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Abstract

In this paper, we follow Kuroiwa’s set approach in set optimization, which
proposes to compare values of a set-valued objective map F respect to var-
ious set order relations. We introduce a Hausdorff-type distance relative to
an ordering cone between two sets in a Banach space and use it to define
a directional derivative for F . We show that the distance has nice proper-
ties regarding set order relations and the directional derivative enjoys most
properties of the one of a scalar- single-valued function. These properties
allow us to derive necessary and/or sufficient conditions for various types of
maximizers and minimizers of F .
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1 Introduction

Optimization problems with set-valued data arose originally inside of the theory of
vector optimization and have recently been attracted more attention due to their
important real-world applications in socio-economics, see [4, 18], and a survey given
in [27]. An objective map in a set optimization problem (SP) is a set-valued map
F : Ω ⊆ X ⇒ Y , where Ω is a nonempty set and X, Y are vector spaces. There are
several approaches to define a solution of (SP) (or a minimizer and a maximizer of
F over Ω) but we restrict ourselves here mainly to the classical vector approach and
the Kuroiwa’s set approach. Let a convex cone K ⊂ Y be given. Then K induces a
partial order in Y and various set order relations in 2Y . In the first approach, one
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compares elements of the image F (Ω) := ∪x∈ΩF (x) w.r.t. the partial order in Y (see
e.g. [25]) while in the second approach, one compares the sets F (x) w.r.t. set order
relations in 2Y (see e.g. [22]). We refer an interested reader to [14, 20] for surveys on
set order relations and set-valued optimization problems whose solutions are defined
by set criteria and to [19] for references of works where set order relations have been
used outside the optimization community.

In optimization theory, the concepts of derivative and directional derivative of
a function is an useful tool for deriving first-order necessary and/or sufficient opti-
mality conditions.

In recent years, in connection with the numerous research in set optimization,
much attention has been paid to extension of these concepts to set-valued maps.
In the very first works, one takes a point in the graph of the set-valued map and
assigns to it another set-valued map whose graph is some kind of tangent cone
to the graph of the original one at the point in question, see the book [3]. Note
that coderivative of a set-valued map is defined in a way of the same nature with
a tangent cone being replaced by a normal cone, see [3, 26] for various types of
derivatives and coderivatives. Later on, different concepts of directional derivative
have been introduced depending on types of set differences involved (see [5] for
a survey on possible set differences) and on types of order set relations using for
defining optimal solutions. The first concept in this direction has been proposed by
Kuroiwa in [23] where the lower less set relation and a special embedding technique
have been involved. Hoheisel, Kanzow, Mordukhovich and Phan [17] use translation
(the difference of a set and a point) instead of the difference of sets consisting of more
than one point. Hamel-Schrage’s approach in [13] is based on a residuation operation
and on the solution concept of an infimizer. Pilecka [28] exploits the inf-residuation,
a concept already used in [6, 12, 13], for a difference of sets in combination with
the lower set less order relation. Jahn [19] develops a directional derivative from
a computational point of view, and interprets it as a limit of difference quotients,
which is adapted from Demyanov’s difference (see [7, 29]) and is based on the concept
of supporting points, in combination with a set less order relation. Recently, Dempe
and Pilecka [8] use a slightly modified Demyanov difference to introduce a sort
of directional derivative for a set-valued map and derive optimality conditions for
efficient solutions defined by the set less order relation.

In this paper we introduce a Hausdorff-type distance relative to the ordering cone
between two sets, which has nice properties regarding set order relations, and define
a directional derivative as a limit of quotients of algebraic set difference. It turns out
that the directional derivative enjoys most properties of the one of a scalar- single-
valued function and can be used to derive necessary and/or sufficient conditions for
various minimizers and maximizers of F some types of which are considered here in
the first time.

The paper is organized as follows. Section 2 contains preliminaries. Next two
sections are devoted to a Hausdorff-type distance and to a directional derivative,
respectively. The last section contains conditions for several minimizers and maxi-
mizers of a set-valued map.
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2 Notations and some auxiliary results

Throughout the paper, let X and Y be Banach spaces. Denote by X∗ and Y ∗

the duals of X and Y , respectively, and by 〈·, ·〉 the pairing between a space and
its dual. By B we denote the unit ball in a normed space. For nonempty subsets
A, B in Y , we define the algebraic sum (also called Hausdorff sum or Minkowski
addition) and algebraic difference as follow A + B := {a + b | a ∈ A, b ∈ B} and
A − B := {a − b | a ∈ A, b ∈ B}. For a nonempty set A ⊂ Y and t ∈ R, let
tA := {ta | a ∈ A}. The distance from a point u to a nonempty set U in the spaces
X and Y are denoted by d(u, U) or dU(u).

Let K ⊂ Y be a pointed closed convex cone (pointedness means K∩(−K) = {0})
and let K∗ := {y∗ ∈ Y ∗ | 〈y∗, k〉 ≥ 0, ∀ k ∈ K}. The cone K induces a partial order
in Y : for any y1, y2 ∈ Y

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K.
For the sake of simplicity, we will omit the subscript K in the notation ≤K .

Definition 2.1 ([25]). Let A ⊂ Y be a nonempty set and a ∈ A. We say that (i) A
is K-bounded if there exists a bounded nonempty set M ⊂ Y such that A ⊂M +K;
(ii) A is K-compact if any its cover of the form {Uα+K | α ∈ I, Uα are open} admits
a finite subcover;(iii) a is a Pareto nondominated/efficient point of A (denoted by
a ∈ Min(A)) if a′ 6≤ a for all a′ ∈ A, a′ 6= a.

Proposition 2.1 ([9, 25]). Let A ⊂ Y be a nonempty K-compact set. Then

(i) Min(A) 6= ∅ and A ⊆ Min(A) +K (the nondomination property).

(ii) A+K = Min(A) +K and Min(A) is K-compact.

(iii) If B ⊂ Y also is a K-compact nonempty set and A + K = B + K, then
Min(A) = Min(B).

There are numerous set order relations, see e.g. [20, 22] but we will mainly use
the following ones.

Definition 2.2. Let A and B be nonempty subsets of Y .

(i) The l-type less order relation 4l is defined by

A 4l B :⇐⇒
(
∀b ∈ B ∃ a ∈ A : a ≤ b

)
⇐⇒ B ⊆ A+K.

(ii) The u-type less order relation 4u is defined by

A 4u B :⇐⇒
(
∀a ∈ A ∃ b ∈ B : a ≤ b

)
⇐⇒ A ⊆ B −K.

(iii) The set less order relation 4s is defined by

A 4s B :⇐⇒ A 4l B and A 4u B.

(iv) The possibly less order relation 4p is defined by

A 4p B :⇐⇒
(
∃a ∈ A ∃ b ∈ B : a ≤ b

)
⇐⇒ (A−B) ∩ (−K) 6= ∅.
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(v) The certainly less order relation 4c is defined by

A 4c B :⇐⇒ (A = B) or (A 6= B, ∀a ∈ A ∀b ∈ B : a ≤ b)⇐⇒ A−B ⊆ −K.

The set order relations �l, �u and �s have been introduced in [22]. For the set
order relations �p and �c, see [20]. Alongside with the set order relations, we will
consider strict set order relations in the case K has a nonempty interior.

Definition 2.3. Assume that intK 6= ∅. Let A and B be nonempty subsets of Y .

(i) A ≺l B :⇐⇒ B ⊆ A+ intK.

(ii) A ≺u B :⇐⇒ A ⊆ B − intK.

(iii) A ≺p B :⇐⇒ (A−B) ∩ (−intK) 6= ∅.

