Existence of global strong solutions to the
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Abstract. This paper deals with the existence of global strong solutions to the three-dimentional
Navier-Stokes equations with large initial data. We show that if 2 C R? is the interior of a torus
and the input data are axially symmetric vector fields then the Navier-Stokes equations have a
unique global strong solution on (0, 00). Here, we do not require that the swirls of the data are

zero. The obtained result is proved without any requirement on size of the data.
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1 Introduction

In this paper we are going to study the Navier-Stokes equations, where the incompressible

fluid fills the domain 2:

(&U—Av—i-(v-V)v—i-Vp:f(t,x) (t,x) € (0,00) x €,

(NSE) dive =0 (t,x) € 0,00) x Q,
v=0 t,x) € [0,00) x 012,
[ v(0,7) = vo(x) x €,

where vy : Q — R3 is a divergence-free vector field, that is, divug = 0 and €2 is the interior

of a torus which is defined by

Q = {(21, 73, 23) € R?|(Ry — \/af + 23)* + 23 < R}} (1)

and its boundary is the torus

892{(l'1,$2,$3) ERSKRQ—\/ZU%‘FLE%P—FQE%:R?}. (2)
Here R, and R, are positive radiuses which satisfy the condition

Ry, > 3R;. (3)
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So far there have been a lot of books and articles on the mathematical theory of the
Navier-Stokes equations (NSEs for short). The classical results could be found in the
books of the authors R. Temam [31], [32], O.A. Ladyzhenskaya [21], P. Constantin and
C. Foias [7]. The modern references can be found in the recent books of H. Bahouri et al.
2], M. Cannone [4] and P. G. L. Rieusset [29].

It is known that, under smallness condition of vy and f, the Navier-Stokes equations
have a unique global strong/smooth solution (see, for instance [1], [13], [14], [17], [18], [26]).
However, proving the existence of smooth/strong solutions to the Navier-Stokes equations
without smallness conditions on the initial data has been a challenge for mathematicians
so far (see [6]).

Although it was shown that in the case = R3, there are some models for which
finite time blow-up of solutions can be proved for some classes of large data (see [12],
[27] and [33]), we believe that there are some classes of large input data under which the
Navier-Stokes equations have global strong/smooth solutions. In fact, in [16] and [28] the
authors showed that when the initial data have a large two-dimension part and a small
three-dimension part, then the equations have a unique global in time solution. In recent
paper of J. Y. Chemin et al [8], the authors considered the Navier-Stokes equations for

the case of initial data of the form

1
vo(h, x3) = (v (xh, €x3), v* (2, €x3), Evg(iﬁh, €x3)),

where z;, belongs to torus T? and x3 € R. They showed that under a smalless condition
of vy the Navier-Stokes equations have a global smooth solution in this case. Note that
such initial data may be arbitrarily large in the norm of BO_O{OO.

In general the existence of global strong solutions of the NSEs with large input data
is guaranteed whenever the data have good structures. In 1968, Ukhovskii and ITudovich
[35] and Ladyzhenskaya [22] (see also [23]) showed that if vy and f are axially symmetric
with zero swirls, then the Navier-Stokes equations have a unique global strong solution on
(0,7) with T' < 400. The obtained results in [35] and [22] were proved without any size
requirement on the data. In the same direction, Mahalov et al. [25] studied the existence
of global solution for the Navier-Stokes equations under requirement that the input data
vo and f are helical symmetric. Unfortunately, the obtained results in [25] were based on
key lemma but its proof is incorrect (see Lemma 3.1 in [25] and its proof).

From the above one may ask whether there is a class of large input data and some
bounded domains €2 under which the Navier-Stokes equations have a unique global strong
solution on (0,00). The aim of this paper is to address this question. Note that the
existence of global strong solutions to the NSEs plays an important role not only in the
theory of partial differential equations but also in optimal control problems. Based on the
existence of global strong solutions of NSEs, we can establish the Pontryagin maximum

principle for optimal control problems governed by NSEs (see for instance [19]).



Recall that any vector field v(x) in R3 can represent in the cylindrical coordinate under
the form

v =v.(r,x3,0)e, + vg(r, x3,0)eg + v, (r, x3,0)e,,

where r = \/x? + 23 and

cos 6 —sinf 0
e, = | sinf |, e = cosf , € =
0 0

The component vy is called the swirl of v. When v,, vy, v, do not depend on @, we say
that v is azially symmetric.

In this paper we continue to develop the obtained results in [35], [22] and [23] by
considering the Cauchy problem for the Navier-Stokes equations (NSE) in the bounded
domain €2 which is the interior of a torus and assume that the input data are axially
symmetric and their swirls are not necessary to equal zero. Under this assumptions,
we show that the NSEs have a unique global strong solution on (0,00) without any
requirement on size of the input data. It is worth pointing out that the technique for the
proof of our result is different from mentioned papers. In [35], [22] and [23], the authors
used curl operator in order to transform the NSEs into vorticity equations. This method
bases on regularity of solution of NSEs heavily. Here, we give a direct proof by using
the energy method as in [7] and exploiting the structures of the data. In some sense, our
obtained result is an extension of preceding results for the case where the swirls of data
are NONZero.

Let us define

V ={u€ H)(Q)? | div u =0},

Vo = {u € V| u is axially symmetric},
H={ueL*Q)?®|divu=0,u-7 =0 on 0N},
7 is the unit outward normal vector on 9%,
Vas = the closure of H*(Q)* NV, in V,

H,, = the closure of H*(2)* NV in H.

