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Abstract

Let f : (R2, 0) −→ (R, 0) be a germ of a smooth function. We
give a sufficient condition such that the  Lojasiewicz inequality holds,
i.e. there exist a neighborhood Ω of the origin and constants c, α > 0
such that

|f(x)| ≥ cd(x, f−1(0))α

for all x ∈ Ω. Then, under this condition, we compute the  Lojasiewicz
exponent of f.As a by-product we obtain a formula for the  Lojasiewicz
exponent of a germ of an analytic function, which is different from
that of T.C.Kuo (Comment. Math. Helv. 49 (1974), pp.201-213.

1 Introduction

Let f be a germ of an analytic function at the origin of Rn. Let V := {x ∈
Rn|f = 0}. The  Lojasiewicz inequality says that there exist c > 0 and α > 0

and a neighbourhood Ω of the origin such that

(1.1) |f(x)| ≥ cd(x, V )α

for all x ∈ Ω.

The  Lojasiewicz inequality was born to solve a problem in analysis [L1].
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Later, it finds many applications and generates many results in other fields

[Bi-M], [Br], [H], [Kur-M-P], [T].

Let L(f) := inf{α|∃c > 0 and Ω s.t. (1) holds } be the  Lojasiewicz

exponent of f.

If f(x, y) is an analytic function, L(f) is computed via Puiseux expansions

of f [Kuo].

In general, Inequality (1) is false for smooth functions. In this paper we

assume f to be a germ of a smooth function in two variables. Firstly, we

give a sufficient condition such that inequality (1) holds for f . Then, under

this condition, the  Lojasiewicz exponent L(f) is computed explicitly.

Our method is based on the smooth Puiseux theorem of V. Rychkov [R] and

the following observation: let f(x1, x2, ..., xn) = cdx
d
n+cd−1(x1, ..., xn−1)x

d−1
n +

...+ c0(x1, ..., xn−1) be the Malgrange-Weierstrass form of f , where d is the

multiplicity of f at the origin, then the set {x ∈ Rn| ∂f
∂xn

= 0} can be con-

sidered as a testing set for the existence of the  Lojasiewicz inequality for

f . As a by-product we obtain a formula for the  Lojasiewicz exponent of a

germ of an analytic function, which is different from that of [Kuo].

Recently, a version of the  Lojasiewicz inequality for smooth functions

was given in [H-N-S].

2 Statements of results

Lemma 2.1. Let f(x′, xn) = xdn + ad−1(x
′)xd−1n + ... + a0(x

′) be a germ

of a smooth function at 0 ∈ Rn−1 × R. Assume that, for some constants

c0 > 0, ε > 0 and β > 0 we have

(2.1) |f(x)| ≥ c0dist(x, V )β

for all x ∈ V1∩Bε, where V1 := {x ∈ Rn| ∂f
∂xn

= 0} and Bε = {x ∈ Rn|‖x‖ <
ε}. Then there exist a neighbourhood Ω of 0 ∈ Rn and an c > 0 such that

|f(x)| ≥ cdist(x, V )α

for all x ∈ Ω, where α = max{d, β}.

Let L(f, V1) := inf {β > 0|∃c, ε > 0 such that (2.1) holds }. We call

L(f, V1) the  Lojasiewicz exponent of f with respect to V1.

Our problems now become:
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i) To find conditions under which L(f, V1) <∞.

ii) To compute L(f, V1) and then to compute L(f).

We recall now the smooth Puiseux theorem of V. Rychkov.

Let C[[x]] be the ring of formal series with coefficients in C. We use notation

of following rings of germs of C− valued functions.

- C∞((x)) and C∞((x, y)) are rings of C∞ functions at the origin of R
and R2, respectively.

- C+((x)) and C∞+ ((x)) are rings of one-sided germs, consisting of (the

equivalent classes of) functions g(x) defined in a left half -neighbourhood

of zero of the form [0, ε), where ε > 0 can depend on g(x), which are

continuous, respectively C∞, up to zero.

- A+((xγ)), γ > 0, the subring of C+((x)) consisting of germs g(x), for

which there exists a series g̃(x) ∈ C[[xγ]], g̃(x) =
∑∞

n=0 cnx
nγ, such

that g(x) ∼ g̃(x) in the sense that for any N

g(x)−
N∑
n=0

cnx
nγ = O(x(N+1)γ), x −→ 0,

such an g̃(x) is uniquely determined and is called the asymptotic ex-

pansion of g(x).

The ring of germs of R - valued functions will be denoted by adding an R
to the above notation, e.g. RA+((x)), RC+((x)).

