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Abstract:. Let f : Rn −→ R be a polynomial in n variables. We study the global

 Lojasiewicz inequality of f :

|f(x)| ≥ c.min{dist(x, f−1(0))α, dist(x, f−1(0))β}

for all x ∈ Rn, where c, α, β are positive constants. We give a method to check for the

existence of this inequality. In the case n = 2, our method gives complete results on some

problems of interests: (a) Computating and estimating of the global  Lojasiewicz exponents;

(b) Studying the global  Lojasiewicz inequality for polynomials which are non-degenerate

at infinity; (c) Computation of the exponent involved in the Hörmander version of the

global  Lojasiewicz inequality.
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1 Introduction

This work is devoted to studying the global  Lojasiewicz inequality of polynomial functions. The

classical local  Lojasiewicz inequality says that if f : U → R is an analytic function in a bounded
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domain U ⊂ Rn, then there exist α > 0 and c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))α for all x ∈ U.

This deep result was born to solve one of the big problems of analysis (see [L], [Hor]). Later it

become an important tool for studying many other problems not only of analysis, but also of

algebra, geometry and other fields (see [T] and the references therein).

This inequality does not hold if instead of the bounded domain U, we take Rn. If f : Rn → R
is a polynomial function, in [DHT], the criterion for the existence of the global  Lojasiewicz

inequality for f was given:

(i) There exist δ > 0 and L0 > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))L0 , for all x ∈ Rn, |f(x)| ≤ δ

if only if there are no sequences of the first type

xk →∞, |f(xk)| → 0, dist(xk, f−1(0)) ≥M0 > 0;

(ii) There exist ∆ > 0 and L∞ > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))L∞ , for all x ∈ Rn, |f(x)| ≥ ∆

if only if there are no sequences of the second type

xk →∞, |f(xk)| < M < +∞, dist(xk, f−1(0))→ +∞;

(iii) There exist c > 0,L0 > 0 and L∞ > 0 such that

|f(x)| ≥ c.min{dist(x, f−1(0))L0 , dist(x, f−1(0))L∞} for all x ∈ Rn (1)

if only if there are no sequences of the first and the second type.

In this paper, we will call inequalities of type (1) the global  Lojasiewicz inequalities of f.

Among other thing, in this paper we consider two following questions

(i) How to check, whether condition (iii) holds or not?

(ii) How to compute the  Lojasiewicz exponents?
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We are able to give complete answers to these questions only for the case of two variables.

In the whole paper we assume that f : Rn → R is a polynomial of the form

f(x1, · · · , xn) = a0x
d
n + a1(x

′)xd−1n + · · ·+ ad(x
′) (2)

where d is the degree of f and each of ai(x
′), i = 0, · · · , d is a polynomial (of degree ≤ i) in

x′ = (x1, · · · , xn−1).
We always put

V1 : = {x ∈ Rn| ∂f
∂xn

= 0}.

Our key observation is following: The set V1 can be considered as a testing set for the existence

of the global  Lojasiewicz inequality of f. That is, an inequality of forms (1) holds true for all

x ∈ Rn if and only if an inequality of the same form (possibly with other exponents) holds for all

points x from the subset V1 of Rn. This fact is rather usefull for studying the global  Lojasiewicz

inequality of polynomials, especially for the case of two variables.

Besides of Introduction, the paper consists of 7 sections. We begin our study with section

2, where the global  Lojasiewicz inequality of f w.r.t. V1 is investigated. Depending on the

behavior of f on V1, this inequality, if it exists, has one of 4 forms. Each of these forms clearly

indicates which one of the  Lojasiewicz exponents is involved. Section 3 is devoted to the global

 Lojasiewicz inequality of f. We will show that this inequality exists if and only if the global

 Lojasiewicz inequality of f w.r.t.V1 exists. This justifies the name of V1 as ”the testing set”

for the existence of the global  Lojasiewicz inequality. Moreover, as in section 2, the global

 Lojasiewicz inequality of f has also 4 forms, each of them is dictated by the corresponding one’s

of the global  Lojasiewicz inequality of f w.r.t.V1. The  Lojasiewicz exponents will be investigated

in section 4. It turns out that the  Lojasiewicz exponents of the global  Lojasiewicz inequality

possede two-sides estimation in terms of the  Lojasiewicz exponents w.r.t. V1 and the degree of

the polynomial. Moreover, we will indicate some cases, where the  Lojasiewicz exponents of the

global  Lojasiewicz inequality can be computed via the  Lojasiewicz exponents w.r.t. V1 and the

degree. In section 5, the method of verifying whether the global  Lojasiewicz inequality exists

or not will be proposed for the case of two variables. In section 6, for n = 2, we give explicit

formulas for the  Lojasiewicz exponents in terms of Puiseux expansions. Section 7 deals with

polynomials in two variables, which are non-degenerate at infinity. In this case, it turns out

that the  Lojasiewicz inequality near to the set f−1(0), i.e. in the domain {x ∈ Rn||f(x)| < δ}, δ
sufficiently small, always exists, while the global  Lojasiewicz inequality of f may exist on not. It

does exist, if, in addition, f is convenient. In this case, the  Lojasiewicz exponents are computed

explicitly and they depend only the part at infinity of the Newton polygon of f. Let us present

breafly the content of section 8. In [Hor], Hörmander proved the following: Let f : Rn → R be

a polynomial, then there exist c > 0 and µ > 0, µ′ > 0, µ′′ > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))µ, for all x ∈ Rn, ‖ x ‖< 1;
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and

(1+ ‖ x ‖)µ′|f(x)| ≥ c.dist(x, f−1(0))µ
′′

for all x ∈ Rn, ‖ x ‖≥ 1.

Clearly, the exponent µ is the  Lojasiewicz exponent of f in the domain ‖ x ‖< 1, and the factor

(1+ ‖ x ‖)µ′ in the left-hand side of the second inequality is needed for controlling the ”bad”

behavior of the function dist(x, f−1(0)), for ‖ x ‖ sufficiently large. We will propose, always for

n = 2, a version of the Hörmander inequality, in which a concrete value of the exponent µ′ is

computed explicitly.

Note that the role of the set V1 in studying the global  Lojasiewicz inequalities was investigated

in [DHT], [DKL] and [HNS]. The fact that V1 is the testing set for the existence of the  Lojasiewicz

inequality of a germ of a smooth function was observed in [H2].

2 Global  Lojasiewicz inequality w.r.t.to V1

Recall that f : Rn → R is a polynomial of the form

f(x′, xn) = a0x
d
n + a1(x

′)xd−1n + · · ·+ ad(x
′),

where d is the degree of f and x′ = (x1, · · · , xn−1).

V1 : = {x ∈ Rn| ∂f
∂xn

= 0}

This section, we assume that V1 is non-empty set, not contained in f−1(0).

Definition 2.1. A sequence {xk} ⊂ Rn is said to be a sequence of the first type of f, with respect

to V1, if the following conditions holds:

{xk} ⊂ V1,

xk →∞,

f(xk)→ 0

and

dist(x, f−1(0)) ≥M0 > 0, for some M0.

Proposition 2.2. The following startements are equivalent

(i) There are no sequences of the first type of f with respect to V1;
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(ii) There exist δ > 0 such that either the set {x ∈ Rn||f(x)| < δ} ∩ V1 is empty or there are

c > 0 and a positive rational number L0(V1) such that

|f(x)| ≥ c.dist(x, f−1(0))L0(V1)

for all x ∈ {x ∈ Rn||f(x)| ≤ δ} ∩ V1.

Proof. (i)⇒ (ii). Let

f∗ : = inf
x∈V1
|f(x)|,

if f∗ > 0 then for 0 < δ < f∗, the set {x ∈ Rn||f(x)| < δ} ∩ V1 is empty.

Assume that f∗ = 0. For t > 0, put

ϕ(t) = sup
|f(x)|=t,x∈V1

dist(x, f−1(0))

Since f∗ = 0, the set {x ∈ Rn||f(x)| = t} ∩ V1 not empty for each t > 0, sufficiently closed

to zero. By (i), ϕ(t) is well defined on [0, δ), with δ > 0 sufficiently small. It follows from the

Tarski - Seidenberg theorem that ϕ(t) is a semi-algebraic function. Moreover, the condition (i)

implies that ϕ(t)→ 0 as t→ 0. Hence, there exists c0 6= 0 and a positive rational number α(V1)

such that

ϕ(t) = c0t
α(V1) + o(tα(V1)) for t→ 0.

Let L0(V1) : =
1

α(V1)
, then we have

|f(x)| ≥ c.dist(x, f−1(0))L0(V1)

for all x ∈ {x ∈ Rn||f(x)| ≤ δ} ∩ V1, with sufficiently small δ.

The implication (ii)⇒(i) is straightforward.

Remark 2.3. The exponent L0(V1) in the proof above satisfies the following equality:

L0(V1) = inf{α > 0|∃c1 > 0, δ > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))α (3)

for all x ∈ V1 and |f(x)| < δ}.

Definition 2.4. We say that a sequence {xk} is of the second type of f w.r.t V1, if

{xk} ⊂ V1,

xk →∞,

|f(xk)| < M < +∞ for some M,

and

dist(xk, f−1(0))→ +∞.
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Theorem 2.5. (The global  Lojasiewicz inequality of f w.r.t. V1)

The following statements are equivalent

(i) There are no sequences of the first and the second types of f w.r.t.V1;

(ii) The following assertations hold true:

(a) If f∗ > 0 and the function dist(x, f−1(0)) is bounded on V1, then for any ρ > 0, there exist

c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ for all x ∈ V1;

(b) If f∗ > 0 and the function dist(x, f−1(0)) is unbounded on V1, then there exist c > 0 and

a positive rational number L∞(V1) > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))L∞(V1) for all x ∈ V1;

(c) If f∗ = 0 and the function dist(x, f−1(0)) is bounded on V1, then there exists c > 0 such

that

|f(x)| ≥ c.dist(x, f−1(0))L0(V1) for all x ∈ V1;

(d) If f∗ = 0 and the function dist(x, f−1(0)) is unbounded on V1, then there exists c > 0 such

that

|f(x)| ≥ c.min{dist(x, f−1(0))L0(V1), dist(x, f−1(0))L∞(V1)} for all x ∈ V1.

Proof. (ii) ⇒ (i) is straightforward.

Proof of (i) ⇒ (ii):

Proof of (a): Assume that f∗ > 0 and

dist(x, f−1(0)) ≤ D < +∞ for all x ∈ V1.

Let ρ > 0, then for any x ∈ V1, we have

|f(x)| ≥ f∗ ≥
f∗
Dρ

.dist(x, f−1(0))ρ

hence (a) holds.

Proof of (b): Assume that f∗ > 0 and the function dist(x, f−1(0)) is unbounded on V1. Since

there are no sequences of the second type w.r.t. V1, it is easy to see that the set

{x ∈ Rn||f(x)| = t} ∩ V1

is not empty for t > 0 and t sufficiently large.

