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Abstract. This paper deals with the existence of global strong solutions to the three-dimentional

Navier-Stokes equations with large initial data. We show that if Ω ⊂ R3 is the interior of a torus

and the input data are axially symmetric vector fields then the Navier-Stokes equations have a

unique global strong solution on (0,∞). Here, we do not require that the swirls of the data are

zero. The obtained result is proved without any requirement on size of the data.
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1 Introduction

In this paper we are going to study the Navier-Stokes equations, where the incompressible

fluid fills the domain Ω:

(NSE)


∂tv −∆v + (v · ∇)v +∇p = f(t, x) (t, x) ∈ (0,∞)× Ω,

div v = 0 (t, x) ∈ [0,∞)× Ω,

v = 0 (t, x) ∈ [0,∞)× ∂Ω,

v(0, x) = v0(x) x ∈ Ω,

where v0 : Ω→ R3 is a divergence-free vector field, that is, divv0 = 0 and Ω is the interior

of a torus which is defined by

Ω = {(x1, x2, x3) ∈ R3|(R2 −
√
x2

1 + x2
2)2 + x2

3 < R2
1} (1)

and its boundary is the torus

∂Ω = {(x1, x2, x3) ∈ R3|(R2 −
√
x2

1 + x2
2)2 + x2

3 = R2
1}. (2)

Here R1 and R2 are positive radiuses which satisfy the condition

R2 > 3R1. (3)
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So far there have been a lot of books and articles on the mathematical theory of the

Navier-Stokes equations (NSEs for short). The classical results could be found in the

books of the authors R. Temam [31], [32], O.A. Ladyzhenskaya [21], P. Constantin and

C. Foias [7]. The modern references can be found in the recent books of H. Bahouri et al.

[2], M. Cannone [4] and P. G. L. Rieusset [29].

It is known that, under smallness condition of v0 and f , the Navier-Stokes equations

have a unique global strong/smooth solution (see, for instance [1], [13], [14], [17], [18], [26]).

However, proving the existence of smooth/strong solutions to the Navier-Stokes equations

without smallness conditions on the initial data has been a challenge for mathematicians

so far (see [6]).

Although it was shown that in the case Ω = R3, there are some models for which

finite time blow-up of solutions can be proved for some classes of large data (see [12],

[27] and [33]), we believe that there are some classes of large input data under which the

Navier-Stokes equations have global strong/smooth solutions. In fact, in [16] and [28] the

authors showed that when the initial data have a large two-dimension part and a small

three-dimension part, then the equations have a unique global in time solution. In recent

paper of J. Y. Chemin et al [8], the authors considered the Navier-Stokes equations for

the case of initial data of the form

v0(xh, x3) := (v1(xh, εx3), v2(xh, εx3),
1

ε
v3(xh, εx3)),

where xh belongs to torus T2 and x3 ∈ R. They showed that under a smalless condition

of v0 the Navier-Stokes equations have a global smooth solution in this case. Note that

such initial data may be arbitrarily large in the norm of Ḃ−1
∞,∞.

In general the existence of global strong solutions of the NSEs with large input data

is guaranteed whenever the data have good structures. In 1968, Ukhovskii and Iudovich

[35] and Ladyzhenskaya [22] (see also [23]) showed that if v0 and f are axially symmetric

with zero swirls, then the Navier-Stokes equations have a unique global strong solution on

(0, T ) with T < +∞. The obtained results in [35] and [22] were proved without any size

requirement on the data. In the same direction, Mahalov et al. [25] studied the existence

of global solution for the Navier-Stokes equations under requirement that the input data

v0 and f are helical symmetric. Unfortunately, the obtained results in [25] were based on

key lemma but its proof is incorrect (see Lemma 3.1 in [25] and its proof).

From the above one may ask whether there is a class of large input data and some

bounded domains Ω under which the Navier-Stokes equations have a unique global strong

solution on (0,∞). The aim of this paper is to address this question. Note that the

existence of global strong solutions to the NSEs plays an important role not only in the

theory of partial differential equations but also in optimal control problems. Based on the

existence of global strong solutions of NSEs, we can establish the Pontryagin maximum

principle for optimal control problems governed by NSEs (see for instance [19]).
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Recall that any vector field v(x) in R3 can represent in the cylindrical coordinate under

the form

v = vr(r, x3, θ)er + vθ(r, x3, θ)eθ + vz(r, x3, θ)ez,

where r =
√
x2

1 + x2
2 and

er =

 cos θ

sin θ

0

 , eθ =

 − sin θ

cos θ

0

 , ez =

 0

0

1

 .

The component vθ is called the swirl of v. When vr, vθ, vz do not depend on θ, we say

that v is axially symmetric.

In this paper we continue to develop the obtained results in [35], [22] and [23] by

considering the Cauchy problem for the Navier-Stokes equations (NSE) in the bounded

domain Ω which is the interior of a torus and assume that the input data are axially

symmetric and their swirls are not necessary to equal zero. Under this assumptions,

we show that the NSEs have a unique global strong solution on (0,∞) without any

requirement on size of the input data. It is worth pointing out that the technique for the

proof of our result is different from mentioned papers. In [35], [22] and [23], the authors

used curl operator in order to transform the NSEs into vorticity equations. This method

bases on regularity of solution of NSEs heavily. Here, we give a direct proof by using

the energy method as in [7] and exploiting the structures of the data. In some sense, our

obtained result is an extension of preceding results for the case where the swirls of data

are nonzero.

Let us define

V = {u ∈ H1
0 (Ω)3 | div u = 0},

V0 = {u ∈ V | u is axially symmetric},
H = {u ∈ L2(Ω)3 | div u = 0, u · −→n = 0 on ∂Ω},
−→n is the unit outward normal vector on ∂Ω,

Vas = the closure of H2(Ω)3 ∩ V0 in V,

Has = the closure of H2(Ω)3 ∩ V0 in H.

It is know that H is a Hilbert space with the scalar product (·, ·) and norm | · | which are

induced by the scalar product and norm in L2(Ω)3. Also, V is a Hilbert space with the

scalar product ((·, ·)) and norm ‖ · ‖ which are induced by the scalar product and norm

in H1
0 (Ω)3, where

((v, w)) =
3∑
i=1

(Div,Diw),∀v, w ∈ V.

We are ready to state our main result.
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Theorem 1.1 Suppose that Ω satisfies condition (3), v0 ∈ Vas and f ∈ L2((0,∞);Has)∩
L1((0,∞);Has). Then the Navier-Stokes equations (NSE) have a unique global strong

solution v which is axially symmetric and

v ∈ L∞((0,∞);Vas) ∩ L2((0,∞);H2(Ω)3),
dv

dt
∈ L2((0,∞);Has).

Moreover, the following energy inequalities are valid:

|v(t)|2 ≤ (|v0|2 +

∫ ∞
0

|f(s)|ds) exp
( ∫ ∞

0

|f(s)|ds
)
∀t ≥ 0 (4)

and∫ ∞
0

|∇v(s)|2ds ≤ 1

2
|v0|2 +

(
|v0|2 +

∫ ∞
0

|f(s)|ds
)1/2

exp
(1

2

∫ ∞
0

|f(s)|ds
) ∫ ∞

0

|f(s)|ds.

(5)

Remark 1.1 In the case of finite interval [0, T0] with 0 < T0 < +∞, if we require that

v0 ∈ Vas and f ∈ L2((0, T0), Has), then the NSEs have a unique global strong solution v

on (0, T0) with

v ∈ L∞((0, T0);Vas) ∩ L2((0, T0);H2(Ω)3),
dv

dt
∈ L2((0, T0);Has).

