1≤i1<···<ik≤d

|αi1...ik |
}
.

Consequently, e1 ∧ · · · ∧ ek is an interior point of both Ck and C′k. More,
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precisely, we have

B(e1 ∧ · · · ∧ ek,
1

3
) ⊂ Ck and B(e1 ∧ · · · ∧ ek,

1

3Ckd
) ⊂ C′k, (4)

where Ckd := d!
k!(d−k)! .

Proof. The assertion (i) follows directly from the definition of Ck and the
space ΛkRd, see Subsection 4.1. To prove (ii), we compute the dual cone C′k
of Ck. For this purpose, let v =

∑
1≤i1<···<ik≤d αi1...ikei1 ∧ · · · ∧ eik ∈ C

′
k be

arbitrary. Let x =
∑

1≤i1<···<ik≤d βi1...ikei1 ∧ · · · ∧ eik , where β1...k = 1 and
for 1 ≤ i1 < · · · < ik ≤ d with (i1, . . . , ik) 6= (1, . . . k)

βi1...ik =

{
1 if αi1...ik ≥ 0,
−1 if αi1...ik < 0.

Obviously, x ∈ Ck and a direct computation yields that

〈x, v〉 = α1...k +
∑

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...,k)

|αi1...ik |.

Since 〈x, v〉 ≥ 0 it follows that α1...k ≥ 1
2

∑
1≤i1<···<ik≤d |αi1...ik |. Con-

versely, let v =
∑

1≤i1<···<ik≤d αi1...ikei1 ∧ · · · ∧ eik satisfy that α1...k ≥
1
2

∑
1≤i1<···<ik≤d |αi1...ik |. For any x =

∑
1≤i1<···<ik≤d βi1...ikei1∧· · ·∧eik ∈ Ck,

we have

〈x, v〉 =
∑

1≤i1<···<ik≤d
αi1...ikβi1...ik

≥ α1...kβ1...k −
∑

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...k)

|αi1...ikβi1...ik |

≥ β1...k

α1...k −
∑

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...k)

|αi1...ik |

 ,

where we use the fact that β1...k = max1≤i1<···<ik≤d |βi1...ik | to obtain the
preceding inequality. Therefore, 〈x, v〉 ≥ 0 and the assertion (ii) is verified.
In the remaining part of the proof, we show (4). For this purpose, let
v =

∑
1≤i1<···<ik≤d αi1...ikei1∧· · ·∧eik satisfy that ‖e1∧· · ·∧ek−v‖ΛkRd ≤ 1

3 .
Thus, from

‖e1 ∧ · · · ∧ ek − v‖2ΛkRd = (α1...k − 1)2 +
∑

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...k)

α2
i1...ik
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we derive that

2

3
≤ α1...k and max

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...,k)
|αi1...ik | ≤

1

3
. (5)

Consequently, v ∈ Ck and thus B(e1 ∧ · · · ∧ ek, 1
3) ⊂ Ck. To prove the

remaining assertion in (4), let v =
∑

1≤i1<···<ik≤d αi1...ikei1 ∧ · · · ∧ eik satisfy

that ‖e1 ∧ · · · ∧ ek − v‖ΛkRd ≤ 1
3Ck

d

. Analog to the arguments yielding (5),

we have

1− 1

3Ckd
≤ α1...k and max

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...,k)
|αi1...ik | ≤

1

3Ckd
,

which implies that α1...k ≥
∑

1≤i1<···<ik≤d,(i1,...,ik)6=(1,...,k) |αi1...ik |. Thus, v ∈
C′k and the proof is complete.

Theorem 4 (Analyticity for Lyapunov exponents of generic discrete-time
linear random dynamical systems). Let A ∈ L∞(X,GL(d)) be an integrally
separated bounded linear random dynamical system. Then, for i = 1, . . . , d
the map γi(·) is analytic at A. As a consequence, analyticity of Lyapunov
exponents is a generic property in the Banach space (L∞(X,Rd×d), ‖ · ‖∞).