Put

ϕ(t) := sup
|f(x)|=t,x∈V1

dist(x, f−1(0))

6



It follows from (i) that, ϕ(t) is a semi-algebraic function on [∆,+∞). Hence, there exists a

rational number β(V1) and a positive constant c0 such that

ϕ(t) = c0t
β(V1) + o(tβ(V1)), as t→∞.

Moreover, since the function dist(x, f−1(0)) is unbounded on V1, ϕ(t) → ∞ as t → ∞, hence

β(V1) > 0.

Putting L∞(V1) =
1

β(V1)
, the above equality implies that

|f(x)| ≥ c.dist(x, f−1(0))L∞(V1)

for all x ∈ {x ∈ Rn||f(x)| ≥ ∆} ∩ V1, with ∆ > 0 sufficiently large.

Since there are no sequences of the second type w.r.t.V1, the function dist(x, f−1(0)) must be

bounded on the set

{x ∈ Rn|f∗ ≤ |f(x)| ≤ ∆} ∩ V1.

Hence, we can extend the above inequality for all x ∈ V1 and get

|f(x)| ≥ c′.dist(x, f−1(0))L∞(V1) for all x ∈ V1,

where c′ is some positive constant.

Proof of (c): Assume that f∗ = 0 and the function dist(x, f−1(0)) is bounded on V1. Since there

are no sequence of the first type w.r.t.V1, according to Proposition 2.2, there exist c > 0 and

δ > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))L0(V1)

for all x ∈ {x ∈ Rn||f(x)| ≤ δ} ∩ V1.
Since dist(x, f−1(0)) ≤ D, on the set {x ∈ Rn||f(x)| ≥ δ} ∩ V1. Choosing c′ =

δ

DL0(V1)
, we have

|f(x)| ≥ c′.dist(x, f−1(0))L0(V1)

for all x ∈ {x ∈ Rn||f(x)| ≥ δ} ∩ V1.
Thus we have

|f(x)| ≥ min(c, c′).dist(x, f−1(0))L0(V1) for all x ∈ V1.

Proof of (d): Assume that f∗ = 0 and the function dist(x, f−1(0)) is unbounded on V1.

Put

ϕ(t) := sup
|f(x)|=t,x∈V1

dist(x, f−1(0))

Since (i) holds, ϕ is a semi-algebraic function, which is well defined on (0, δ) and [∆; +∞), where

δ > 0 sufficiently small and ∆ > 0 sufficiently large. We have then

ϕ(t) = c0t
α(V1) + o(tα(V1)), as t→ 0

7



and

ϕ(t) = c′0t
β(V1) + o(tβ(V1)), as t→ +∞.

Hence, there exist δ > 0 sufficiently small and ∆ > 0 sufficiently large and c′ > 0 such that

|f(x)| ≥ c′.dist(x, f−1(0))L0(V1)

for all x ∈ {x ∈ Rn||f(x)| < δ} ∩ V1

and

|f(x)| ≥ c′.dist(x, f−1(0))L∞(V1)

for all x ∈ {x ∈ Rn||f(x)| > ∆} ∩ V1.

Since there are no sequences of the second type of f w.r.t. V1, the function dist(x, f−1(0)) is

bounded on the set {x ∈ Rn|δ ≤ |f(x)| ≤ ∆} ∩ V1. Thus, it easy to see that there exist c > 0

such that

|f(x)| ≥ c.min{dist(x, f−1(0))L0(V1), dist(x, f−1(0))L∞(V1)} for all x ∈ V1.

Theorem 2.5 is proved.

Remark 2.6. The exponent L∞(V1) in the proof above can be defined by

L∞(V1) = sup{β > 0|∃c > 0,∆ > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))β (4)

for all x ∈ V1, |f(x)| ≥ ∆}.

Definition 2.7. Exponents L0(V1) and L∞(V1) are called the  Lojasiewicz exponent near to the

set f−1(0) and far from the set f−1(0) of f w.r.t. V1, respectively.

3 Global  Lojasiewicz inequality

In this section we show that the global  Lojasiewicz inequality of f exists if and only if there exists

the global  Lojasiewicz inequality of f w.r.t.V1. Moreover, the forms of the global  Lojasiewicz

inequality of f are dictated by the corresponding forms (a) − (d) of the global  Lojasiewicz

inequality of f w.r.t.V1. Firstly, we consider the case when V1 is either empty or V1 ⊂ f−1(0).

Theorem 3.1. Assume that V1 is either empty or V1 ⊂ f−1(0). Then there exists c > 0 such

that

|f(x)| ≥ c.dist(x, f−1(0))d for all x ∈ Rn.
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Proof. This theorem is a direct consequence of Theorem 2.1 of [HNS], which says that if f : Rn →
R is a function of class C(d) such that

|∂
df

∂xdn
(x)| ≥ ρ > 0 on Rn,

then

|f(x)| ≥ ρ

d!22d−1dist(x, V1 ∪ f
−1(0))d for all x ∈ Rn.

The following technical result is crucial for our further investigation.

Lemma 3.2. Let f(x) be a polynomial of the form (2). Let x = (x′, xn) ∈ Rn−1 × R be a point

of Rn and x /∈ f−1(0) ∪ V1. Then, there exists a point x∗ = (x′, x∗n) ∈ Rn−1 × R satisfying the

following conditions

(i) x∗ ∈ f−1(0) ∪ V1;

(ii) |f(x∗)| ≤ |f(x)|;

(iii) ‖ x− x∗ ‖≤ (2e)[|a0|.d!(d+ 1)!]
1
d |f(x)| 1d , where e = lim

(
1 +

1

n

)n
, n→∞.

Proof. Let x = (x′, xn) ∈ Rn−1 × R be a point of Rn such that x /∈ f−1(0) ∪ V1.
Put Ω(x′) : = {xn ∈ R||f(x′, xn)| ≤ |f(x)|} and ϕ(xn) : = f(x′, xn).

Since |ϕ(d)(xn)| = |a0|.d! for all xn ∈ R, by the van der Corput Lemma (see [G], 2.6.2) we have

mesΩ(x′) ≤ (2e)[|a0|.d!(d+ 1)!]
1
d |f(x)|

1
d (5)

Since Ω(x′) is a compact semi-algebraic subset of R, we have

Ω(x′) = ∪ki=1[ai, bi] ∪ {y1, · · · , ys},

where ai < bi and

|f(x′, ai)| = |f(x′, bi)| = |f(x′, yj)| = |f(x)|,

for i = 1, · · · , k; j = 1, · · · , s.
Clearly xn ∈ {a1, · · · , ak, b1, · · · , bk, y1, · · · , ys}.
We claim that xn ∈ {a1, · · · , ak, b1, · · · , bk}.
By contradition, assume that it is not the case, i.e. xn = yj for some j ∈ {1, · · · , s}. Since yj is

an isolated point of Ω(x′), it is easy to see that the function ϕ(xn) attains its local extremum

at the point xn = yj. Therefore we have

dϕ

dxn
(xn) =

∂f

∂xn
(x) = 0
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which means that x ∈ V1, a contradiction.

Thus, without loss of generality, we may assume that xn = a1. Then, since

|f(x′, a1)| = |f(x′, b1)| = |f(x)| 6= 0,

either f(x′, a1).f(x′, b1) < 0 or f(x′, a1).f(x′, b1) > 0.

Firstly, assume that f(x′, a1).f(x′, b1) < 0. Then, there exists t1 ∈ (a1, b1) such that f(x′, t1) = 0.

Hence the point x∗ = (x′, t1) belongs to f−1(0). By (5), we have

‖ x− x∗ ‖= |a1 − t1| ≤ mesΩ(x′) ≤ (2e)[|a0|.d!(d+ 1)!]
1
d |f(x)|

1
d

and x∗ satisfies (i) - (iii).

Now, assume that f(x′, a1).f(x′, b1) > 0. We have then f(x′, a1) = f(x′, b1) ∈ {±|f(x)|}. By

Rolle’s theorem, there exists a point t0 ∈ (a1, b1) such that
∂f

∂xn
(x′, t0) = 0.

Let x∗ : = (x′, t0), then x∗ ∈ V1. Since t0 ∈ (a1, b1) ⊂ Ω(x′), |f(x∗)| ≤ |f(x)| and

‖ x− x∗ ‖≤ (2e)[|a0|.d!(d+ 1)!]
1
d |f(x)|

1
d .

Lemma 3.2 is proved.

Theorem 3.3. (The global  Lojasiewicz inequality)

The following statements are equivalent

(i) There are no sequences of the first and the second types of f ;

(ii) There exist c > 0, α > 0 and β > 0 such that

|f(x)| ≥ c.min{dist(x, f−1(0))α, dist(x, f−1(0))β} for all x ∈ Rn;

(iii) There are no sequences of the first and the second types of f w.r.t. V1;

(iv) The following statements hold true:

(a) If f∗ > 0 and the function dist(x, f−1(0)) is bounded on V1, then there exists c > 0 such

that

|f(x)| ≥ c.dist(x, f−1(0))d for all x ∈ Rn;

(b) If f∗ > 0 and the function dist(x, f−1(0)) is unbounded on V1, then there exists c > 0 such

that

|f(x)| ≥ c.min{dist(x, f−1(0))L∞(V1), dist(x, f−1(0))d} for all x ∈ Rn;

(c) If f∗ = 0 and the function dist(x, f−1(0)) is bounded on V1, then there exists c > 0 such

that

|f(x)| ≥ c.min{dist(x, f−1(0))L0(V1), dist(x, f−1(0))d} for all x ∈ Rn;
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(d) If f∗ = 0 and the function dist(x, f−1(0)) is unbounded on V1, then there exists c > 0 such

that

|f(x)| ≥ c.min{dist(x, f−1(0))L∞(V1), dist(x, f−1(0))L∞(V1), dist(x, f−1(0))d}

for all x ∈ Rn.

Proof. (i)⇔ (ii) was proved in ([DHT], Proposition 3.10).

(i) ⇒ (iii) and (iv) ⇒ (i) are straightfoward.

It rests to prove (iii) ⇒ (iv).

We need

Lemma 3.4. Assume that there are c0 > 0 and ρ1 > 0, · · · , ρs > 0 such that

|f(x)| ≥ c0.min{dist(x, f−1(0)ρi , i = 1, · · · , s} for all x ∈ V1. (6)

Then, there exists c > 0 such that

|f(x)| ≥ c.min{dist(x, f−1(0)ρi , dist(x, f−1(0)d, i = 1, · · · , s} for all x ∈ Rn. (7)

Proof of Lemma 3.4. Let x = (x′, xn) be an abritrary point of Rn−1 × R = Rn. If x ∈ f−1(0)

then (7) holds automatically. Also, if x ∈ V1, then (7) follows from (6).