Let us give an illustrative example where the initial datum satisfies assumptions of The-

orem 1.1.

Example 1.1 We consider the vector field v0 = (v01, v02, v03), where

v01 =
[
(R2 −

√
x2

1 + x2
2)2 + x2

3 −R2
1

]x3(x1 − x2)

x2
1 + x2

2

,

v02 =
[
(R2 −

√
x2

1 + x2
2)2 + x2

3 −R2
1

]x3(x1 + x2)

x2
1 + x2

2

,

v03 =
1

2

[
(R2 −

√
x2

1 + x2
2)2 + x2

3 −R2
1

]R2 −
√
x2

1 + x2
2√

x2
1 + x2

2

.

It is obvious that v0|∂Ω = 0, divv0 = 0 and v0 is of class C∞(Ω)3. In the cylindrical

coordinate: x1 = r cos θ, x2 = r sin θ and x3 = z, we have

v01 =
[
(R2 − r)2 + z2 −R2

1

]z
r

(cos θ − sin θ),

v02 =
[
(R2 − r)2 + z2 −R2

1

]z
r

(sin θ + cos θ),

v03 =
1

2

[
(R2 − r)2 + z2 −R2

1

]R2 − r
r

.

Hence, v0 = vrer + vθeθ + vzez with

vr = vθ =
[
(R2 − r)2 + z2 −R2

1

]z
r
,

vz =
1

2

[
(R2 − r)2 + z2 −R2

1

]R2 − r
r

.

Since vr, vθ and vz do not depend on θ, v0 is axially symmetric and so v0 ∈ C∞(Ω)3 ∩ V0.

The proof of Theorem 1.1 is provided in Section 3. In order to prove the main result

we need to establish some auxiliary results which are given in Section 2 bellow.
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2 Some auxiliary results

Hereafter we shall use the following function spaces:

L2(Ω) := (L2(Ω))3 = L2(Ω)× L2(Ω)× L2(Ω),

H1
0(Ω) := (H1

0 (Ω))3, Hm(Ω) := Hm(Ω))3 with norm ‖ · ‖m,
V = {y ∈ D(Ω)3 | div y = 0},
V = the closure of V in H1

0(Ω) = {y ∈ H1
0(Ω) | div y = 0},

H = the closure of V in L2(Ω) = {y ∈ L2(Ω) | div y = 0, y · −→n = 0 on ∂Ω},
H⊥ = {φ ∈ L2(Ω) | φ = ∇p, p ∈ H1(Ω)},
W = V ∩H2(Ω),

W 1,2(0, T ;E1, E2) = {v ∈ L2(0, T ;E1) | dv
dt
∈ L2(0, T ;E2)},

where E1, E2 are Banach spaces.

For convenience, we shall denote by 〈·, ·〉e and | · |e the scalar product and the Euclid

norm in Rn with n = 2, 3, respectively. It is well known that the imbeddings

W ↪→ V ↪→ H

are compact and each space is dense in the following one.

Let us denote by P : L2(Ω) → H the Leray projection on H. We then define the

Stokes operator A : W → H by setting A = −P∆ and mappings B, b which are given by

B(u, u) = P(u · ∇)u,

b(u, v, w) = (B(u, v), w)

for u, v ∈ H1
0(Ω) and w ∈ L2(Ω).

Note that via transformation x1 = r cos θ, x2 = r sin θ, x3 = z, the domain Ω is

transformed into

G× (−π, π] = {(r, z) ∈ R2 | (R2 − r)2 + z2 < R2
1} × (−π, π] (6)

with

∂G = {(r, z) ∈ R2 | (R2 − r)2 + z2 = R2
1}.

Proposition 2.1 If f ∈ Has then f is axially symmetric.

Proof. By definition of Has, there exists a sequence fn ∈ H2(Ω) ∩ V0 such that fn

converges to f strongly in L2(Ω). In the cylindrical coordinate, we can can present f in

the form:  f 1

f 2

f 3

 = f r

 cos θ

sin θ

0

+ f θ

 − sin θ

cos θ

0

+ f z

 0

0

1

 ,
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where f r = f r(r, z, θ), f θ = f θ(r, z, θ) and f z = f z(r, z, θ).

Since fn = (f 1
n, f

2
n, f

3
n) is axially symmetric, it has the presentation: f 1

n

f 2
n

f 3
n

 = f rn

 cos θ

sin θ

0

+ f θn

 − sin θ

cos θ

0

+ f zn

 0

0

1

 ,

where f rn = f rn(r, z), f θn = f θn(r, z) and f z = f zn(r, z). Since

|fn − f |2e = |f 1
n − f 1|2 + |f 2

n − f 1|2 + |f 3
n − f 3|2 = |f rn − f r|2 + |f θn − f θ|2 + |f zn − f z|2,

we see that

‖fn − f‖2
L2(Ω) =

∑
j∈{r,θ,z}

∫
Ω

|f jn − f j|2dx =
∑

j∈{r,θ,z}

∫
G×(−π,π)

|f jn(r, z)− f j(r, z, θ)|2rdrdzdθ.

(7)

Hence for each j ∈ {r, θ, z}, we have∫
G×(−π,π)

|f jn(r, z)− f j(r, z, θ)|2rdrdzdθ → 0 as n→∞.

Since r > R2 −R1 > 0, we obtain∫
G×(−π,π)

|f jn(r, z)− f j(r, z, θ)|2drdzdθ → 0 as n→∞. (8)

This implies that for a.e. θ ∈ (−π, π), we have∫
G

|f jn(r, z)− f j(r, z, θ)|2drdz → 0 as n→∞. (9)

From (8), we have ∫
G×(−π,π)

|f jn(r, z)|2drdzdθ

is bounded and so is ∫
G

|f jn(r, z)|2drdz.

Hence we can assume that f jn(r, z) converges weakly to a function f j0 (r, z) in L2(G). On

the other hand form (9), we have f jn(r, z) converges strongly to a function f j(r, z, θ) in

L2(G). Consequently, we must have f j0 (r, z) = f j(r, z, θ) for a.e. θ ∈ (−π, π). Hence f is

axially symmetric. The proof is complete. 2

Proposition 2.2 Let h ∈ Has. Then there exists a unique u ∈ H2(Ω)∩V0 and p ∈ H1(Ω)

which solve the Stokes system:
−∆u+∇p = h in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.

(10)

6



Proof. By Theorem 3.11 in [7], the Stokes system has a unique solution u ∈ H2(Ω) ∩ V
and p ∈ H1(Ω) such that

‖u‖H2(Ω)3 + ‖p‖H1(Ω) ≤ C|h| (11)

for some absolute constant C > 0. By applying the Leray projection on the first equation

of (10), we obtain

Au = h, ‖u‖H2(Ω)3 ≤ C|Au|. (12)

It remains to show that u is axially symmetric.

