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Abstract

In this paper, we prove a Perron-type theorem for fractional dif-
ferential systems. More precisely, we obtain a necessary and sufficient
condition for a system of linear inhomogeneous fractional differential
equations to have at least one bounded solution for every bounded
inhomogeneity.
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1 Introduction

In recent years, fractional differential equations have attracted increasing
interest due to their varied applications on various fields of science and en-
gineering, see e.g., [BK15, Di04, Pod99, SKM93]. Several results on asymp-
totic behavior of fractional differential equations are published (e.g., on Lin-
ear theory [M96, CST14], Stability theory for nonlinear systems [ASS07,
CDST16], Stable manifolds [CSST16], Stability theory for perturbed linear
systems [CST16],...). However, the qualitative theory of fractional differen-
tial equations is still in its infancy. One of the reasons for this fact might
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be that these equations do not generate semigroups and the well-developed
theory to ordinary differential equations cannot be applied directly.

Consider the inhomogenneous system of the order α ∈ (0, 1) involving Ca-
puto derivative

CDα
0+x(t) = Ax(t) + f(t), x(0) = x0 ∈ Rd, (1)

where t ∈ [0,∞), A ∈ Rd×d and f : [0,∞)→ Rd.

Motivated by Perron’s work, an interesting question arises here: what is
the necessary and sufficient condition on A for which (1) has at least one
bounded solution for any bounded continuous vector-valued function f? In
the case of ordinary differential equations (α = 1), the answer is known: the
matrix A is hyperbolic (see [Cop78, Proposition 3, p. 22]). However, for the
fractional case the question is still open.

Note that in Matignon [M96], the author gives a necessary and sufficient
condition of the matrix A such that for any external force f and any initial
condition x0, the solution x of (1) is bounded.

In this paper, we will give a Perron-type theorem for fractional differential
systems saying that the inhomogeneous system (1) has at least one bounded
solution for any bounded continuous function f if and only if the matrix A
satisfies a (fractional) hyperbolic condition

σ(A) ∩
{
λ ∈ C : λ = 0 or | arg (λ)| = απ

2

}
= ∅, (2)

where σ(A) is the set of all eigenvalues of the matrix A. This result is a
natural analog of the known theorem of the theory of ordinary differential
equations. Our approach is as follows. First, we transform the matrix A of
the system (1) into its Jordan normal form to obtain a simpler system. Next,
using the variation of constants formula and a procedure of substitution, we
describe explicitly bounded solutions. Finally, by estimating Mittag-Leffler
functions, we show the asymptotic behavior of solutions which enable us to
describe the set of unbounded solutions of (1) when the matrix does not
satisfy the hyperbolic condition.

The paper is organized as follows. In Section 2, we present some basics
of fractional calculus and some preliminary results related to Mittag-Leffler
functions. In Section 3, we state and prove the main result of the paper
(Theorem 5).
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To conclude the introductory section, we fix some notation which will be
used later. Let R, C be the set of all real numbers and complex numbers,
respectively. Denote by R≥0 the set of all nonnegative real numbers. For
a Banach space (X, ‖ · ‖), we define (Cb(R≥0;X), ‖ · ‖∞) as the space of all
continuous function ξ : R≥0 → X such that

‖ξ‖∞ := sup
t≥0
‖ξ(t)‖ <∞.

For any λ ∈ C \ {0}, we define its argument to be in the interval −π <
arg (λ) ≤ π and <λ, =λ the real part, the imaginary part of the complex
number λ, respectively. For α ∈ (0, 1), we define the sets

Λuα :=
{
λ ∈ C \ {0} : | arg (λ)| < απ

2

}
, (3)

Λsα :=
{
λ ∈ C \ {0} : | arg (λ)| > απ

2

}
. (4)

2 Preliminaries

2.1 Inhomogeneous linear fractional differential equations

For α > 0, [a, b] ⊂ R and x : [a, b] → R is a measurable function such that∫ b
a |x(τ)| dτ < ∞, the Riemann–Liouville integral operator of order α is

defined by

(Iαa+x)(t) :=
1

Γ(α)

∫ t

a
(t− τ)α−1x(τ) dτ, t ∈ (a, b],

where the Gamma function Γ : (0,∞)→ R is defined as

Γ(α) :=

∫ ∞
0

τα−1 exp(−τ) dτ.