Assume that x /∈ f−1(0) ∪ V1. Then by Lemma 3.2, there exists x∗ ∈ Rn such that

x∗ ∈ V1 ∪ f−1(0), |f(x∗)| ≤ |f(x)| (8)

and

(2e)−1[|a0|.d!(d+ 1)!]
−1
d ‖ x− x∗ ‖≤ |f(x)|

1
d (9)

Clearly, if x∗ ∈ f−1(0), (7) follows from (9).

Assume that x∗ ∈ V1. Let us denote by H(x∗) the point of f−1(0) such that

dist(x∗, f−1(0)) =‖ x∗ −H(x∗) ‖ .

Consider two possibilities. If

‖ x− x∗ ‖≤‖ x∗ −H(x∗) ‖,

then

dist(x, f−1(0)) ≤‖ x−H(x∗) ‖≤ 2 ‖ x∗ −H(x∗) ‖= 2dist(x∗, f−1(0)).

Since ρi > 0, for i = 1, 2, · · · , s. We have

2−ρidist(x, f−1(0))ρi ≤ dist(x∗, f−1(0))ρi
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Then (7) follows easily from (6) and (8).

Now, assume that ‖ x− x∗ ‖≥‖ x∗ −H(x∗) ‖, then

dist(x, f−1(0)) ≤ 2 ‖ x− x∗ ‖

Hence, by (9), there exists c > 0 such that

c.dist(x, f−1(0))d ≤ |f(x)|

and (7) hold true. Lemma 3.4 is proved.

Proof (iii)⇒ (iv): Assertions (b), (c) and (d) follow from Theorem 2.5 and Lemma 3.4.

Let us prove (a). By Theorem 2.5, if f∗ > 0 and if the function dist(x, f−1(0)) is bounded on

the set V1, then for any ρ > 0, there exists c0 > 0 such that

|f(x)| ≥ c0dist(x, f
−1(0))ρ (10)

for all x ∈ V1.
By choosing ρ = d in (10), then the assertion (a) of (iv) follows from (10) and Lemma 3.4.

Theorem 3.3 is proved.

4  Lojasiewicz exponents of the global  Lojasiewicz inequal-

ity

Through all this section we assume that

• f is a polynomial of the form (2);

• The global  Lojasiewicz inequality of f holds true.

Then we can define two exponents L0(f) and L∞(f), are called respectively the  Lojasiewicz

exponent near to the set f−1(0) and the  Lojasiewicz exponent far from the set f−1(0).

Before recalling the definitions of L0(f) and L∞(f), we begin with a simple result. First, we

need the following notation: if h(t) and g(t) are positive functions in t ∈ R, by h(t) � g(t) we

mean that

lim
t→∞

h(t)

g(t)
= c 6= 0.

Lemma 4.1. Let f be of the form (2) and (0, a) ∈ Rn−1 × R. Then we have

|f(0, a)| � |a|d � dist((0, a), f−1(0))d
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Proof. Clearly, |f(0, a)| � |a|d. We will prove that |a|d � dist((0, a), f−1(0))d, i.e. |a| �
dist((0, a), f−1(0)).

Claim. There exist r > 0 and c > 0 such that if (x′, λ(x′)) ∈ Rn−1×R is a point of f−1(0) with

‖ x′ ‖≥ r, then

|λ(x′)| ≤ c ‖ x′ ‖ .

Proof of Claim: By contradiction, there exists a sequence xk = (x′k, λ(x′k)) → ∞ such that

f(xk) = 0 and lim
|λ(x′k)|
‖ x′k ‖

=∞. Then, since

f(x′, xn) = a0x
d
n + a1(x

′)xd−1n + · · ·+ ad(x
′)

and deg(ai(x
′)) ≤ i, we have

lim
|ai(x′k)|
|λ(x′k)|i

→ 0 as ‖ x′k ‖→ ∞.

Since (x′k, λ(x′k)) ∈ f−1(0),

a0 +
a1(x

′k)

λ(x′k)
+ · · ·+ ad(x

′k)

λ(x′k)d
= 0,

which implies that a0 = 0, a contradiction.

Let us use the l1-norm in Rn : If x = (x1, · · · , xn) ∈ Rn then

‖ (x1, · · · , xn) ‖l1 : =
n∑
i=1

|xi|.

Now, let c and r be as in the claim. Let (x′0, xn0) be a point of f−1(0), we have

dist((0, a), f−1(0)) ≤‖ (0, a)− (x′0, xn0) ‖l1=‖ x′0 ‖l1 +|a− xn0| ∼ |a|. (11)

Let (x′(a), λ(x′(a))) ∈ Rn−1 × R be the point of f−1(0) such that dist((0, a), f−1(0)) =‖
(x′(a), λ(x′(a)))−(0, a) ‖l1 . Since the distance from the point (x′(a), λ(x′(a))) to the hyperplane

xn = 0 is equal to |λ(x′(a))|, we have

|a| =‖ (0, a)− (0, 0) ‖l1≤‖ (0, a)− (x′(a), λ(x′(a))) ‖l1 +|λ(x′(a))|. (12)

Firstly we assume that ‖ x′(a) ‖l1≤ r. Then, since f is of the form (2), the set

{(x′, xn) ∈ Rn−1 × R| ‖ x′ ‖l1≤ r, f(x′, xn) = 0}

is compact. Therefore there exists a constant ϕ(r) > 0 such that |xn| ≤ ϕ(r) if f(x′, xn) = 0

and ‖ x′ ‖l1≤ r.

It follows from (12) that

|a| ≤‖ (0, a)−(x′(a), λ(x′(a))) ‖l1 +ϕ(r) = dist((0, a), f−1(0))+ϕ(r) � dist((0, a), f−1(0)) (13)
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As consequence of (11) and (13) we have

|a| � dist((0, a), f−1(0))

if ‖ x′(a) ‖l1≤ r.

Assume that ‖ x′(a) ‖l1≥ r, then it follows from (12) that

|a| ≤‖ x′(a) ‖l1 +|a− λ(x′(a))|+ |λ(x′(a))| ≤‖ x′(a) ‖l1 +|a− λ(x′(a))|+ c ‖ x′(a) ‖l1

≤ (c+ 1)(‖ x′(a) ‖l1 +|a− λ(x′(a))|) = (c+ 1)dist((0, a), f−1(0)).

This inequality, together with (11), implies that |a| � dist((0, a), f−1(0)) and Lemma 4.1 is

proved.

Assume that there are no sequences of the first and of the second types of f. Then the function

ϕ(t) = sup
|f(x)|=t

dist(x, f−1(0))

is well defined on (0,+∞) and is semi-algebraic. Hence, there exist c0 > 0, c∞ > 0 and rational

numbers α and β such that

ϕ(t) = c0t
α + o(tα), as t→ 0

and

ϕ(t) = c∞t
β + o(tβ), as t→∞.

Since there are no sequences of the first type, ϕ(t) → 0 as t → 0, hence α > 0. It follows from

Lemma 4.1 that ϕ(t)→ +∞ as t→ +∞, which implies that β > 0.

Putting L0(f) =
1

α
, L∞(f) =

1

β
, we can show that there exist δ ∈ (0, 1) and ∆ � 1 and

c1 > 0, c2 > 0 such that

|f(x)| ≥ c1.dist(x, f
−1(0))L0(f),

for all x ∈ {x ∈ Rn||f(x)| < δ}, and

|f(x)| ≥ c2.dist(x, f
−1(0))L∞(f),

for all x ∈ {x ∈ Rn||f(x)| > ∆}.
Moreover, the exponents L0(f) and L∞(f) statisfies respectively the following formula

L0(f) = inf{ρ > 0|∃δ > 0 and c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ (14)

for all x ∈ {x ∈ Rn|, |f(x)| ≤ δ}}.
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and

L∞(f) = sup{ρ > 0|∃∆� 1 and c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ (15)

for all x ∈ {x ∈ Rn|, |f(x)| ≥ ∆}}.

Following [H1] we call L0(f) and L∞(f), respectively the  Lojasiewicz exponent near to the set

f−1(0) and the  Lojasiewicz exponent far from the set f−1(0).

In this section we estimate L0(f) and L∞(f) via d and the exponients L0(V1) and L∞(V1), where

the exponents L0(V1) and L∞(V1) are defined in section 2.

Put

Ω1 : = {x ∈ Rn|dist(x, f−1(0)) < 1}

and

Ω2 : = {x ∈ Rn|dist(x, f−1(0)) ≥ 1}

Put

L(f,Ω1) : = inf{ρ > 0|∃c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ

for all x ∈ Ω1}

and

L(f,Ω2) : = sup{ρ > 0|∃c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ

for all x ∈ Ω2}.

Proposition 4.2. If there are no sequences of the first and the second type of f then

L0(f) = L(f,Ω1)

L∞(f) = L(f,Ω2).

Proof. .

Proof of L0(f) ≥ L(f,Ω1).

Since there are no sequences of the first type, there exist c > 0 and δ > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))L0(f)

for all x ∈ {x ∈ Rn||f(x)| < δ}. Choose δ0 > 0 such that δ0 < min{δ, c}, we see that {x ∈
Rn||f(x)| ≤ δ0} ⊂ Ω1. In fact, since δ0 < δ

|f(x)| ≥ c.dist(x, f−1(0))L0(f)
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for all x ∈ {x ∈ Rn||f(x)| ≤ δ0}.
This implies that

δ0 > c.dist(x, f−1(0))L0(f)

hence

1 >
δ0
c
> dist(x, f−1(0))L0(f)

therefore dist(x, f−1(0)) < 1.

Clearly, if x ∈ Ω1 \ {x ∈ Rn||f(x)| < δ0} then

|f(x)| ≥ δ0 > δ0.dist(x, f
−1(0))L0(f).

Thus, we can conclude that the inequality

|f(x)| ≥ c∗.dist(x, f
−1(0))L0(f),

with c∗ = min{c, δ0} = δ0, holds true for all x ∈ Ω1. Hence, we have L0(f) ≥ L(f,Ω1).

Proof of L0(f) ≤ L(f,Ω1).

Let ρ > 0. Assume that there exists c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ for all x ∈ Ω1.

The inequality L0(f) ≤ L(f,Ω1) will be proved, if we show that ρ ≥ L0(f).

Let us take δ0 the constant defined in the proof above. Then

{x ∈ Rn||f(x)| < δ0} ⊂ Ω1.

Therefore,

|f(x)| ≥ c.dist(x, f−1(0))ρ

for all x ∈ {x ∈ Rn||f(x)| < δ0}. Since L0(f) satisfies (14), this inequality implies that L0(f) ≤ ρ.

Thus, L0(f) = L(f,Ω1).

Proof of L∞(f) ≤ L(f,Ω2).