Since h is axially symmetric, h = hrer +hθeθ +hzez, where hr = hr(r, z), hθ = hθ(r, z)

and hz = hz(r, z). We want to find u in the form u = urer +uθeθ +uzez, where ur, uθ and

uz depend only on (r, z) and p = p(r, z). Then in the cylindrical coordinates the system

(10) is transformed into the system

−
(1

r

∂

∂r
(r
∂ur
∂r

) +
∂2ur
∂z2

− ur
r2

)
+
∂p

∂r
= hr in G, (13)

−
(1

r

∂

∂r
(r
∂uz
∂r

) +
∂2uz
∂z2

)
+
∂p

∂z
= hz in G, (14)

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0 in G (15)

−
(1

r

∂

∂r
(r
∂uθ
∂r

) +
∂2uθ
∂z2

− uθ
r2

)
= hθ in G, (16)

(ur, uθ, uz) = (0, 0, 0) on ∂G. (17)

Recall that

G ={(r, z) ∈ R2 | (R2 − r)2 + z2 < R2
1},

∂G ={(r, z) ∈ R2 | (R2 − r)2 + z2 = R2
1}, R2 > 3R1.

Define ṽ = (vr, vz) = r(ur, uz). Then the equations (13), (14), (15) and (17) become
−1
r
∆(r,z)vr + 1

r2
∂rvr + ∂rp = hr

−1
r
∆(r,z)vz + 1

r2
∂rvz − vz

r3
+ ∂zp = hz

divṽ = 0,

ṽ|∂G = 0.

(18)

Meanwhile, equations (16) and (17) become−∆(r,z)vθ + 1
r
∂rvθ = rhθ,

vθ = 0 on ∂G.
(19)

Hereafter, ∆(r,z) and ∇(r,z) are defined by

∆(r,z)w = D2
rw +D2

zw, ∇(r,z)w = (Drw,Dzw) for w = w(r, z).
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Let us denote by V2 = {v ∈ H1
0 (G)2 | divv = 0}. It is known that V2 is the closure of V2

in H1
0 (G)2 with

V2 = {w ∈ C∞0 (G)2 | divw = 0}.

Recall that a vector ṽ = (vr, vz) ∈ V2 is said to be weak solution of (18) if

(−1

r
∆(r,z)vr +

1

r2
∂rvr + ∂rp, wr) + (−1

r
∆(r,z)vz +

1

r2
∂rvz −

vz
r3

+ ∂zp, wz)

= (wr, hr) + (wz, hz) ∀w̃ = (wr, wz) ∈ V2.

This variational formulation is equivalent to

(−1

r
∆(r,z)vr +

1

r2
∂rvr, wr) + (−1

r
∆(r,z)vz +

1

r2
∂rvz −

vz
r3
, wz) = (wr, hr) + (wz, hz)

for all w̃ = (wr, wz) ∈ V2 or equivalently,∫
G

1

r
〈∇(r,z)vr,∇(r,z)wr〉edrdz +

∫
G

1

r
〈∇(r,z)vz,∇(r,z)wz〉edrdz −

∫
G

1

r3
vzwzdrdz

=

∫
G

(hrwr + hzwz)drdz ∀(wr, wz) ∈ V2.

Let us define a bilinear mapping T : V2 × V2 → R by setting

T (ṽ, w̃) =

∫
G

1

r
〈∇(r,z)vr,∇(r,z)wr〉edrdz +

∫
G

1

r
〈∇(r,z)vz,∇(r,z)wz〉edrdz −

∫
G

1

r3
vzwzdrdz

for ṽ = (vr, vz), w̃ = (wr, wz) ∈ V2. We now show that T is continuous and coercive. In

fact, using the fact R2 −R1 ≤ r ≤ R2 +R1, we have

|T (ṽ, w̃)| ≤ 1

R2 −R1

(|∇(r,z)ṽ||∇(r,z)w̃|) +
1

(R2 −R1)3
|ṽ||w̃|

≤ C‖ṽ‖‖w̃‖ ∀ṽ, w̃ ∈ V2.

Taking w̃ = ṽ, we have

T (ṽ, ṽ) =

∫
G

1

r
|∇(r,z)ṽ|2drdz −

∫
G

1

r3
|vz|2drdz

≥ 1

R2 +R1

|∇(r,z)ṽ|2 −
1

(R2 −R1)3
|ṽ|2. (20)

Note that

G ⊂ {(r, z) ∈ R2 : |〈(r, z), (0, 1)〉e| ≤ R1}.

Therefore, from the Poincaré inequality (see [9, Theorem 2.8]), we have

|ṽ|2 ≤ 2R2
1|∇(r,z)ṽ|2. (21)

From this and (20), we get

T (ṽ, ṽ) ≥ 1

R2 +R1

|∇(r,z)ṽ|2 −
2R2

1

(R2 −R1)3
|∇(r,z)ṽ|2

≥
( 1

R2 +R1

− 2R2
1

(R2 −R1)3

)
|∇(r,z)ṽ|2. (22)
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Since R2 > 3R1, we have α :=
1

R2 +R1

− 2R2
1

(R2 −R1)3
> 0. Hence

T (ṽ, ṽ) ≥ α|∇(r,z)ṽ|2 ∀ṽ ∈ V2.

By the Stampacchia theorem (see [3, Theorem 5.6]), there exists a unique ṽ = (vr, vz) ∈ V2

such that

T (ṽ, w̃) = (h, w̃) ∀w̃ ∈ V2.

Hence there exists p ∈ L2(G) such that (ṽ, p) is a weak solution of (18). Note that system

(18) is equivalent to 
−∆(r,z)vr + 1

r
∂rvr + r∂rp = rhr,

−∆(r,z)vz + 1
r
∂rvz − vz

r2
+ r∂zp = rhz,

divṽ = 0,

ṽ|∂G = 0.

Since the function φ(r) = r is of C∞(G), we have r∂rp = ∂r(rp) − p in the sense of

distribution. Hence the above system can be written in the form
−∆(r,z)vr + ∂r(rp) = rhr + p− 1

r
∂rvr,

−∆(r,z)vz + ∂z(rp) = rhz − 1
r
∂rvz + vz

r2
,

divṽ = 0,

ṽ|∂G = 0,

where the terms on the right hand sides of the first equation and the second equation are

of L2(G). By results on regularity of solutions to the Navier-Stokes equations, we see that

(vr, vz) ∈ H2(G)2 ∩ V2 and rp ∈ H1(G) and so p ∈ H1(G). Also, by simple arguments,

wee see that the elliptic equation (19) has a unique solution vθ ∈ H2(G) ∩ H1
0 (G). We

now define û = 1
r
(vr, vθ, vz). Then (û, p) satisfies equations (13)–(17). Define

ϑ = ûrer + ûθeθ + ûzez, p̃(x1, x2, x3) = p(r, x3),

where ûr = 1
r
vr, ûθ = 1

r
vθ and ûz = 1

r
vz. Then (ϑ, p̃) is a solution of (10) with ϑ ∈

H2(Ω)3 ∩ V0, p̃ ∈ H1(Ω). By applying the Leray projection, we get Aϑ = h. By the

uniqueness, we obtain u = ϑ. The proof is complete. 2

In the sequel we shall denote Was = H2(Ω) ∩ V0 and define a mapping

Ã : D(Ã) ⊂ Has → Has with D(Ã) = Was

by setting

Ãu = Au for u ∈ D(Ã).

Thus Ã is a restriction of the Stokes operator A on Was. By the Proposition 2.2, we

see that Ã is bijective and densely defined on Has. The following proposition gives some

properties of Ã.

9



Proposition 2.3 The following assertions are valid:

(a) The operator Ã : D(Ã) ⊂ Has → Has is symmetric, i.e.,

(Ãu, v) = (u, Ãv) ∀u, v ∈ D(Ã).

(b) The inverse operator (Ã)−1 is compact in Has.

(c) The operator Ã : D(Ã) ⊂ Has → Has is self-adjoint.

(d) The inverse operator (Ã)−1 is also self-adjoint.