It is know that H is a Hilbert space with the scalar product (-, -) and norm |- | which are
induced by the scalar product and norm in L*(Q2)3. Also, V is a Hilbert space with the

scalar product ((+,-)) and norm || - || which are induced by the scalar product and norm

in Hj(Q)3, where
3
((v,w)) = (D, Djw),Yv,w € V.
=1

We are ready to state our main result.



Theorem 1.1 Suppose that Q satisfies condition (3), vy € Vas and f € L*((0,00); Has) N
L*((0,00); Has).  Then the Navier-Stokes equations (NSE) have a unique global strong

solution v which is axially symmetric and

v € L¥((0,00); Vi) 0 (0,00 FA)P), 7 € LA((0,00)s Hao).

Moreover, the following energy inequalities are valid:

o(t) < (el + / () ds) exp ( / " f(s)lds) Ve 0 (4)
and

| wusras < Slal + (uf + [ 17000 exn (G [ 1) [ 1s0las
)

Remark 1.1 In the case of finite interval [0, Ty] with 0 < Ty < 400, if we require that
vy € Vis and f € L*((0,Ty), Has), then the NSEs have a unique global strong solution v
on (0,Ty) with

dv
dt
Let us give an illustrative example where the initial datum satisfies assumptions of The-

v € L((0,Ty); Vas) N L*((0, Ty); H*(Q)?), € L*((0,Ty); Has).

orem 1.1.

Example 1.1 We consider the vector field vy = (vo1, voz, vo3), where

w3(z1 — 22)

= [(R, — 2 2)2 PR o) At A
vor = [(Re \/ 21+ 23)” + 23 ] 22+ 12

x3(z1 + x2)

= [(Ry — 1/ 22 2)2 2_ RIS 2
Vo2 [( 2 T+ 1'2) + X3 } l’% I .fl?g

1 RQ— x2+x2
— “[(Ry — +/22 212 2 _ p2 V 1 2
Vo3 2[( ) xq +$C2> +QZ3 1} m

It is obvious that vg|gno = 0, divey = 0 and vy is of class C*°(2)3. In the cylindrical

coordinate: 1 = rcosf, ro = rsinf and r3 = z, we have
Vo1 = [(PL2 —r)? 4+ 2% — Rﬂ z((:089 —sinf),
r
Vo2 = [(Re —1)* + 2* — Rj) Z(sin& + cos ),

r
RQ—T

Hence, vy = v,e, + vgeg + v.e, with
z
Vy = Vg = [(RQ — T)Q + ZQ — R%];,
R2 - T

v = 2 [(Ro =) 42— K]

Since v,, vy and v, do not depend on 6, vy is axially symmetric and so vy € C(Q)> N V}.

The proof of Theorem 1.1 is provided in Section 3. In order to prove the main result

we need to establish some auxiliary results which are given in Section 2 bellow.
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2 Some auxiliary results

Hereafter we shall use the following function spaces:

L2(0) = (13(9))° = L2(9) x L2(9) x LX(9),

HY(Q) = (HL(Q)F, H"() := H"(©))* with norm | - .

V ={y e D(Q)’|divy =0},

V = the closure of V in Hy(Q) = {y € Hy(Q) | div y = 0},

H = the closure of V in L}(Q) = {y e L2(Q) | divy = 0,y - 7 = 0 on dQ},
H*={¢p e L*(Q) | ¢=Vp,pe H(Q)},

W =V NnH?*Q),

d
W0, T; By, By) = {v € L*(0,T; Ey) | d—: € L*(0,T; Ey)},

where F4, E5 are Banach spaces.
For convenience, we shall denote by (-, ). and | - | the scalar product and the Euclid

norm in R™ with n = 2, 3, respectively. It is well known that the imbeddings
We—V<—H

are compact and each space is dense in the following one.
Let us denote by P : L*(Q) — H the Leray projection on H. We then define the
Stokes operator A : W — H by setting A = —PA and mappings B, b which are given by

B(u,u) =P(u- V)u,
b(u,v,w) = (B(u,v),w)

for u,v € H}(Q) and w € L*(Q).
Note that via transformation z; = rcosf,ro = rsinf,x3 = z, the domain € is

transformed into
G x (—m,7) ={(r,z) € R*| (Ro —r)* + 2> < R}} x (—,7] (6)
with
0G ={(r,2) eR*| (Ry —7)* + 2> = R3}.
Proposition 2.1 If f € H,s then f is axially symmetric.

Proof. By definition of H,, there exists a sequence f, € H?*(Q) NV, such that f,

converges to f strongly in L*(€2). In the cylindrical coordinate, we can can present f in

f! cos —sin 6 0
2l =f1 sin0 | +f°| coso + /1 0|,
Iz 0 0 1



where " = f"(r,2,0), f® = f(r, z,0) and f* = f*(r, z,0).

Since f, = (f}, f2, f3) is axially symmetric, it has the presentation:

Il cos 0 —sinf 0
2 =51 sing |+ cosé +f21 0 |,
fa 0 0

where fr = fi(r,2), fy = fi(r,2) and f* = f(r,z). Since
(o = F2=fn = PP+ = PP+ = PP =1 = [P+ = PP+ 11— 7P
we see that

o= oy = 3 / - fPd= 3

je{r,0,z} je{r0,z}

/ |fi(r,2) — fi(r, z,0)|*rdrdzd8.
GX(—m,m)

(7)

Hence for each j € {r,0, 2z}, we have
/ |f(r,2) — f2(r,z,0)*rdrdzdf — 0 as n — oc.
Gx(—m,m)
Since r > Ry — R; > 0, we obtain
/ |f7]1(7’, z) — fj(r, z, 6’)|2drdzd9 — 0 as n — oo. (8)
Gx(—m,m)
This implies that for a.e. § € (—m,7), we have
/ |fi(r,2) — fi(r, z,0)|?drdz — 0 as n — oo. (9)
G