Since there are no sequeces of the second type, there exist c > 0 and ∆� 1 such that

|f(x)| ≥ c.dist(x, f−1(0))L∞(f) (16)

for all x ∈ {x ∈ Rn||f(x)| ≥ ∆}.
Moreover, the function dist(x, f−1(0)) is bounded on the set

Ω2 \ {x ∈ Rn||f(x)| ≥ ∆},

i.e

D : = sup{dist(x, f−1(0))|x ∈ Ω2 and |f(x)| ≤ ∆} < +∞.
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Since there are no sequence of the first type, |f(x)| ≥ δ > 0 on the set Ω2 \{x ∈ Rn||f(x)| ≥ ∆}.
Hence, if x ∈ Ω2 \ {x ∈ Rn||f(x)| ≥ ∆} we have

|f(x)| ≥ δ ≥ δ

DL∞(f)
dist(x, f−1(0))L∞(f) (17)

It follows from (16) and (17) that

|f(x)| ≥ c.dist(x, f−1(0))L∞(f)

for all x ∈ Ω2. Hence, by the definition of L(f,Ω2), we have

L∞(f) ≤ L(f,Ω2).

Proof of L∞(f) ≥ L(f,Ω2).

Let ρ > 0 and there exists c > 0 such that

|f(x)| ≥ c.dist(x, f−1(0))ρ (18)

for all x ∈ Ω2. Let x ∈ Rn such that |f(x)| ≥ c and dist(x, f−1(0)) < 1, then since ρ > 0, we

have

|f(x)| ≥ c.dist(x, f−1(0))ρ.

This fact, together with (18) implies that

|f(x)| ≥ c.dist(x, f−1(0))ρ

for all x ∈ {x ∈ Rn||f(x)| ≥ c}.
Hence, by (15), we get ρ ≤ L∞(f), which, by the definition of L(f,Ω2) implies that L∞(f) ≥
L(f,Ω2). The equality L∞(f) = L(f,Ω2) is proved.

Now, we study the  Lojasiewicz exponents L0(f) and L∞(f) by investigating the relationship

between them and the exponents d,L0(V1) and L∞(V1).

According to Theorem 3.3, if the global  Lojasiewicz inequality of f holds true, then it has one

of 4 forms, described in (iv) of Theorem 3.3. We will consider each of these cases saparately.

Before doing that, let us state an easy result.

Lemma 4.3. We have

(i)

L∞(f) ≤ min{L∞(V1), d};

(ii)

L0(f) ≥ L0(V1).
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Proof. .

Proof of (i): It follows from Lemma 4.1 that L∞(f) ≤ d.

The relation (4) implies that L∞(f) ≤ L∞(V1). Hence, (i) is true.

Proof of (ii): This follows from (3).

Let cases (a)− (d) be as in Theorem 3.3 (iv).

Proposition 4.4. Assume that there are no sequences of the first and the second types of f

w.r.t.V1 then the following hold

Case (a):

L0(V1) ≤ L0(f) ≤ d

L∞(f) = d.

Case (b):

L0(V1) ≤ L0(f) ≤ max{L∞(V1), d}

L∞(f) = min{L∞(V1), d}

Case (c):

(i) If L0(V1) ≥ d then

L∞(f) = d

L0(f) = L0(V1).

(ii) If L0(V1) < d then

L0(V1) ≤ L0(f) ≤ d

L0(V1) ≤ L∞(f) ≤ d.

Case (d):

(i) If L0(V1) ≤ min{L∞(V1), d} then

L0(V1) ≤ L0(f) ≤ max{L∞(V1), d}

L0(V1) ≤ L∞(f) ≤ min{L∞(V1), d}.

(ii) If min{L∞(V1), d} ≤ L0(V1) ≤ max{L∞(V1), d} then

L0(V1) ≤ L0(f) ≤ max{L∞(V1), d}

and

L∞(f) = min{L∞(V1), d}
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(iii) If L0(V1) ≥ max{L∞(V1), d} then

L0(f) = L0(V1)

and

L∞(f) = min{L∞(V1), d}.

Proof. The proof follows from Lemma 4.3 and Proposition 4.2.

5 Method of checking for the existence of the global

 Lojasiewicz inequality of polynomials in two variables

In this section we consider the following question: How to check for the condition of the existence

of the global  Lojasiewicz inequality?

If n > 2, these problems seem still difficult, but if n = 2, it is easy.

Let f(x, y) be a polynomial in two variables. We assume f is of the form

f(x, y) = a0y
d + a1(x)yd−1 + · · ·+ ad(x) (19)

where d is the degree of f.

Then, according to the Puiseux theorem [GV], f can be factored as

f(x, y) = a0

d∏
j=1

(y − λj(x)),

where each expression λj(x) is a function of x
1
p for certain integer p in the neighborhood of

x = ∞. The function λj(x) have no essential singularity at infinity, hence they can be written

as fractional power series

λj(x) =

kj∑
−∞

ajkx
k
p (20)

for |x| � 1, where kj are integer numbers. Each λj(x) is called a Puiseux series at infinity of f.

Since f is of the specific form (19),it is important to note that, kj ≤ p for j = 1, · · · , d. We also

call λj(x) a root at infinity of f.

Let λj(x) be one of the roots of the form (20), then λj(x) is called real root if all coefficients

ajk of λj(x) are reals. Note that for a non real root λ∗(x), the curve y = λ∗(x) has no locus

in x > 0, x is closed to +∞. This is because for x > 0, all fractional power series of x are real

numbers, and so λ∗(x) is not a real number. In order to consider the real locus of f(x, y) = 0
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for x < 0, we must take the real roots of f(x, y) : = f(−x, y).

Let
∂f

∂y
(x, y) = a0d

d−1∏
i=1

(y − λi(x)),

where λi(x), i = 1, 2, · · · , d− 1, are Puiseux’s roots at infinity of
∂f

∂y
(x, y).

We will consider the domain x > 0 and x < 0 separately. Assume that x > 0, we denote

P(f) = {λ1(x), · · · , λd(x)}

and

P(
∂f

∂y
) = {λ1(x), · · · , λd−1(x)}

the set of Puiseux’s roots at infinity of f and of
∂f

∂y
, respectively.

For g ∈ {f, ∂f
∂y
, f ,

∂f

∂y
}, we denote PR(g) the set of all real roots at infinity of g.

Let ψ(x) be a fractional power series,

ψ(x) = b0x
ρ + o(xρ)

where b0 6= 0. Then the exponent ρ will be called the order of ψ at infinity and we will denote

it by v(ψ(x)).

Proposition 5.1. The following statements are equivalent

(i) There are no sequences (xk, yk), xk > 0 of the first type of f w.r.t. V1;

(ii) There are no λ(x) ∈ PR(
∂f

∂y
) such that

v(f(x, λ(x))) < 0;

and

min
λ∈PR(f)

v(λ(x)− λ(x)) ≥ 0.

Proposition 5.2. The following statements are equivalent

(i) There are no sequences (xk, yk), xk > 0 of the second type of f w.r.t. V1;

(ii) There are no λ(x) ∈ PR(
∂f

∂y
) such that

v(f(x, λ(x))) ≤ 0;

and

min
λ∈PR(f)

v(λ(x)− λ(x)) > 0.
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Proposition 5.3. Two conditions are equivalent

(i)

f∗ = inf
(x,y)∈V1

|f(x, y)| > 0;

(ii) f−1(0) ∩
(
∂f

∂y

)−1
(0) = ∅ and there are no λ(x) ∈ PR(

∂f

∂y
) ∪ PR(

∂f

∂y
) such that

v(f(x, λ(x)) < 0, if λ(x) ∈ PR(
∂f

∂y
)

and

v(f(x, λ(x)) < 0, if λ(x) ∈ PR(
∂f

∂y
).

The following facts help us to know which form of 4 form (a) - (d) of Theorem 3.3 will have

the global  Lojasiewicz inequality.

Proposition 5.4. Two conditions are equivalent

(i) The function dist(x, f−1(0)) is unbounded on V1;

(ii) There is λ(x) ∈ PR(
∂f

∂y
) ∪ PR(

∂f

∂y
) such that

min
λ(x)∈PR(f)

{v(λ(x)− λ(x))} > 0, if λ(x) ∈ PR(
∂f

∂y
)

and

min
λ(x)∈PR(f)

{v(λ(x)− λ(x))} > 0, if λ(x) ∈ PR(
∂f

∂y
).

Similarly, replacing f(x, y),PR(f) and PR(
∂f

∂y
) respectively by f(x, y) = f(−x, y),PR(f) and

PR(
∂f

∂y
) in Propositions 5.1 and 5.2, we obtain the criterion for the non-existence of sequences

(xk, yk), xk < 0, of the first and the second types of f, w.r.t. V1.

The proof of Propositions 5.1, 5.2, 5.3 and 5.4 follows from

Lemma 5.5. Let λ(x) ∈ PR(
∂f

∂y
) and λ(x) ∈ PR(f). Let

Vλ : = {(x, y) ∈ R2|x > 0, y = λ(x)}.

Then

dist((x, λ(x)), Vλ) � xv(λ(x)−λ(x)),
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i.e. there are c1 > 0 and c2 > 0 such that the inequalities

c1x
v(λ(x)−λ(x)) ≤ dist((x, λ(x)), Vλ) ≤ c2x

v(λ(x)−λ(x))

holds for x > 0 sufficiently large.

Proof. For r > 0 sufficiently large, we denote

U : = {(x, y) ∈ R2|x > r}.

Let λ(x) = bxρ + o(xρ), for x > 0 sufficiently large, with b 6= 0. Since λ(x) ∈ PR(f), ρ ≤ 1.

Firstly, assume that ρ < 1. Consider the map

φ : U → U, (x, y) 7→ (x, y − λ(x)).

We will prove that φ is a bilipschitz mapping, i.e. there exist c1 > 0 and c2 > 0 such that

c1 ‖ φ(x, y)− φ(x0, y0) ‖l1≤‖ (x, y)− (x0, y0) ‖l1≤ c2 ‖ φ(x, y)− φ(x0, y0) ‖l1 ,

for all (x, y) and (x0, y0) from U.

We have

‖ φ(x, y)− φ(x0, y0) ‖l1= |x− x0|+ |y − y0 + λ(x0)− λ(x)|

≤ |x− x0|+ |y − y0|+ |λ(x)− λ(x0)|.

Since λ(x) = bxρ + o(xρ) with ρ < 1, it is easy to see that

|λ(x)− λ(x0)| ≤
1

2
|x− x0|

if x and x0 sufficiently large. Hence

‖ φ(x, y)− φ(x0, y0) ‖l1≤
3

2
(|x− x0|+ |y − y0|) =

3

2
‖ (x, y)− (x0, y0) ‖l1 .

Conversly

‖ φ(x, y)− φ(x0, y0) ‖l1≥ |x− x0|+ |y − y0| − |λ(x)− λ(x0)|

≥ |x− x0|+ |y − y0| −
1

2
|x− x0| ≥

|x− x0|+ |y − y0|
2

=
1

2
‖ (x, y)− (x0, y0) ‖l1 .