(iv) A ≺c B :⇐⇒ (A−B) ⊆ (−intK).

It is immediate from the definitions the following implications.

Lemma 2.1. Let A and B be nonempty subsets of Y . Then

(i) A �c B implies A �p B, and A �c B implies A �l B and A �u B.

(ii) A �l B implies A �p B, and A �u B implies A �p B.

Assume that intK 6= ∅. The assertions (i)-(ii) remain true if the involved set order
relations are replaced by the corresponding strict ones.

Throughout the paper, F : X ⇒ Y is a set-valued map. The domain and the
graph of F are the sets domF := {x ∈ X | F (x) 6= ∅} and grF := {(x, y) ∈ X × Y |
y ∈ F (x)}, respectively. Recall that F is closed (convex) [2] if its graph is closed
(convex, respectively).

3 A Hausdorff-type distance

The Hiriart-Urruty signed distance function ∆U associated to a nonempty set U ⊂ Y
(see [15]) in the special case U = −K plays an important role in our definition of a
distance between two sets. Recall that

∆−K(y) := d−K(y)− dY \(−K)(y) =

{
−dY \(−K)(y) if y ∈ −K
d−K(y) otherwise.

Some useful properties of ∆−K are collected in the following proposition.

Proposition 3.1. The function ∆−K has the properties:

(i) It is Lipschitz of rank 1 on Y , convex and positively homogenous.

(ii) It satisfies the triangle inequality: ∆−K(y1 +y2) ≤ ∆−K(y1)+∆−K(y2) for any
y1, y2 ∈ Y .

(iii) It is K-monotone: ∆−K(y1) ≤ ∆−K(y2) for any y1, y2 ∈ Y, y1 ≤ y2.
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(iv) For any y ∈ Y we have ∂∆−K(y) ⊂ K∗ ∩ B. Here, ∂ stands for the subdiffer-
ential of convex analysis.

Proof. The properties (i)-(iii) are known, see e.g. [30], and the last one can be
derived from [15, Prop. 2 and 5].

Below are some illustrating examples.

Example 3.1. (i) If K = {0}, then ∆−K(y) = ‖y‖ for all y ∈ Y .

(ii) If Y = Rn and K = Rn
+, then for all y = (yi) ∈ Rn

∆−Rn
+

(y) =

{
−mini |yi| if y ∈ −Rn

+√∑n
i=1[yi]2+ otherwise.

(iii) If Y = R and K = R+, then ∆−K(y) = y and ∂∆−K(y) = 1 for all y ∈ R.

Let A,B be nonempty subsets of Y . Denote

hK(A,B) := sup
b∈B

inf
a∈A

∆−K(a− b).

Lemma 3.1. hK(A,B) > −∞ when A is K-bounded, hK(A,B) < +∞ when B is
K-bounded and hK(A,B) is finite when both A and B are K-bounded.

Proof. Consider the case A is K-bounded. Then A ⊂ M + K for some nonempty
bounded set M ⊂ Y . Fix b ∈ B. For any a ∈ A, there exist m ∈ M and k ∈ K
such that a = m + k. Then m ≤ a. Since the function ∆−K is K-monotone 1-
Lipschitz, we have ∆−K(a − b) ≥ ∆−K(m − b) ≥ −‖m − b‖ ≥ −‖m‖ − ‖b‖. Then
hK(A,B) ≥ − supm∈M ‖m‖ − ‖b‖ > −∞. The remaining cases can be checked
similarly.

Now we can define a special distance in the family of nonempty K-bounded sets.

Definition 3.1. Let A,B be nonempty K-bounded subsets of Y . A Hausdorff-type
distance relative to the ordering cone K between A and B, denoted by dK(A,B), is
defined as follows:

dK(A,B) := max{hK(A,B), hK(B,A)}.

Remark 3.1. The name “Hausdorff-type distance” is originated from the fact that
this distance coincides with the classical Hausdorff distance given by

d(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

when K = {0} because in this case ∆−K(y) = ‖y‖ for all y ∈ Y .

In what follows, when no confuse occurs, we abbreviate dK(A,B) and hK(A,B)
to d(A,B) and h(A,B), respectively.

As the reader will see, the functions h and d have nice properties. Let us consider
first the functions h.
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Lemma 3.2. Let A and A′ be nonempty subsets of Y .

(i) If A′ is K-compact, then for any a ∈ Y the function ∆−K(. − a) attains its
finite infimum on A′.

(ii) If A′ is K-bounded and A is K-compact, then the function infa′∈A′ ∆−K(a′− .)
attains its finite maximum on A.

(iii) If A and A′ are K-compact, then

h(A,A′) = max
a′∈A′

min
a∈A

∆−K(a− a′).

Proof. (i) Suppose that A′ is K-compact, then it is K-bounded [25]. Let a ∈ Y be
given. One can see from the proof of Lemma 3.1 that t := infa′∈A′ ∆−K(a′−a) > −∞.
Suppose to the contrary that ∆−K(.−a) does not attain its infimum on A′. Then for
any a′ ∈ A′ there exists a positive scalar ε(a′) depending on a′ such that ∆−K(a′ −
a) > t+ε(a′). For each a′ ∈ A′, let Ua′ := {v ∈ Y |∆−K(v−a) > t+ε(a′)}. Note that
since 0 ∈ K, we have Ua′ ⊂ Ua′+K and since ∆−K(v+k−a) ≥ ∆−K(v−a) > t+ε(a′)
for any v ∈ Ua′ and k ∈ K, we get Ua′+K ⊂ Ua′ . Therefore, Ua′ = Ua′+K. Further,
since the function ∆−K is Lipschitz, the sets Ua′ are open and since a′ ∈ Ua′ we have
A′ ⊂ ∪a′∈A′Ua′ . The K-compactness of A′ implies the existence of finite vectors
a′1, . . . , a

′
i such that a′j ∈ A′ for all j = 1, . . . , i and A′ ⊂ ∪ij=1(Ua′j + K). Hence,

A′ ⊂ ∪ij=1Ua′j and we get t = infa′∈A′ ∆−K(a′− a) > t+ inf{ε(a′j) | j = 1, . . . , i} > t,
a contradiction.

(ii) Exploiting the properties of the function ∆−K stated in Proposition 3.1, one
can easily check that the function infa′∈A′ ∆−K(a′ − .) is 1-Lipschitz and monotone
in the following sense

a2 ≤K a1 ⇐⇒ inf
a′∈A′

∆−K(a′ − a1) ≤ inf
a′∈A′

∆−K(a′ − a2).

Next, according to Lemma 3.1, for any a ∈ A we have infa′∈A′ ∆−K(a′−a) > −∞ and
t := h(A′, A) < +∞. Suppose to the contrary that the function infa′∈A′ ∆−K(a′− .)
does not attain its maximum on A. Fix a ∈ A. Then there exists a positive scalar
ε(a) depending on a such that infa′∈A′ ∆−K(a′ − a) < t − ε(a). Set Ua := {v ∈
Y | infa′∈A′ ∆−K(a′ − v) < t − ε(a)}. One can check that Ua = Ua + K. By the
same arguments as in the proof of (i) and taking into account the mentioned above
properties of the function infa′∈A′ ∆−K(a′− .), we can find finite numbers of vectors
a1, . . . , ai such that aj ∈ A for all j = 1, . . . , i and A ⊂ ∪ij=1(Uaj + K) = ∪ij=1Uaj .
Then we obtain that t = supa∈A infa′∈A′ ∆−K(a′−a) < t− inf{ε(aj) | j = 1, . . . , i} <
t, a contradiction.