(e) For all u ∈ D(Ã) and v ∈ Vas, one has

(Ãu, v) = ((u, v)). (23)

Proof. (a) From [7, Proposition 4.2], A is symmetric. Hence

(Ãu, v) = (Au, v) = (u,Av) = (u, Ãv) ∀u, v ∈ D(Ã).

(b) Since D(Ã) ↪→ Has is a compact embedding, the operator (Ã)−1 : Has → D(Ã) ⊂ Has

is a compact operator in Has.

(c) Let us show that D(Ã∗) ⊂ D(Ã). Indeed, take any u ∈ D(Ã∗). By definition, there

exists h ∈ Has such that (Ãv, u) = (v, h) for all v ∈ D(Ã). Since h ∈ Has and by

Proposition 2.2, we can find a vector ũ ∈ D(Ã) such that Ãũ = h. Taking any g ∈ Has

and using Proposition 2.2 again, we see that there exists v ∈ D(Ã) such that Ãv = g.

Therefore from (a), we have

(g, u− ũ) = (Ãv, u)− (Ãv, ũ) = (v, h)− (v, Aũ) = (v, h)− (v, h) = 0.

Since g is arbitrary in Has, we get u = ũ ∈ D(Ã). Consequently, D(Ã) = D(Ã∗). By (a),

for all u, v ∈ D(Ã), we have

(Ã∗u, v) = (u, Ãv) = (Ãu, v).

Since D(Ã) is dense in Has, we obtain Ãu = Ã∗u.

(d) By Theorem 10.2.2 in [20], we have

(Ã−1)∗ = ((Ã)∗)−1 = Ã−1.

We obtain the conclusion.

(e) Since

(Pφ, ψ) = (φ,Pψ) ∀φ, ψ ∈ H,

we have

(Ãu, v) = −(∆u,Pv) = −(∆u, v) = (∇u,∇v) = ((u, v)) (24)

for all u ∈ D(Ã) and v ∈ Vas. 2
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From Proposition 2.3, (Ã)−1 is self-adjoint and compact. By a well known theorem

of Hilbert (see [3, Theorem 6.11]), there exists a sequence of positive number µj with

µj+1 ≤ µj and an orthogonal basis {wj} of Has such that (Ã)−1wj = µjwj. We denote

λj =
1

µj
. Since (Ã)−1 has range D(Ã), we get

Awj = Ãwj = λjwj, wj ∈ Was,

0 < λ1 < · · · ≤ λj ≤ λj+1 ≤ · · · ,
lim
j→∞

λj = +∞,

(wj)j=1,...are an orthogonal basis of Has.

Proposition 2.4 For all j ≥ 1, wj ∈ Was ∩ C∞(Ω).

Proof. By [31, Proposition 2.2, Chapter 1] and the fact that Ω is of class C∞, we have

wj ∈ C∞(Ω). 2

Let us define the fractional power Ãα of Ã by setting

Ãαu =
∞∑
j=1

λαj µjwj for u =
∞∑
j=1

µjwj, u ∈ D(Ãα), (25)

D(Ãα) = {u ∈ Has | u =
∞∑
j=1

µjwj,
∞∑
j=1

λ2α
j |µj|2 < +∞, µj ∈ R}. (26)

The spaces D(Ãα) carry a natural scalar product 〈·, ·〉α which is defined by setting

〈u, v〉α =
∞∑
j=1

λ2α
j µjηj whenever u =

∞∑
j=1

µjwj, v =
∞∑
j=1

ηjwj. (27)

For this scalar product, the sequence {λ−αj wj} form an orthogonal system which is com-

plete in D(Ãα). Based on this fact, we have the following proposition.

Proposition 2.5 The system {λ−1/2
j wj} form an orthogonal basis of Vas. Moreover,

D((Ã)1/2) = Vas and Vas is dense in Has.

Proof. Since {λ−1/2
j wj} form an orthogonal basis in D((Ã)1/2), it is sufficient to show

that D((Ã)1/2) = Vas. In fact, the vectors {λ−1/2
j wj} are in Vas and

〈λ−1/2
j wj, λ

−1/2
k wk〉1/2 = δjk = (A(λ

−1/2
j wj), λ

−1/2
k wk) = ((λ

−1/2
j wj, λ

−1/2
k wk)). (28)

Hence D((Ã)1/2) ⊂ Vas. Conversely, if Vas is not contained in D((Ã)1/2) then there exists

a nonzero vector v ∈ Vas such that v is orthogonal with D((Ã)1/2) in Vas. Hence

0 = ((v, λ
−1/2
j wj)) = (v, Ã(λ

−1/2
j wj)) = λ

1/2
j (v, wj)

11



for all j. Since v ∈ Vas ⊂ Has, we obtain v = 0. The proof is complete. 2

Let us denote by Xm the finite dimensional space which is spanned by {w1, w2, ..., wm}.
For each h ∈ Has and g ∈ Vas, we shall denote by Pmh and P Vas

m g the projections of h and

g on Xm in Has and Vas, respectively.

Proposition 2.6 The following formulae are valid

Pmh =
m∑
j=1

(h,wj)wj,

P Vas
m g =

m∑
j=1

λ−1
j ((g, wj))wj.

Moreover, if ϕ ∈ Vas then Pmϕ = P Vas
m ϕ and

|Pmϕ| ≤ |ϕ|, ‖Pmϕ‖ ≤ ‖ϕ‖. (29)

Proof. The first conclusion is obvious. For the second formula we note that {λ−1/2
j wj}

is an orthogonal basis of Vas. When ϕ ∈ Vas, we have

Pmϕ =
m∑
j=1

(wj, ϕ)wj =
m∑
j=1

(λ−1
j Ã(wj), ϕ)wj

=
m∑
j=1

λ−1
j ((wj, ϕ))wj = P Vas

m ϕ.

Estimation (29) follows from property of orthogonal projections. The proof is complete.

2

Let u ∈ C∞(Ω) ∩ V0. Then u = urer + uθeθ + uzez. This is equivalent to
u1 = ur(t, r, z) cos θ − uθ(t, r, z) sin θ,

u2 = ur(t, r, z) sin θ + urθ(t, r, z) cos θ,

u3 = uz(t, r, z).

(30)

It is easy to see that

|u|2e = (ur)
2 + (uθ)

2 + (uz)
2. (31)

Since u|∂Ω = 0, we have ur|∂G = uθ|∂G = uz|∂G = 0. By applying formulae D1 =

12



cos θDr − 1
r

sin θDθ, D2 = sin θDr + 1
r

cos θDθ and D3 = Dz for u1, u2 and u3, we get

D1u1 = cos2 θDrur −
1

2
sin 2θDruθ + sin2 θ

ur
r

+
1

2
sin 2θ

uθ
r
,

D2u1 =
1

2
sin 2θDrur − sin2 θDruθ −

1

2
sin 2θ

ur
r
− cos2 θ

uθ
r
,

D3u1 = Dzur cos θ −Dzuθ sin θ,

D1u2 =
1

2
sin 2θDrur + cos2 θDruθ −

1

2
sin 2θ

ur
r

+ sin2 θ
uθ
r
,

D2u2 = sin2 θDrur +
1

2
sin 2θDruθ + cos2 θ

ur
r
− 1

2
sin 2θ

uθ
r
,

D3u2 = sin θDzur + cos θDzuθ,

D1u3 = Druz cos θ,

D2u3 = Druz sin θ,

D3u3 = Dzuz.