The Caputo fractional derivative CDα
a+x of a function x ∈ Cm([a, b]) is

defined by
(CDα

a+x)(t) := (Im−αa+ Dmx)(t), ∀t ∈ [a, b],

where Dm = dm

dtm is the usual mth-order derivative and m := dαe is the small-
est integer larger or equal to α, see, e.g., [Pod99, p. 79]. While the Caputo
fractional derivative of a d-dimensional vector function x(t) = (x1(t), · · · , xd(t))T
is defined component-wise as

(CDα
a+x)(t) := (CDα

a+x1(t), · · · ,CDα
a+xd(t))

T.
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Throughout this paper, we consider the initial value problem:

CDα
0+x(t) = Ax(t) + f(t), x(0) = ξ ∈ Rd (5)

with α ∈ (0, 1) and f : [0,∞) → Rd is a continuous function. It is well
known that the initial problem (5) has a unique solution defined on the
whole interval [0,∞), see, e.g., [Di04, Theorem 6.8]. An explicit formula of
this solution is given by using Mittag-Leffler functions which are defined as

Eα,β(M) :=
∞∑
k=0

Ak

Γ(αk + β)
, Eα(M) := Eα,1(M), ∀M ∈ Cd×d,

where β ∈ R.

Theorem 1 (Variation of constants formula for fractional differential equa-
tions). Let ξ ∈ Rd and ϕ(·, ξ) denote the solution of the initial problem (5).
Then the following (variation of constants) formula holds

ϕ(t, ξ) = Eα(tαA) ξ +

∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)f(τ) dτ, ∀t ≥ 0.

Proof. Use the same arguments as in the proof of [CT17, Lemma 2]; see also
[CT17, Remark 4].

2.2 Some useful properties of Mittag-Leffler functions

To investigate the asymptotic behavior of the solutions to linear fractional
differential equations, it is important to know the behavior of Mittag-Leffler
functions. Hence, we next introduce some basic properties of these functions.
To save the length of the paper we give only sketch of the proofs of the results
presented in this subsection.

Lemma 2. Let λ ∈ C be arbitrary. There exist a positive real number
m(α, λ) such that for every t ≥ 1 the following estimations hold:

(i) if λ ∈ Λuα then ∣∣∣∣Eα(λtα)− 1

α
exp (λ

1
α t)

∣∣∣∣ ≤ m(α, λ)

tα
,∣∣∣∣tα−1Eα,α(λtα)− 1

α
λ

1
α
−1 exp (λ

1
α t)

∣∣∣∣ ≤ m(α, λ)

tα+1
;
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(ii) if λ ∈ Λsα then ∣∣tα−1Eα,α(λtα)
∣∣ ≤ m(α, λ)

tα+1
.

For a proof of this theorem one uses integral representations of Mittag-Leffler
functions and the method of estimation of the integrals similar to that of
the proofs of Theorem 1.3 and Theorem 1.4 in [Pod99, pp. 32–34].

Lemma 3. Let λ ∈ C \ {0}. There exists a positive constant K(α, λ) such
that for all t ≥ 0 the following estimates hold:

(i) if λ ∈ Λuα then∫ ∞
t

∣∣∣λ 1
α
−1Eα(λtα) exp(−λ

1
α τ)
∣∣∣ dτ ≤ K(α, λ),∫ t

0

∣∣∣(t− τ)α−1Eα,α(λ(t− τ)α)− λ
1
α
−1Eα(λtα) exp(−λ

1
α τ)
∣∣∣ dτ

≤ K(α, λ);

(ii) if λ ∈ Λsα then∫ t

0

∣∣(t− τ)α−1Eα,α(λ(t− τ)α)
∣∣ dτ ≤ K(α, λ).