Let F (x, y) ∈ RC∞((x, y)) and F (x, y) =
∑
cijx

iyj be the formal Taylor

series of F at the origin. Put

supp(F ) = {(i, j) ∈ R2|cij 6= 0}

Let Γ(F ) be the convex hull of the set

{(i, j) + R2
+|(i, j) ∈ supp(F )}

Then Γ(F ) is the Newton polygon of F. Let E be a compact edge of the

boundary of Γ(F ) joining points (AE, BE) and (A′E, B
′
E), where B′E > BE,

we put

nE = B′E −BE, γE =
AE − A′E
B′E −BE
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Let A be the x-coordinate of the vertical infinite edge and B be the y-

coordinate of the horizontal infinite edge of Γ(F ).

Let F (x, y) ∈ RC∞((x, y)) such that its formal Taylor series F is different

from 0. Assume that the formal Taylor F of F (x, y) at the origin is not

identically equal to zero.

Theorem 2.2. [R] The germ F (x, y) admits in region x, y > 0 a factoriza-

tion of the form

F (x, y) = u(x, y)
A∏
i=1

(x−Xi(y))
B∏
i=1

(y − Yi(x))
∏
E

nE∏
i=1

(y − YEi(x))

where

i) u(x, y) ∈ RC∞((x, y)), u(0, 0) 6= 0

ii) all Xi(y) ∈ C+((y)), (resp. Yi(x) ∈ C+((x))) and Xi(y) = O(yN), as

y −→ 0 (resp. Yi(x) = O(xN), as x −→ 0) for any N > 0

iii) all YEi(x) ∈ A+((x
1
n! )) for n = B+

∑
E nE with asymptotic expansions

of the form YEi(x) = cEix
γE + ..., as x −→ 0, where cEi 6= 0.

Remark 2.3. The asymptotic series ỸEi(x) = cEix
γi+... ∈ C[[x

1
n! ]] of YEi(x)

is computed from the formal Taylor series F of F by the Newton-Puiseux

algorithm which is described in [W].

Let f(x, y) ∈ RC∞((x, y)) and d := min{i+ j| ∂
i+jf

∂xi∂yj
(0, 0) 6= 0} be the

multiplicity of f at the origin. By the Malgrange preparation theorem [M],

we can assume that f is of the form

f(x, y) = yd + ad−1(x)yd−1 + ...+ a0(x)

where ai(x) ∈ C∞((x)), ai(0) = 0, i = 0, 1, ..., d− 1.

It follows from Theorem 2.2 that

i) f(x, y) admits in the region x > 0 a factorization

(2.2) f(x, y) =
B∏
i=1

(y − Yi(x))
∏
E

nE∏
i=1

(x− YEi(x))

where Yi(x) ∈ C+((x)) and Yi(x) = O(xN), as x −→ 0, for any N >

0, YEi(x) ∈ A+((x
1
d! )), B is the y-coordinate of the infinite horizontal

edge of Γ(f) and E runs through all compact edges of Γ(f).
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ii)
∂f

∂y
(x, y) admits in the region x > 0 a factorization

(2.3)
∂f

∂y
(x, y) =

B′∏
i=1

(y − Y ′i (x))
∏
E′

nE′∏
i=1

(y − YE′i(x))

where Y ′i (x) ∈ C+((x)) and Y ′i (x) = O(xN), as x −→ 0, for any

N > 0, YE′i(x) ∈ A+((x
1

(d−1)! )), B′ is the y-coordinate of the infinite

horizontal edge of Γ(
∂f

∂y
) and E ′ runs through all compact edges of

Γ(
∂f

∂y
).

Notation 2.4. Let PC(f) denote the sets of all functions Yi(x) and YEi(x)

in (2.2) and PC(
∂f

∂y
) denote the set of all functions Y ′i (x), Y ′E′i

(x) in (2.3).

Put

PR(f) := (PC(f) ∩ RC+((x)))
⋃

(PC(f) ∩ RA+((x
1
d! )))

and

PR(
∂f

∂y
) := (PC(

∂f

∂y
) ∩ RC+((x)))

⋃
(PC(

∂f

∂y
) ∩ RA+((x

1
(d−1)! )))

Then, as germs of sets at the origin, we have

V + := V ∩ {(x, y) ∈ R2|x ≥ 0} =
⋃

Y ∈PR(f)

{(x, y) ∈ R2|x ≥ 0, y = Y (x)}

and

V +
1 := V1 ∩ {(x, y) ∈ R2|x ≥ 0} =

⋃
Y ′∈PR(

∂f

∂y
)

{(x, y) ∈ R2|x ≥ 0, y = Y ′(x)}.