Hence, φ is bilipschitz if ρ < 1.

Assume now that

λ(x) = bx+ λ̂(x)
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where b 6= 0 and λ̂(x) = b1x
ρ1 + o(xρ1), with ρ1 < 1 and |x| sufficiently large.

Put

φ1 : U → U, (x, y) 7→ (x, y − bx)

and

φ2 : U → U, (x, y) 7→ (x, y − λ̂(x))

Clearly, φ1 is a bilipschitz equivalent. Since ρ1 < 1, φ2 is also a bilipschitz equivalent. Therefore,

the map φ = φ2 ◦ φ1 is a bilipschitz equivalent. Then we have

dist((x, λ(x)), Vλ) � dist(φ(x, λ(x)), φ(Vλ)).

Moreover, since

φ(Vλ) = {(u, v) ∈ R2|u > r, v = 0}

and

φ((x, λ(x))) = (u, λ(u)− λ(u)) = (x, λ(x)− λ(x)).

we have

dist(φ(x, λ(x)), φ(Vλ)) � |λ(x)− λ(x)| � xv(λ(x)−λ(x))

and Lemma 5.5 is proved.

Remark 5.6. Theorem 3.3 and Propositions 5.1, 5.2 provide the following method of checking

for the existence of the global  Lojasiewicz inequality of polynomials in two variables.

• We compute the real roots at infinity of f(x, y),
∂f

∂y
(x, y) and of f(x, y) and

∂f

∂y
(x, y).

• Next, we verify if the conditions (ii) in Propositions 5.1 and 5.2 holds or not. If they hold,

then f has the global  Lojasiewicz inequality.

6 Computation of the  Lojasiewicz exponents

In this section we will compute explicitly the exponents L0(V1), L∞(V1) and L0(f), L∞(f),

where f is a polynomial in two variables. We will keep all the notations of Section 5.

6.1 Computation of L0(V1) and L∞(V1)

We start with the computation of L∞(V1). We denote by P∞R (
∂f

∂y
) (resp., P∞R (

∂f

∂y
)) the set of

all λ(x) ∈ PR(
∂f

∂y
) (resp., λ ∈ PR(

∂f

∂y
)) such that

min
λ∈PR(f)

v(λ(x)− λ(x)) > 0
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(
resp., min

λ∈PR(f)
v(λ(x)− λ(x)) > 0

)

Let λ ∈ P∞R (
∂f

∂y
) ∪ P∞R (

∂f

∂y
).

We put

D+(λ) =


1 if λ ∈ P∞R (

∂f

∂y
) and PR(f) = ∅

minλ∈PR(f) v(λ(x)− λ(x)) if λ ∈ P∞R (
∂f

∂y
) and PR(f) 6= ∅

and

D−(λ) =


1 if λ ∈ P∞R (

∂f

∂y
) and PR(f) = ∅

minλ∈PR(f)
v(λ(x)− λ(x)) if λ ∈ P∞R (

∂f

∂y
) and PR(f) 6= ∅

We also put

L+
∞(λ) : =

v(f(x, λ(x))

D+(λ)
, if λ ∈ P∞R (

∂f

∂y
);

and

L−∞(λ) : =
v(f(x, λ(x))

D−(λ)
, if λ ∈ P∞R (

∂f

∂y
);

L+
∞(V1) : = min{L+

∞(λ)| λ ∈ P∞R (
∂f

∂y
)};

L−∞(V1) : = min{L−∞(λ)| λ ∈ P∞R (
∂f

∂y
)}.

Theorem 6.1. If f has no sequences of the second type w.r.t. V1 and if the set P∞R (
∂f

∂y
) ∪

P∞R (
∂f

∂y
) is not empty then the minimum of L+

∞(V1) and L−∞(V1) is a positive rational number

and equal to L∞(V1).

Proof. The proof of Theorem 6.1 follows from definitions of L+
∞(V1), L−∞(V1) and Lemma 5.5.

We have seen that the computation of L∞(V1) is a problem purely ”at infinity”. This exponent

can be expressed in terms of the Puiseux roots at infinity of f and
∂f

∂y
. For computing the

exponent L0(V1), the Puiseux roots at infinity are not enough and we have to use also the

Puiseux series of f and of
∂f

∂y
at the points of intersections of the curves {∂f

∂y
= 0} and {f = 0}.

We recall that

L0(V1) = inf{α||f(x)| ≥ c.dist(x, f−1(0))α for some c > 0
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and ∀(x, y) ∈ {(x, y) ∈ R2||f(x, y)| < δ} ∩ V1}.

Firstly, we compute the  Lojasiewicz exponent of f in the domain

{(x, y) ∈ R2|, |f(x, y)| < δ, |x| > r} ∩ V1,

where r is sufficiently large, and δ is sufficiently small.

For λ ∈ PR(
∂f

∂y
) ∪ PR(

∂f

∂y
), we put

D+(λ) : = min
λ∈PR(f)

v(λ(x)− λ(x)) if λ ∈ PR(
∂f

∂y
);

D−(λ) : = min
λ∈PR(f)

v(λ(x)− λ(x)) if λ ∈ PR(
∂f

∂y
).

L+
0,∞(λ) : =

v(f(x, λ(x)))

D+(λ)

L−0,∞(λ) : =
v(f(x, λ(x)))

D−(λ)

Let us denote by P0
R(
∂f

∂y
) (resp.,P0

R(
∂f

∂y
) ) the set of all λ(x) ∈ PR(

∂f

∂y
), (resp., λ(x) ∈ PR(

∂f

∂y
))

such that v(f(x, λ(x))) < 0, (resp.,v(f(x, λ(x))) < 0).

For λ ∈ P0
R(
∂f

∂y
) ∪ P0

R(
∂f

∂y
), we put

L+
0,∞(V1) : = max{L+

0,∞(λ)| λ ∈ P0
R(
∂f

∂y
)};

L− +0,∞ (V1) : = max{L−0,∞(λ)| λ ∈ P0
R(
∂f

∂y
)}.

Theorem 6.2. Assume that there are no sequences of the first type of f w.r.t.V1 then the

following statements hold

(i) If P0
R(
∂f

∂y
) is not empty, then there exist c > 0, r > 0 and δ > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))L
+
0,∞(V1),

for all (x, y) ∈ {(x, y) ∈ R2||f(x, y)| < δ, x > r} ∩ V1.
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(ii) If P0
R(
∂f

∂y
) is not empty, then there exist c > 0, r > 0 and δ > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))L
−
0,∞(V1),

for all (x, y) ∈ {(x, y) ∈ R2||f(x, y)| < δ, x < −r} ∩ V1.

(iii) If there are no sequences of the first type of f w.r.t.V1 and the set P0
R(
∂f

∂y
) ∪ P0

R(
∂f

∂y
) is

not empty, then there exist c > 0, δ > 0 and r > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))L0,∞(V1)

for all (x, y) ∈ V1 ∩ {(x, y) ∈ R2||f(x, y)| < δ, |x| > r},

where L0,∞(V1) = max{L+
0,∞(V1),L−0,∞(V1)}.

Proof. This follows from definitions of the exponents L+
0,∞(V1), L−0,∞(V1) and Lemma 5.5.

Now, let c, δ, and r be as in Theorem 6.2, (iii). Then, we see that

V1 ∩ {(x, y) ∈ R2||f(x, y)| ≤ δ, |x| ≤ r} = S1 ∪ S2 ∪ · · · ∪ Sk,

where Si, i = 1, 2, · · · , k, are compact semi-algebraic curves.

Let A be the set of all isolated points in the intersection of set S1 ∪ S2 ∪ · · · ∪ Sk and f−1(0).

Clearly, we can choose δ and r such that each of points of A is contained in the interior of the

set

{(x, y) ∈ R2||f(x, y)| < δ, |x| ≤ r}.

Let ε > 0 sufficiently small such that each ball B(A, ε) = {(x, y) ∈ R2| ‖ (x, y)−A ‖< ε}, A ∈ A,
is contained in the interior of the set {|x| < r, |f(x, y)| ≤ δ}.
We define

L0(A, V1) = inf{α > 0||f(x, y)| ≥ c.dist((x, y), f−1(0))α

for all (x, y) ∈ V1 ∩B(A, ε) with some c > 0}.

By the classical  Lojasiewicz inequality, the exponent L0(A, V1) is well defined.

With the notations above, we have

Proposition 6.3.

L0(V1) = max{L0,∞(V1),L0(A, V1)|A ∈ A}.

Proof. This fomula is a consequence of the following facts
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(i) In the domain

{(x, y) ∈ R2||f(x, y)| ≤ δ, |x| ≥ r} ∩ V1.

we have

|f(x, y)| ≥ c.dist((x, y), f−1(0))L0,∞(V1)

(ii) In each domain V1 ∩B(A, ε), A ∈ A, we have

|f(x, y)| ≥ c.dist((x, y), f−1(0))L0(A,V1)

(iii) Moreover, the exponents L0,∞(V1) and L0(A, V1) are best possible.

(iv) There exist ρ > 0 such that |f(x, y)| > ρ, provided

(x, y) ∈ {(x, y) ∈ R2||f(x, y)| < δ, |x| ≤ r} ∩ V1 \
⋃
A∈A

B(A, ε).

Thus, to compute L0(V1), it rests to compute the exponents L0(A, V1), A ∈ A.
Computation of L0(A, V1), with A ∈ A.
We will work in the following situation. Given polynomials f(x, y) and φ(x, y). Let A be an

isolated point of f−1(0) ∩ φ−1(0). It is required to compute

L0(A, φ
−1(0)) = inf{α > 0||f(x, y)| ≥ c.dist((x, y), f−1(0))α,

for all (x, y) closed to A and (x, y) ∈ φ−1(0)}.
The computation of exponents L0(A, φ

−1(0)) is carrying out in two steps.

Step 1: We compute L0(A, φ
−1(0)), with the assumption that the polynomials f(x, y) and φ(x, y)

satisfy the following condition

(i) A = (0, 0);

(ii)
∂mf

∂ym
(0, 0) 6= 0, where m is the multiplicity of f at the point (0, 0);

(iii)
∂lφ

∂yl
(0, 0) 6= 0, where l is the multiplicity of φ at the point (0, 0).

With these conditions, locally in a neighborhood of (0, 0) ∈ C, the polynomials f(x, y) and

φ(x, y) can be factorized as follows

f(x, y) = u(x, y)
m∏
j=1

(y − λj(x))

φ(x, y) = v(x, y)
l∏

i=1

(y − λi(x))
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where u(0, 0) 6= 0 and v(0, 0) 6= 0, λj(x) and λi(x), j = 1, 2, · · · ,m; i = 1, 2, · · · , l are fractional

power series of the form

λj(x) = bj1x
pj1
m + bj2x

pj2
m + · · ·

λi(x) = ci1x
qi1
l + ci2x

qi2
l + · · ·

Here pjk ∈ N, qik ∈ N, k = 1, 2, · · · and pj1 < pj2 < · · · , qi1 < qi2 < · · · . The series λj(t
m)

and λi(t
l), j = 1, 2, · · · ,m; i = 1, 2, · · · , l converge in a small disk centered in (0, 0). (See, for

example [W]).