Proof. The proof of this lemma follows easily by using Lemma 2 and repeat-
ing arguments used in the proof of [CDST14, Lemma 5].

Lemma 4. For any function g ∈ Cb(R≥0;R) and λ ∈ Λuα, we have

lim
t→∞

∫ t

0
(t− τ)α−1

Eα,α(λ(t− τ)α)

Eα(λtα)
g(τ) dτ

= λ
1
α
−1
∫ ∞
0

exp(−λ
1
α τ)g(τ) dτ. (6)

Proof. Use Lemma 2, Lemma 3 and arguments analogous to those used in
the proof of [CDST14, Lemma 8].
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3 A Perron type theorem for fractional differential
equations

This section is devoted to a Perron-type theorem for fractional systems. The
main result of this section is stated as follows.

Theorem 5 (Perron-type theorem for fractional differential equations). Let
A ∈ Rd×d and α ∈ (0, 1). The inhomogeneous system

CDα
0+x(t) = Ax(t) + f(t)

has at least one bounded solution for any f ∈ Cb(R≥0;Rd) if only if the
matrix A satisfies the following condition:

σ(A) ∩
{
λ ∈ C : λ = 0 or | arg (λ)| = απ

2

}
= ∅.

The proof of Theorem 5 is divided into the sufficient part (Proposition 6)
and the necessary part (Proposition 11). Firstly, we show the sufficient part.

Proposition 6 (Sufficient part of Theorem 5). Let A ∈ Rd×d satisfy the
hyperbolic condition (2):

σ(A) ∩
{
λ ∈ C : λ = 0 or | arg (λ)| = απ

2

}
= ∅.

Then, for any f ∈ Cb(R≥0;Rd), the corresponding inhomogeneous system

CDα
0+x(t) = Ax(t) + f(t), (7)

has at least one bounded solution.

Before proving Proposition 6, we transform the matrix A of the system (7)
into its Jordan normal form to obtain a simpler system. Let T ∈ Rd×d be a
nonsingular matrix transforming A into its Jordan normal form, i.e.,

T−1AT = diag(A1, . . . , An),

where for j = 1, . . . , n, the block Aj is of the following form

Aj :=


λj 1 0 · · · 0
0 λj 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λj 1
0 0 · · · 0 λj


dj×dj

,
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with λj ∈ σ(A) ∩ R, or

Aj =


Dj I 0 · · · 0
0 Dj I · · · 0
...

...
. . .

. . .
...

0 0 · · · Dj I
0 0 · · · 0 Dj


dj×dj

,

here

Dj =

(
aj −bj
bj aj

)
, I =

(
1 0
0 1

)
, aj , bj ∈ R, bj 6= 0,

and λj = aj + ibj ∈ σ(A). By the change of variable x = Ty, the system (7)
is transformed into the equation

CDα
0+y(t) = By(t) + g(t), (8)

where B is the real Jordan normal form of A, i.e.,

B = T−1AT = diag(A1, . . . , An), and g(t) = T−1f(t).

On the other hand, without loss of generality, we may rewrite (8) into the
form

CDα
0+y(t) = diag(Bs, Bu)y(t) + (gs(t), gu(t))T, (9)

where Bs/u is the part of B corresponding to the collection of all blocks with

the eigenvalues belonging to Λ
s/u
α . Note that the system (7) has at least one

bounded solution for any bounded continuous function f if and only if the
system (9) has at least one bounded solution for any bounded continuous
function g. Thus, we only focus on the system (9). We need the following
preparatory lemmas for the proof of Proposition 6.