(iii) The assertion follows from the assertions (i)-(ii).

The following characterization of the set order relation �l in term of the function
h is an important tool in our arguments.

Lemma 3.3. Let A and A′ be nonempty subsets of Y . Assume that A′ is K-bounded.
Then

A′ �l A⇐⇒ h(A′, A) ≤ 0

(the implication “⇐=” holds under an additional condition that A′ is K-compact).
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Proof. Suppose that A′ �l A or A ⊂ A′ + K. For any a ∈ A there is a′0 ∈ A′

such that a′0 − a ∈ −K and hence, ∆−K(a′0 − a) ≤ 0. We get infa′∈A ∆−K(a′ − a) ≤
∆−K(a′0 − a) ≤ 0. As a ∈ A is arbitrarily chosen, we get h(A′, A) ≤ 0.

Next, suppose that A is K-compact and h(A′, A) ≤ 0. Suppose to the contrary
that A′ 6�l A or A 6⊆ A′+K. Then there exists a ∈ A such that a /∈ A′+K. For all
a′ ∈ A′ one has a′ − a 6∈ −K and hence, ∆−K(a′ − a) > 0. Since A′ is K-compact,
Lemma 3.2 (i) implies that ∆−K(. − a) attains its minimum on A′ and, therefore,
mina′∈A′ ∆−K(a′ − a) > 0 and we obtain h(A′, A) > 0, a contradiction.

Lemma 3.4. Assume that A, A′ are nonempty subsets of Y and A′ is K-bounded.
Then

(i) h(A′, A) = h(A′ +K,A+K).

(ii) h(A,A) = 0 if intK = ∅ or Min(A) 6= ∅ (for instance, if A is K-compact).

Proof. (i) Observe that since A ⊂ A + K, we have h(A′, A) ≤ h(A′, A + K).
Further, let a ∈ A, k ∈ K and a′ ∈ A′ be arbitrary vectors. The K-monotonicity of
the function ∆−K implies ∆−K(a′− (a+ k)) = ∆−K(a′− a− k)) ≤ ∆−K(a′− a) and
therefore, h(A′, A) ≥ h(A′, A + K). Thus, h(A′, A) = h(A′, A + K). Applying this
equality to the set A′+K in the place of A′, we get h(A′+K,A) = h(A′+K,A+K).
By a similar argument we can show that h(A′, A) = h(A′ + K,A). The desired
equality follows.

(ii) If intK = ∅, then ∆−K(y) ≥ 0 for all y ∈ Y and hence, h(A,A) ≥ 0. If
Min(A) 6= ∅ (which happens, for instance, when A is K-compact, see Proposition
2.1), then for ā ∈ Min(A) one has a 6≤K ā and ∆−K(a− ā) ≥ 0 for all a ∈ A, which
gives h(A,A) ≥ 0. Finally, Lemma 3.3 gives h(A,A) ≤ 0. Hence, h(A,A) = 0.

Lemma 3.5. Assume that A, B and C are nonempty K-bounded subsets of Y .
Then the triangle inequality holds:

h(A,B) ≤ h(A,C) + h(C,B).

Proof. Recall that the triangle inequality of the function ∆−K yields

∆−K(a− b) ≤ ∆−K(a− c) + ∆−K(c− b),∀a ∈ A,∀b ∈ B, ∀c ∈ C

and the desired inequality follows from the definition of h.

We list useful properties of the function d in the following.

Proposition 3.2. Assume that A and B are nonempty K-bounded sets. Then

(i) d(A,B) = d(B,A).

(ii) d(A,B) = d(A+K,B +K).

(iii) d(λA, λB) = λd(A,B) for any λ ≥ 0.
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(iv) The triangle inequality holds: for any nonempty K-bounded set C, we have

d(A,B) ≤ d(A,C) + d(C,B).

(v) Assume that A and B are K-compact. Then d(A,B) ≥ 0 and d(A,B) = 0 iff
A+K = B +K.

Proof. Note that the assertion (i) follows from the definition of d, the assertion (ii)
follows from Lemma 3.4 and the assertion (iii) is immediate from the definitions of
h, d and Proposition 3.1 (i). Further, from Lemma 3.5 we get

h(A,B) ≤ h(A,C) + h(C,B)

≤ max{h(A,C), h(C,A)}+ max{h(C,B), h(B,C)}
= d(A,C) + d(B,C).

Similarly, we have h(B,A) ≤ d(A,C) + d(B,C). The assertion (iv) follows. It
remains to prove the last assertion. If at least one relation, say A 6�l B holds, then
Lemma 3.3 yields h(A,B) > 0 and therefore, d(A,B) > 0. Suppose that both the
relations A �l B and B �l A hold. Then B + K ⊆ A + K ⊆ B + K and hence,
A+K = B+K. Lemma 3.4 implies h(A,B) = h(A+K,B+K) = h(A+K,A+K) =
0. Similarly, we have h(B,A) = 0. Therefore, d(A,B) = 0.

It is immediate from Propositions 2.1 (ii) and 3.2 (ii) the following useful result.

Corollary 3.1. Let A and B be nonempty K-compact subsets of Y . Then

d(A,B) = d(Min(A),Min(B)).

It turns out that the function d has useful properties regarding the limit oper-
ation. Firstly, we show that the limit set is “unique” w.r.t cone extensions. Recall
that for a set A ⊂ Y , its cone extension is the set A+K.

Proposition 3.3. Let At (t ∈ R+ sufficiently small), A and B be nonempty K-
compact subsets of Y . Suppose that

lim
t↓0+

d(At, A) = 0.

Then
lim
t→0

d(At, B) = 0⇐⇒ A+K = B +K.

Proof. Observe that by Proposition 3.2 (iv) and (v) we have

0 ≤ d(A,B) ≤ d(A,At) + d(At, B)

and
0 ≤ d(At, B) ≤ d(At, A) + d(A,B),

which imply that limt↓0+ d(At, B) = 0 if and only if d(A,B) = 0. Finally, recall that
in view of Proposition 3.2 (v), d(A,B) = 0 if and only if A+K = B +K.

Furthermore, the limit operation reserves the order relations �l and �p. This
property is very useful in deriving optimality conditions.
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Proposition 3.4. Assume that At (t ∈ R+), A and B are nonempty K-compact
subsets of Y and that

lim
t↓0+

d(At, A) = 0.

Then the following assertions hold:

(i) If At �l B (B �l At), then A �l B (resp., B �l A).

(ii) If At �p B and B is compact, then A �p B.

Proof. (i) Since At �l B, Lemma 3.3 gives h(At, B) ≤ 0. Further, Lemma 3.5 yields

h(A,B) ≤ h(A,At) + h(At, B) ≤ d(A,At) + h(At, B).

Since limt→0 d(At, A) = 0 and h(At, B) ≤ 0, we obtain h(A,B) ≤ 0 and Lemma
3.3 gives A �l B. Similarly, if B �l At then h(B,At) ≤ 0 and we deduce from the
relations lim d(At, A) = 0 and

h(B,A) ≤ h(B,At) + h(At, A) ≤ h(B,At) + d(At, A)

that h(B,A) ≤ 0. Therefore, B �l A.
(ii) Let ti := 1/i and Ai := Ati for i = 1, 2, ... Without loss of generality, we may

assume that Ai �p B for all i. For each i = 1, 2, ..., let bi ∈ B ∩ (Ai +K) be given.
Then Ai �l {bi} and Lemma 3.3 implies h(Ai, {bi}) ≤ 0. Since B is compact, we
may assume that bi converges to b ∈ B. Further, Lemma 3.5 and Proposition 3.1
(i) give

h(A, {b}) ≤ h(A,Ai) + h(Ai, {bi}) + h({bi}, {b})
≤ d(A,Ai) + h(Ai, {bi}) + ‖bi − b‖.