It is important to note that Condition (ii) implies that
pj1
m
≥ 1, for all j ∈ {1, 2, · · · ,m}.

The series λ1(x), λ2(x), · · · , λm(x) and λ1(x), λ2(x), · · · , λl(x) are called Puiseux’s roots at (0, 0)

of f and φ, respectively.

As in the case of Puiseux’s roots at infinity, a Puiseux’s root λ(x) is called real at (0, 0) if all

the coefficients of λ(x) are real numbers.

Notation: Let f(x, y) : = f(−x, y) and φ(x, y) : = φ(−x, y).

Let g(x, y) ∈ {f, φ, f , φ}. We denote by PR(g, 0) the set of all real Puiseux’s roots of g at (0, 0).

For λ(x) ∈ PR(φ, 0) ∪ PR(φ, 0), we put

D+(λ, 0) : = max
λ∈PR(f)

(v(λ(x)− λ(x))) if λ(x) ∈ PR(φ, 0);

D−(λ, 0) : = max
λ∈PR(f)

(v(λ(x)− λ(x))) if λ(x) ∈ PR(φ, 0).

L+((0, 0), λ) =
v(f(x, λ(x)))

D+(λ, 0)
, if λ ∈ PR(φ, 0);

L−((0, 0), λ) =
v(f(x, λ(x)))

D−(λ, 0)
, if λ ∈ PR(φ, 0).

Finally, we put

L+((0, 0), φ−1(0)) : = max
λ(x)∈PR(φ,0)

L+((0, 0), λ)

and

L−((0, 0), φ−1(0)) : = max
λ(x)∈PR(φ,0)

L−((0, 0), λ)

Proposition 6.4. Assume that

(i) A = (0, 0);

(ii)
∂mf

∂ym
(0, 0) 6= 0, where m is the multiplicity of f at the point (0, 0);

(iii)
∂lφ

∂yl
(0, 0) 6= 0, where l is the multiplicity of φ at the point (0, 0).
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Then we have

L0(A, φ
−1(0)) = max{L+((0, 0), φ−1(0)),L−((0, 0), φ−1(0))}.

Proposition 6.4 follows from the definitions of the exponents L+((0, 0), φ−1(0)),L−((0, 0), φ−1(0))

and the following analog of Lemma 5.5.

Lemma 6.5. Assume that

(i) (0, 0) ∈ f−1(0) ∩ φ−1(0);

(ii)
∂mf

∂ym
(0, 0) 6= 0, where m is the multiplicity of f at the point (0, 0).

Let λ(x) ∈ PR(φ, 0) and λ(x) ∈ PR(f, 0). Then, for all x sufficiently close to 0, we have

dist((x, λ(x)), Vλ) � xv(λ(x)−λ(x)),

where

Vλ : = {(x, y) ∈ R2|y = λ(x)}.

Proof. Since
∂mf

∂ym
(0, 0) 6= 0 and m is the multiplicity of f at the point (0, 0), if λ(x) is a Puiseux

root of f at (0, 0), then

λ(x) = bx
p
m + o(x

p
m )

with
p

m
≥ 1. Using this fact, the proof of lemma 6.5 is completely analogous to that of lemma

5.5.

Step 2: Let us consider the general case: A is an isolated point of f−1(0) ∩ φ−1(0), not

necessarily coincided to (0, 0). Let denote m and l respectively the multiplicity of f and of φ at

A.

The following lemma is evident

Lemma 6.6. There exists an affine isomorphism

L : R2 → R2, (x, y) 7→ L(x, y) = (u, v) such that

(i) L(A) = (0, 0);

(ii) If we denote by f0 = f ◦ L−1 and φ0 = φ ◦ L−1, then
∂mf0
∂vm

(0, 0) 6= 0 and
∂lφ0

∂vl
(0, 0) 6= 0.

Lemma 6.7. Let L, f0 and φ0 be as in Lemma 6.6. Then we have

L0(A, φ
−1(0)) = L0((0, 0), φ−10 (0)).
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Proof. It is easy to see that the following statement hold

(i) There exist c1 > 0 and c2 > 0 such that

‖ z − z′ ‖≤ c1 ‖ L(z)− L(z′) ‖,

and

‖ z − z′ ‖≤ c2 ‖ L−1(z)− L−1(z′) ‖,

for all z, z′ ∈ R2;

(ii) The maps

L−1 : f−10 (0)→ f−1(0)

L−1 : φ−10 (0)→ φ−1(0)

are bijections.

Now, firstly, we show that

L0((0, 0), φ−10 (0)) ≤ L0(A, φ
−1(0)).

Let ρ be any number such that

ρ > L0(A, φ
−1(0)).

Let w be an abritrary point of φ−10 (0), closed to (0, 0). Then,

dist(w, f−10 (0)) ≤‖ w − w′ ‖

for any w′ ∈ f−10 (0). Since L is a bijection, the above inequality follows that

dist(w, f−10 (0)) ≤‖ w − L(z′) ‖,

for all z′ ∈ f−1(0). Hence, we have

dist(w, f−10 (0)) ≤‖ L(L−1(w))− L(z′) ‖≤ c1 ‖ L−1(w)− z′ ‖

provided z′ ∈ f−1(0). Hence, we obtain

dist(w, f−10 (0)) ≤ c2.dist(L
−1(w), f−1(0)).

Since L−1(w) ∈ φ−1(0) and by assumption ρ > L0(A, φ
−1(0)), we have

dist(w, f−10 (0)) ≤ c2.dist(L
−1(w), f−1(0)) ≤ c.|f(L−1(w))|

1
ρ = c.|f0(w)|

1
ρ ,
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for each w close to (0, 0). This means that L0((0, 0), φ−10 (0)) ≤ ρ. Since this holds for any

ρ > L0(A, φ
−1(0)) we conclude that

L0((0, 0), φ−10 (0)) ≤ L0(A, φ
−1(0)).

The proof of the converse inequality

L0(A, φ
−1(0)) ≤ L0((0, 0), φ−10 (0))

is similar.

Now, using Lemma 6.6 and Lemma 6.7, for f and φ =
∂f

∂y
, we can compute the exponent

L0(Aj, V1), j = 1, 2, · · · , k. Thus, the exponent L(V1) is computed.

6.2 Computation of L0(f)

Let

L0(f) : = inf{ρ > 0|∃c > 0, δ > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))ρ

for (x, y) ∈ R2, f(x, y)| ≤ δ};

L0,∞(f) : = inf{ρ > 0|∃c > 0, δ > 0, r > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))ρ

for (x, y) ∈ R2, |x| > r, f(x, y)| ≤ δ};

L0,0(f) : = inf{ρ > 0|∃c > 0, δ > 0, r > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))ρ

for (x, y) ∈ R2, |x| ≤ r, f(x, y)| ≤ δ}.

Clearly

L0(f) = max{L0,∞(f),L0,0(f)}

The computation of L0,0(f) is based on the work of Kuo [Ku]. Firstly, we note that if f−1(0)

has no singular points in the set {(x, y) ∈ R2||f(x, y)| < δ, |x| ≤ r}, then

L0,0(f) = 1.
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If f−1(0) has singular points in this domain, then

L0,0(f) = max{L(f, A)| A is a singular point of f−1(0)},

where L(f, A) is the  Lojasiewicz exponent of f at A, i.e.

L(f, A) : = inf{ρ > 0|∃c > 0, ε > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))ρ

for all (x, y) ∈ R2, ‖ (x, y)− A ‖≤ ε}.

The exponent L(f, A) can be computed explicitly by Kuo’s formula [Ku]. It seems that this

formular well-known, so we prefer do not to go in details.

The exponent L0,∞(f) was computed in [VD]. We will recall this formula.

Let λi(x) ∈ P(f) \ PR(f)

λi(x) = a1x
α1 + · · ·+ as−1x

αs−1 + asx
αs + · · ·

where α1 > α2 > · · · and as ∈ C.
Assume that a1, a2, · · · , as−1 ∈ R and as /∈ R, then the series

λRi (x) : = a1x
α1 + · · ·+ as−1x

αs−1 + cxαs

where c /∈ R and c is generic is called the real appoximation of λi(x).

Let λi(x), λj(x) ∈ P(f) \ PR(f) and

ρij = v(λRi (x)− λRj (x))

Let

λRi (x) = a1x
α1 + · · ·+ at−1x

αt−1 + axρij + o(xρij)

λRj (x) = a1x
α1 + · · ·+ at−1x

αt−1 + bxρij + o(xρij)

We put

λRij(x) = a1x
α1 + · · ·+ at−1x

αt−1 + cxρij

where c is a generic real number. We put

D(λRij) =

1 , if PR(f) = ∅

minλ∈PR(f) v(λ(x)− λRij(x)), if PR(f) 6= ∅

and

L(λRij) =
v(f(x, λRij(x)))

D(λRij)

Let λ(x) ∈ PR(f). We denote t(λ) the multiplicity of λ as a root of the equation f(x, λ(x)) = 0.

Put t(f) = max{t(λ)|λ ∈ PR(f)}
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Proposition 6.8. ([VD], Theorem 2.5)

If f has no sequences (xk, yk), xk > 0, of the first type, then L+
0,∞(f) > 0 and

L+
0,∞(f) = inf{α > 0|∃c > 0, δ > 0, r > 0 such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))α

for all (x, y) ∈ {(x, y) ∈ R2, x > r, |f(x, y)| < δ}}

= max{t(f), L(λRij) | v(f(x, λRij(x)) < 0}

where λi and λj run through all elements of the set P(f) \ PR(f).

Similary, for P(f) \ PR(f), f(x, y) = f(−x, y), we can define the exponent L−0,∞(f).

We have

L0,∞(f) = max{L+
0,∞(f),L−0,∞(f)}

i.e. L0,∞(f) can be computed via the real approximations of Puiseux’s roots at infinity of f and

f. The exponent L0(f) is computed.

6.3 Computation of L∞(f)

We need

Lemma 6.9. ([VD], Proposition 2.7) Let f : R2 → R be a polynomial function of the form

f(x, y) = a0y
d + a1(x)yd−1 + · · ·+ ad(x).

where d = degf. Then there are c, R, r > 0 and ρ ∈ R such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))ρ,

for all (x, y) ∈ {(x, y) ∈ R2||x| > r, dist((x, y), f−1(0)) > R}.
Moreover, if L̂∞(f) denotes the suppremum of the exponent ρ satisfying this inequality, then

L̂∞(f) = min{L(λRij)|D(λRij) > 0}

where λi and λj are Puiseux roots at infinity of f and f, and either λi, λj ∈ P(f) \ PR(f) or

λi, λj ∈ P(f) \ PR(f).