From (8), we have
/ |fi(r,2)|drdzdf
Gx(—m,m)

is bounded and so is

/ |f2(r, 2)|*drdz.
a

Hence we can assume that f/(r, z) converges weakly to a function fJ(r, z) in L?*(G). On
the other hand form (9), we have f/(r,z) converges strongly to a function f’(r,z,6) in
L*(G). Consequently, we must have fi(r,z) = fi(r,z,6) for a.e. § € (—m,x). Hence f is

axially symmetric. The proof is complete. |

Proposition 2.2 Let h € H,,. Then there exists a unique u € H*(Q)NVy and p € H' ()
which solve the Stokes system:

—Au+Vp=h in(),
divu =0 in €, (10)
u=20 on 0f2.



Proof. By Theorem 3.11 in [7], the Stokes system has a unique solution u € H*(Q) NV
and p € H'(Q) such that

|l 203 + ||pll 1) < C|R| (11)

for some absolute constant C' > 0. By applying the Leray projection on the first equation
of (10), we obtain

Au = h, [ull o < ClAul. (12)

It remains to show that u is axially symmetric.

Since h is axially symmetric, h = h,e, + hgeg + h.e., where h, = h,.(r, z), hg = hg(r, 2)
and h, = h,(r,z). We want to find u in the form u = wu,e, + ugeg + u,e,, where u,, ug and
u, depend only on (r,z) and p = p(r, z). Then in the cylindrical coordinates the system

(10) is transformed into the system

10, ou,. 0O*u, wu, op

_(;E(T ar)ju 53 _7"_2) +E:hr in G, (13)
a0 G G w
‘?;f e aa“; —0in G (15)

—(%%(r%) + %2;9 — %) = hg in G, (16)

(ur, ug,u,) = (0,0,0) on G. (17)

Recall that

G ={(r,z) e R*| (Ry —1r)* + 2* < R},
0G ={(r,2) € R? | (Ry — 1) + 2 = R}, Ry > 3R,.

Define v = (v,,v,) = r(u,, u.). Then the equations (13), (14), (15) and (17) become

( _%A(r,z)vr + T%arvr + arp = h,
_%A(r,z)vz + T%arvz - % + azp = hz

(18)
divo = 0,
| 5]oc = 0.
Meanwhile, equations (16) and (17) become
_A’I‘ZU —|—laﬂ} =rh )
(r,2)Vo + 0rVg 0 (19)

v9=0 on OJG.
Hereafter, A, .y and Vi, .) are defined by

Agyw = D?w + Dgw, Viw = (D,w, D,w) for w = w(r,z).



Let us denote by Vo = {v € H}(G)? | divv = 0}. It is known that V3 is the closure of V,
in H}(G)?* with
V, = {w € C°(G)?* | divw = 0}.

Recall that a vector o = (v,,v,) € V3 is said to be weak solution of (18) if

1 1 1 1 v,
(_;A(r,z)vr + ﬁarvr + arpa wr) + (_;A(r,z)vz + ﬁarvz - ﬁ + azp7 wz)
= (wra hr) + (U)Z, hz) YV = (wrvwz) € Va.

This variational formulation is equivalent to

1 1 1 1 v,

(_;A(T,Z)UT‘ + 71_287"7)1"; wr) + (_;A(’r,z)vz + ﬁarvz - ﬁ/wz) = (wr7 hr) + (w27 hz)

for all w = (w,,w,) € V5 or equivalently,
1 1 1
/ —(Vir2)Ur, Vi) Wr)e drdz—i—/ — (V)02 Vi yws)edrdz —/ —vw.drdz
a’l a’l a’T

= /(hTwr + hw,)drdz ¥Y(w,,w,) € Va.
G

Let us define a bilinear mapping 7" : V5 x Vo — R by setting

1 1 1
T(0,w) = /G —(Vir2)Ur, Vi ywr) edrdz + /G T(v(m)vz,v (r,2) W) edrdz —/

, e —v,w,drdz

for o = (v, v,),w = (w,,w,) € V5. We now show that 7' is continuous and coercive. In

fact, using the fact Ry — Ry <r < Ry + Ry, we have

)| < ot (V2 V) +
Ry — Ry ’ ’ (Ry — Ry)3

< Clollflwll vo,w € Va.

70, w clial

Taking w = v, we have

1 1

T(@©,0) = | =|Vuu0|?drdz — | —|v.|*drdz
(r2) 3
e e

1 L e

R e

20
T R+ Ry (20)

Note that
G C{(rz) eR*: [((r,2),(0,1))e| < Ru}.
Therefore, from the Poincaré inequality (see [9, Theorem 2.8]), we have
[0]* < 2RI|V ()0 (21)

From this and (20), we get

1 2R?
T V T,z 7] [ ——— V r,z)
R2+R1| (7)U| (R >| ( |

1 2R?

> ( -

Ry+ Ry (Ry— Ry)?

T(5,7) >

)V ) 0] (22)



1 2R
Ro+ R, (Ry— Ry)?

T(3,0) > |V (0|* Vo € Va.

> (. Hence

Since Ry > 3R, we have a :=

By the Stampacchia theorem (see [3, Theorem 5.6]), there exists a unique v = (v,,v,) € V4
such that
T(0,w) = (h,w) Yo € V.