Since limi→∞ d(A,Ai) = 0, h(Ai, {bi}) ≤ 0 and limi→∞ ‖bi − b‖ = 0, it follows that
h(A, {b}) ≤ 0. Lemma 3.3 implies A �l {b}. Then {b} ⊂ A+K or (A−B)∩(−K) 6=
∅. Hence, A �p B.

Next, we use the Hausdorff-type distance to characterize the concept of a K-
Lipschitz continuous set-valued map used in set optimization (see e.g. [1]).

Proposition 3.5. Assume that F has K-compact values. Then F is K-Lipschitz
continuous with the constant L near a point x ∈ domF in the sense that there is a
neighborhood U of x such that

F (x1) ⊆ F (x2) + LB‖x1 − x2‖+K, ∀x1, x2 ∈ U ∩ domF (1)

if and only if

d(F (x1), F (x2)) ≤ η‖x1 − x2‖, ∀x1, x2 ∈ U ∩ domF, (2)

where η := ρL and ρ := sup{∆−K(e) | e ∈ B}.

Proof. Note that since K is closed, we have ρ > 0.
The “ if” part: Assume that (2) holds. It suffices to show that (1) holds for

L̂ = η/ρ̄ for any ρ̄ satisfying 0 < ρ̄ < ρ. Assume to the contrary that F (x1) 6⊆
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F (x2)+ L̂‖x1−x2‖B+K for some x1, x2 ∈ U ∩domF . Then there exists v1 ∈ F (x1)
such that v1 6∈ F (x2) + L̂‖x1−x2‖B+K. Let ρ′ be a constant such that ρ̄ < ρ′ < ρ.
We can find e ∈ B such that ρ′ ≤ ∆−K(e). Then for any v2 ∈ F (x2) we have
v2 − v1 − L̂‖x1 − x2‖e /∈ −K. Proposition 3.1 gives

∆−K(v2 − v1)−∆−K(L̂‖x1 − x2‖e) ≥ ∆−K(v2 − v1 − L̂‖x1 − x2‖e) > 0.

Hence,
∆−K(v2 − v1) > L̂‖x1 − x2‖∆−K(e) ≥ ηρ′/ρ̄‖x1 − x2‖.

Therefore, we get

d(F (x1), F (x2)) ≥ sup
v1∈F (x1)

inf
v2∈F (x2)

∆−K(v2 − v1) ≥ ηρ′/ρ̄‖x1 − x2‖ > η‖x1 − x2‖,

which is a contradiction to (2). Thus (1) holds for L̂ = η/ρ̄.
The “only if” part: Assume that (1) holds. For any v1 ∈ F (x1) there exist

v2 ∈ F (x2), e ∈ B and k ∈ K such that v1 = v2 − L‖x1 − x2‖e + k or v2 − v1 =
L‖x1 − x2‖e − k. Proposition 3.1 gives ∆−K(v2 − v1) ≤ L‖x1 − x2‖∆−K(e) or
∆−K(v2 − v1) ≤ ρL‖x1 − x2‖. Therefore, we get

h(F (x2), F (x1)) = sup
v1∈F (x1)

inf
v2∈F (x2)

∆−K(v2 − v1) ≤ ρL‖x1 − x2‖.

Similarly, we have h(F (x1), F (x2)) ≤ ρL‖x1 − x2‖. Hence, (2) holds with η = ρL.

Proposition 3.2 implies that d has all properties of a metric. In fact, this distance
induces a metric on the family

V := {[A] | A ⊂ Y is K − compact},

where for any nonempty K-compact set A ⊂ Y ,

[A] := {A′ ⊂ Y | A′ is K − compact and A′ +K = A+K}.

Observe that V is a semi-linear space with the addition and multiplication operations
given by [A] + [B] := [A + B] and t[A] := [tA] for any pair [A], [B] ∈ V and any
nonnegative scalar t. We define a function dV : V × V → R by

dV([A], [B]) := d(A,B).

By Proposition 3.2, dV is well-defined and it induces a metric on V . Proposition
3.3 shows that the following limit operation in V is well-defined: For [Ai] ∈ V
(i = 1, 2, ...) and [A] ∈ V , we write

lim
i→+∞

[Ai] = [A] if and only if lim
i→+∞

dV([Ai], [A]) = 0.

Proposition 3.5 states that the set-valued map F with K-compact values is K-
Liptschitz continuous at x̄ if and only if the single-valued map [F ] : domF → V
defined by [F ](x) := [F (x)] is Lipschitz continuous at this point, namely,

dV([F ](x1), [F ](x2)) ≤ η‖x1 − x2‖, ∀x1, x2 ∈ U ∩ domF.
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4 A concept of directional derivative

In this section, we introduce a new concept of directional derivative for the set-valued
map F and study its properties.

From now on, we assume that F has compact values. Recall that d ∈ Y is an
admissible direction of F at x ∈ domF if x+ td ∈ domF for t > 0 sufficiently small.

Definition 4.1. Let x ∈ domF and d be an admissible direction of F at x. Denote

W (x, d) := {A ⊂ Y | A is K−compact and lim
t↓0+

d(
F (x+ td)− F (x)

t
, A) = 0}.

The directional derivative DF (x, d) of F at x in the direction d is defined by

DF (x, d) :=

{
Min(A) for some A ∈ W (x, d) if W (x, d) 6= ∅
∅ otherwise

We say that F has the directional derivative DF (x, d) at x in the direction d if
DF (x, d) 6= ∅.

Proposition 4.1. Assume that W (x, d) 6= ∅.

(i) The directional derivative is well-defined in the sense that DF (x, d) is nonempty
and it does not depend on the choice of A ∈ W (x, d). Moreover, we have

lim
t↓0+

d(
F (x+ td)− F (x)

t
,DF (x, d)) = 0.

(ii) Let B ⊂ Y be a nonempty K-compact set. Then DF (x, d) = B if and only if

lim
t↓0+

d(
F (x+ td)− F (x)

t
, B) = 0 and Min(B) = B.

Proof. (i) The non-emptiness of DF (x, d) follows from the K-compactness of the
set A and Proposition 2.1. Further, let be given a pair A1, A2 ∈ W (x, d). By
Proposition 3.3, we have A1 + K = A2 + K and by Proposition 2.1 (iii) we have
Min(A1) = Min(A2). Hence, DF (x, d) = Min(A1) = Min(A2), which means that
the directional derivative is well-defined. Next, assume that DF (x, d) = Min(A) for
some A ∈ W (x, d). By Proposition 2.1 (ii), DF (x, d) is K-compact and DF (x, d) +
K = Min(A) +K = A+K. The desired equality follows from Proposition 3.3.

(ii) The ”if” part follows from the definition and the ”only if” part follows from
the assertion (i) and the fact that B = DF (x, d) = Min(A) for some A ∈ W (x, d)
and Min(Min(A)) = Min(A).

We provide some illustrating examples.

Example 4.1. Let X = R, Y = R2 and K = R2
+.

(i) Let F (x) := {(x, 0), (0, x)}. One hasDF (0, 1) = {(1, 0), (0, 1)} andDF (0,−1) =
{(−1, 0), (0,−1)}.
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(ii) Let F (x) := {(|x|, 0), (0, |x|)}. Then DF (0, 1) = DF (0,−1) = {(1, 0), (0, 1)}.