Lemma 6.10. If f has no sequences of the first and the second types, then

L∞(f) = L̂∞(f)
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Proof. Since there are no sequences of the second type, L̂∞(f) > 0 and

|f(x, y)| ≥ c.dist((x, y), f−1(0))L̂∞(f)

for all (x, y) ∈ R2 such that |x| > r and dist((x, y), f−1(0)) > R.

Since there are no sequences of the first type we have

f̂∗ : = inf{|f(x, y)||1 ≤ dist((x, y), f−1(0)) ≤ R} > 0.

Hence, we can extend the inequality (28) to a larger domain and get

|f(x, y)| ≥ c.dist((x, y), f−1(0))L̂∞(f)

for all (x, y) ∈ R2 such that |x| > r and dist((x, y), f−1(0)) > 1.

Now, equality L∞(f) = L̂∞(f) is a consiquence of Proposition 4.2.

7 Non-degenerate polynomials at infinity

In this section we study the global  Lojasiewicz inequality for polynomials in two variables, which

are non-degenerate w.r.t. the Newton part at infinity of their Newton polygons.

As before let

f(x, y) = a0y
d + a1(x)yd−1 + · · ·+ ad(x),

with d = degf.

To define the Newton polygon of f, we write f in the form

f(x, y) =
∑
i+j≤d

cijx
iyj.

We put

supp(f) : = {(i, j)|cij 6= 0},

the support of f and

Γ(f) = co(supp(f)),

the convex hull of supp(f).

According to [K], [AGV], we will call Γ(f) the Newton polygon of f. Clearly, the point (0, d) is

a vertex of Γ(f) (the highest ones). Moreover, Γ(f) is situated lower the line

L : i+ j = d

Let denote by ∂Γ(f) the boundary of Γ(f). We denote by σ∗ the edge of ∂Γ(f) which is the

nearest ones to the line L (hence, σ∗ contains the point (0,d) as one of its vertex). We denote

(a∗∗, b∗∗) the vertex of Γ(f) such that

b∗∗ = min{b|∃a such that (a, b) ∈ Γ(f)}
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i.e, (a∗∗, b∗∗) is the lowest vertex of Γ(f).

Let σ1, σ2, · · · , σk−1, σk be the sequence of edges of ∂Γ(f) such that

σ1 = σ∗

(a∗∗, b∗∗) ∈ σk

and

σi ∩ σi+1 6= ∅, i = 1, · · · , k − 1

We put

∂∞Γ(f) = {σ1, σ2, · · · , σk−1, σk}.

Definition 7.1. The set ∂∞Γ(f) is called the Newton part at infinity of f.

Remark 7.2. Usually, (see [K], [AGV]), for studying the behavior of f in a neighborhood of the

infinity, one uses the notion of the Newton diagram at infinity of f, which is defined as follows.

Let Γ∞(f) denote the convex hull of the union supp(f)∪{(0, 0)}. Let ∂(Γ∞(f)) be the boundary

of Γ∞(f). Then, by definition, the Newton diagram at infinity of f, denoted by D(Γ∞(f)), is

the union of all edges of ∂Γ∞(f), which do not contain the origin.

It is easy to see that if f is convenient, i.e. if Γ(f) intersects all the coordinate axises in points

different from the origin, then

∂∞(Γ(f)) = D(Γ∞(f)).

But in general, these two sets are different. We can see this on the following example. Let

f(x, y) = y14 + x4y10 + x8y4 − 2x5y3 + x2y2 + y4,

then

D(Γ∞(f)) = σ1 ∪ σ2

and

∂∞(Γ(f)) = σ1 ∪ σ2 ∪ σ3,

where σ1 = [(0, 14), (4, 10)], the edge joining the points (0, 14) and (4, 10), and σ2 = [(4, 10), (8, 4)], σ3 =

[(8, 4), (2, 2)].

For σ ∈ ∂∞(Γ(f)) we put

fσ(x, y) =
∑

(i,j)∈σ

aijx
iyj.

For each edge σ = [(a1, b1), (a2, b2)] with b1 > b2, we put

d(σ) = b1 − b2
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and

v(σ) =
a2 − a1
b1 − b2

Definition 7.3. We say that f is non-degenerate w.r.t the Newton part at infinity of f (f is

non-degenerate at infinity, for short), if the following condition holds: for any σ ∈ ∂∞(Γ(f)),

the system
∂fσ
∂x

(x, y) =
∂fσ
∂y

(x, y) = 0

has no solutions in (R \ 0)2.

Lemma 7.4. The following statements hold

(i) d = d(σ1) + · · ·+ d(σk) + b∗∗;

(ii) 1 ≥ v(σ1) > v(σ2) > · · · > v(σk);

(iii) y = 0 is the Puiseux root at infinity of f, with multiplicity b∗∗;

(iv) For i ∈ {1, 2, · · · , k}, there are exactly d(σi) Puiseux’s roots at infinity (counting with

multiplicities), each of the roots is of the form

y(x) = c.xv(σi) + o(xv(σi))

where c is a non-zero root of the polynomial hσi(u) : = fσi(1, u).

(v) If f is non-degenerate at infinity, then the polynomial hσi(u) has no non-zero real root of

multiplicity ≥ 2.

Proof. The statement (i)-(iii) are straightforward. Statement (iv) is well-known. We will prove

(v).

Since fσi(x, y) is a quasi-homogeneous polynomial, i.e. there are p, q and m ∈ Z, such that

ip+ jq = m

for any (i, j) ∈ supp(fσi). It is easy to show that fσi(x, y) can be written in the form

fσi(x, y) = xρ1yρ2
(
x
−p
q y − c1

)(
x
−p
q y − c2

)
· · ·
(
x
−p
q y − cs

)
where c1, c2, · · · , cs are non-zero roots of polynomial hσ(u) = fσ(1, u).

By contradiction, assume that hσ(u) has c as a non-zero real root of multiplicity ≥ 2, i.e. fσi

has
(
x
−p
q y − c

)2
as a factor with c ∈ {R \ 0}.

Then, the point (1, c) ∈ (R \ 0)2 is a root of the system

∂fσ
∂x

(x, y) =
∂fσ
∂y

(x, y) = 0,

a contradiction.
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Let us describe the Newton part at infinity of
∂f

∂y
, which we denote by ∂∞(Γ(

∂f

∂y
)). Assume

that

∂∞(Γ(f)) = {σ1, σ2, · · · , σk}

denotes the Newton part at infinity of f, where σ1 = [(0, d), (a1, b1)], σ2 = [(a1, b1), (a2, b2)], · · · , σk−1 =

[(ak−2, bk−2), (ak−1, bk−1)] and σk = [(ak−1, bk−1), (a∗∗, b∗∗)].

It is easy to see that the first (k − 1) edges of ∂∞(Γ(
∂f

∂y
)) are σ′1, σ

′
2, · · · , σ′k−1, where σ′1 =

[(0, d−1), (a1, b1−1)], σ′2 = [(a1, b1−1), (a2, b2−1)], · · · , σ′k−1 = [(ak−2, bk−2−1), (ak−1, bk−1−1)].

Clearly, d(σ′i) = d(σi) and v(σ′i) = v(σi), i = 1, 2, · · · , k − 1.

Next, if the edge σk = [(ak−1, bk−1), (a∗∗, b∗∗)] with b∗∗ ≥ 1, then the k − th edge of ∂∞(Γ(
∂f

∂y
))

will be σ′k = [(ak−1, bk−1 − 1), (a∗∗, b∗∗ − 1)] and

∂∞(Γ(
∂f

∂y
)) = {σ′1, σ′2, · · · , σ′k}.

Clearly, d(σ′k) = d(σk) and v(σ′k) = v(σk).

If b∗∗ = 0, then ∂∞(Γ(
∂f

∂y
)) can has k − 1, k or more edges. The fact which is most important

for our further investigation is the following

Claim: If

∂∞(Γ(
∂f

∂y
)) = {σ′1, σ′2, · · · , σ′k−1, σ′k, σ′k+1, · · · , σ′s},

then for i ≥ k, we have

v(σ′i) ≤ v(σk).

Proof. This follows from the construction of ∂∞(Γ(
∂f

∂y
)).

Lemma 7.5. Assume that f is non-degenerate at infinity and λi0(x) ∈ PR(
∂f

∂y
) is of the form

λi0(x) = c.xv(σ
′
i0
) + o(xv(σ

′
i0
))

then we have

v(f(x, λi0(x))) =

i0∑
l=1

d(σl)v(σl) +

[
k∑

m=i0+1

d(σm)

]
v(σi0) = ai0 +

[
k∑

m=i0+1

d(σm)

]
v(σi0)

if i0 ∈ {1, 2, · · · , k − 1}, where σi0 is the edge of ∂∞(Γ(f)), joining the points (ai0−1, bi0−1) and

(ai0 , bi0), and

v(f(x, λi0(x))) =
k∑
l=1

d(σl)v(σl) = a∗∗ if i0 ≥ k.
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Proof. Firstly, we show that if λ(x) ∈ PR(
∂f

∂y
), and λ(x) ∈ PR(f), then we have

v(λ(x)− λ(x)) = max{v(λ(x)), v(λ(x)} (21)

In fact, since λ(x) ∈ PR(
∂f

∂y
), and λ(x) ∈ PR(f), we see that λ(x) is of the form

λ(x) = c.xv(σ
′
i0
) + o(xv(σ

′
i0
))

for some σ′i0 ∈ ∂∞(Γ(
∂f

∂y
)), where c is a non-zero real root of the polynomial hσ′i0

(u) =

(
∂f

∂y

)
σ′i0

(1, u).

and

λ(x) = c′xv(σi) + o(xv(σi))

for some σi ∈ ∂∞(Γ(f)), where c′ is a non-zero root of the polynomial hσi(u) = fσi(1, u).

Clearly, if v(σ′i0) 6= v(σi), then (21) is true.

Assume that v(σ′i0) = v(σi), this happens if only if σ′i0 = σ′i, with i ∈ {1, 2, · · · , k}.
By contradiction, assume v(λ(x) − λ(x)) = max{v(λ(x)), v(λ(x)} = v(σi). This implies that

c = c′. Clearly, we have (
∂f

∂y

)
σ′i

=
∂fσi
∂y

.

Hence, the equality implies that c = c′, then

(
∂f

∂y

)
σ′i

(1, c) =
∂fσi
∂y

(1, c) = 0, which means that

the polynomial hσi(u) : = fσi(1, u) has non-zero real root of multiplicity ≥ 2. This contradict

Lemma 7.4, (v).

Lemma 7.5 follows easily from (21) and the following equality the proof of which is straighfoward:

i0∑
l=1

d(σl)v(σl) = ai0 .

Let us recall that f is convenient, if Γ(f) intersects both coordinate axises.