Hence there exists p € L*(G) such that (9, p) is a weak solution of (18). Note that system
(18) is equivalent to
( _A(T’,Z)/U'r‘ + %arvr + Tarp — T’hT,

—A( v, + %@vz — % +7r0.p=rh,

divo = 0,

| 3]oc = 0.

Since the function ¢(r) = r is of C*(G), we have r0,p = 0,(rp) — p in the sense of
distribution. Hence the above system can be written in the form

¢

_A(r,z)vr + 8T(Tp) = rhr +p— %arvr,
_A(T,Z)Uz + az(rp) = Thz — %ar’[)z + :_57
divo = 0,

| U]oc = 0,

where the terms on the right hand sides of the first equation and the second equation are
of L?(G). By results on regularity of solutions to the Navier-Stokes equations, we see that
(vp,v,) € H*(G)>* NV, and rp € HY(G) and so p € H'(G). Also, by simple arguments,
wee see that the elliptic equation (19) has a unique solution vy € H*(G) N Hi(G). We
now define @ = 1(v,,vp,v.). Then (@,p) satisfies equations (13)—(17). Define

U= arer + ’ELHGQ + azezv ﬁ(xly T, l’g) = p(ra 33’3),
where 4@, = v, 49 = fvg and 4, = fv,. Then (¢J,p) is a solution of (10) with ¢ €
H?(Q)*NVy, p € HY(Q). By applying the Leray projection, we get A = h. By the
uniqueness, we obtain u = 1. The proof is complete. O

In the sequel we shall denote W,s = H?(Q) NV} and define a mapping

A:D(A) C Hy — H,e with D(A) = W,
by setting
Au = Au for u € D(A).
Thus A is a restriction of the Stokes operator A on W,,. By the Proposition 2.2, we
see that A is bijective and densely defined on H,s. The following proposition gives some

properties of A.



Proposition 2.3 The following assertions are valid:
(a) The operator A : D(A) C Hy — Hy is symmetric, i.e.,

(Au,v) = (u, Av) Yu,v € D(A).

-1

The inverse operator (A)~! is compact in H,s.

)
c) The operator A D(Zl) C H,s — H, is self-adjoint.

(
(
(d) The inverse operator (A)~! is also self-adjoint.
(

e) For allu € D(A) and v € V,s, one has
(Au, v) = ((u, v)). (23)
Proof. (a) From [7, Proposition 4.2], A is symmetric. Hence

(Au,v) = (Au,v) = (u, Av) = (u, Av) Yu,v € D(A).

(b) Since D(A) < H,, is a compact embedding, the operator (A)™1 : H,s — D(A) C Hy
is a compact operator in H.,.

(¢) Let us show that D(A*) C D(A). Indeed, take any u € D(A*). By definition, there
exists h € H, such that (Av,u) = (v,h) for all v € D(A). Since h € H, and by
Proposition 2.2, we can find a vector u € D(Av) such that Ad = h. Taking any g € H,g
and using Proposition 2.2 again, we see that there exists v € D(ﬁ) such that Ay = qg.

Therefore from (a), we have
(g, u— 1) = (Av,u) — (Av, @) = (v, h) — (v, A@) = (v, h) — (v, h) = 0.

Since g is arbitrary in Hy, we get u = @ € D(A). Consequently, D(A) = D(A*). By (a),

for all u,v € D(A), we have
(A*u,v) = (u, Av) = (Au,v).

Since D(A) is dense in H,y, we obtain Au = A*u.
(d) By Theorem 10.2.2 in [20], we have

We obtain the conclusion.

(e) Since
(Pg,y) = (¢,Py) Vo, ¢ € H,
we have
(Au,v) = —(Au,Pv) = —(Au,v) = (Vu, Vo) = ((u, v)) (24)
for all u € D(A) and v € V. O
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From Proposition 2.3, (A)™! is self-adjoint and compact. By a well known theorem
of Hilbert (see [3, Theorem 6.11]), there exists a sequence of positive number p; with
pi+1 < p; and an orthogonal basis {w;} of H,s such that (A) 'w; = pw;. We denote
A= i Since (A)~! has range D(A), we get

j
Aw; = ij = A\jwj, wj € W,
O< A< <N <A <

lim \; = +o0,
j—00

(wj);=1,..are an orthogonal basis of H,s.
Proposition 2.4 For all j > 1, w; € W,s N C>®(Q).

Proof. By [31, Proposition 2.2, Chapter 1] and the fact that € is of class C'*°, we have
w; € C®(Q). O

Let us define the fractional power A® of A by setting

Ay = Z A pjw;  for u = Z,ujwj, u € D(A®), (25)
j=1 j=1
D(AY) = {u € Hy | u = Z,ujwj, Z)\?“|u]~|2 < 400, pj € R} (26)
j=1 j=1

The spaces D(A®) carry a natural scalar product (-, ), which is defined by setting

o) o

(u,v) = Z )\?aujnj whenever u = Zujwj, v = anwj. (27)
j=1

j=1 j=1
For this scalar product, the sequence {)\j_o‘wj} form an orthogonal system which is com-

plete in D(ga). Based on this fact, we have the following proposition.

Proposition 2.5 The system {)xj_l/2wj} form an orthogonal basis of V,s. Moreover,
D((Z)UQ) = Vs and Vs is dense in H,.