It follows that

3∑
i,j=1

(Diuj)
2 = (Drur)

2 + (Druθ)
2 + (Druz)

2 + (Dzur)
2 + (Dzuθ)

2 + (Dzuz)
2 +

1

r2
(u2

r + u2
θ).

(32)

Lemma 2.1 There exist absolute constants C1, C2, C3 > 0 such that

‖ũ‖L2(G)3 ≤ C1‖u‖L2(Ω)3 , (33)

‖∇(r,z)ũ‖L2(G)3 ≤ C2‖∇u‖L2(Ω)3 , (34)

‖ũ‖H2(G)3 ≤ C3‖u‖H2(Ω)3 (35)

for all u ∈ C∞(Ω) ∩ V0, where ũ = (ur, uθ, uz).

Proof. By (31), we have

‖ũ‖2
L2(G)3 =

∫
G

((ur)
2 + (uθ)

2 + (uz)
2)drdz =

∫
G

1

r
((ur)

2 + (uθ)
2 + (uz)

2)rdrdz

≤ 1

R2 −R1

∫
G

((ur)
2 + (uθ)

2 + (uz)
2)rdrdz

=
1

2π(R2 −R1)

∫ π

−π

∫
G

((ur)
2 + (uθ)

2 + (uz)
2)rdrdzdθ

=
1

2π(R2 −R1)
‖u‖2

L2(Ω)3 .

Therefore, inequality (33) is proved. Inequality (34) is established similarly. It remains

to prove inequality (35).
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By some computations, we have the following formulae:

D2
1u1 = cos3 θD2

rur − cos2 θ sin θD2
ruθ + 3 cos θ sin2 θ(

Drur
r
− ur
r2

)+

+ (cos2 θ sin θ + sin θ cos 2θ)(
Druθ
r
− uθ
r2

), (36)

D1D3u1 = cos2 θDrDzur − sin θ cos θDrDzuθ + sin2 θ
Dzur
r

+ sin θ cos θ
Dzuθ
r

, (37)

D2
3u1 = cos θD2

zur − sin θD2
zuθ, (38)

D2
1u3 = cos2 θD2

ruz + sin2 θ
Druz
r

, (39)

D3D1u3 = cos θDrDzuz, (40)

D2
3u3 = D2

zuz. (41)

By putting

T1 = 3 cos θ sin2 θ(
Drur
r
− ur
r2

) + (cos2 θ sin θ + sin θ cos 2θ)(
Druθ
r
− uθ
r2

),

we have from (36) that

(D2
1u1)2 =

(
cos3 θD2

rur − cos2 θ sin θD2
ruθ
)2

+ 2
(

cos3 θD2
rur − cos2 θ sin θD2

ruθ
)
T1 + T 2

1 .

Hence∫
Ω

(D2
1u1)2dx =

∫ π

−π

∫
G

(D2
1u1)2rdrdzdθ ≥ (R2 −R1)

∫ π

−π

∫
G

(D2
1u1)2drdzdθ

= (R2 −R1)

∫ π

−π

∫
G

(
cos3 θD2

rur − cos2 θ sin θD2
ruθ
)2
drdzdθ

+ (R2 −R1)

∫ π

−π

∫
G

[
2
(

cos3 θD2
rur − cos2 θ sin θD2

ruθ
)
T1 + T 2

1

]
drdzdθ

≥ (R2 −R1)

∫ π

−π

∫
G

(
cos3 θD2

rur − cos2 θ sin θD2
ruθ
)2
drdzdθ

+ (R2 −R1)

∫ π

−π

∫
G

[
2
(

cos3 θD2
rur − cos2 θ sin θD2

ruθ
)
T1

]
drdzdθ

= (R2 −R1)

∫
G

(5π

8
(D2

rur)
2 +

π

8
(D2

ruθ)
2
)
drdz

+ 2(R2 −R1)

∫
G

(3π

8
(D2

rur)(
Drur
r
− ur
r2

)− π

8
(D2

ruθ)(
Druθ
r
− uθ
r2

)
)
drdz

≥ (R2 −R1)

∫
G

(5π

8
(D2

rur)
2 +

π

8
(D2

ruθ)
2
)
drdz

+ (R2 −R1)

∫
G

(
− π

8
(D2

rur)
2 − 9π

8
(
Drur
r
− ur
r2

)2 − π

16
(D2

ruθ)
2 − π

4
(
Druθ
r
− uθ
r2

)2
)
drdz

= (R2 −R1)

∫
G

(π
2

(D2
rur)

2 +
π

16
(D2

ruθ)
2 − 9π

8
(
Drur
r
− ur
r2

)2 − π

4
(
Druθ
r
− uθ
r2

)2
)
drdz

≥ (R2 −R1)

∫
G

(π
2

(D2
rur)

2 +
π

16
(D2

ruθ)
2 − 9π

4
((
Drur
r

)2 + (
ur
r2

)2)− π

2
((
Druθ
r

)2 + (
uθ
r2

)2)
)
drdz.

14



This implies that∫
Ω

(D2
1u1)2dx+ (R2 −R1)

∫
G

(9π

4
((
Drur
r

)2 + (
ur
r2

)2) +
π

2
((
Druθ
r

)2 + (
uθ
r2

)2)
)
drdz ≥

≥ (R2 −R1)

∫
G

(π
2

(D2
rur)

2 +
π

16
(D2

ruθ)
2
)
drdz.

Since r ≥ R2 −R1, we obtain∫
Ω

(D2
1u1)2dx+

1

(R2 −R1)

∫
G

(9π

4
(Drur)

2 +
π

2
(Druθ)

2 +
u2
r + u2

θ

(R2 −R1)2

)
drdz ≥

≥ (R2 −R1)

∫
G

(π
2

(D2
rur)

2 +
π

16
(D2

ruθ)
2
)
drdz. (42)

By the same procedure, we obtain from (37) to (41) the following estimations:∫
Ω

(D1D3u1)2dx+
1

R2 −R1

∫
G

(π
4

(Dzur)
2 +

π

2
(Dzuθ)

2
)
drdz ≥

≥ (R2 −R1)

∫
G

(π
2

(DrDzur)
2 +

π

8
(DrDzuθ)

2
)
drdz, (43)∫

Ω

(D2
3u1)2dx ≥ (R2 −R1)

∫
G

(
π(D2

zur)
2 + π(D2

zuθ)
2
)
drdz, (44)∫

Ω

(D2
1u3)2dx+

1

R2 −R1

∫
G

π

4
(Druz)

2drdz ≥ (R2 −R1)

∫
G

π

2
(D2

ruz)
2drdz, (45)∫

Ω

(D3D1u3)2dx ≥ (R2 −R1)

∫
G

π(DrDzuz)
2drdz, (46)∫

Ω

(D2
3u3)2dx ≥ (R2 −R1)

∫
G

2π(D2
zuz)

2drdz. (47)

By adding inequalities (42)–(47), we see that there exists positive constants α, β such

that

‖u‖2
H2(Ω)3 + α

∫
G

(
(Drur)

2 + (Druθ)
2 + (Dzur)

2 + (Dzuθ)
2
)
drdz +

∫
G

u2
r + u2

θ

(R2 −R1)3
drdz ≥

≥ β

∫
G

( ∑
i,j,k∈{r,θ,z}

(DiDjuk)
2
)
drdz.