Proof. Let Rd = ⊕di=1Ei(x) be the invariant decomposition of A such that
inequality (2) holds for K,α > 0 and m-a.e. x ∈ X. For i = 1, . . . , d, choose
and fix a measurable unit vector ui(x) ∈ Ei(x). By invariance of Ei(x), we
have

A(x)ui(x) = ai(x)ui(Tx) for i = 1, . . . , d and x ∈ X,

where ai : X → R is measurable. Since A ∈ L∞(X,GL(d)), there exists
M1 > 0 such that

|ai(x)|, 1

|ai(x)|
≤M1 for i = 1, . . . , d and x ∈ X (6)

and by (2)

|ai(Tn−1x) . . . ai(x)|
|ai+1(Tn−1x) . . . ai+1(x)|

≥ Keαn for i = 1, . . . , d− 1, n ∈ N, x ∈ X. (7)

Define L : X → GL(d) by

L(x)ei := ui(x) for i = 1, . . . , d and x ∈ X,
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where e1, . . . , ed is the standard Eucledian orthogonal basic of Rd. From
boundedness of A,A−1 and (2), for i = 1, . . . , d the angle between Ei(x)
and ⊕dj=1,j 6=iEj(x) is uniformly bounded away from zero, see e.g. [Co05].
Consequently, there exists M2 > 0 such that

‖L(x)‖, ‖L−1(x)‖ ≤M2 for x ∈ X. (8)

Define a linear operator QL : L∞(X,Rd×d)→ L∞(X,Rd×d) by

QLM(x) := L−1(Tx)M(x)L(x).

Then, QL is invertible and from (8), we have ‖QL‖∞, ‖Q−1
L ‖∞ ≤M2

2 . There-
fore, to complete the proof it is sufficient to show that for i = 1, . . . , d the
map γi(·) is analytic at D ∈ L∞(X,GL(d)) which is defined by

D(x) := L−1(Tx)A(x)L(x) = diag(a1(x), . . . , ad(x)).

The proof of this fact is divided into two steps:

Step 1: Choose and fix an arbitrary k ∈ {1, . . . , d}. Let N be a positive
integer such that KeαN ≥ 2. Define a random map D(N) ∈ L∞(X,GL(d))
by

D(N)(x) := D(TN−1x) . . . D(x). (9)

Let ΛkD(N) denote the generated random map of D(N) in L∞(X,L(ΛkRd)).
In this step, we show that ΛkD(N) preserves the cone Ck defined as in (3),
i.e.

ΛkD(N)(x)Ck ⊂
(
Ck ∪ (−Ck)

)
for x ∈ X (10)

and we also show that there exists R > 0 such that

dCk
(
ΛkD(N)(x)v, e1∧· · ·∧ek

)
< R for x ∈ X, v ∈ Ck\{0} with ‖v‖ΛkRd = 1.

(11)
Choose and fix an arbitrary x ∈ X. By linearity of D(N)(x), to prove (10)
it is sufficient to show that

ΛkD(N)(x)v ∈
(
Ck ∪ (−Ck)

)
for v ∈ Ck \ {0} with ‖v‖ΛkRd = 1.

Let v =
∑

1≤i1<···<ik≤d : αi1...ikei1∧· · ·∧eik ∈ Ck \{0} satisfy that ‖v‖ΛkRd =
1. By definition of ‖ · ‖ΛkRd , see Subsection 4.1, we have

‖v‖2ΛkRd =
∑

1≤i1<···<ik≤d
α2
i1...ik

= 1,
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which together with the fact that α1...k = max1≤i1<···<ik≤d |αi1...ik | implies
that 1√

Ck
d

≤ α1...k ≤ 1, where Ckd := d!
k!(d−k)! . By definition of D(N) and the

generated random dynamical system ΛkD(N) on ΛkRd, see Subsection 4.1,
we have

ΛkD(N)(x)v =
∑

1≤i1<···<ik≤d
αi1...ikΛkD(N)(x)ei1 ∧ · · · ∧ eik

=
∑

1≤i1<···<ik≤d

(
αi1...ik

k∏
j=1

aij (T
N−1x) . . . aij (x)

)
ei1 ∧ · · · ∧ eik .

Using (7), we obtain that

k∏
j=1

|aj(TN−1x) . . . aj(x)| ≥ KeαN
k∏
j=1

|aij (TN−1x) . . . aij (x)|

for any index set (i1, . . . , ik) 6= (1, . . . , k). This together with the fact that
α1...k = max1≤i1<···<ik≤d |αi1...ik | and KeαN ≥ 2 implies that for any index
set (i1, . . . , ik) 6= (1, . . . , k)

α1...k

k∏
j=1

|aj(TN−1x) . . . aj(x)| ≥ 2|αi1...ik |
k∏
j=1

|aij (TN−1x) . . . aij (x)|. (12)

Consequently, ΛkD(N)(x)v ∈
(
Ck ∪ (−Ck)

)
and (10) is proved. Furthermore,

from (12) and a direct computation yields that

2α1...k

k∏
j=1

|aj(TN−1x) . . . aj(x)|e1 ∧ · · · ∧ ek − ΛkD(N)(x)v ∈ Ck,

2

α1...k
∏k
j=1 |aj(TN−1x) . . . aj(x)|

ΛkD(N)(x)v − e1 ∧ · · · ∧ ek ∈ Ck.