Lemma 7. Let λ ∈ C \ {0}. Consider the inhomogeneous equation

CDα
0+x(t) = λx(t) + g(t), (10)

where g ∈ Cb(R≥0;C). Then, the following statements hold:

(i) if λ ∈ Λsα, then all solutions of (10) are bounded on R≥0;

(ii) if λ ∈ Λuα, then the equation (10) has exactly one bounded solution.
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Proof. (i) Using the variation of constants formula provided by Theorem 1,
for any ξ ∈ C, the solution ϕ(·, ξ) of (10) has the representation

ϕ(t, ξ) = Eα(λtα)ξ +

∫ t

0
(t− τ)α−1Eα,α(λ(t− τ)α)g(τ) dτ, ∀t ≥ 0.

From [Pod99, Theorem 1.4, p. 33], we see that the quantity Eα(λtα)ξ is
bounded on [0,∞). On the other hand, due to Lemma 3(ii), there exists a
positive constant C such that∫ t

0
|(t− τ)α−1Eα,α(λ(t− τ)α)g(τ)| dτ ≤ C sup

τ≥0
|g(τ)|, ∀t ≥ 0.

Thus ϕ(·, ξ) is bounded for any ξ ∈ C.

(ii) Let

ξ∗ := −λ
1
α
−1
∫ ∞
0

exp (−λ
1
α τ)g(τ) dτ.

By the variation of constants formula provided by Theorem 1, we see that
the function

ϕ(t, ξ∗) = Eα(λtα)
(
− λ

1
α
−1
∫ ∞
0

exp (−λ
1
α τ)g(τ) dτ

)
+

∫ t

0
(t− τ)α−1Eα,α(λ(t− τ)α)g(τ) dτ, ∀t ≥ 0,

is a solution of (10). We will prove that this function is the only bounded
solution. Indeed, for any t ≥ 0, we have

|ϕ(t, ξ∗)| ≤
∫ ∞
t

∣∣∣λ 1
α
−1Eα(λtα) exp(−λ

1
α τ)
∣∣∣ |g(τ)| dτ

+

∫ t

0

∣∣∣(t− τ)α−1Eα,α(λ(t− τ)α)− λ
1
α
−1Eα(λtα) exp(−λ

1
α τ)
∣∣∣ |g(τ)| dτ,

which together with Lemma 3(i) imply that

|ϕ(t, ξ∗)| ≤ 2K(α, λ) sup
τ≥0
|g(τ)|, ∀t ≥ 0.

Thus, ϕ(·, ξ∗) is bounded on [0,∞). Now, assume that ϕ(·, ξ) is another
bounded solution of (10) for some ξ ∈ C. Then,

ϕ(t, ξ∗)− ϕ(t, ξ) = Eα(λtα)(ξ∗ − ξ), ∀t ≥ 0.
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Because limt→∞Eα(λtα) =∞, we have ξ∗ = ξ. This implies that

ϕ(t, ξ∗) = ϕ(t, ξ), ∀t ≥ 0.

Hence, the equation (10) has exactly one bounded solution. The proof is
complete.

Remark 8. Consider the system

CDα
0+x1(t) = ax1(t)− bx2(t) + g1(t), (11)

CDα
0+x2(t) = bx1(t) + ax2(t) + g2(t), (12)

where a, b ∈ R and g1, g2 ∈ Cb(R≥0;R). In the light of Proposition 7, we
obtain the following result:

(i) if a+ ib ∈ Λsα, then all solutions of the system (11)-(12) are bounded;

(ii) if λ := a+ ib ∈ Λuα, then the system (11)-(12) has exactly one bounded
solution as

(x1(t), x2(t))
T = (<u(t),=u(t))T, ∀t ≥ 0,

where

u(t) = Eα(λtα)

(
−λ

1
α
−1
∫ ∞
0

exp (−λ1/ατ)(g1(τ) + ig2(τ)) dτ

)
+

∫ t

0
(t− τ)α−1Eα,α(λ(t− τ)α)(g1(τ) + ig2(τ)) dτ, ∀t ≥ 0.