By adding both sides with β‖∇(r,z)ũ‖2
L2(G)3 and β‖ũ‖2

L2(G)3 , we obtain

‖u‖2
H2(Ω)3 + α′‖∇(r,z)ũ‖2

L2(G)3 + γ′‖ũ‖2
L2(G)3 ≥ β′‖ũ‖2

H2(G)3

for some positive constants α′, β′ and γ′. Using (33) and (34), we get

(1 + α′C1 + γ′C2)‖u‖2
H2(Ω)3 ≥ β′‖ũ‖2

H2(G)3 .

The proof of the lemma is complete. 2
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In the sequel we shall need some estimations of |b(u, u, Ãu)|. For this we consider the

mapping b̃ which is defined by setting

b̃(ũ, ṽ, w̃) =

∫
G

∣∣∣((urDrvr + uzDzvr −
1

r
uθvθ)wr + (urDrvθ + uzDzvθ +

1

r
uθvr)wθ

+ (urDrvz + uzDzvz)wz
)∣∣∣drdz (48)

with ũ = (ur, uθ, uz), ṽ = (vr, vθ, vz) and w̃ = (wr, wθ, wz) belong to C∞(G)3.

We now have the following key lemma.

Lemma 2.2 Let 0 ≤ si < 1 and s1 + s2 + s3 ≥ 1. Then there exists an absolute constant

C4 > 0 depending on G and si such that

b̃(ũ, ṽ, w̃) ≤ C4‖ũ‖1−s1
0 ‖ũ‖s1]

1 ‖ṽ‖1−s2
1 ‖ṽ‖s22 ‖w̃‖1−s3

0 ‖w̃‖s31

for all ũ, ṽ, w̃ ∈ C∞(G)3.

Proof. Let us set û = E1ũ, v̂ = E2ṽ and ŵ = E1w̃, where El : H l(G) → H l(R2) is a

linear extension operator. Recall that for all φ ∈ H1+[s](Rn) with [s] is the integer part

of s, we have the following interpolation inequalities:

‖φ‖Hs(Rn) ≤ ‖φ‖1−(s−[s])

H[s](Rn)
‖φ‖s−[s]

H[s]+1(Rn)
. (49)

By assumption, we have n = 2 and 0 ≤ si < n/2. Define qi by
1

qi
=

1

2
− si
n

wit i = 1, 2, 3

and q4 by 1
q1

+ 1
q2

+ 1
q3

+ 1
q4

= 1. This is possible because 1
q1

+ 1
q2

+ 1
q3
≤ 1. We now have

b̃(ũ, ṽ, w̃) ≤
∫
G

∣∣∣(urDrvr + uzDzvr −
1

r
uθvθ)wr

∣∣∣drdz
+

∫
G

∣∣∣(urDrvθ + uzDzvθ +
1

r
uθvr)wθ

∣∣∣drdz +

∫
G

∣∣∣(urDrvz + uzDzvz)wz

∣∣∣drdz
= Σ1 + Σ2 + Σ3. (50)

Using the Hölder inequality, the embedding Hs(Rn) ↪→ Lq(Rn) with s <
n

2
,

1

q
=

1

2
− s

n
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and interpolation inequality (49), we have

Σ1 ≤
∫
G

(
|urDrvrwr|+ |uzDzvrwr|+ |

1

r
uθvθwr|

)
drdz

≤ ‖ur‖Lq1‖Drvr‖Lq2‖wr‖Lq3‖1‖Lq4 + ‖uz‖Lq1‖Dzvr‖Lq2‖wr‖Lq3‖1‖Lq4+

+
1

R2 −R1

‖uθ‖Lq1‖vθ‖Lq2‖wr‖Lq3‖1‖Lq4

≤ |G|
1
q4 ‖ûr‖Lq1‖Drv̂r‖Lq2‖ŵr‖Lq3 + |G|

1
q4 ‖ûz‖Lq1‖Dzv̂r‖Lq2‖ŵr‖Lq3+

+
|G|

1
q4

R2 −R1

‖ûθ‖Lq1‖v̂θ‖Lq2‖ŵr‖Lq3

≤ |G|
1
q4 ‖ûr‖s1‖Drv̂r‖s2‖ŵr‖s3 + |G|

1
q4 ‖ûz‖s1‖Dzv̂r‖s2‖ŵr‖s3+

+
|G|

1
q4

R2 −R1

‖ûθ‖s1‖v̂θ‖s2‖ŵr‖s3

≤ |G|
1
q4 ‖ûr‖1−s1+[s1]

[s1] ‖ûr‖s1−[s1]
[s1]+1 ‖Drv̂r‖1−s2+[s2]

[s2] ‖Drv̂r‖s2−[s2]
[s2]+1 ‖ŵr‖

1−s3+[s3]
[s3] ‖ŵr‖s3−[s3]

1+[s3]

+ |G|
1
q4 ‖ûz‖1−s1+[s1]

[s1] ‖ûz‖s1−[s1]
[s1]+1 ‖Dzv̂r‖1−s2+[s2]

[s2] ‖Dzv̂r‖s2−[s2]
[s2]+1 ‖ŵr‖

1−s3+[s3]
[s3] ‖ŵr‖s3−[s3]

1+[s3]

+
|G|

1
q4

R2 −R1

‖ûθ‖1−s1+[s1]
[s1] ‖ûθ‖s1−[s1]

[s1]+1 ‖v̂θ‖
1−s2+[s2]
[s2] ‖v̂θ‖s2−[s2]

[s2]+1 ‖ŵr‖
1−s3+[s3]
[s3] ‖ŵr‖s3−[s3]

1+[s3]

≤ γ1‖ur‖1−s1+[s1]
[s1] ‖ur‖s1−[s1]

[s1]+1 ‖Drvr‖1−s2+[s2]
[s2] ‖Drvr‖s2−[s2]

[s2]+1 ‖wr‖
1−s3+[s3]
[s3] ‖wr‖s3−[s3]

1+[s3]

+ γ1‖uz‖1−s1+[s1]
[s1] ‖uz‖s1−[s1]

[s1]+1 ‖Dzvr‖1−s2+[s2]
[s2] ‖Dzvr‖s2−[s2]

[s2]+1 ‖wr‖
1−s3+[s3]
[s3] ‖wr‖s3−[s3]

1+[s3]

+ γ1‖uθ‖1−s1+[s1]
[s1] ‖uθ‖s1−[s1]

[s1]+1 ‖vθ‖
1−s2+[s2]
[s2] ‖vθ‖s2−[s2]

[s2]+1 ‖wr‖
1−s3+[s3]
[s3] ‖wr‖s3−[s3]

1+[s3]

≤ 3γ1‖ũ‖1−s1+[s1]
[s1] ‖ũ‖s1−[s1]

[s1]+1 ‖ṽ‖
1−s2+[s2]
[s2]+1 ‖ṽ‖s2−[s2]

[s2]+2 ‖w̃‖
1−s3+[s3]
[s3] ‖w̃‖s3−[s3]

1+[s3]

for some absolute constant γ1 > 0. Hence

Σ1 ≤ 3γ1‖ũ‖1−s1+[s1]
[s1] ‖ũ‖s1−[s1]

[s1]+1 ‖ṽ‖
1−s2+[s2]
[s2]+1 ‖ṽ‖s2−[s2]

[s2]+2 ‖w̃‖
1−s3+[s3]
[s3] ‖w̃‖s3−[s3]

1+[s3] . (51)

By similar arguments, we can show that

Σ2 ≤ 3γ2‖ũ‖1−s1+[s1]
[s1] ‖ũ‖s1−[s1]

[s1]+1 ‖ṽ‖
1−s2+[s2]
[s2]+1 ‖ṽ‖s2−[s2]

[s2]+2 ‖w̃‖
1−s3+[s3]
[s3] ‖w̃‖s3−[s3]

1+[s3] . (52)

and

Σ3 ≤ 2γ3‖ũ‖1−s1+[s1]
[s1] ‖ũ‖s1−[s1]

[s1]+1 ‖ṽ‖
1−s2+[s2]
[s2]+1 ‖ṽ‖s2−[s2]

[s2]+2 ‖w̃‖
1−s3+[s3]
[s3] ‖w̃‖s3−[s3]

1+[s3] (53)

for some absolute constants γ2, γ3 > 0. Combining (51)–(53) and (50), we obtain the

conclusion of the lemma with C4 = 3γ1 + 3γ2 + 2γ3 and [s1] = [s2] = [s3] = 0. 2

When s1 = s2 = 1/2 and s3 = 0, we have the following estimation.

