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This work is devoted to studying the global Lojasiewicz inequality of polynomial functions. The

classical local Lojasiewicz inequality says that if f: U — R is an analytic function in a bounded
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domain U C R", then there exist a > 0 and ¢ > 0 such that
|f(z)| > c.dist(z, f71(0))* for all x € U.

This deep result was born to solve one of the big problems of analysis (see [L], [Hor]). Later it
become an important tool for studying many other problems not only of analysis, but also of

algebra, geometry and other fields (see [T] and the references therein).

This inequality does not hold if instead of the bounded domain U, we take R”. If f: R” — R
is a polynomial function, in [DHT], the criterion for the existence of the global Lojasiewicz

inequality for f was given:
(i) There exist § > 0 and £y > 0 such that
|f(x)| > c.dist(z, F71(0))%, forall 2 € R, |f(z)| <6
if only if there are no sequences of the first type
2 — oo, |f(z")] = 0, dist(2", f71(0)) > My > 0;
(ii) There exist A > 0 and L, > 0 such that
|f(z)| > edist(x, f71(0))F>, forall z € R™,|f(z)| > A
if only if there are no sequences of the second type
¥ — oo, |f(z")| < M < +o0,dist(z", f71(0)) — +oo;
(iii) There exist ¢ > 0, Ly > 0 and L, > 0 such that
|f(2)| > c.min{dist(x, f71(0))*°, dist(z, f~1(0))*=} for all z € R" (1)
if only if there are no sequences of the first and the second type.
In this paper, we will call inequalities of type (1) the global Lojasiewicz inequalities of f.
Among other thing, in this paper we consider two following questions

(i) How to check, whether condition (iii) holds or not?

(i) How to compute the Lojasiewicz exponents?



We are able to give complete answers to these questions only for the case of two variables.

In the whole paper we assume that f: R™ — R is a polynomial of the form

floy, - wn) = agwy + ar(@)a ™ + - + aa(2) (2)
where d is the degree of f and each of a;(z’),i = 0,---,d is a polynomial (of degree < 7) in
= (xy,  ,Tpyq).

We always put
Vi: =A{z ER"’ﬁ = 0}.
ox,,

Our key observation is following: The set V; can be considered as a testing set for the existence
of the global Lojasiewicz inequality of f. That is, an inequality of forms (1) holds true for all
x € R if and only if an inequality of the same form (possibly with other exponents) holds for all
points x from the subset V; of R™. This fact is rather usefull for studying the global Lojasiewicz
inequality of polynomials, especially for the case of two variables.

Besides of Introduction, the paper consists of 7 sections. We begin our study with section
2, where the global Lojasiewicz inequality of f w.r.t. Vj is investigated. Depending on the
behavior of f on Vj, this inequality, if it exists, has one of 4 forms. Each of these forms clearly
indicates which one of the Lojasiewicz exponents is involved. Section 3 is devoted to the global
Lojasiewicz inequality of f. We will show that this inequality exists if and only if the global
Lojasiewicz inequality of f w.r.t.V; exists. This justifies the name of V; as "the testing set”
for the existence of the global Lojasiewicz inequality. Moreover, as in section 2, the global
Lojasiewicz inequality of f has also 4 forms, each of them is dictated by the corresponding one’s
of the global Lojasiewicz inequality of f w.r.t.V;. The Lojasiewicz exponents will be investigated
in section 4. It turns out that the Lojasiewicz exponents of the global Lojasiewicz inequality
possede two-sides estimation in terms of the Lojasiewicz exponents w.r.t. V; and the degree of
the polynomial. Moreover, we will indicate some cases, where the Lojasiewicz exponents of the
global Lojasiewicz inequality can be computed via the Lojasiewicz exponents w.r.t. Vi and the
degree. In section 5, the method of verifying whether the global Lojasiewicz inequality exists
or not will be proposed for the case of two variables. In section 6, for n = 2, we give explicit
formulas for the Lojasiewicz exponents in terms of Puiseux expansions. Section 7 deals with
polynomials in two variables, which are non-degenerate at infinity. In this case, it turns out
that the Lojasiewicz inequality near to the set f~1(0), i.e. in the domain {z € R"||f(x)| < §},0
sufficiently small, always exists, while the global Lojasiewicz inequality of f may exist on not. It
does exist, if, in addition, f is convenient. In this case, the Lojasiewicz exponents are computed
explicitly and they depend only the part at infinity of the Newton polygon of f. Let us present
breafly the content of section 8. In [Hor], Hormander proved the following: Let f : R™ — R be
a polynomial, then there exist ¢ > 0 and p > 0, ' > 0, 4” > 0 such that

|f(z)| > cdist(z, f7H(0))*, forall x € R" ||z ||< 1;
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and
(14 || z D™ f(z)| > edist(z, fFH0))*" for all z € R, | = ||> 1.

Clearly, the exponent p is the Lojasiewicz exponent of f in the domain || z ||< 1, and the factor
(1+ ||  |[)* in the left-hand side of the second inequality is needed for controlling the ”bad”
behavior of the function dist(x, f~1(0)), for || z || sufficiently large. We will propose, always for
n = 2, a version of the Hormander inequality, in which a concrete value of the exponent p’ is

computed explicitly.

Note that the role of the set V] in studying the global Lojasiewicz inequalities was investigated
in [DHT], [DKL] and [HNS]. The fact that V; is the testing set for the existence of the Lojasiewicz

inequality of a germ of a smooth function was observed in [H2].

2 Global Lojasiewicz inequality w.r.t.to V;
Recall that f: R™ — R is a polynomial of the form
f(@' x,) = apr? 4+ ay(2)z®t + - 4 aq(2),

where d is the degree of f and 2’ = (x1, -+ ,2,_1).