Indeed, set u(t) = x1(t) + ix2(t) and g(t) = g1(t) + ig2(t), then the system
(11)-(12) is equivalent to the equation

CDα
0+u(t) = λu(t) + g(t)

and Lemma 7 is applied.

Next, we prove an analogous result of Lemma 7 for inhomogeneous systems
whose linear parts are of the form Jk,λ := λ idk + Nk, where k ∈ N, idk
denotes the unit matrix in Rk×k and

Nk :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0


k×k

.

9



Lemma 9. Let k ∈ N and λ ∈ C\{0}. Consider the inhomogeneous system

CDα
0+x(t) = Jk,λx(t) + g(t), t ≥ 0, (13)

where g ∈ Cb(R≥0;Ck). Then, the following statements hold:

(i) if λ ∈ Λsα, then all solutions of (13) are bounded;

(ii) if λ ∈ Λuα, then the equation (13) has exactly one bounded solution.

Proof. By the definition of Jk,λ, the system (13) is rewritten in the form

CDα
0 xi(t) = λ xi(t) + xi+1(t) + gi(t), i = 1, . . . , k − 1 (14)

and
CDα

0 xk(t) = λ xk(t) + gk(t). (15)

(i) Assume that g ∈ Cb(R≥0;Ck). Let

x0 = (x01, · · · , x0k)T ∈ Ck

be an arbitrary vector and ϕ(t, x0) = (ϕ1(t), · · · , ϕk(t))T denote the solution
of (13) satisfying the initial condition ϕ(t, x0) = x0. From (15), we have

ϕk(t) = Eα(λtα)x0k +

∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)gk(s) ds. (16)

It follows from Lemma 7(i) that ϕk is bounded in R≥0. Substitute ϕk into
(14) and applying Lemma 7(i) again we get that ϕk−1 is also bounded.
Continue this process we will get that ϕk−2, . . . , ϕ1 are all bounded.

(ii) Using arguments similar to that of the part (i) above and with the
application of Lemma 7(ii), we obtain the proof of Lemma 9(ii).

Corollary 10. For λ := a+ ib ∈ C \ {0}, we consider the equation

CDα
0+x(t) = J2k,λx(t) + f(t), (17)

where f ∈ Cb(R≥0;R2k) and J2k,λ is a real Jordan block in the form

J2k,λ :=


D I 0 · · · 0
0 D I · · · 0
...

...
. . .

. . .
...

0 0 · · · D I
0 0 · · · 0 D


2k×2k

,

10



with

D =

(
a −b
b a

)
, I =

(
1 0
0 1

)
.

Then, the following statements hold:

(i) if λ ∈ Λsα, then all solutions of (17) are bounded;

(ii) ff λ ∈ Λuα, then all solutions of (17) has exactly one bounded solution.

Proof. By using the change uj(t) = x2j−1(t) + ix2j(t), for j = 1, . . . , k, from
the system (17), we obtain the system

CDα
0+u1(t) = λu1(t) + u2(t) + g1(t) (18)

CDα
0+u2(t) = λu2(t) + u3(t) + g2(t) (19)

. . .
CDα

0+uk−1(t) = λuk−1(t) + uk(t) + gk−1(t) (20)
CDα

0+uk(t) = λuk(t) + gk(t), (21)

here gj(t) = f2j−1(t) + if2j(t), for j = 1, . . . , k. If λ ∈ Λsα, according to
Lemma 9(i), we see that all solutions of this system are bounded which
implies that all solutions of the system (17) are bounded, too. In the case
λ ∈ Λuα, from Lemma 9(ii), this system has exactly one bounded solution
u(t) = (u1(t), . . . , uk)

T. Hence, the system (17) has exactly one bounded
solution ϕ(t) = (ϕ1(t), . . . , ϕ2k(t))

T, where for all t ≥ 0,

ϕ2j−1(t) = <uj(t), j = 1, . . . , k,

and
ϕ2j(t) = =uj(t), j = 1, . . . , k.

We now prove the sufficient part of Theorem 5.