For two real value functions ϕ(x) > 0 and ψ(x) > 0 we write ϕ � ψ if

and only if
ϕ

ψ
lies between two positive constants, as x is near 0 ∈ R.

If ϕ(x) � xs for some s, we put v(ϕ) := s. If ϕ(x) = o(xN) as x −→ 0 for

any N > 0, we put v(ϕ) :=∞. If ϕ(x) and ψ(x) are two functions, we put

θ(ϕ, ψ) := v(|ϕ− ψ|) and call it the contact order of ϕ and ψ.

For each Y ′ ∈ PR(
∂f

∂y
) we denote

θY ′ =
∑

Y ∈PC(f)

θ(Y ′, Y ).
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Clearly θY ′ ∈ Q ∪ {∞}.
We also put

(2.4) δY ′ :=

{
1 if PR(f) = ∅
max{θ(Y ′, Y )|Y ∈ PR(f)} if otherwise

.

Definition 2.5. We say that f satisfies the finite contact condition if for

every Y ′ ∈ PR(
∂f

∂y
) \ PC(f), we have θY ′ <∞.

Theorem 2.6. Let f(x, y) = yd + ad−1(x)yd−1 + ...+ a0(x) ∈ RC∞((x, y)),

where d is the multiplicity of f at 0 ∈ R2. Assume that f satisfies the finite

contact condition, then the number

L+(f, V1) = max{θY
′

δY ′
}

where Y ′ runs through all elements of PR(
∂f

∂y
)\PR(f), has the property that

there exist c > 0 and ε > 0 such that

|f(x, y)| ≥ cdist((x, y), V )L+(f ;V1)

for all (x, y) ∈ V1 ∩ {(x, y) ∈ R2|x ≥ 0} ∩ Bε, where Bε = {(x, y) ∈
R2|‖(x, y)‖ < ε}. Moreover, L+(f ;V1) is the smallest number with this prop-

erty.

Corollary 2.7. Assume that both f(x, y) and f̃(x, y) = f(−x, y) satisfy the

finite contact condition then we have

L(f ;V1) = max{L+(f ;V1), L+(f̃ ;V1)}

Theorem 2.8. Let f(x, y) = yd + ad−1(x)yd−1 + ...+ a0(x) ∈ RC∞((x, y)),

where d is the multiplicity of f at 0 ∈ R2. Assume that both f(x, y) and

f(−x, y) satisfy the finite contact condition, then we have

L(f) = max{L(f ;V1), d}.

Remark 2.9. The condition of the existence of the  Lojasiewcz inequality

given in Theorem 2.8 is not sharp, as it is shown by the following example.

Let f(x, y) = y2 − e−1/x
2
. Then the ideal fC∞(Bε) is closed, hence there

exist c > 0 and α > 0 such that

|f(x, y)| ≥ cd((x, y), f−1(0))α

for all (x, y) ∈ Bε = {(x, y) ∈ R2| ||(x, y)|| ≤ ε} (see [M, §2, Chapter VI].)

Nevertheless, f does not satisfy the finite contact condition.
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Now we consider the two following cases, where the finite contact condi-

tion holds automatically

(i) f is a germ of a smooth function, which is non–degenerate with respect

to its Newton polygon;

(ii) f is a germ of an analytic function.

Case 1:

Let denote the formal Taylor series of f at the origin by

f(x, y) =
∞∑

i+j=0

cijx
iyj

For a compact edge E of Γ(f), we put

fE =
∑

(i,j)∈E

cijx
iyj

Definition 2.10. [Ko] We say that f is nondegenerate if for any compact

edge E, the system
∂fE
∂x

=
∂fE
∂y

= 0

has no solutions in (R \ 0)2.

We say that f is convenient if Γ(f) intersects both coordinate axes.

For each compact edge of Γ(f), joining the points (AE, BE) and (A′E, B
′
E),

where B′E > BE, let as before γE =
AE − A′E
B′E −BE

. We put

γ(f) := {γE|E runs through all compact edges of Γ(f)}.

Theorem 2.11. Let f(x, y) = yd+ad−1(x)yd−1 + ...+a0(x) ∈ RC∞((x, y)),

where d is the multiplicity of f at 0 ∈ R2. Assume that f is convenient

and nondegenerate. Then the  Lojasiewicz exponent of f is finite and can be

expressed in terms of the set γ(f) ∪ {d}.

Case 2:

Let f(x, y) be a germ of an analytic function at 0 ∈ R2. Then the sets

PC(f), PR(f) (resp., PC(
∂f

∂y
), PR(

∂f

∂y
)) are respectively the sets of com-

plex and real Puiseux series of f = 0 (resp., of
∂f

∂y
= 0). Clearly, the finite
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contact condition holds automatically. Hence, Theorem 2.8 gives the fol-

lowing method of computation of the  Lojasiewicz exponent of an analytic

germ.