Theorem 7.6. Let f(x, y) be a polynomial which non-degenerate at infinity. Then the following

statements holds

(i) There exist r � 1 and ε > 0 such that

|f(x, y)| ≥ ε

for all (x, y) ∈ {(x, y) ∈ R2||x| ≥ r} ∩ V1;
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(ii) If, in addition, f is convenient, then

lim
(x,y)→∞,(x,y)∈V1

|f(x, y)| =∞.

Proof. The proof of Theorem 7.6 follows directly from lemma 7.5.

Corollary 7.7. (i) If f is non-degenerate at infinity, then f has no sequences of the first

type, or equivalently, the following  Lojasiewicz inequality near to the set f−1(0) exists:

|f(x, y)| ≥ c.dist((x, y), f−1(0))ρ

for all (x, y) ∈ {(x, y) ∈ R2||f(x, y)| < δ}, where c, ρ and δ are positive numbers.

(ii) If f is convenient and non-degenerate at infinity, then there are no sequences of the first

and the second types of f, or equivalently, there exist c > 0, α > 0 and β > 0 such that

|f(x, y)| ≥ min{dist((x, y), f−1(0))α, dist((x, y), f−1(0))β}

for all (x, y) ∈ R2.

Remark 7.8. Assertion (ii) of Corollary 7.7 was proved in [H1] for the case of abritrary dimen-

sion by a different method. Nevertheless, assertion (ii) of Theorem 7.6 is stronger than the fact

that there are no sequences of the first and the second types of f.

Theorem 7.9. If f is convenient and non-degenerate at infinity, then the exponient L0,∞(V1),L∞(V1),

L0,∞(f) and L∞(f) can be expressed in terms of the Newton part at infinity of f.

Proof. It follows from Lemma 7.5 and Section 6.1 that L0,∞(V1) and L∞(V1) can be expressed

in terms of d(σi), v(σi), i = 1, · · · , k.
The fact that the exponents L0,∞(f) and L∞(f) are determined in terms of d(σi), v(σi), i =

1, · · · , k follows from Sections 6.1 and 6.2, and Lemma 7.4 (v).

8 A version of Hörmander’s inequality

In [Hor], L. Hörmander proved the following version of the global  Lojasiewicz inequality

Theorem 8.1. ([Hor], Lemma 1 and Lemma 2).

Let f : Rn → R be a polynomial function. Then there exist c > 0, µ > 0, µ′ > 0 and µ′′ > 0 such

that

(i)

|f(x)| ≥ c.dist(x, f−1(0))µ

for all x ∈ {x ∈ Rn| ‖ x ‖< 1}.
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(ii)

(1+ ‖ x ‖)µ′|f(x)| ≥ c.dist(x, f−1(0))µ
′′

(22)

for all x ∈ {x ∈ Rn| ‖ x ‖≥ 1}.

Clearly, ones need the factor (1+ ‖ x ‖)µ′ for controlling the bad behavior of f at infinity,

which was caused by the existence of the first and the second types of f. Note that, the concrete

values of µ′ and µ′′ are not given in [Hor].

In this section, in the spirit of the Hörmander inequality, we propose, for the case n = 2, and

another version of the Hörmander inequality. In our formula,the exponent µ′′ is equal to 1, the

factor (1+ ‖ x ‖)µ′ also appears and the exponent µ′ will be given with a concrete value. This

value can be easily computed via the Puiseux’s roots at infinities of f and of
∂f

∂y
.

Since the factor (1+ ‖ x ‖)µ′ is needed only in the case when there are sequences of the first or

the second types of f, in this section that we will consider only this case. In other words, we

assume that the following set P∗ is not empty

P∗ : = P∗0 (
∂f

∂y
) ∪ P∗∞(

∂f

∂y
) ∪ P∗0 (

∂f

∂y
) ∪ P∗∞(

∂f

∂y
)

where

P∗0 (
∂f

∂y
) : = {λ ∈ PR(

∂f

∂y
)| v(f(x, λ(x)) < 0 and min

λ∈PR(f)
v(λ(x)− λ(x)) ≥ 0}

P∗∞(
∂f

∂y
) : = {λ ∈ PR(

∂f

∂y
)| v(f(x, λ(x)) ≤ 0 and min

λ∈PR(f)
v(λ(x)− λ(x)) > 0}

and f(x, y) = f(x, y)

P∗0 (
∂f

∂y
) : = {λ ∈ PR(

∂f

∂y
)| v(f(x, λ(x)) < 0 and min

λ∈PR(f)
v(λ(x)− λ(x)) ≥ 0}

P∗∞(
∂f

∂y
) : = {λ ∈ PR(

∂f

∂y
)| v(f(x, λ(x)) ≤ 0 and min

λ∈PR(f)
v(λ(x)− λ(x)) > 0}

Let λ ∈ P∗, we put

θ(λ) : = v(f(x, λ(x)) if λ ∈ P∗0 (
∂f

∂y
) ∪ P∗∞(

∂f

∂y
)

and

θ(λ) : = v(f(x, λ(x)) if λ ∈ P∗0 (
∂f

∂y
) ∪ P∗∞(

∂f

∂y
)

ρ(λ) : = min
λ∈PR(f)

{v(λ(x)− λ(x))} if λ ∈ PR(
∂f

∂y
)
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and

ρ(λ) : = min
λ∈PR(f)

{v(λ(x)− λ(x))} if λ ∈ PR(
∂f

∂y
)

We also put

ν(λ) = ρ(λ)− θ(λ)

Finally, we put

ν(f) = max
λ∈P∗

ν(λ)

Clearly, ν(f) > 0, since P∗ 6= ∅.

Theorem 8.2. Let

f(x, y) = a0y
d + a1(x)yd−1 + · · ·+ ad(x),

where d = degf. Then there exist µ > 0 and c > 0 such that

|f(x, y)|
1
µ + |f(x, y)|

1
d + (1 + |x|)ν(f)|f(x, y)| ≥ c.dist((x, y), f−1(0)) (23)

for all (x, y) ∈ R2.

Proof. Firstly we show that there exist µ > 0 and c1 > 0 such that

|f(x, y)|
1
µ + (1 + |x|)ν(f)|f(x, y)| ≥ c1.dist((x, y), f−1(0)) for all (x, y) ∈ V1. (24)

Let |x| ≥ r > 0, for r sufficiently large. Then (x, y) ∈ V1 if only if there exists λ(x) ∈

PR(
∂f

∂y
) ∪ PR(

∂f

∂y
) such that (x, y) = (x, λ(x)).

We see then

|f(x, y)| = |f(x, λ(x))| � |x|θ(λ)

and

dist((x, y), f−1(0)) = dist((x, λ(x)), f−1(0)) � |x|ρ(λ)

Hence, for any λ(x) ∈ PR(
∂f

∂y
) ∪ PR(

∂f

∂y
) we have, for some c1 > 0 :

|f(x, λ(x))|.(1 + |x|)ν(f) ≥ c1.dist((x, λ(x)), f−1(0))

or equivalently

|f(x, y)|(1 + |x|)ν(f) ≥ c1.dist((x, y), f−1(0)) (25)

for all (x, y) ∈ V1 ∩ {(x, y) ∈ R2||x| ≥ r}.
The set V1 ∩ {(x, y) ∈ R2||x| ≤ r} is compact. Hence, by the classical  Lojasiewicz inequality,

there exist µ > 0 and c2 > 0 such that

|f(x, y)| ≥ c2.dist((x, y), f−1(0))µ (26)
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for all (x, y) ∈ V1 ∩ {(x, y) ∈ R2||x| ≤ r}. Thus, (24) follows from (25) and (26).

As consequence, the desired inequality (23) holds true if (x, y) ∈ V1.
Now, let (x, y) be an abritrary point of R2 such that (x, y) /∈ f−1(0) ∪ V1. Then, by Lemma 3.2

there exists a point (x, y∗) ∈ R2 such that

(x, y∗) ∈ f−1(0) ∪ V1

|f(x, y)| ≥ |f(x, y∗)| (27)

and

‖ (x, y)− (x, y∗) ‖= |y − y∗| ≤ c3.|f(x, y)|
1
d (28)

with some c3 > 0. We have then

dist((x, y), f−1(0)) ≤ dist((x, y), (x, y∗)) + dist((x, y∗), f
−1(0))

Hence, using (26), (27), (28), we get

dist((x, y), f−1(0)) ≤ 1

c3
|f(x, y∗)|

1
d +

1

c2
|f(x, y∗)|

1
µ +

1

c1
|f(x, y∗)|(1 + |x|)ν(f)

≤ 1

c3
|f(x, y)|

1
d +

1

c2
|f(x, y)|

1
µ +

1

c1
|f(x, y)|(1 + |x|)ν(f).

This implies that desired inequality (23) holds true.

Clearly, the value ν(f), depending only of the behavior of f on V1, is not the smallest one’s

satisfying the inequality (22). In what follows we will give an another form of Hörmander’s

inequality, in which the factor (1 + |x|)ν will appear with the optimal value.

We still use the notation of 6.2 - 6.3 of section 6.

We put

L̂0,∞(f) : = max{t(f), L(λRij)|D(λRij) < 0}

H(f) : = max{D(λRij)− v(f(x, λRij(x)))|D(λRij) ≥ 0}

Lemma 8.3. The following statements hold

(i) There are c, R, δ, α > 0 satisfying the inequality

|f(x, y)| ≥ c.dist((x, y), f−1(0))α

for all ‖ (x, y) ‖≥ R, and dist((x, y), f−1(0)) < δ.

Moreover, L̂0,∞(f) is the infimum of the exponents α satisfying this inequality.
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(ii) If f has sequences of the first and the second types, then there are c, R, r > 0 and ν > 0

satisfying the inequality

(1+ ‖ (x, y) ‖)ν |f(x, y)| ≥ c.dist((x, y), f−1(0))

for all ‖ (x, y) ‖≥ R and dist((x, y), f−1(0)) ≥ r.

Moreover, H(f) > 0 and H(f) is the infimum of the exponents ν satisfying this inequality.

Proof. (i) is proved in [[VD], Proposition 2.6].

(ii) The proof of (ii) can done by the some method as in [[VD], Proposition 2.7].

Now, assume that c, R, δ be as in the Lemma 8.3. Let µ0 denote the  Lojasiewicz exponent of

f in the domain ‖ (x, y) ‖≤ R, i.e. µ0 is the smallest exponents α such that

|f(x, y)| ≥ c.dist((x, y), f−1(0))α,

for all ‖ (x, y) ‖≤ R.

We have

Theorem 8.4. If f has sequences of the first and the second types, then there exists c > 0 such

that

|f(x, y)|
1
µ0 + |f(x, y)|

1

L̂0,∞(f) + (1+ ‖ (x, y) ‖)H(f)|f(x, y)| ≥ c.dist((x, y), f−1(0)),

for all (x, y) ∈ R2.

Proof. It follows from Lemma 8.3
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