(iii) Let

F (x) :=

{
{(x, 1), (x, 2)} if x 6= 0
{(0, 0), (0, 1)} if x = 0

We will calculate DF (x, d) at x = 0.

Let d = 1 and t > 0. Then F (x + td) = F (t) = {(t, 1), (t, 2)}, F (t)− F (0) =
{(t, 1), (t, 2), (t, 0)} and

At := (F (t)− F (0))/t = {(1, 1/t), (1, 2/t), (1, 0)}.

It is clear that Min(At) = {(1, 0)}. Set A := Min(At). Corollary 3.1 implies
that d(At, A) = d(Min(At),Min(At)) = 0. Therefore, DF (0, 1) = {(1, 0)}.
Let d = −1 and t > 0. Then F (x + td) = F (−t) = {(−t, 1), (−t, 2)}, F (t) −
F (0) = {(−t, 1), (−t, 2), (−t, 0)} and

At := (F (t)− F (0))/t = {(−1, 1/t), (−1, 2/t), (−1, 0)}.

Then Min(At) = {(−1, 0)}. Set A := Min(At). Corollary 3.1 implies that
d(At, A) = d(Min(At),Min(At)) = 0. Therefore, DF (0,−1) = {(−1, 0)}.

(iv) Let

F (x) :=


{(2x2, 1), (3x, 2)} if x > 0
{(0, 0), (0, 1)} if x = 0
{(x4, 1), (−x3, 2), } if x < 0

We will calculate DF (x, d) at x = 0.

Let d = 1 and t > 0. Then F (x+td) = F (t) = {(2t2, 1), (3t, 2)}, F (t)−F (0) =
{(2t2, 1), (3t, 2), (2t2, 0), (3t, 1)} and

At := (F (t)− F (0))/t = {(2t, 1/t), (3, 2/t), (2t, 0), (3, 1/t)}.

It is clear that Min(At) = {(2t, 0)} for t < 1. Set A := {(0, 0)}. Corollary 3.1
implies that d(At, A) = d(Min(At), A) = 2t. Therefore, DF (0, 1) = {(0, 0)}.
Let d = −1 and t > 0. Then F (x+ td) = F (−t) = {(t4, 1), (−t3, 2)}, F (−t)−
F (0) = {(t4, 1), (t3, 2), (t4, 0), (t3, 1)} and

At := (F (t)− F (0))/t = {(t3, 1/t), (t2, 2/t), (t3, 0), (t2, 1/t)}.

It is clear that Min(At) = {(t3, 0)} for t < 1. Set A := {(0, 0)}. Corollary 3.1
implies that d(At, A) = d(Min(At), A) = t3. Therefore, DF (0,−1) = {(0, 0)}.

(v) Let F : [0,+∞[⇒ R2 be defined by:

F (x) := {(u, v) | u2 + v2 ≤ x2}.

Let x = 0 and d = 1. We claim that

DF (0, 1) = {(u, v) ∈ −R2
+ | u2 + v2 = 1}
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Let t > 0. We have F (x+ td) = F (t) = {(u, v) | u2 + v2 ≤ t2}, F (t)− F (0) =
F (t) and

At := (F (t)− F (0))/t = {(u/t, v/t) | u2 + v2 ≤ t2} = {(u, v)) | u2 + v2 ≤ 1}.

Then Min(At) = {(u, v) ∈ −R2
+ | u2 + v2 = 1}. Set A := Min(At). Corollary

3.1 implies that d(At, A) = d(Min(At),Min(At)) = 0. Therefore, DF (0, 1) =
{(u, v) ∈ −R2

+ | u2 + v2 = 1}.

We show that the directional derivative given in Definition 4.1 enjoys most prop-
erties of the one of a scalar- single-valued function and it is closely related to the
coderivative of the considered set-valued map F .

Proposition 4.2. Assume that d is an admissible direction of F at x and DF (x, d) 6=
∅. Then for any scalar λ > 0, we have DF (x, λd) = λDF (x, d) and D(λF )(x, d) =
λDF (x, d).

Proof. By Proposition 3.2 we have

d(
F (x+ t

λ
λd)− F (x)
t
λ

, λDF (x, d)) = λd(
F (x+ td)− F (x)

t
,DF (x, d)).

Therefore, setting t′ = t
λ
, we get

lim
t′→0+

d(
F (x+ t′λd)− F (x)

t′
, λDF (x, d)) = lim

t→0+
d(
F (x+ td)− F (x)

t
λ

, λDF (x, d))

= λ lim
t→0+

d(
F (x+ td)− F (x)

t
,DF (x, d)) = 0.

To prove the first equality, it suffices to apply Proposition 4.1 (ii): we haveDF (x, λd) =
λDF (x, d) because Min(λDF (x, d)) = λMin(DF (x, d)) = λDF (x, d). The second
equality can be proved by similar arguments.

Next, we establish a property of the directional derivative in the case F is Lip-
schitz in the sense of set-valued analysis, see e.g. [3].

Proposition 4.3. Let Y = Rn. Suppose that F is Lipschitz with the constant L on
the neighborhood U(x) of x ∈ int domF , i.e.

F (x1) ⊆ F (x2) + LB‖x1 − x2‖, ∀x1, x2 ∈ U(x)

and F has the directional derivative DF (x, d) at x in a direction d. Then

DF (x, d) �p L‖d‖B.

Proof. Let t > 0 be sufficiently small so that x+td ∈ U(x). The relation F (x+td) ⊂
F (x) + Lt‖d‖B implies that (At − L‖d‖B) ∩ (−K) 6= ∅ or At �p L‖d‖B, where
At := (F (x+ td)− F (x))/t. Since limt→0+ d(At, DF (x, d)) = 0, Proposition 3.4 (ii)
yields that DF (x, d) �p L‖d‖B.
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We consider now properties of the directional derivative in the convex case.
Recall that F is K-convex [21, 24] if its domain is convex and for any x1, x2 ∈ domF
and λ ∈ [0, 1] one has λF (x1)+(1−λ)F (x2) ⊆ F (λx1+(1−λ)x2)+K or, equivalently,

F (λx1 + (1− λ)x2) �l λF (x1) + (1− λ)F (x2).

One can check that if F is convex, then it is K-convex.
It is well-known that for a convex function f : X → R, the quotient f(x+td)−f(x)

t

is decreasing w.r.t. t and the inequality f ′(x, d) ≤ f(x+ d)− f(x) holds. We show
that similar results hold in the set-valued case.

Proposition 4.4. Suppose that F is K-convex, x ∈ domF and d is an admissible
direction.

(i) Let r > 0 be a scalar such that x + rd ∈ domF . Then for any scalar t such
that 0 < t ≤ r we have

F (x+ td)− F (x)

t
�l

F (x+ rd)− F (x)

r
. (3)

(ii) Assume that x + d ∈ domF and F has the directional derivative DF (x, d) at
x in the direction d. Then

DF (x, d) �l F (x+ d)− F (x). (4)

Proof. (i) Since x+ td = r−t
r
x+ t

r
(x+ rd), we get

F (x+ td) �l
r − t
r

F (x) +
t

r
F (x+ rd)

or
r − t
r

F (x) +
t

r
F (x+ rd) ⊆ F (x+ td) +K.

Then for any u ∈ F (x), v ∈ F (x+rd) there exist z ∈ F (x+ td) and k ∈ K such that
r−t
r
u+ t

r
v = z+k. It follows that v−u

r
= z−u

t
+ k

t
. Therefore, (F (x+ rd)−F (x))/r ⊆

(F (x+ td)− F (x))/t+K, which means that (3) is satisfied.
(ii) The relation (3) with r = 1 gives At �l F (x + d) − F (x) for any t ∈]0, 1[,

where At := (F (x + td) − F (x))/t. Since limt→0+ d(At, DF (x, d)) = 0, Proposition
3.4 (ii) implies (4).