Corollary 2.1 There exists an absolute constant C5 > 0 depending on G such that

b̃(ũ, ṽ, w̃) =

∫
G

∣∣∣(urDrvr + uzDzvr −
1

r
uθvθ)wr + (urDrvθ + uzDzvθ +

1

r
uθvr)wθ

+ (urDrvz + uzDzvz)wz

∣∣∣drdz ≤ C5‖ũ‖1/2
0 ‖ũ‖

1/2
1 ‖ṽ‖

1/2
1 ‖ṽ‖

1/2
2 ‖w̃‖0 (54)

for all ũ, ṽ, w̃ ∈ C∞(G)3.
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3 Proof of the main result

By applying the Leray projection, the system (NSE) becomes
du

dt
+ Au+B(u, u) = f(t)

v(0) = v0.
(55)

In the sequel, we shall show that the system (55) has a unique solution v satisfying

v ∈ L∞((0,∞);Vas) ∩ L2((0,∞);H2(Ω)3).

For each m ≥ 1, we consider the Galerkin system of finding um(t) ∈ Xm such that

dum
dt

+ Ãum + PmB(um, um) = gm, (56)

um(0) = u0,m, (57)

where u0,m = Pmv0 and gm = Pmf . Let um =
∑m

j=1 ξj(t)wj and gm =
∑m

j=1 ηj(t)wj.

Since Ãwj = λjwj, the above system is equivalent to the system of ordinary differential

equations for ξj(t):

dξj
dt

+ λjξj +
m∑

k,l=1

b(wk, wl, wj)ξkξl = ηj, j = 1, 2, ...,m,

ξj(0) = ξ0
j , j = 1, 2, ...,m,

or 
dξj
dt

= Fj(t, ξ),

ξj(0) = ξ0
j , j = 1, 2, ...,m,

(58)

where ξ0
j = (u0,m, wj), ηj(t) = (f(t, ·), wj) and

Fj(t, ξ) = ηj(t)− λjξj −
m∑

k,l=1

b(wk, wl, wj)ξkξl.

It is clear that Fj(t, ξ) is locally Lipschitz in ξ. Therefore, system (58) has a maximal

solution defined on some interval [0, tm). If tm < ∞ then |ξ(t)|e = |um(t)| must tend to

+∞ as t→ tm (see for instance [15, Corollary 3.2, p.14]). However, the a priori estimate

we shall prove later show that this does not happen and therefore tm = +∞. Indeed,

taking the scalar product of (56) with um and using property of b, we get

1

2

d

dt
|um(t)|2 + |∇um(t)|2 = (f, um).

Since |(f, um)| ≤ |f ||um| ≤ 1
2
(|f ||um|2 + |f |), we obtain

d

dt
|um(t)|2 + 2|∇um(t)|2 ≤ 2|f(t)||um(t)| ≤ |f(t)||um(t)|2 + |f(t)|. (59)
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The Gronwal inequality implies that

|um(t)|2 ≤ (|um(0)|2 +

∫ t

0

|f(s)|ds) exp (

∫ t

0

|f(s)|ds)

≤ (|v0|2 +

∫ ∞
0

|f(s)|ds) exp (

∫ ∞
0

|f(s)|ds). (60)

Hence limt→tm |um(t)| < +∞ and so tm = +∞. For convenience, we put

M2
1 = (|v0|2 +

∫ ∞
0

|f(s)|ds) exp (

∫ ∞
0

|f(s)|ds).

Then we have

|um(t)| ≤M1 ∀t ≥ 0. (61)

By integrating two sides of (59), we get

2

∫ t

0

|∇um|2ds ≤ |u0,m|2 + 2

∫ t

0

|f(s)||um(s)|ds

≤ |v0|2 + 2M1

∫ ∞
0

|f(s)|ds.

Hence ∫ ∞
0

|∇um(s)|2ds ≤M2
2 (62)

with

M2
2 :=

1

2
|v0|2 +M1

∫ ∞
0

|f(s)|ds.

Taking the scalar product both sides of (56) with Ãum, we get

1

2

d

dt
‖um(t)‖2 + |Ãum(t)|2 = −b(um, um, Ãum) + (gm, Ãum). (63)

By (12), we have the estimate C‖um‖H2(Ω) ≤ |Ãum|. From this estimation and (63), we

obtain

1

2

d

dt
‖um(t)‖2 + C‖um(t)‖2

H2(Ω) ≤ |b(um, um, Ãum)|+ |gm||Ãum|

≤ |b(um, um, Ãum)|+ |f(t)|‖um‖H2(Ω). (64)

It is clear that um and Ãum are axially symmetric. Hence um = umrer + umθeθ + umzez

and Ãum = wmrer + wmθeθ + wmzez. For convenience we remove index m and write u
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instead of um. Put ũ = (ur, uθ, uz) and w̃ = (wr, wθ, wz). Then we have∣∣b(u, u, Ãu)
∣∣ =

∣∣ ∫
Ω

〈(u · ∇)u, Ãu〉edx
∣∣

=
∣∣∣ ∫

Ω

(
(urDrur + uzDzur −

1

r
uθuθ)wr + (urDruθ + uzDzuθ +

1

r
uθur)wθ

+ (urDruz + uzDzuz)wz
)
dx
∣∣∣

≤
∫

Ω

∣∣∣(urDrur + uzDzur −
1

r
uθuθ)wr + (urDruθ + uzDzuθ +

1

r
uθur)wθ

+ (urDruz + uzDzuz)wz

∣∣∣dx
≤
∫ π

−π

∫
G

∣∣∣(urDrur + uzDzur −
1

r
uθuθ)wr + (urDruθ + uzDzuθ +

1

r
uθur)wθ

+ (urDruz + uzDzuz)wz

∣∣∣rdrdzdθ
≤ 2π(R2 +R1)

∫
G

∣∣∣(urDrur + uzDzur −
1

r
uθuθ)wr + (urDruθ + uzDzuθ +

1

r
uθur)wθ

+ (urDruz + uzDzuz)wz

∣∣∣drdz
= 2π(R2 +R1)b̃(ũ, ũ, w̃).