Firstly we find all the Puiseux series of f = 0 and
∂f

∂y
= 0. This gives

the sets PC(f) and PC(
∂f

∂y
). Then, in assuming that we are in the domain

R2
≥0, we define the sets PR(f) and PR(

∂f

∂y
) of real Puiseux series. We have

L+(f ;V1) = max{θY
′

δY ′
},

where Y ′ runs through the set Y ′ ∈ PR(
∂f

∂y
) \ PC(f). Then, we compute

L+(f̃ ;V1), f̃ = f(−x, y), by similar way and finally we use Theorem 2.8 to

get the  Lojasiewicz exponent of an analytic germ. This method of computa-

tion of L(f) for analytic germs is different from that of [Kuo] in the following

aspect: instead of using the so called real approximations of Puiseux series

of f = 0 to express L(f) as in [Kuo], we use real Puiseux series of
∂f

∂y
and

Puiseux series of f = 0.

Let us use this method to compute the exponent L+(f, V1) for some

examples taken from [Kuo].

Example 2.12. (Example (3.6) of [Kuo]).

f(x, y) = (y − x2)(y4 + x10)

∂f

∂y
= 0⇔ 5y4 − 4y3x2 + x10 = 0

∂f

∂y
= 0 gives 4 Puiseux series

Y ′1 := Y1(x) =
4

5
x2 + ...

Y ′2 := Y2(x) =

(
1

4

)1/3

x8/3 + ...

Y ′3 := Y3(x) =

(
1

4

)1/3

eiπ/3x8/3 + ...

Y ′4 := Y4(x) =

(
1

4

)1/3

ei2π/3x8/3 + ...
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Clearly Y ′3 , Y
′
4 /∈ PR(

∂f

∂y
). We show that Y ′1 , Y

′
2 ∈ PR(

∂f

∂y
).

Let Y1(x) = x2
(

4

5
+ ϕ(x)

)
with v(ϕ(x)) > 0. Since

∂f

∂y
(x, Y1(x)) = 0 we

have

0 = 6

(
4

5

)2

ϕ+ x2 + terms of degree > 1 in ϕ.

Hence, it follows from Implicit function theorem that ϕ(x) is an analytic

function and therefore Y1(x) ∈ PR(
∂f

∂y
). Since the number of non-real

Puiseux series is even, Y ′2 also belongs to PR(
∂f

∂y
). We find that θY ′1 = 10,

θY ′2 = 12.

Since R2 ∩ {f = 0} ⇔ {y − x2 = 0}, we have

δY ′1 = δY ′2 = 2.

Hence L(f) = max{5, 6} = 6.

Example 2.13. (Example (3.8) of [Kuo]). This example is due to  Lojasiewicz

[L2]. It shows that the  Lojasiewicz exponent can be larger than the degree

of a polynomial.

f(x, y) = y2n + (y − xn)2

∂f

∂y
= 2ny2n−1 + 2(y − xn)

Hence
∂f

∂y
= 0 gives a single Puiseux series

Y ′ := y(x) = xn + ...

which belongs to PR(
∂f

∂y
) by Implicit function theorem. More careful com-

putation gives

y(x) = xn − nx2n2−n + terms of degree > 2n2 − n.

Hence θY ′ = v(f(x, y(x))) = 2n2.

Since PR(f) = ∅, δY ′ = 1. Hence L(f) = 2n2.

3 Proofs

3.1 Proof of Lemma 2.1

Proof. Let us begin with determining the neighbourhood Ω. We fix two

points (0, a) and (0,−a) ∈ (Rn−1×R)∩Bε. Since ci(0) = 0, i = 0, 1, ..., d−1,
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we have |f(0,−a)| = |f(0, a)| = |a|d. Hence, we can find an b > 0 such that

if ‖x′‖ < b then

min{|f(x′, a)|, |f(x′,−a)|} ≥ |a|
d

2
.

We put Ω := {(x′, xn) ∈ Rn−1 × R|‖x′‖ < b, |xn| < |a|}.

Let Ω1 := {(x′, xn) ∈ Ω|f ≥ |a|
d

2
} and Ω2 := Ω \ Ω1.

Clearly, one can find c > 0 such that |f(x)| ≥ cdist(x, V )α, for all x ∈ Ω1

where α = max{β, d}.
Let x0 ∈ Ω2, we denote r = |f(x0)| and

W (x0) := {x ∈ Rn||f(x)| ≤ r} ∩ V1.

Claim 3.1.

|f(x0)| ≥ (
1

d!2d
)d[min{dist(x0, V ), dist(x0,W (x0)}]d.