Proof. Since {A;l/ij} form an orthogonal basis in D((A)¥2), it is sufficient to show
that D((A)Y/2) = V.. In fact, the vectors {A;lmwj} are in Vg and

OGP0, 0 )1 ge = S = (A Pwp), A Pw0) = (O Pwg, A Puy)). (28)

Hence D((A)Y2) C V. Conversely, if Vg is not contained in D((A)Y/2) then there exists

a nonzero vector U € V,g such that o is orthogonal with D((A)Y/2) in V. Hence

0= (T, wy) = @ AN P wy) = A2 (@,w;)

J
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for all 5. Since v € Vs C H,s, we obtain v = 0. The proof is complete. O

Let us denote by X, the finite dimensional space which is spanned by {wy, ws, ..., w,, }.
For each h € H,, and g € V,, we shall denote by P,,h and PY»g the projections of h and
g on X,, in H,s and Vg, respectively.

Proposition 2.6 The following formulae are valid

m

th = Z(h wj)wj,

J=1

3

PYeg = Z)\ (g,w;))

Moreover, if ¢ € V,s then P, = PY>=¢ and

|Prspl < [0l [[Pmpll < llell- (29)

Proof. The first conclusion is obvious. For the second formula we note that {/\j_l/ ij}

is an orthogonal basis of V5. When ¢ € Vg, we have

m
-
(wy, ¢ E A( (w;), p)w,

1 7j=1

A (g, @)y = P,

PLy =

T‘Ms

I
Ms

1

<.
Il

Estimation (29) follows from property of orthogonal projections. The proof is complete.
O

Let u € C*(2) N Vy. Then u = u,e, + ugeg + u e,. This is equivalent to

up = u,(t,r,z)cosl —ug(t,r, z)sinb,
us = u,(t,r,z)sinf + u,0(t,r, z) cos b, (30)
ug = u,(t,r z).
It is easy to see that
ul? = (ur)? + (ug)* + (u.)”. (31)
Since ulsgqo = 0, we have u.|og = wsloc = u.loc = 0. By applying formulae D; =
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cosOD, — %sin 0Dy, Dy = sinfD, + %cos 0Dy and D5 =

1
Diuy = cos? 0D, u, — 3 sin 20 D, ug + sin

2% 4~ Gin29?,
T 2

D, for uy,us and usz, we get

1
r

1 1 .
Douy = = sin 20D,u, — sin® D, uy — — sin 2«9u— — cos? «9%,
2 2

Dsu; = D,u, cosf — D, ugsinf,

1 1 o
Dius = 2 sin 20D,u, + cos? 0D, uy — > sin 29u— + sin? 9%,
r

1
Dous = sin® 0D, u, + 3 sin 20D, ug + cos
Dsus = sin 0D u, + cos 0D uy,
Dius = D,u, cos ¥,
Dous = D,u, sin 0,
D3U3 = Dzuz-

It follows that

3

r r

r
1

2 9% — —sin 29@,
T 2 T

1
Z (Diuj)2 = (Dyur)? + (Dyug)® + (Dyu.)? 4 (Daup)? + (Daug)? + (Daus)? + T_Q(ug + Ug)

ij=1
(32)

Lemma 2.1 There exist absolute constants Cy,Cy, Cs > 0 such that
@l 22 < Cillullrz(o)s, (33)
||V7~z ﬂHLz )3 < CQHVUHLz(Q)s, (34)
HUHH2 3 < CgHUHHQ Q)s (35)

for all uw € C=(2) N Vy, where @ = (u,, ug, u,).

Proof. By (31), we have

|‘ﬁH%Q(G)3 = /G((UT)Q + (ug)? + (u.)?)drdz = /

a’l
1

_Rg—Rl

WHUHLQ(Q

1((“7«)2 + (ug)® + (u.)*)rdrdz

/((u 12 4 (ug)? + (u2)?)rdrdz

RQ—Rl /_/ )" + (ug)” + (u

)?)rdrdzdf

Therefore, inequality (33) is proved. Inequality (34) is established similarly. It remains

to prove inequality (35).
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By some computations, we have the following formulae:

Do, u,

D?uy = cos® §Du, — cos® 0 sin 0 D?uy + 3 cos 0 sin §( — =)+
r T
D,
+ (cos® @ sin 6 + sin 6 cos 26)( w u—g), (36)
r r
2 D DZU(,)
D1 Dsuy = cos? 0D,.D,u, — sinf cos 0D, D uy + sin? 0—— + sin 6 cos 0 (37)
r r
D32uy = cos 0 D?u, — sin . D?uy, (38)
‘DT' z
D?u3 = cos® §D?u,, + sin® G—U, (39)
r
D3Dyuz = cos0D, D, u.,, (40)
Diuz = D?u,,. (41)
By putting
D,u, . . : D,
T} = 3cosfsin® (—— UQ) + (cos? O sin 6 + sin 6 cos 20) (2 — u—g),
r r T T

we have from (36) that
(Diu1)? = (cos® §D2u, — cos” 0 sin QDfu@)Q +2(cos® 0D2u, — cos® Osin§D2ug) Ty + T7.

Hence

/(D%u1)2dx :/ /(D%ul)zrdrdzdé > (Ry — Rl)/ /(D%ul)erdde
Q -7 JG —-mJG

= (Ry — Ry) / / (cos® §D?u, — cos® B sin HDfu(;)erdde
- JG

s

+ (Re — Ry) [2(cos® 0D u, — cos® §sin 0D ug) Ty + 17 | drdzdf
-7 JG
> (Ry — Ry) ( cos® 0 D?u, — cos® fsin GDfue)Zdrdsz
-7 JG
+ (Ry — Ry) cos3 QD?,UT — cos? O sin GDfue)TlI drdzdf
- G

— (Rs — Ry) /G (% T (D%u,)? + g(Dzug)Q)drdz

+2(Rs — Ry) /G (?’g(D? (Bt ey Ty (Pt 0y 4.

r 72 8+ T r 72

(5;(D2 )2 +g(D3U9)2)drdz

> (Ry — Ry)
+ (Ry — Ry)