Thus, the distance (with respect to the Hilbert metric on the cone Ck) be-
tween two vectors ΛkD(N)(x)v and e1 ∧ · · · ∧ ek can be estimated as follows

dCk(e1 ∧ · · · ∧ ek,ΛkD(N)(x)v) ≤ log
(

2α1...k

k∏
j=1

|aj(TN−1x) . . . aj(x)|
)

+

log
( 2

α1...k
∏k
j=1 |aj(TN−1x) . . . aj(x)|

)
11



This together with (6) and the fact that 1√
Ck

d

≤ α1...k ≤ 1 shows (11) with

R := log(2Mk
1 ) + log(2

√
CkdM

k
1 ).

Step 2: So far we have proved that for any k ∈ {1, . . . , d} the random linear
map ΛkD(N) preserves the cone Ck. On the other hand, by Lemma 3 the
cone Ck satisfies conditions (C1) and (C2) of Theorem 8 in the Appendix
with the measurable mappings c : X → Ck and c

′
: X → C′k defined by

c(x) = c
′
(x) := e1 ∧ · · · ∧ ek for x ∈ X.

To apply Theorem 8 to the random map ΛkD(N) over (X,A,m, TN ), we only
need to check the ergodicity of the transformation TN . In what follows, we
consider two separated cases and our aim is to show that the map γ1(·) +
· · ·+ γk(·) is analytic at D, where k ∈ {1, . . . , d}.

Case 1 : TN is an ergodic transformation from X into itself. In this case, us-
ing the Multiplicative Ergodic Theorem, the Lyapunov exponents of the ran-
dom dynamical system generated by M ∈ L∞(X,Rd×d) over (X,A,m, TN ),

denoted by γ
(N)
d (M) ≤ · · · ≤ γ

(N)
1 (M), are well-defined. Define a map

π : L∞(X,Rd×d)→ L∞(X,Rd×d) by

π(M)(x) := M(TN−1x) . . .M(x).

Note that π is a product of bounded linear operators πi : L∞(X,Rd×d) →
L∞(X,Rd×d),M 7→ πi(M) with πi(M)(x) := M(T ix) and i = 1, . . . , N − 1.
Thus, by Lemma 2 (ii) and (iii), the function π is analytic. Furthermore, by

definition of γ
(N)
i we have

γi(M) =
1

N
γ

(N)
i (π(M)) for i = 1, . . . , d and M ∈ L∞(X,Rd×d).

In view of Theorem 7, we have for all ∆ ∈ L∞(X,Rd×d)

k∑
i=1

γi(D + ∆) =
1

N

k∑
i=1

γ
(N)
i (π(D + ∆)) =

1

N
γ

(N)
1 (Λkπ(D + ∆)). (13)

By (9), we have π(D) = D(N). Using achievements proved in Step 1 and

Theorem 8, the map γ
(N)
1 is analytic in a neighborhood of Λkπ(D). Hence,

by Lemma 2 and (13), the map
∑k

i=1 γi(·) is analytic at D so the analyticity
of functions γi(·), i = 1, . . . , d, at D is proved.
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Case 2 : TN is not ergodic. Since all statements above still work if N is
replaced by a larger integer number. Hence, we can assume additionally
that N is a prime number. Let W be a measurable set satisfying that
m(W ) ∈ (0, 1) and W = TNW . We prove by induction that for k = 1, . . . , N
there exists a measurable set Wk such that

TNWk = Wk and m(Wk) ∈ (0, 1),m
(
Wk ∩

k−1⋃
i=1

T iWk

)
= 0. (14)

Obviously, (14) holds for k = 1 with W1 := W and suppose that it holds
for some k ∈ {1, . . . , N − 1} with a measurable set Wk. By ergodicity of T
and the fact that T

(⋂N−1
i=1 T i(Wk)

)
=
⋂N−1
i=1 T i+1(Wk) =

⋂N−1
i=1 T i(Wk), we

have m(
⋂N−1
i=1 T i(Wk)) = 0. Since N is a prime number and TNWk = Wk

it follows that
N−1⋂
i=1

T i(Wk) =

N−1⋂
i=1

T ik(Wk).