Proof of Proposition 6. Due to the fact that the system (7) has at least one
bounded solution for any bounded continuous function f if and only if the
system (9) has at least one bounded solution for any bounded continuous
function g. We now focus on the system (9). Applying Lemma 9(ii) and
Corollary 10(ii) to each Jordan block from Bu, we can find exactly one
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bounded solution u(t) of the equation (the unstable part of the equation
(9))

CDα
0+y

u(t) = Buyu(t) + gu(t);

and applying Lemma 9(i) and Corollary 10(i) to each Jordan block from Bs,
we see that all solutions of the equation (the stable part of the equation (9))

CDα
0+y

s(t) = Bsys(t) + gs(t), ys(0) = ys0,

are bounded. Put ϕ(t) := (u(t), v(t))T for any t ≥ 0, where v(t) is an
arbitrary solution of (9). Then, this function is a bounded solution of the
system (9). The proof is complete.

Finally, we prove the necessary condition in the statement of Theorem 5.

Proposition 11 (Necessary part of Theorem 5). Consider the system

CDα
0+x(t) = Ax(t) + f(t), (22)

where f : R≥0 → Rd. Assume that for any bounded continuous function f ,
the system (22) has at least one bounded solution. Then, the matrix A has
to satisfy the hyperbolic condition (2):

σ(A) ∩
{
λ ∈ C : λ = 0 or | arg (λ)| = απ

2

}
= ∅.

Before going to the proof of this theorem, we need the following technical
proposition.

Lemma 12. Consider the equation

CDα
0+x(t) = λx(t) + f(t), (23)

where λ = 0 or arg (λ) = απ
2 and f : R≥0 → C. Then, there exists a

bounded continuous function f such that every solutions of this equation
are unbounded.

Proof. First, we consider the case λ = 0. In this case, we choose f(t) =
Γ(1 + α). It is obvious that for any x0 ∈ R, the equation (23) with the
initial condition x(0) = x0, has a unique solution as

ϕ(t, x0) = x0 + tα, ∀t ≥ 0.
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This solution is unbounded for any x0 ∈ R.

In the case arg (λ) = απ
2 , we write λ in the form λ = r(cos απ2 + i sin απ

2 )

and choose f(t) = exp (ir
1
α t). By Theorem 1, the solution ϕ(·, x0) of (23)

starting from x0 satisfies

ϕ(t, x0) = Eα(λtα)x0 +

∫ t

0
(t− τ)α−1Eα,α(λ(t− τ)α) exp (ir

1
α τ) dτ.

We claim that this solution is unbounded. Indeed, the quantity x0Eα(λtα)
is bounded due to [Pod99, Theorem 1.1, p. 30], while the quantity∫ t

t−1
(t− τ)α−1Eα,α(λ(t− τ)α) dτ

is bounded by the following estimate∣∣∣ ∫ t

t−1
(t− τ)α−1Eα,α(λ(t− τ)α) dτ

∣∣∣ ≤ ∫ 1

0
sα−1|Eα,α(λsα)| ds.

Furthermore, using [Pod99, Theorem 1.1, p. 30], we show that the quantity∫ t−1

0
(t− τ)α−1Eα,α(λ(t− τ)α) exp (ir

1
α τ) dτ

is unbounded. Indeed, for θ ∈ (απ2 , απ) is arbitrary but fixed and ε ∈ (0, |λ|2 )
satisfies

|λ|tα − ε ≥ |λ|tα sin(θ − απ

2
) (24)

for all t ≥ 1, we denote by γ(ε, θ) the contour consisting of the following
three parts

(i) arg(z) = −θ, |z| ≥ ε;

(ii) −θ ≤ arg(z) ≤ θ, |z| = ε;

(iii) arg(z) = θ, |z| ≥ ε.