= (R2 — Ry)

> (Ry— Ry)

—~
|5 vl =
S
DN
@
3
\_/
+
| =
S
DO
<
)
e
I
|©
N
‘@
3
<
3
I
| &
e
I
!
‘b
3
<
5=
I
|§
s
N~—
QU
3
S
I



>+ (=

r 2

This implies that
97  D,u,
[y (- m [ (0
Q G 4
T T
> _ Trm2 2, T ip2 2 -
> (Ry Rl)/G<2(Drur) + =(D2ug) )drdz

Since r > Ry — R;, we obtain

1 97 ™ u? 4+ u?
D?uy)?d —/ D)+ =(Dyug)? + ——-0\drdz >
/Q( fup) x+(R2—R1) G(4( ) 2( ug) +(R2—R1)2) rdz >

> (Ry — Ry) /G (g(Dfum n %(Dfug)Q)drdz. (42)

By the same procedure, we obtain from (37) to (41) the following estimations:

[ ouDswe + = [ G0+ (D) vz >
)

> (Ry — Ry) /G (g(DrDzur) —i—g(DrDzu@ drdz, (43)
/Q (D3up)*dxr > (Ry — Ry) / (m(D2u,)* + 7(D2up)®)drdz, (44)
/Q (Djus)de + & / T (Dyu,)?drdz > (Rs — Ry) /G g(Dfuz)erdz, (45)
/Q (DsDyus)?dz > (R — Ry) / (D, Dov.)2drdz, (46)
/Q (D3us)*dx > (Ry — Ry) / 21 (D?u,)drdz. (47)

By adding inequalities (42)-(47), we see that there exists positive constants «, § such
that

2 2
|32 gy + D,u,)? + (Dyug)? + (Dou,)? + (Dyug)?)drdz + Ur T+ U drdz >
H

¢ (B2 — )
> 5/ (D;Djug)?)drdz.

], k:e{r 0,2}
By adding both sides with B[V ,,.)ilZ2(g)s and B][a[|72 s, We obtain
[ullzrz s + &IV ey illza ey + 7 Nl L2y = Bl 2y
for some positive constants o/, f and /. Using (33) and (34), we get
(1+d'Cy + ’7102)”71“?{2(9)3 = BluaH?{?(GP-

The proof of the lemma is complete. ]
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In the sequel we shall need some estimations of |b(u, u, Au)|. For this we consider the

mapping b which is defined by setting

1 1
b(u, v, W) :/ ’((uTDrvT + u, D, v, — —upvg)w, + (u,D,vg + u,D,vg + —ugv, )we
G r T

+ (u.Dyv, + uzDsz)wZ)

drdz (48)

with @ = (u,, ug, u.), 0 = (v,,v9,v.) and w = (w,, ws, w.) belong to C*(G)3.

We now have the following key lemma.

Lemma 2.2 Let 0 <s; <1 and s; + s+ s3 > 1. Then there exists an absolute constant
Cy > 0 depending on G and s; such that

b(@, 3, @) < Cullally™ lall; 18115 18152 o]l |l
for all u,v,w € C™(G)3.

Proof. Let us set & = Fla, © = E*0 and @ = E'w, where E' : H(G) — H'(R?) is a
linear extension operator. Recall that for all ¢ € H'*I¥(R™) with [s] is the integer part

of s, we have the following interpolation inequalities:

1]

1—(s—|[s s—|[s
S ) sl Y B (49)

1 1 P
By assumption, we have n = 2 and 0 < s; < n/2. Define ¢; by — = 3~ 5 wit ¢ =1,2,3
4qi n

and q4 by q% + qi? + qis + q%; = 1. This is possible because qil + q% + qig < 1. We now have

1
b(u,v,w) < / ‘(uTDrvT + u, D, v, — —ugvg)w,|drdz
G r

1
+ / ‘(uTDrvg + u,D,vg + —ugv, )we
a T

drdz + / ‘(UTDTUZ +u,D,v,)w,|drdz
G

S YIS YRNTS ) (50)

DO | =
S

Using the Holder inequality, the embedding H*(R™) < L9(R") with s < g,

| =
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and interpolation inequality (49), we have
1

¥ < / (|urDrvyw,| + |usDyvew,| + |~ugvow,|)drdz
G r

< [z (| Dron]| poa [[wn [ s (| U] os =+ [l || o (|90 || a2 [ || oo | 1] 2oa+

+ =g ol lleollzes o o [ v
1 . . 1 ~ ~
< |G ||y || o [| Doy || o |30 || s + |G |[iba]| gon || Do | oo || || s +
Gl ) )
+ﬂ”ueﬂmHWHWHWHL%
1 . . 1 ~ ~
< |G‘q4 Hur”51HDTUTHwHwTHS:a + ’G‘q“ HUszlHDzUrH52erH53+
lelz
+ 7, g Vol ol 1l
1 + - 1 + + _
< |G‘<I4Hu ”[8131 81]H ”Fsll :11 HDT TH 32]52 Sz]HDT T”[SQ] [Sz]H H[8353 [SS]H Hii—[iz]ro‘]
I=s1+ 1—s2+ 1—s3+
G sl sl Do I P Do 12 B o e
1
|G‘ 1 —+ 1 + 1 +
+ g Mol ol ol S el N 2
1 1 1
<yl 7 g B Dy 1 B D 22 e ) oo 325
1 + 1 + 1 +
sl S s I D 2 o D 12 8 g 5 15528
+ 1 + 1 +
+ lluoll s o 1751 vl 52 g 17252 o 153, 5
1-s1+ 1—s2+ ~11—s3+ ~
< Syllafl o all o ey e el el e w15
for some absolute constant v; > 0. Hence
1—s1+ 1—s9+ - L l—s3+ ~
o < Byllal g el e e e e (51
By similar arguments, we can show that
l=s1+ 1—s2+ - 1—s3+
Sy < Buallall e E el e e el B (52)
and
1—s1+ 1—so+ ~11—s3+
s < 2ysllall T all el e e e e e s (53)

for some absolute constants 72,73 > 0. Combining (51)—(53) and (50), we obtain the
conclusion of the lemma with Cy = 371 + 372 + 273 and [s1] = [s9] = [s3] = 0. 0
When s; = s5 = 1/2 and s3 = 0, we have the following estimation.