Then, let ` ∈ {1, . . . , N − 1} be the smallest integer such that m
(
Wk ∩⋂`

i=1 T
ikWk

)
= 0. Hence, a measurable set Wk+1 := Wk ∩

⋂`−1
i=1 T

ikWk is
also invariant under TN and satisfies (14) for k+ 1. For the measurable set

Ŵ := WN we have TNŴ = Ŵ and the sets Ŵ , . . . , TN−1Ŵ are pairwise
disjoint. From T (

⋃N−1
i=1 T iŴ ) =

⋃N−1
i=1 T iŴ and ergodicity of T , we have

m
(⋃N−1

i=1 T iŴ
)

= 1. On the other hand, for any subset U ⊂ Ŵ with

positive measure and m(Ŵ \ U) > 0 we have m
(⋃N−1

i=1 T iU
)
< 1. This

implies together with ergodicity of T that m
(⋃N−1

i=1 T iU∆
⋃N
i=2 T

iU
)
> 0.

Consequently, m(TNU∆U) 6= 0 and therefore the restriction of the map

TN on the set Ŵ is ergodic. Thus, using a similar statement as in Case 1
to the induced random dynamical systems on (Ŵ ,A,m, TN ) completes the
proof.

3.2 Bounded linear random differential equations

Our aim in this subsection is to study the analyticity of Lyapunov exponents
of bounded linear random differential equations over a metric dynamical sys-
tem (Ω,F ,P, (θt)t∈R). For this purpose, we need the following preparation.
Firstly, we recall a notion of flow built under a function:

Definition 5 (Flow built under a function). Let (X,A,m) be a proba-
bility space and T : X → X be an invertible measurable transformation
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preserving the probability m. Let f : X → R≥0 be a measurable function
with

∫
X f(x) dm(x) <∞. The flow built under the function (X,T,m, f) is

defined with the following ingredients:

(i) The base space (B, σ, µ): The set B is defined by B := {(x, s) ∈
X × R≥0 : x ∈ X, 0 ≤ s < f(x)}. Then, B is a measurable set of the
measurable space (X×R,A⊗B(R)). Let σ and µ denote, respectively,
the restriction of the sigma algebra A⊗B(R) and the product measure
m× λ on the measurable set B, where λ is the Lebesgue measure on
R≥0.

(ii) The flow (St)t∈R: For each t ∈ R≥0, the map St : B → B is defined by

St(x, s) := (T k−1x, t+ s−
k−1∑
j=1

f(T jx)),

where k is the smallest positive integer satisfying

k−1∑
j=1

f(T jx) ≤ t+ s <

k∑
j=1

f(T jx),

and for each t < 0, St := (S−t)
−1.

According to the representation theory of ergodic flow (see e.g. [Am41,
CFS82]), there exists a Lebesgue probability space (X,A,m) and an ergodic
transformation T : X → X preserving the probability m and a measurable
function f : X → R≥0 which is bounded from 0 and ∞ such that the flow
(St)t∈R built under a function (X,T,m, f) is isomorphic to the flow (θt)t∈R,
i.e. there exists a measure preserving bijective transformation H : Ω → B,
where B = {(x, s) : 0 ≤ s < f(x)}, such that

H ◦ θt(ω) = St ◦H(ω) for all ω ∈ Ω. (15)

Since f is bounded from 0 and ∞, it follows that

c := ess sup
x∈X

f(x) ∈ (0,∞), c := ess inf
x∈X

f(x) ∈ (0,∞). (16)

Finally, since (X,A,m) is a Lebesgue probability space, (X,F ,m) is of one
of the following cases:

14



Case A: (X,A,m) is isomorphic to ([0, 1], λ), where λ is the standard
Lebesgue probability on [0, 1].

Case B: (X,A,m) is isomorphic to a probability space [0, s]∪{x1, x2, . . . , xk},
where s = 1−

∑k
i=1 pi with pi is the probability of {xi} and k can be equal

to ∞. Note that in this case, the base space (Ω,F ,P, (θt)t∈R) is isomorphic
to (S1,B(S1), λ, (Rt)t∈R), where S1 := {e2πiz : z ∈ [0, 1]} is the unit circle, λ
is the standard Lebesgue probability on S1 and Rt : S1 → S1 is the rotation
map defined by Rt(e

2πiz) = e2πi(z+t), see [CD16, Remark 1].