From this, Corollary 2.1 and Lemma 2.1, we obtain∣∣b(u, u, Ãu)
∣∣ ≤ 2π(R2 +R1)b̃(ũ, ũ, w̃)

≤ 2π(R2 +R1)C5‖ũ‖1/2

L2(G)3‖ũ‖H1(G)3‖ũ‖1/2

H2(G)3‖w̃‖L2(G)

≤ 2π(R2 +R1)C5(C1)1/2|u|1/2C2‖u‖C1/2
3 ‖u‖

1/2
2 C1|Ãu|

≤ C6|u|1/2‖u‖‖u‖1/2
2 |Ãu| (65)

for some constant C6 > 0. Since |Ãu| ≤ ‖u‖2, we get∣∣b(um, um, Ãum)
∣∣ ≤ C6|um|1/2‖um‖‖um‖3/2

2 . (66)

Combining this with (64) yields

1

2

d

dt
‖um(t)‖2 + C‖um(t)‖2

2 ≤ C6|um|1/2‖um‖‖um‖3/2
2 + |f(t)|‖um‖2. (67)

Using Young’s inequality

ab ≤ εap + C(ε)bq, (a, b > 0, ε > 0, p, q > 0, 1/p+ 1/q = 1, C(ε) =
1

q(εp)q/p
),

we have

1

2

d

dt
‖um(t)‖2 + C‖um(t)‖2

2 ≤ C7|um|2‖um‖4 +
C

4
‖um‖2

2 +
|f(t)|2

C
+
C‖um‖2

2

4
.
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This implies that

d

dt
‖um(t)‖2 + C‖um(t)‖2

2 ≤ 2C7|um|2‖um‖4 +
2|f(t)|2

C
. (68)

By Gronwall’s inequality and (62), we get

‖um(t)‖2 ≤
[
‖u0,m‖2 +

2

C

∫ t

0

|f(s)|2ds
]

exp
(
2C7

∫ t

0

|um(s)|2‖um(s)‖2ds
)

≤
[
‖v0‖2 +

2

C

∫ ∞
0

|f(s)|2ds
]

exp
(
2C7M

2
1M

2
2 ).

Putting

M2
3 =

[
‖v0‖2 +

2

C

∫ ∞
0

|f(s)|2ds
]

exp
(
2C7M

2
1M

2
2 ),

we have

‖um(t)‖2 ≤M2
3 ∀t ≥ 0. (69)

Integrating both sides of (68) and using (61), (62) and (69), we get

‖um(t)‖2 + C

∫ t

0

‖um(s)‖2
2ds ≤ ‖v0‖2 + 2C7(M1M2M3)2 +

2

C

∫ ∞
0

|f(s)|2ds.

This implies that ∫ ∞
0

‖um(s)‖2
2ds ≤M2

4 , (70)

where

M2
4 :=

1

C

(
‖v0‖2 + 2C7(M1M2M3)2 +

2

C

∫ ∞
0

|f(s)|2ds
)
.

Let us give a bound for
dum
dt

. From (56), we have

|dum
dt
| ≤ |Ãum|+ |B(um, um)|+ |gm|

≤ ‖um‖2 + C5|um|1/2‖um‖‖um‖1/2
2 + |f |,

where the estimate |B(um, um)| ≤ C5|um|1/2‖um‖‖um‖1/2
2 follows from (65). It follows

that

|dum
dt
|2 ≤ C8(‖um‖2

2 + |um|‖um‖2‖um‖2 + |f |2)

for some constant C8 > 0. Hence∫ ∞
0

|dum
dt
|2dt ≤ C8

( ∫ ∞
0

‖um(t)‖2
2dt+M1M3

∫ ∞
0

‖um‖‖um‖2dt+

∫ ∞
0

|f(t)|2dt
)

≤ C8

(
M2

4 +M1M3(

∫ ∞
0

‖um‖2dt)1/2(

∫ ∞
0

‖um‖2
2dt)

1/2 +

∫ ∞
0

|f(t)|2dt
)

≤ C8

(
M2

4 +M1M3M2M4 +

∫ ∞
0

|f(t)|2dt
)
.
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Consequently,∫ ∞
0

|dum
dt
|2dt ≤M2

5 with M2
5 := C8

(
M2

4 +M1M3M2M4 +

∫ ∞
0

|f(t)|2dt
)
. (71)

In summary, we conclude from (62), (69)–(71) that

{um} is bounded in L∞((0,∞), Vas),

{um} is bounded in L2((0,∞),H2(Ω)),

{dum
dt
} is bounded in L2((0,∞), Has).

Passing subsequences, we can assume that

un → v weakly star in L∞((0,∞), Vas),

un → v weakly in L2((0,∞),H2(Ω)),

dum
dt
→ φ weakly in L2((0,∞), Has).

Let ψ(t) ∈ C∞0 (0,∞). Then there exists T ′ > 0 such that supp(ψ) ⊆ [0, T ′]. Taking the

scalar product of (56) with ψ(t)wj and integrating, we obtain∫ ∞
0

(
d

dt
um, ψ(t)wj)dt−

∫ ∞
0

(∆um, ψ(t)wj)dt+

∫ ∞
0

b(um, um, ψ(t)wj)dt

=

∫ ∞
0

(gm, ψ(t)wj)dt (72)

or equivalently,

−
∫ ∞

0

(um, ψ(t)′wj)dt−
∫ ∞

0

(∆um, ψ(t)wj)dt+

∫ ∞
0

b(um, um, ψ(t)wj)dt

=

∫ ∞
0

(gm(t), ψ(t)wj)dt. (73)

Note that {um} is bounded in W 1,2((0, T ′);Vas, Has) and um converges weakly to v in

W 1,2((0, T );Vas, Has). Since Vas is dense in Has and the embedding Vas ↪→ Has is compact,

the Aubin theorem implies that the embedding

W 1,2((0, T ′);Vas, Has) ↪→ L2((0, T ′);Has)

is compact. Hence um converges strongly to v in L2((0, T ′);Has). By [31, Lemma 3.2, p.

289], we have∫ T ′

0

b(um, um, ψ(t)wj)dt→
∫ T ′

0

b(v, v, ψ(t)wj)dt when m→∞.

This means that∫ ∞
0

b(um, um, ψ(t)wj)dt→
∫ ∞

0

b(v, v, ψ(t)wj)dt as m→∞.
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Taking the limit both sides of (72) and (73), we obtain∫ ∞
0

(φ, ψ(t)wj)dt−
∫ ∞

0

(∆v, ψ(t)wj)dt+

∫ ∞
0

b(v, v, ψ(t)wj)dt =

∫ ∞
0

(f(t), ψ(t)wj)dt

and

−
∫ ∞

0

(v, ψ(t)′wj)dt−
∫ ∞

0

(∆v, ψ(t)wj)dt+

∫ ∞
0

b(v, v, ψ(t)wj)dt =

∫ ∞
0

(f(t), ψ(t)wj)dt.

From the above, we see that (φ,wj) = (
dv

dt
, wj) and so

(
d

dt
v, wj) + (Ãv, wj) + (B(v, v), wj) = (f(t), wj) ∀j ≥ 1.

Hence

(
dv

dt
, w) + (Ãv, w) + (B(v, v), w) = (f(t), w) ∀w ∈ Has

or equivalently,

(
dv

dt
+ Ãv +B(v, v)− f(t), w) = 0 ∀w ∈ Has.

Since
dv

dt
+ Ãv +B(v, v)− f(t) ∈ Has, we must have

dv

dt
+ Ãv +B(v, v)− f(t) = 0.

Let us choose a continuously differentiable function ψ on [0,∞) such that ψ(0) = 1 and

ψ(t) = 0 for all t ≥ T ′ for some 0 < T ′ < ∞. Taking the scalar product of (56) with

ψ(t)wj again and using similar arguments as in the proof of [31, Theorem 3.1, p. 289], we

can show that v(0) = v0. The energy inequalities (4) and (5) follows from (61) and (62).

The proof of Theorem 1.1 is complete. �
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