Corollary 2.1 There exists an absolute constant Cs > 0 depending on G such that

1 1
b(u,v,w) = / ‘(uTDT'U,, + u, D, v, — —ugvg)w, + (u,D,vg + u,D,vg + —ugvr)wg
r

1/2 1/2 1/2 1/2 ~
+ (u, Dy, 4w Do, )w,|drdz < Csllally a1l 2 o]y lelle  (54)

for all @, v, € C>*(G)3.
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3 Proof of the main result
By applying the Leray projection, the system (NSE) becomes

du
=+ Au+ B(u,u) = f(t) (55)

v(0) = wy.
In the sequel, we shall show that the system (55) has a unique solution v satisfying
v € L®((0,00); Vas) N L*((0, 00); H*(2)*).

For each m > 1, we consider the Galerkin system of finding u,,(t) € X,, such that

duty,
4 Aty + P Bt ) = Gon, (56)

dt
Um (0) = g m, (57)

where ug, = Puvg and g, = Ppnf. Let w, = 3370, §(Hw; and g, = 3770 n;(t)w;.
Since gwj = \jwj, the above system is equivalent to the system of ordinary differential

equations for &;(t):

5

dt + A f] + Z b wkawlaw])fkfl =MN5 J]= 1,2, e, M,

ki=1
GO) =€ j=1,2.,m
or
W =B,
5].( ) =&Y i =12...m
where &7 = (ugm,w;), n;(t) = (f(t,-),w;) and

(58)

Fi(t,€) = ni(t) = N& = D blwg, wi, w))ék
k=1
It is clear that Fj(t,€) is locally Lipschitz in {. Therefore, system (58) has a maximal
solution defined on some interval [0,%,,). If t,, < oo then |{(t)|. = |uy(t)] must tend to
+o00 as t — t,, (see for instance [15, Corollary 3.2, p.14]). However, the a priori estimate
we shall prove later show that this does not happen and therefore t,, = +o00. Indeed,

taking the scalar product of (56) with u,, and using property of b, we get

1d
2 dt

Since |(f, )| < |f][ttm] < 201/ Ittmf? + 1), we obtain

— [ ()1 + [Vum(OF = (f, um).

%Ium(ﬁ)\2 + 2|V (6)]* < 2 () Jum ()] < 1f )] |um (@) + £ ()] (59)

18



The Gronwal inequality implies that

el < (unOF + [ 17 ([ 176
<(uf + [l en ([ 17 (60)
Hence limy sy, |, (t)| < +o00 and so t,, = +00. For convenience, we put
M= (ol + [ 1re)ds) exo ([ 1£)1ds),
Then we have
[um (t)] < My Vt > 0. (61)
By integrating two sides of (59), we get
t ¢
2/0 |V, |*ds < \uo,m]2+2/0 |f($)||um(s)|ds
< |vo* + 2M, /000 |f(s)]ds.
Hence
| unpas < v (62)
with
M3 i= gluof + My [ I7(s)lds
Taking the scalar product both sides of (56) with Eum, we get
=N + [ At (1) = =b(tms g, Attg) + (gins Attys). (63)

By (12), we have the estimate C||uy,||m2@) < | Au,,|. From this estimation and (63), we
obtain

__”um(t)HQ + O”um(t)H%{?(Q) < |b(umvumagum)| + |gm||gum|

< Bt s Argn)| + | f (8 [t |12 c2)- (64)

It is clear that u,, and Au,, are axially symmetric. Hence u,, = Umn,-€, + Umo€y + Ums€.

and Au,, = Wy, + Wyes + Wm.€,. For convenience we remove index m and write u
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instead of w,,. Put @ = (u,, ug,u,) and @ = (w,, wy, w,). Then we have
|b(u,u,gu)’ = ‘/((u - V)u, gu>edx|
Q
1 1
- ‘ / ((urD,au,n + u, D, u, — —ugug)w, + (u,Dyug + u,Doug + ;U@Ur)wg
Q r
+ (u.Dyu, + uzDzuz)wz)dm‘
1 1

< / ‘(urDrur + u, D u, — —ugug)w, + (u, Dyug + u,Dyug + —ugu, )wy

Q T T

+ (up Dy, + u,Dyuy)w, |de

T 1 1
S / / ‘(UTDTUT + UzDZur — —ueu@)wr + (UT.DT'LLQ + UZDZUG —+ —’u,eur)we
_rJa T T

+ (u,Dyu, + u,D,u,)w, |rdrdzd

1 1
< 2m(Ry+ Ry) / )(uTDTuT + u,Du, — —ugug)w, + (u, Dyug + u,Doug + —ugu,. )wy
G T T

+ (upDyu, + u,Dyuy )w,|drdz

= 27(Ry + R1)b(i, @, ).