Proof. Put
∑

(x′0) = {xn ∈ [−a,+a]||f(x′0, xn)| ≤ r}. Then
∑

(x′0) is a non-

empty closed semi-algebraic set in R1, hence it is the finite union of closed

intervals and isolated points. Since x0 ∈ Ω2, we see that a /∈
∑

(x′0) and

−a /∈
∑

(x′0). Hence, if [ai, bi] ⊂
∑

(x′0), we have |f(x′0, ai)| = |f(x′0, bi)| = r0

and |f(x′0, t)| < r for any t ∈ (ai, bi). Clearly, if cj is an isolated point of∑
(x′0), we also have |f(x′0, cj)| = r.

Since
∂df(x′0, xn)

∂xdn
= d!, it follows from the Van der Corput lemma [C-C-W]

that the following estimate for the Lebesgue’s measure of
∑

(x′0) holds:

mes
∑

(x′0) ≤ d!(2d)r
1
d

Consequently,

(3.1) |bi − ai| ≤ d!(2d)r
1
d

for each [ai, bi] ⊂
∑

(x′0).

Since |f(x0)| = r, either the point xn0 coincides with one of ai and bi or it

is an isolated point of
∑

(x′0). Assume that xn0 = ai.

i) If f(x′0, xn0).f(x′0, bi) < 0, then there exists t0 ∈ (xn0 , bi) such that

f(x′0, t0) = 0, i.e. (x′0, t0) ∈ V. It follows from (3.1) that

dist(x0, V ) ≤ |xn0 − t0| ≤ |xn0 − bi| ≤ d!(2d)r
1
d

or

|f(x0)| ≥ (
1

d!2d
)ddist(x0, V )d

and claim 3.1 holds.
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ii) Assume that f(x′0, xn0).f(x′0, bi) > 0, then, by Rolle’s theorem there

exists t1 ∈ (xn0 , bi) such that
∂f

∂xn
(x′0, t1) = 0, i.e., (x′0, t1) ∈ W (x′0)

and the claim holds again by (3.1). Now assume that xn0 is an isolated

point of
∑

(x′0). It is easy to see that xn0 is a local minimum of a

function g(xn) := f(x′0, xn), therefore
∂f

∂xn
(x′0, xn0) = 0 and the claim

holds automatically.

Now we derive the proof of Lemma 2.1 from Claim 3.1. Let ϕ(x0) and

ψ(x0) be the points ofW (x0) and V, respectively, such that dist(x0,W (x0)) =

dist(x0, ϕ(x0)) and dist(ϕ(x0), V ) = dist(ϕ(x0), ψ(x0)).

We have

dist(x0, V ) ≤ dist(x0, ψ(x0)) ≤ dist(x0, ϕ(x0)) + dist(ϕ(x0), ψ(x0))

If dist(x0, ϕ(x0)) ≥ dist(ϕ(x0), ψ(x0)) then dist(x0, V ) ≤ 2dist(x0, ϕ(x0)) =

2dist(x0,W (x0)). Hence, by Claim 3.1, we have

(3.2)

|f(x0)| ≥ (
1

d!2d
)dmin{dist(x0, V ), dist(x0,W (x0))}d ≥ (

1

2dd!2d
)ddist(x0, V )d

Assume that dist(x0, ϕ(x0)) ≤ dist(ϕ(x0), ψ(x0)), then dist(x0, V ) ≤ 2dist(ϕ(x0), ψ(x0)).

Since ϕ(x0) ∈ W (x0), |f(x0)| ≥ |f(ϕ(x0))|, by the hypothesis, we have

(3.3)

|f(x0)| ≥ |f(ϕ(x0))| ≥ c0dist(ϕ(x0), V )β ≥ c0(
dist(x0, V )

2
)β =

c0
2β
dist(x0, V )β

Lemma 2.1 follows from (3.2) and (3.3).

Lemma 3.2. Let Y (x) ∈ PR(f) and XY be the germ at the origin of the

set {(x, y) ∈ R2|x ≥ 0, y = Y (x)}. Let Y ′(x) ∈ PR(
∂f

∂y
). Then we have

dist((x, Y ′(x)), XY ) � |Y ′(x)− Y (x)|.