Theorem 6 (Analyticity for Lyapunov exponents of generic bounded linear
random differential equations). For each A ∈ L∞(Ω,Rd×d), let γd(A) ≤
· · · ≤ γ1(A) denote the Lyapunov exponents of the linear random differential
equation

ξ̇ = A(θtω)ξ. (17)

Then, the following statements hold:

(i) Suppose that Case A holds. Then, there exists an open and dense set
R ⊂ L∞(Ω,Rd×d) such that the functions γ1(·), . . . , γd(·) are analytic
at A ∈ R.

(ii) Suppose that Case B holds. Then, the functions γ1(·), . . . , γd(·) are
analytic at all A ∈ L∞(Ω,Rd×d).

Proof. Define a function T : L∞(Ω,Rd×d)→ L∞(X,Rd×d) by

T (A)(x) := ΨA(f(x), H−1(x, 0)) for all x ∈ X, (18)

where ΦA denote the linear random dynamical system generated by (17)
and H is defined as in (15). By variation of constants formula, we have for
all ∆ ∈ L∞(Ω,Rd×d)

T (A+ ∆)(x) = ΨA+∆(f(x), H−1(x, 0))

= ΨA(f(x), H−1(x, 0)) +∫ f(x)

0
ΨA(f(x)− s, θsH−1(x, 0))∆(θsH

−1(x, 0))ΨA(s,H−1(x, 0)) ds

= T (A)(x) + LA(∆)(x),

where the operator LA : L∞(Ω,Rd×d)→ L∞(X,Rd×d) is defined by

∆ 7→
∫ f(x)

0
ΨA(f(x)− s, θsH−1(x, 0))∆(θsH

−1(x, 0))ΨA(s,H−1(x, 0)) ds.
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Obviously, LA is a linear operator and from the boundedness of A and (16),
the operator LA is bounded. Consequently, by Lemma 2 (ii), the function
T is analytic. In the remaining part of the proof, we consider two separated
cases:

(i) Suppose that Case A holds. As is proved in [CD16, Theorem 3.2], there
exists an open and dense set R ⊂ L∞(Ω,Rd×d) such that for all A ∈ R, the
generated random dynamical system ΨA and hence also T (A) are integrally
separated. This together with analyticity of T , Theorem 4 and Lemma 2
completes the proof of this part.

(ii) Suppose that Case B holds. In this case, (Ω,F ,P, (θt)t∈R) can be
identified with (S1,B(S1), λ, (Rt)t∈R). Choose and fix an arbitrary ω0 ∈ S1

and consider a map P : L∞(Ω,Rd×d) → Rd×d defined by PA := ΨA(1, ω0).
This is clear that the Lyapunov exponents of the linear random dynamical
systems generated by

ξ̇ = A(θtω)ξ

coincides with the set of the modulus of the eigenvalues of PA. Analog to the
proof of the analyticity of the map T above, the map P is also analytic. This
together with the fact that the eigenvalues of matrices depend analytically
on the matrices (see e.g. [Ka80]) proves (ii). The proof is complete.

4 Appendix

Throughout this section, let (X,A,m) be a probability space and T : X → X
is an ergodic transformation preserving the probability m.

4.1 Exterior powers

For 1 ≤ k ≤ d, let ΛkRd, the k-fold exterior power of Rd, be the vector
space of alternating k-linear forms on the dual space Rd. The space ΛkRd

can be identified with the set of formal expressions
∑m

i=1 ci(u
(i)
1 ∧ · · · ∧ u

(i)
k )

with m ∈ N, ci ∈ R and u
(i)
j ∈ Rd if we do computations with the following

conventions:
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1. Adddition:

u1 ∧ · · · ∧ (uj + ûj) ∧ · · · ∧ uk =

u1 ∧ · · · ∧ uj ∧ · · · ∧ uk + u1 ∧ · · · ∧ ûj ∧ · · · ∧ uk,

2. Scalar multiplication: u1 ∧ · · · ∧ cuj ∧ · · · ∧ uk = cu1 ∧ · · · ∧ uj ∧ · · · ∧ uk,

3. for any permutation π of {1, . . . , k}

uπ(1) ∧ · · · ∧ uπ(k) = sign(π)u1 ∧ · · · ∧ uk.