From this, Corollary 2.1 and Lemma 2.1, we obtain

|b(u,u,gu)‘ 27(Ry + R1)b(i, @, ID)
< 21 (Ry + Ry)Cs ]| e llill e ||UHH2(G)3||@||L2(G)
< 21(Ry + R1>05<01>1/2|u|1/20 |rur|c”2|ruu”201|ﬁur

< Colul"?|[ull||ull5"*| Aul (65)
for some constant Cg > 0. Since |Au| < ||ulls, we get
[ 1t s At < Colam |t ] 13" (66)
Combining this with (64) yields
S—[[um(®)[” + Cllam @15 < Coltim " [t [t |5 + [ £ &) |2t ]|2- (67)

Using Young’s inequality

1
p q = = N/
ab < ea? + O, (a,b>0,6>0,p,0>0,1/p+1/0=1,0(0) = =),
we have
1d C fOF | Clluml3
S (17 + Clun )13 < Colt P+ S+ LOE Sl
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This implies that

d 2| f(t)]?
D112 + ClluaDIE < 207 P + 2L (63)
dt C
By Gronwall’s inequality and (62), we get
2 t t
Jan O < [l + 5 [ 1£Pds] exp (201 [ un () ()P
2 oo
< [llP+ 5 [ 17)Pds] exp (20rM2E).
0
Putting
2 o
M = [lol? + 5 [ 1£6)Pds] exp (2Ca02A3),
0
we have
lum (t)]* < M5 Yt = 0. (69)
Integrating both sides of (68) and using (61), (62) and (69), we get
t 2 o]
[l ()] + C/ [wm (s)[l2ds < Jlvoll* + 2C7 (My Mz M) + 5/ |f(s)["ds.
0 0
This implies that
| (o)l < a2 (10
0

where

1 2 [
Mf = E(HUUHQ + 207(M1M2M3)2 + 5/ ‘f(S)‘ZdS)
0

Let us give a bound for % From (56), we have

dum

e | At | + | B (1t )| + ||
1/2
< N llz + Cltm i | ][5 + |1,

where the estimate |B(um, tm)| < Cs|tim /2| tm]|||ttme||3/* follows from (65). Tt follows
that

dum
|2 Cs(lumll3 + [t [t I* o + [ 1)

for some constant Cs > 0. Hence

dum [e.e] o0 o0
|5 < ol [ a1+ M0ty [ e+ [ 150Pdn)
0 0 0 0
< Ca(M2 o+ ([ %00 [ a2+ [0 e
0 0 0

gcg(M§+M1M3M2M4+/ | f(t)[*dt).
0
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Consequently,

/ ’—st 2t < M; with ]\452 = C’g(Mf + My MsMyM, _|_/ \f(t)|2dt). (71)
0 0

In summary, we conclude from (62), (69)—(71) that

{un} is bounded in  L*((0, 00), Vas),

{u,,} is bounded in L*((0,00), H*()),
Aty . :

{%} is bounded in  L?((0, 00), Has).

Passing subsequences, we can assume that

u, — v weakly star in  L>((0, 00), Vas),

u, — v weakly in  L*((0,00), H*(Q)),

d
%%¢ weakly in  L2((0, 00), Ha).

Let ¥(t) € C§°(0,00). Then there exists 7" > 0 such that supp(¢)) C [0,7"]. Taking the
scalar product of (56) with ¢(¢)w; and integrating, we obtain

/Ooo<%um,¢(t)wj)dt - /OOO(Aum,@/z(t)wj)dt + /OOO Bty tym, ()0 )t

— [ vt ya (72)
or equivalently,

—/Ooo(um,z/z(t)'wj)dt—/Ooo(Aum,w(t)wj)dt+/Ooob(um,um,z/)(t)wj)dt

= [ it vttt (73)

Note that {u,,} is bounded in W2((0,7"); V,s, Has) and w,, converges weakly to v in
Wh2((0,T); Vas, Has). Since Vg is dense in H,s and the embedding V,s < H,, is compact,
the Aubin theorem implies that the embedding

W2((0,T"); Vasy Has) < L*((0,T"); Hys)

is compact. Hence u, converges strongly to v in L?((0,7"); H,s). By [31, Lemma 3.2, p.
289], we have

T’ T’
/ b (U, U, Y (E)w;)dt — / b(v,v,9¥(t)w;)dt when m — oo.
0 0
This means that

/wb(um,um,w(t)wj)dt%/Oob(v,v,w(t)wj)dt a8 m— oo,
0 0
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Taking the limit both sides of (72) and (73), we obtain

/0 (6, ()t — / (v, d(t)wy )i + / (v, v, 00w, = / ORI
and

- / (v, t) w0yt / (Ao, (b)) + / " b(o, v, (0w, dt = / ) (0wt

From the above, we see that (¢, w;) = (=, w;) and so

v
dt’

(o) + (v, w,) + (Bo,v),w,) = (F(0), ) 7 > 1
Hence
(%,w) + (Av, w) + (B(v,v),w) = (f(t),w) Yw € Hyg

or equivalently,

dv  ~
(d—: + Av + B(v,v) — f(t),w) = 0 Vw € H,.

d ~
Since d_: + Av + B(v,v) — f(t) € Has, we must have

dv — ~
%+AU+B(U,U> — f(t) =0.

Let us choose a continuously differentiable function ¢ on [0, 00) such that (0) = 1 and
(t) = 0 for all ¢ > T” for some 0 < 7" < oo. Taking the scalar product of (56) with
Y (t)w; again and using similar arguments as in the proof of [31, Theorem 3.1, p. 289], we
can show that v(0) = vg. The energy inequalities (4) and (5) follows from (61) and (62).
The proof of Theorem 1.1 is complete. 0
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