Proof. We recall that f(x, y) ∈ RC∞((x, y)) and is of the form

f(x, y) = yd + ad−1(x)yd−1 + ...+ a0(x),

where d is the multiplicity of f at the origin. Hence, f(x, y) admits in the

region x > 0 a functorization of the form (3), i.e.

f(x, y) =
B∏
i=1

(y − Yi(x))
∏
E

nE∏
i=1

(x− YEi(x)),
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where B is the y−coordinate of the infinity horizontal edge of Γ(f) and E

runs through all compact edges of Γ(f). Each function Yi(x) ∈ C+((x)),

in particular, Yi(x) = O(xN) as x → 0, for any N > 0. Each YEi(x) ∈
A+((x

1
d! )) and has asymptotic expansion of the form YEi(x) = cEix

γE + ...,

as x→ 0, with cEi 6= 0.

Claim 1. For each compact edge E of Γ(f), we have γE ≥ 1.

Proof. Since the multiplicity of f at the origin is equal to d, it is easy to

see that the line i+ j = d is a support line of Γ(f). Hence, all the compact

edges of Γ(f), except possibly the edge containing the vertex (0, d), are

situated strictly higher the line i+ j = d. Therefore, the inequality γE ≥ 1

follows trivially from the definition of γE.

Let W be a neighbourhood of (0, 0) and W̃ := W ∩ {(x, y) ∈ R2|x > 0}.
Let

φ : W̃ −→ φ(W̃ ),

defined by φ(x, y) = (u, v), with u = x, v = y − Y (x).

Claim 2. If Y (x) ∈ PR(f), then there exist constants c1 > 0 and c2 > 0

such that for any two points z1 = (x1, y1) and z2 = (x2, y2) from W̃ , we

have

(3.4) c1||z1 − z2|| ≤ ||φ(z1)− φ(z2)|| ≤ c2||z1 − z2||.

Proof. It is convenient to use l1 norm in R2, i.e.

||(x, y)||l1 := |x|+ |y|.

Let Y (x) ∈ C+((x)), we have

||z1 − z2||l1 = ||(x1, y1)− (x2, y2)||l1 = |x1 − x2|+ |y1 − y2| =

= |x1 − x2|+ |y1 − Y (x1)− (y2 − Y (x2)) + (Y (x1)− Y (x2))|

≥ |x1 − x2|+ |y1 − Y (x1)− (y2 − Y (x2))| − |(Y (x1)− Y (x2))|.

Since Y (x) ∈ C+((x)), if W is sufficiently small, we have

|Y (x1)− Y (x2)| ≤
1

2
|x1 − x2|.

We obtain that

||z1 − z2||l1 ≥ |x1 − x2|+ |(y1 − Y (x1))− (y2 − Y (x2))| −
1

2
|x1 − x2|

≥ 1

2
[|x1 − x2|+ |(y1 − Y (x1))− (y2 − Y (x2))|] =

1

2
||φ(z1)− φ(z2)||l1 .
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Conversely,

||φ(z1)− φ(z2)||l1 = |x1 − x2|+ |(y1 − Y (x1))− (y2 − Y (x2))|

≥ |x1− x2|+ |y1− y2| − |Y (x1)− Y (x2)| ≥ |x1− x2|+ |y1− y2| −
1

2
|x1− x2|

≥ 1

2
||z1 − z2||l1 .

Thus, Claim 2 holds if Y (x) ∈ C+((x)).

Assume that Y (x) = YEi(x) ∈ A+((x
1
d! )). Then, Y (x) = cEix

γE +o(xγE),

as x→ 0.

By Claim 1, γE ≥ 1. We distinguish two cases. Firstly, assume that

γE > 1, then it is easy to see that

|Y (x1)− Y (x2)| ≤
1

2
|x1 − x2|,

for any couple of points x1 > 0 and x2 > 0, sufficiently closed to 0. Then,

analogously as above, we can see that Claim 2 holds. Now, assume that

γE = 1, then

Y (x) = cEix+ cxγ + o(xγ), as x→ 0, where γ > 1.

Let

φ0 : W̃ −→ φ0(W̃ )

(x, y) 7→ (x, y − cEix)

and

φ1 : φ0(W̃ ) −→ φ(W̃ )

(x, y) 7→ (x, y − (Y (x)− cEix)).

Then we have φ = φ1 ◦ φ0. Clearly,

(3.5) c′1||z1 − z2|| ≤ ||φ0(z1)− φ0(z2)|| ≤ c′2||z1 − z2||

holds for some c′1 > 0 and c′2 > 0.

Moreover, since Y − cEx = cxγ + o(xγ), where γ > 1, we can see that

the inequalities

(3.6) c′′1||z1 − z2|| ≤ ||φ1(z1)− φ1(z2)|| ≤ c′′2||z1 − z2||

hold for some c′′1 > 0 and c′′2 > 0. The Claim 2 follows then from (3.5) and

(3.6).