Remark 4.1. Let us return to the map given in Example 4.1 (v). This map is R2
+-

convex and (4) is satisfied for DF (0, 1), namely, DF (0, 1) �l F (1) − F (0), where
F (1)− F (0) = {(u, v) | u2 + v2 ≤ 1} and DF (0, 1) = {(u, v) ∈ −R2

+ | u2 + v2 = 1}.

It is well-known the following relation between the directional derivative and the
subdifferential of a scalar- single-valued convex function, see e.g. [31, Prop. 3.2]
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Proposition 4.5. Assume that f : X 7→ R∪{+∞} is a lower semicontinuous (lsc)
convex function. If f has the directional derivative at x ∈ domf in any admissible
direction, then

sup
f(x+d)≤f(x)

−f ′(x, d)

‖d‖
= d(0, ∂f(x)).

We will extend the above result to the set-valued case. For this end, we need
some notions and auxiliary results. Let us recall the concept of coderivative of
convex analysis. Assume that F is convex and closed. The coderivative of convex
analysis D∗F (x, y) of F at (x, y) ∈ grF is defined as follows: for any y∗ ∈ Y ∗,

D∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x, y); grF )}

[2]. Here, for a nonempty closed convex set Ω in Y , the normal cone N(v̄; Ω) to Ω
at v̄ ∈ Ω is defined by N(v̄; Ω) = {v∗ ∈ Y ∗ | 〈v∗, v − v̄〉 ≤ 0 for all v ∈ Ω}.

Let z ∈ Y and x ∈ domF . Define a function gF,z : X → R and a map VF,z :
X ⇒ Y by

gF,z(x) := inf
y∈F (x)

∆−K(y − z)

and
VF,z(x) := {y ∈ F (x) | ∆−K(y − z) = gF,z(x)}.

Recall that F is upper semicontinuous (in brief, usc) at x̄ ∈ domF if for any
neighborhood V of F (x̄) there exists an neighborhood U of x̄ such that F (x) ⊂ V
for any x ∈ domF ∩ U . We say that F is usc if it is usc everywhere on its domain.
Recall that if F is compact-valued and usc, then it is closed.

Lemma 4.1. Let x ∈ domF .

(i) If F is compact-valued, then gF,z(x) > −∞ and VF,z(x) 6= ∅.

(ii) If F is compact-valued and usc on domF , then gF,z is lsc on domF .

(iii) If F is compact-valued and convex, then gF,z is convex and for any yx ∈ VF,z(x)
one has

∂gF,z(x) = ∪y∗∈∂∆−K(yx−z)D
∗F (x, yx)(y

∗). (5)

Proof. The first assertion follows from Lemma 3.2, the two others follow from [11,
Prop. 2.2] and [10, Prop. 3.3].

We will use the following notations. Fix x ∈ domF . We define a function g as
follows

g(u) := h(F (u), F (x)

for any u ∈ domF . By the definitions of h and gF,y we have

g(u) = sup
y∈F (x)

inf
v∈F (u)

∆−K(v − y) = sup
y∈F (x)

gF,y(u).

For a given u ∈ X, let

J(u) := {z ∈ F (x) | gF,z(u) = g(u)}.
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Proposition 4.6. Assume that domF = X, F is convex usc compact-valued on X
and F has directional derivative DF (x, .) at x ∈ X in any direction.

(i) Assume that the set Θ1(x) defined by

Θ1(x) := ∪y,z∈F (x),y∗∈∂∆−K(z−y)D
∗F (x, z)(y∗)

is nonempty. Then for any d ∈ X one has

supv∈DF (x,d)(−∆−K(v))

‖d‖
≤ d(0,Θ1(x)). (6)

(ii) Assume that K has a nonempty interior and d(0, ∂g(x)) > 0. Then

ξd(0, ∂g(x)) ≤ sup
F (x+d)�lF (x)

supv∈DF (x,d)(−∆−K(v))

‖d‖
. (7)

If in addition X = Rn and domF = Rn, then

∂g(x) = co{∪z∈J(x) ∪y∗∈∂∆−K(yx−z),yx∈VF,z
D∗F (x, yx)(y

∗)}. (8)

Here, ξ := sup{dY \K(ko) | k0 ∈ intK , d−K(k0) = 1} and “co” stands for the
convex hull of a set.

Proof. (i) Let x∗ ∈ Θ1(x). Then one can find y, z ∈ F (x) and y∗ ∈ ∂∆−K(z−y) such
that x∗ ∈ D∗F (x, z)(y∗). By the definition of the coderivative of convex anaalysis,
(x∗,−y∗) ∈ N((x, z); grF ). Therefore, the inequality 〈x∗, x′ − x〉 − 〈y∗, y′ − z〉 ≤ 0
holds for any (x′, y′) ∈ grF . Further, since y∗ ∈ ∂∆−K(z−y) and the signed distance
function satisfies the triangle inequality, we have

〈y∗, y′ − z〉 ≤ ∆−K(y′ − y)−∆−K(z − y) ≤ ∆−K((y′ − y)− (z − y)) = ∆−K(y′ − z).

Then one has the inequality

〈x∗, x′ − x〉 ≤ ∆−K(y′ − z), ∀(x, z), (x′, y′) ∈ grF. (9)

Recall that by Proposition 4.1 we have limt↓0+ d(At, DF (x, d)) = 0, where At :=
(F (x+td)−F (x))/t. Then for any ε > 0 there exists t > 0 such that d(At, DF (x, d)) ≤
2ε. Hence h(At, DF (x, d)) ≤ 2ε or

sup
v∈DF (x,d)

inf
u∈At

∆−K(u− v) ≤ 2ε.

For any v ∈ DF (x, d) there exist u ∈ At such that ∆−K(u− v) ≤ ε and hence

∆−K(u) ≤ ∆−K(v) + ε. (10)

Choose u1 ∈ F (x + td) and u2 ∈ F (x) such that u1 − u2 = tu. Applying the
inequality (9) to the pairs (x, u1) and (x + td, u2), we get 〈x∗, td〉 ≤ ∆−K(u2 − u1)
and taking (10) into account, we get

〈x∗, d〉 ≤ ∆−K(
u2 − u1

t
) = ∆−K(u) ≤ ∆−K(v) + ε.
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Since ε > 0 and v ∈ DF (x, d) are arbitrary, we obtain

〈x∗, d〉 ≤ inf
v∈DF (x,d)

∆−K(v).

It is clear that the following relations hold

supv∈DF (x,d)(−∆−K(v))

‖d‖
= −

infv∈DF (x,d) ∆−K(v)

‖d‖
≤ −〈x

∗, d〉
‖d‖

≤ ‖x∗‖.

As x∗ ∈ Θ1(x) is arbitrarily chosen, the inequality (6) follows.
(ii) Let us prove (7). Note that g(u) is finite on X by Lemma 3.2. Next,

Lemma 4.1 (iii) yields that gF,y is convex and so is g. Since d(0, ∂g(x)) > 0 by the
assumption, we have 0 /∈ ∂g(x). Then x is not a global minimizer of the convex
function g, which means that there exists at least a vector d ∈ X such that g(x+d) <
g(x) = 0 or h(F (x+ d), F (x)) < 0. Lemma 3.3 yields that F (x+ d) �l F (x). Thus,
the right-hand part in the inequality (7) is meaningful.