The canonical inner product on Rd induces an inner product 〈·, ·〉 on ΛkRd
via

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 := det(〈ui, vj〉)k×k.

Let {ei}i=1...,d denote the standard Eucledian orthogonal basic of Rd. For
each k ∈ {1, . . . , d}, we define

ei1...ik := ei1 ∧ · · · ∧ eik for 1 ≤ i1 < · · · < ik ≤ d. (19)

Then,
{ei1...ik : 1 ≤ i1 < · · · < ik ≤ d}

is an orthogonal basis of ΛkRd.

A random map A : X → Rd×d generates a random map ΛkA : X → L(ΛkRd)
defined by

ΛkA(x)(u1 ∧ · · · ∧ uk) := A(x)u1 ∧ · · · ∧A(x)uk,

where L(ΛkRd) denotes the space of linear operators from ΛkRd into itself.
The generated linear random dynamical system by ΛkA on ΛkRd, which is
denoted by ΛkΦA, is called the k fold exterior of ΦA.

Theorem 7 (Lyapunov exponents of induced linear RDS on the exterior
power). Let γd(A) ≤ γd−1(A) ≤ · · · ≤ γ1(A) denote the Lyapunov exponents
(counting with multiplicity) of the linear RDS ΦA generated by A. Then,
the Lyapunov exponents (counting with multiplicity) of ΛkΦA are all sums
of k of the exponents of ΦA:

{γi1(A) + · · ·+ γik(A) : 1 ≤ i1 < · · · < ik ≤ d} .

Proof. See [Cr90, Remark 3.4].
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4.2 Positive linear random dynamical systems

A subset C ⊂ Rd is called a proper cone if tv ∈ C for all t ≥ 0, v ∈ C and
C ∩ (−C) = {0}. For a closed proper convex cone C, the dual cone C′ is
defined by

C′ := {x ∈ Rd : 〈x, v〉 ≥ 0 for all v ∈ C}.

Recall that the Hilbert metric dC on C \ {0} is defined by

dC(x, y) := log(βC(x, y)) + log(βC(y, x)) for x, y ∈ C \ {0}, (20)

where βC(x, y) := inf{t > 0 : tx − y ∈ C}. In what follows, the Hilbert
metric dC will be understood in a wider sense that dC(±x,±y) := dC(x, y)
for all (x, y) ∈ C.

Theorem 8. Let (Cx)x∈X be a family of closed proper convex cones satis-
fying the following conditions:

(C1) there is a measurable mapping c : X → Rd such that ‖c(x)‖ = 1 and
B(c(x), r) ⊂ Cx with r is independent of x,

(C2) there is a measurable mapping c
′

: X → Rd such that ‖c′(x)‖ = 1 and
B(c

′
(x), r

′
) ⊂ C′x with r

′
is independent of x.

Let A ∈ L∞(X,GL(d)) satisfy that A(x)Cx ⊂ CTx ∪ (−CTx) and there exists
R <∞ such that

dCTx
(A(x)v, c(Tx)) ≤ R for all x ∈ X, v ∈ Cx \ {0}.

Then, the following statements hold:

(i) The Oseledets subspace corresponding to the top Lyapunov exponent
λ1(A) is of dimensional one,

(ii) The map λ1(·) is analytic at A.

Proof. For each x ∈ X, let

r(x) :=

{
1, if A(x)Cx ⊂ CTx,

−1, if A(x)Cx ⊂ −CTx.
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By properties of measurable functions c and c
′

in (C1) and (C2), we have

r(x) =

{
1, if 〈A(x)c(x), c

′
(Tx)〉 > 0,

−1, if 〈A(x)c(x), c
′
(Tx)〉 < 0,

which implies that r is measurable. Now, we consider a linear operator
T : L∞(X,Rd×d)→ L∞(X,Rd×d) defined by

TM(x) = r(x)M(x) for all M ∈ L∞(X,Rd×d).

Obviously, λ1(TM) = λ1(M) and the Oseledets subspaces of M and TM
coincide. Hence, it is sufficient to prove (i) and (ii) for T A. By definition of
r, the random matrix T A preserves the family of cones Cx in the sense that
T A(x)Cx ⊂ CTx. Hence, using results in [AGD94] yields (i). Meanwhile,
the assertion (ii) is obtained by applying the result in [Dub08]. The proof
is complete.
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