Now we finish the proof of Lemma 3.2.
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We see that

φ(XY ) = {v = 0} ⊂ R2
u,v

and φ((x, Y ′(x))) = (u, v) with u = x, v = Y ′(x)− Y (x), hence

dist(φ((x, Y ′(x)), φ(XY )) = |Y ′(x)− Y (x)|.

The proof of Lemma 3.2 follows from this equality and Claim 2.

3.2 Proof of Theorem 2.6

Theorem 2.6 follows directly from factorizations of the germs f and
∂f

∂y
,

Lemma 3.2 and the definition of the number θY ′ and δY ′ .

3.3 Proof of Theorem 2.8

Proof. Clearly L(f ;V1) ≤ L(f). By Lemma 2.1, L(f) ≤ max{L(f ;V1), d}
Hence, it is enough to prove that L(f) ≥ d.

We will use the max–norm in R2, i.e. ||(x, y)|| = max{|x|, |y|}.

Claim 3.3. dist((0, y), V ) � |y|

Proof. Since (0, 0) ∈ V, dist((0, y), V ) ≤ |y|.
We will prove that there exists c > 0 such that |y| ≤ dist((0, y), V ) for

y sufficiently small. Let dist((0, y), V ) = dist((0, y), A(y)), with A(y) ∈ V.
We may assume that A(y) is of the form A(y) = (τ(y), Y (τ(y))), where

Y (x) ∈ PR(f).

Then we have

(3.7)

|y| ≤ dist((0, y), (τ(y), Y (τ(y))))+|Y (τ(y))| = max{|τ(y)|, |y−Y (τ(y))|}+|Y (τ(y))|

Since Y (x) ∈ PR(f), either Y (x) = O(xN) for any N > 0 or Y (x) =

cEx
γE+o(xγE), with γE ≥ 1, there exists δ > 0 such that |Y (τ(y))| ≤ δ|τ(y)|,

for all y sufficiently small. Since we may assume that δ > 1, continuing (3.7),

we have

|y| ≤ max{δ|τ(y)|, δ|y − Y (τ(y))|}+ δ|τ(y)| ≤ (δ + 1)dist((0, y), V ),

and the claim is proved.

Now, by the claim |f(0, y)| = |y|d � dist((0, y), V )d, which implies that

L(f) ≥ d.
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3.4 Proof of Theorem 2.11

Proof. Let f := (R2, 0) −→ (R, 0), f(x, y) = yd + cd−1(x)yd−1 + ... + c0(x),

where d is the multiplicity of f at (0, 0) ∈ R2.

Let us number all the vertices (A0, B0), ..., (Ak, Bk) of Γ(f) such that B0 >

B1 > ... > Bk. (B0 = d,Bk = 0, since f is convenient and the multiplicity

of f at the origin is d). Let Ei be the compact edge joining the points

(Ai−1, Bi−1) and (Ai, Bi), i = 1, ..., k and γEi =
Ai − Ai−1
Bi−1 −Bi

. Then, by the

convexity of Γ(f), we have γE1 < γE2 < ... < γEk .

Now, we number the edges E ′i of Γ(
∂f

∂y
) such that if i < j then γE′i < γE′j .

We see that if i = 1, ..., k − 1, then E ′i is the edge of Γ(
∂f

∂y
), joining the

points (Ai−1, Bi−1 − 1) and (Ai, Bi − 1). We have then

γE′i =
Ai − Ai−1

(Bi−1 − 1)− (Bi − 1)
=
Ai − Ai−1
Bi−1 −Bi

= γEi

Hence γE′i = γEi for i = 1, ..., k − 1.

Further, let us to look at how the edge Ek of Γ(f) ”produces” the corre-

sponding edges of Γ(
∂f

∂y
).

Firstly, assume that Ek does not contain integer points different from (Ak−1, Bk−1)

and (Ak, Bk). Then Ek ”produces” the infinite horizontal edge E ′∞ of Γ(
∂f

∂y
)

and the set of all adges of Γ(
∂f

∂y
) are E ′1, ..., E

′
k−1, E

′
∞.

Assume that Ek contains integer points, different from (Ak−1, Bk−1) and

(Ak, Bk). Then, beside of the edge E ′k of Γ(
∂f

∂y
), with γE′k = γEk , possibly

there are also edges E ′k+1, ..., E
′
k′ , and E ′∞ of Γ(

∂f

∂y
), with γE′i > γEk for

i = k+ 1, ..., k′ (if k′ > k). Now we compute L(f, V1) via the set γ(f)∪{d}.
Case 1. Let either Y ′ ∈ PR(