Let η be a scalar such that

0 < η < d(0, ∂g(x)) (11)

and let k0 ∈ intK be such that ∆−K(k0) = d−K(k0) = 1. Define a set-valued map
G : u ∈ X ⇒ G(u) := F (u) + η‖u − x‖k0. We claim that x is not a global �l-
minimizer of G. Suppose to the contrary that x is a �l minimizer of G. Observe that
G(x) = F (x). Then, for any u ∈ X, we have either G(u)+K = G(x)+K = F (x)+K
or G(u) 6�l G(x) = F (x). In the first case, Proposition 3.4 yields h(G(u), F (x)) =
h(F (x), F (x)) = 0. In the second case, Proposition 3.4 yields h(G(u), F (x)) > 0.
So, for any u we have h(G(u), F (x)) ≥ 0. Since G(u) = F (u) + η‖u− x‖k0, one can
easily derive from the triangle inequality property of the function ∆−K that

h(F (u), F (x)) + η‖x− u‖∆−K(k0) ≥ h(G(u), F (x)) ≥ 0.

Thus, x is a minimizer of the function g(.) + η‖x − .‖ and therefore, 0 ∈ ∂(g(.) +
η‖x− .‖)(x). The exact sum rule for subdifferential of convex analysis gives

0 ∈ ∂(g(.) + η‖x− .‖)(x) = ∂g(x) + η{x∗ ∈ X∗ | ‖x∗‖ ≤ 1}.

It follows that d(0, ∂g(x)) ≤ η, which is a contradiction to (11).
We have showed that x is not a global �l minimizer of G. Then there exists

d ∈ X such that G(x+ d) �l G(x) = F (x) or

F (x+ d) + η‖d‖k0 �l F (x).

Take an arbitrary element y ∈ F (x). Then there exists z ∈ F (x+d) and k1 ∈ K
such that z−y+η‖d‖k0+k1 = 0. On the other hand, F (x+d)−F (x) ⊆ DF (x, d)+K
by Proposition 4.4. Therefore, there exist v ∈ DF (x, d) and k2 ∈ K such that
z − y = v + k2. Then v + k2 + η‖d‖k0 + k1 = 0 and we get ∆−K(v + η‖d‖k0) ≤ 0.
Therefore, ∆−K(v)− η‖d‖∆−K(−k0) ≤ 0 and

−∆−K(v)

‖d‖
≥ −η∆−K(−k0) = ηdY \(−K)(−k0) = ηdY \K(k0).
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We get
supv∈DF (x,d)(−∆−K(v))

‖d‖
≥ ηdY \K(k0).

It is clear that F (x+d) �l F (x) and since k0 ∈ K satisfying ∆−K(k0) = d−K(k0) = 1
is arbitrarily chosen, it follows that

sup
F (x+d)�lF (x)

supv∈DF (x,d)(−∆−K(v))

‖d‖
≥ ξη.

As η satisfying (11) is arbitrarily chosen, we obtain (7).
It remain to prove (8). Observe that J(u) 6= ∅ by Lemma 3.2. If for each u ∈ Rn

the function y 7→ gF,y(u) is upper semicontinuous at any y ∈ F (x), i.e.

lim sup
y′→y,y′∈F (x)

gF,y′(u) ≤ gF,y(u), (12)

then we can apply Theorem 4.4.2 in [16] to get

∂g(u) = co{∪∂gF,y(u) | y ∈ J(u)},

which together with (5) imply (8). Let us prove (12). For any v ∈ F (u) and
y′ ∈ F (x), we have ∆−K(v − y′) ≤ ∆−K(v − y) + ∆−K(y − y′). Then we obtain
infv∈F (u) ∆−K(v − y′) ≤ infv∈F (u) ∆−K(v − y) + ∆−K(y − y′) or gF,y′(u) ≤ gF,y(u) +
∆−K(y − y′). From the last inequality, one can easily deduce that (12) holds.

Remark 4.2. Note that ξ > 0 and, since dY \K(ko) ≤ d−K(k0) = 1, we have ξ ≤ 1.

In particular, ξ =
√

2/2 when K = R2
+ and ξ = 1 when K = R+.

Let us consider the case F is a convex single-valued function f : X 7→ R. Here,
K = R+ and ∂∆−R+(y) = {1} for any y ∈ R (see Example 3.1). Further, for y∗ ∈
∂∆−R+(f(x)) = {1} we have D∗f(x, 1) = {x∗ | (x∗,−1) ∈ N((x, f(x)), epif)} =
∂f(x), and hence, Θ1(x) = ∂f(x). We also have ∂g(x) = ∂f(x). Recall that ξ = 1.
Thus, Proposition 4.6 reduces to Proposition 4.5.

5 Necessary and/or sufficient conditions for min-

imizers and maximizers of a set-valued map

In the existing literature, there have been obtained necessary and/or sufficient con-
ditions in term of directional derivatives for minimizers defined by the set order
relations �l, �u and �s. In this section, we obtain these conditions for some max-
imizers and minimizers defined by set order relations �l, �u, �c, �p as well as by
strict set order relations.

Let � denote one of the order relations in Definitions 2.2 and 2.3.

Definition 5.1. Let x ∈ domF . We say that

(i) x is a local �-minimizer of F if there is a neighborhood U of x such that for
any x′ ∈ U ∩ domF , x′ 6= x, one has

F (x′) � F (x) implies F (x) � F (x′).
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(ii) x is a local strict �-minimizer of F if there is a neighborhood U of x such that
for any x′ ∈ U ∩ domF , x′ 6= x one has

F (x′) 6� F (x).

(iii) x is a local ideal �-minimizer of F if there is a neighborhood U of x such that
for any x′ ∈ U ∩ domF , x′ 6= x one has

F (x) � F (x′).

(iv) x is a local ideal �-maximizer of F if there is a neighborhood U of x such that
for any x′ ∈ U ∩ domF , x′ 6= x one has

F (x′) � F (x).

When U = X in the above definitions, we have the corresponding global concepts.

Lemma 2.1 implies that the concepts of maximizer/minimizer are “weakest”
when they are defined by the set order relation �p and are “strongest” when they
are defined by the set order relation �c.

Let us formulate necessary conditions.

Proposition 5.1. Suppose that F has the directional derivative DF (x, d) at x ∈
domF in an admissible direction d.

(i) If x is a local ideal �c-minimizer of F , then

{0} �c DF (x, d). (13)

(ii) If x is a local ideal �-maximizer of F , then

DF (x, d) �p {0}, (14)

where � denotes one of the relations �p, �l, �u and �c.

Note that the relations (13) and (14) are equivalent to DF (x, d) ⊂ K and
DF (x, d) ∩ (−K) 6= ∅, respectively. When Y = R and F is a scalar- single-valued
function f , they become f ′(x, d) ≥ 0 and f ′(x, d) ≤ 0, respectively.

Proof. Let t > 0 such that x + td ∈ U ∩ domF , where U is the neighborhood of x
mentioned in Definition 5.1.

(i) As x is a local ideal �c-minimizer, we have F (x+td)−F (x) ⊆ K or {0} �l At,
where At := (F (x+ td)−F (x))/t. Proposition 3.4 (i) applied to A := DF (x, d) and
B := {0} gives {0} �l DF (x, d). Hence, {0} �c DF (x, d).