The contour γ(ε, θ) divides the complex plane (z) into two domains, which
we denote by G−(ε, θ) and G+(ε, θ). These domains lie correspondingly on
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the left and on the right side of the contour γ(ε, θ). According to [Pod99,
Theorem 1.1, p. 30], we have∫ t−1

0
(t− τ)α−1Eα,α(λ(t− τ)α) exp (ir

1
α τ) dτ

=

∫ t−1

0
(t− τ)α−1

1

α
λ

1−α
α (t− τ)1−α exp(λ

1
α (t− τ)) exp(ir

1
α τ) dτ

+

∫ t−1

0
(t− τ)α−1

1

2απi

∫
γ(ε,θ)

exp(ξ
1
α )ξ

1−α
α

ξ − λ(t− τ)α
dξ exp(ir

1
α τ) dτ

= I4(t) + I5(t).

Clearly, we see that

I4(t) =

∫ t−1

0
(t− τ)α−1

1

α
λ

1−α
α (t− τ)1−α exp(λ

1
α (t− τ)) exp(ir

1
α τ) dτ

=
λ

1−α
α

α
(t− 1) exp(λ

1
α t). (25)

On the other hand, due to (24), we obtain

|I5(t)| ≤

∫
γ(ε,θ) | exp(ξ

1
α )ξ

1−α
α | dξ

2απ sin(θ − απ
2 )

∫ t−1

0

(t− τ)α−1

|λ|(t− τ)α
dτ

≤

∫
γ(ε,θ) | exp(ξ

1
α )ξ

1−α
α | dξ

2απ|λ| sin(θ − απ
2 )

log t. (26)

From (25) and (26), this implies that the quantity∫ t−1

0
(t− τ)α−1Eα,α(λ(t− τ)α) exp (ir

1
α τ) dτ

is unbounded. So, the solution ϕ(·, x0) is unbounded for any x0 ∈ C. The
proof is complete.

Corollary 13. Assume that λ = a + ib is a complex number satisfying
arg (λ) = απ

2 . Consider the fractional differential equation

CDα
0+x1(t) = ax1(t)− bx2(t) + f1(t), (27)

CDα
0+x2(t) = bx1(t) + ax2(t) + f2(t). (28)

Then, we can find f1, f2 ∈ Cb(R≥0;R) such that all solutions of this system
are unbounded.
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Proof. Consider the equation

CDα
0+u(t) = λu(t) + f(t), t > 0,

where f(t) = f1(t)+ if2(t). From the proof of Lemma 12, choosing the func-

tion f as f(t) = exp (ir
1
α t) (where r =

√
a2 + b2), we see that all solutions

of this equation are unbounded. Hence, by choosing f1(t) = cos(r
1
α t) and

f2(t) = sin(r
1
α t), all solutions of the system (27)-(28) are unbounded. The

proof is complete.

We are now in a position to prove Proposition 11.

Proof of Proposition 11. First, we consider the case 0 ∈ σ(A). Without
loss of generality (transform A to the Jordan form and change the order of
coordinates if necessary), we can write the matrix A in the equation (22) in
the form

A =

(
Â A1

0 0

)
.

Choosing f = (f̂(t),Γ(1 +α))T with f̂ ∈ Cb(R≥0;Rd−1). Due to Lemma 12,
the last coordinate of any solution of (22) is unbounded. Hence, all solutions
of (22) are unbounded.

Next, in the case the spectrum σ(A) has at least one eigenvalue λ such that
arg (λ) = απ

2 , we can assume that

A =

(
Â A2

0 D

)
where

D =

(
a −b
b a

)
,

with a = <λ, b = =λ. Due to Corollary 13, by choosing the function
f = (f̂ , f1, f2)

T, where f̂ ∈ Cb(R≥0;Rd−2), and

f1(t) = cos(r
1
α t), f2(t) = sin(r

1
α t),

with r = |λ|, we see that at least one of the last two coordinates of any
solution of (22) is unbounded. Hence, all solutions of (22) are unbounded.
The proof is complete.

Proof of Theorem 5. The proof of Theorem 5 follows directly from Proposi-
tion 6 and Proposition 11.
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