∂f

∂y
) ∩ C+((x)) or Y ′ ∈ PR(

∂f

∂y
) ∩ A+((x

1
(d−1)! ))

such that Y ′(x) = cE′x
γE′+o(xγE′ ), with γ′E′ > γEk . We have then v(|Y ′(x)−

Y (x)|) = v(|Y (x)|), for all Y ∈ PC(f). Hence

|f(x, Y ′(x))| =
∏

Y ∈PC(f)

|Y ′(x)− Y (x)| � |x|θY ′

where

(3.8) θY ′ =
k∑
i=1

nEiγEi
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Further

dist((x, Y ′(x)), V ) = min{dist((x, Y ′(x)), XY )|Y ∈ PR(f)}

where XY := {(x, y)|y = Y (x)}
By Lemma 3.2, we have

dist((x, Y ′(x)), V ) � |x|δY ′

where

(3.9) δY ′ =

{
1 if PR(f) = ∅
max{v(|Y |)|Y ∈ PR(f)}

Hence, on the branch (x, Y ′(x)) of V1, we have

|f(x, Y ′(x))| ≥ cdist((x, Y ′(x)), V )
θY ′
δY ′

where θ(Y ′) and δ(Y ′) are given by (3.8) and (3.9) respectively.

Case 2. Y ′ ∈ PR(
∂f

∂y
) and Y ′(x) = cE′sx

γE′s + o(xγE′s ) with γE′s = γEs , (i.e.

either s ≤ k − 1 or s = k if γE′k = γEk).

Claim 3.4. For Y ∈ PC(f), we have

v(|Y ′(x)− Y (x)|) = min{γEs , v(|Y (x)|}.

Proof. Since γE′s = γEs , the claim is trivial if v(|Y (x)|) 6= γEs .

Now, assume Y (x) = cEsx
γEs+o(xγEs). To prove the claim, we will show that

cE′s 6= cEs . Let f(x, y) =
∑∞

i+j=0 cijx
iyj and

∂f

∂y
(x, y) =

∑∞
i+j=0 jcijx

iyj−1

be respectively the formal Taylor series of f and
∂f

∂y
. It follows from the

Newton- Puiseux algorithm [W] that fEs(1, cEs) = 0 and f̂E′s(1, c
′
E′s

) = 0,

where fEs(x, y) =
∑

(i,j)∈Es cijx
iyj and f̂E′s(x, y) =

∑
(i,j−1)∈E′s

jcijx
iyj−1.

It is clear that, f̂E′s(x, y) =
∂fEs
∂y

. Thus, we have

(3.10) fEs(1, cEs) = 0

and

(3.11)
∂fEs
∂y

(1, cE′s) = 0
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Since Es belongs to the line joining the points (As−1, Bs−1) and (As, Bs)

with
As − As−1
Bs−1 −Bs

= γEs , fEs(x, y) can be written in the form

fEs(x, y) = xAs−1yBs
l∏

k=1

(y − ckxγEs )αk

where c1, ..., cl are non-zero roots of fEs(1, y) = 0.

By contradiction, assume that cEs = cE′s , then it follows from (3.10) and

(3.11) that cEs is a nonzero root of fEs(1, y) = 0 of multiplicity greater than

1. As consequence, the system
∂fEs
∂x

and
∂fEs
∂y

has (1, cEs) as a solution in

(R\0)2, which is possible, since f is non-degenerate. The claim is proved.

Now,

|f(x, Y ′(x))| =
∏

Y ∈PC(f)

(Y ′ − Y (x)) � |x|
∑
v(|Y ′−Y |),

By Claim 3.4

(3.12) v(|Y ′(x)− Y (x)|) =

{
v(|Y (x)|) if v(|Y (x)|) < γEs
γEs if v(|Y (x)|) ≥ γEs

Putting

θY ′ :=
∑

Y ∈PC(f)

v(|Y ′ − Y )|)

we get

(3.13) θY ′ =
s−1∑
i=1

nEiγEi + (
k∑
i=s

nEi)γEs

It follows from Lemma 3.2 and Claim 3.4 that dist((x, Y ′(x)), V ) � xδY ′ ,

where

(3.14) δY ′ =

{
1 if PR(f) 6= ∅
min{γEs , γR(f)}

with

(3.15) γR(f) := max{v(|Y |)|Y ∈ PR(f)}

Therefore, on the branch (x, Y (x)) we have

|f(x, Y ′(x))| ≥ c.dist((x, Y ′(x)), V )
θY ′
δY ′

for some c > 0, where the number θ(Y ′) and δ(Y ′) are determined by (3.8)

- (3.9) or (3.14) -(3.15). Thus, the exponent L+(f ;V1), as well as L+(f̂ ;V1),

can be computed via the set {γE1 , ..., γEk , d}. The proof of Theorem 2.11

follows now from Theorem 2.8.
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