(ii) By Lemma 2.1, x is a local ideal �p-maximizer in all cases. Hence, we have
(F (x + td) − F (x)) ∩ (−K) 6= ∅ or At �p {0}, where At := (F (x + td) − F (x))/t.
Proposition 3.4 (ii) applied to A = DF (x, d) and B = {0} gives DF (x, d) �p {0}.
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Remark 5.1. Observe that DF (x, d) �p {0} is equivalent to DF (x, d) �l {0}. In
the case with �c and �u in Proposition 5.1 (ii), we do not know yet whether the
relation DF (x, d) �p {0} could be replaced by the stronger one DF (x, d) �c {0},
which is equivalent to DF (x, d) �u {0} and DF (x, d) ⊂ K, or not.

Example 5.1. (i) Let F be the map in Example 4.1 (ii). Then x = 0 is an ideal
�c-minimizer of F . Recall that DF (0, 1) = DF (0,−1) = {(1, 0), (0, 1)}. The
necessary condition (13) is satisfied as {(0, 0)} �c {(1, 0), (0, 1)}.

(ii) Let F be the map in Example 4.1 (iii). Then x = 0 is not an ideal�c-minimizer
of F because the necessary condition (13) is not satisfied: DF (0,−1) =
{(−1, 0)} and {(0, 0)} 6�c {(−1, 0)}.

(iii) Let F be the map in Example 4.1 (iv). One can check that x = 0 is an
ideal �c-minimizer of F . We have DF (0, 1) = DF (0,−1) = {(0, 0)} and
{(0, 0)} �c {(0, 0)}, which means that the necessary condition (13) is satisfied.

(iv) Let F be the map in Example 4.1 (v). One can see that x = 0 is an
ideal �l-maximizer of F and the necessary condition (14) is satisfied because
DF (0, 1) = {(u, v) ∈ −R2

+ | u2 + v2 = 1} and {(u, v) ∈ −R2
+ | u2 + v2 = 1} �l

{(0, 0)}.

Let us formulate sufficient conditions for several types of global minimizers under
a convexity assumption.

Proposition 5.2. Suppose that F is K-convex and F has the directional derivative
DF (x, .) at x ∈ domF in any admissible direction. Then

(i) x is a global ideal �c-minimizer of F if for any admissible direction d one has

{0} �c DF (x, d).

The assertion remains true if we replace the set order relation �c by the strict
one ≺c (assuming that intK 6= ∅).

(ii) x is a global strict �-minimizer of F if for any admissible direction d one has

DF (x, d) 6�p {0},

where � denotes one of the relations �p, �l, �u and �c.
The assertion remains true if we replace the involved set order relations by the
corresponding strict ones (assuming that intK 6= ∅).

Proof. Since F is K-convex, Proposition 4.4 yields that for any admissible direction
d such that x+ d ∈ domF one has

F (x+ d)− F (x) ⊆ DF (x, d) +K.

(i) Since {0} �c DF (x, d) gives DF (x, d) ⊆ K, we deduce from F (x+d)−F (x) ⊆
DF (x, d) + K ⊆ K that x is a global ideal �c-minimizer of F . Next, assume
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that {0} ≺c DF (x, d) or DF (x, d) ⊆ intK. Then we have F (x + d) − F (x) ⊆
DF (x, d) +K ⊆ intK. This means that x is a global ideal ≺c-minimizer of F .

(ii) Suppose to the contrary that x is not a global strict �-minimizer of F . By
Lemma 2.1, x is not a global strict �p-minimizer of F in all cases. Then there exists
d such that F (x+d) �p F (x) or (F (x+d)−F (x))∩ (−K) 6= ∅. On the other hand,
DF (x, d) 6�p {0} impliesDF (x, d)∩(−K) = ∅ and hence (DF (x, d)+K)∩(−K) = ∅.
The inclusion F (x+d)−F (x) ⊆ DF (x, d)+K yields (F (x+d)−F (x))∩(−K) = ∅,
a contradiction.

Next, suppose to the contrary that x is not a global strict ≺-minimizer of F . By
Lemma 2.1, x is not a global strict ≺p-minimizer of F in all cases.Then F (x+ d) ≺
F (x) for some d or (F (x+d)−F (x))∩(−intK) 6= ∅. On the other hand, DF (x, d) 6≺p
{0} implies DF (x, d)∩ (−intK) = ∅ and hence (DF (x, d) +K)∩ (−intK) = ∅. The
inclusion F (x+ d)−F (x) ⊆ DF (x, d) +K yields (F (x+ d)−F (x))∩ (−intK) = ∅,
a contradiction.

Remark 5.2. The assertions (i) in Propositions 5.1 and 5.2 provide necessary and
(in the convex case) sufficient conditions for a �c-minimizer of F .

Example 5.2. Let F be the map in Example 4.1 (i). This map R2
+-convex and satis-

fies the relationDF (x, d) 6≺p {0} becauseDF (0, 1) = {(1, 0), (0, 1)} andDF (0,−1) =
{(−1, 0), (0,−1)}. Therefore, x = 0 is a global strict ≺c minimizer of F .

When F is not assumed to be K-convex, the relation (4) may not be satisfied.
Nevertheless, we have the following sufficient conditions for local minimizers which
hold in a finite dimensional space settings under an additional condition.

Proposition 5.3. Assume that X is a finite dimensional space and domF = X.
Suppose that F has the directional derivative DF (x, d) at x in any direction d ∈ X,
‖d‖ = 1 and possesses the following property with respect to d: any sequences {ti}
satisfying ti ↓ 0+ and {di} satisfying ‖di‖ = 1, di → d contain subsequences {tij}
and {dij} such that

DF (x, d) �l
F (x+ tijdij)− F (x)

tij
. (15)

Then the assertions of Proposition 5.2 with “global” replaced by “local” hold true.

Proof. We will use some arguments similar to the ones used in the proof of Propo-
sition 5.2. Observe that (15) is equivalent to

F (x+ tijdij)− F (x)

tij
⊆ DF (x, d) +K.

(i) Suppose to the contrary that x is not a local ideal �c-minimizer of F . Then
there exists a sequence {xi} such that xi → x and F (x) 6�c F (xi) or F (xi)−F (x) 6⊆
K for all i. On the other hand, let di = xi−x

‖xi−x‖ and ti = ‖xi − x‖. Clearly ti ↓ 0+

and we may assume that di → d for some d ∈ X because ‖di‖ = 1 for all i and X
is a finite dimensional space. By the assumptions, one can find some subsequence
{xij} such that

F (xij)− F (x)

‖xij − x‖
=
F (x+ tijdij)− F (x)

tij
⊆ DF (x, d) +K.
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Since {0} �c DF (x, d) is equivalent toDF (x, d) ⊆ K, it follows that F (xij)−F (x) ⊆
K, a contradiction.

(ii) Suppose to the contrary that x is not a local strict �-minimizer of F . By
Lemma 2.1, x is not a local strict �p-minimizer of F in all cases. Then there exists a
sequence {xi} such that xi → x and (F (xi)−F (x))∩(−K) 6= ∅ for all i. On the other
hand, similarly to the case (i), we can find a subsequence {xij} and d ∈ X such that
F (xij )−F (x)

‖xij−x‖
⊆ DF (x, d) + K. Since DF (x, d) 6�p {0}, we have DF (x, d) ∩ (−K) = ∅

and therefore, (DF (x, d) + K) ∩ (−K) = ∅. Then (F (xij) − F (x)) ∩ (−K) = ∅, a
contradiction.

The proof in the case with strict order relations can be proved by similar argu-
ments and is then omitted.

Example 5.3. Let F be the map in Example 4.1 (iv). This map satisfies all
conditions of Proposition 5.3 at x = 0 and satisfies {0} �c DF (x, d) because
DF (x, d) = {(0, 0)}. Therefore, x = 0 is a local ideal �c minimizer of F .
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