)
Vi: :{xER"|aj = 0}

This section, we assume that V; is non-empty set, not contained in f~1(0).

Definition 2.1. A sequence {2*} C R" is said to be a sequence of the first type of f, with respect
to Vi, if the following conditions holds:

{z"} cw,
zF — oo,
f@@*) =0

and
dist(z, f1(0)) > My >0,  for some M.

Proposition 2.2. The following startements are equivalent

(i) There are no sequences of the first type of f with respect to Vi;



(i) There exist § > 0 such that either the set {x € R"||f(x)| < 6} NV} is empty or there are

¢ >0 and a positive rational number Ly(Vy) such that
[f(@)] = edist(x, f71(0)) M
for all x € {x € R"||f(z)] <o} N V.
Proof. (i)= (ii). Let
foo = inf [f(2)],
if f. > 0 then for 0 < ¢ < fi, the set {x € R"||f(z)| < é} NV} is empty.
Assume that f, = 0. For t > 0, put

p(t) = sup dist(z, [71(0))
f@)l=tacti

Since f. = 0, the set {z € R"||f(x)| = t} NV} not empty for each ¢t > 0, sufficiently closed
to zero. By (i), ¢(t) is well defined on [0, ), with § > 0 sufficiently small. It follows from the

Tarski - Seidenberg theorem that ¢(t) is a semi-algebraic function. Moreover, the condition (i)

implies that ¢(t) — 0 as ¢ — 0. Hence, there exists ¢y # 0 and a positive rational number «(V})

such that
o(t) = cot® ") 4 o(t* M) for t — 0.

Let Lo(V1): =

, then we have

b
a(V1)
’f(x)l > C.dist(m, fﬁl(o))ﬁo(Vl)

for all x € {x € R"||f(z)| < 6} N Vi, with sufficiently small 6.
The implication (ii)=(i) is straightforward.

Remark 2.3. The exponent Ly(V7) in the proof above satisfies the following equality:

Lo(V1) = inf{a > 0|3¢; > 0,0 > 0 such that
|[f(@)| = edist(z, f71(0))"
for all x € V; and |f(x)] < d}.
Definition 2.4. We say that a sequence {x*} is of the second type of f w.r.t Vi, if
{«"} e,
¢ = oo,
|f(z")] < M < 400 for some M,

and
dist(z®, f71(0)) — +oo.



Theorem 2.5. (The global Lojasiewicz inequality of f w.r.t. V})

The following statements are equivalent
(i) There are no sequences of the first and the second types of f w.r.t.Vi;
(i) The following assertations hold true:

(a) If f. > 0 and the function dist(z, f~1(0)) is bounded on Vi, then for any p > 0, there exist
¢ > 0 such that
|f(z)| > edist(z, f71(0))"  for all x € Vi,

(b) If f. > 0 and the function dist(z, f~1(0)) is unbounded on Vi, then there exist ¢ > 0 and

a positive rational number Lo (V1) > 0 such that

|f(x)] > edist(z, F710)=YD) for all z € Vi,

(c) If f. = 0 and the function dist(z, f~1(0)) is bounded on Vi, then there exists ¢ > 0 such
that
|f(2)| > edist(x, £71(0)V)  for all z € Vi;

(d) If f. =0 and the function dist(z, f~1(0)) is unbounded on Vi, then there exists ¢ > 0 such
that

|f(x)| > . min{dist(z, f~1(0))°V) dist(z, f71(0))=Y}  for all z € V4.

Proof. (ii) = (i) is straightforward.

Proof of (1) = (i1):
Proof of (a): Assume that f, > 0 and

dist(z, f71(0)) < D < +o0c0 for all z € V.

Let p > 0, then for any x € V;, we have

fi

Dp.dist(x, f710))?

[f @) = fe =

hence (a) holds.
Proof of (b): Assume that f, > 0 and the function dist(z, f~*(0)) is unbounded on V;. Since

there are no sequences of the second type w.r.t. Vi, it is easy to see that the set
{z eR"[f(z)| =t} NV

is not empty for ¢ > 0 and ¢ sufficiently large.
Put

p(t) == sup dist(z, [71(0))
|f(x)‘:t7$€v1
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It follows from (i) that, ¢(¢) is a semi-algebraic function on [A,+o00). Hence, there exists a

rational number 5(V}) and a positive constant ¢q such that
o(t) = cot® ™M) + o(tﬁ(vl)), as t — oo.

Moreover, since the function dist(x, f~*(0)) is unbounded on Vi, ¢(t) — co as t — oo, hence
B(V1) > 0.

1
Putting £.(V1) = m, the above equality implies that
1

|f(2)| > e.dist(z, f71(0))5=WD)

for all x € {z € R"||f(x)| > A} N Vi, with A > 0 sufficiently large.
Since there are no sequences of the second type w.r.t.Vi, the function dist(x, f~1(0)) must be
bounded on the set

{z eR"|f < |f(2)| <A} VA

Hence, we can extend the above inequality for all x € V; and get
|f(x)] > dist(z, f71(0))5>=") for all z € VA,

where ¢ is some positive constant.
Proof of (c): Assume that f, = 0 and the function dist(z, f~'(0)) is bounded on V;. Since there
are no sequence of the first type w.r.t.V;, according to Proposition 2.2, there exist ¢ > 0 and
0 > 0 such that

[f(@)] = edist(w, f7(0)) M)

for all z € {x € R"||f(z)| <6} NVA.

Since dist(z, f~1(0)) < D, on the set {x € R"||f(x)| > §} N V;. Choosing ¢’ = , we have

)
DZLo(V1)
|f(x)] > C’.dist(x, f_l(o))‘c()(vl)

for all z € {x € R™||f(x)| >} N V.
Thus we have
|f(x)] > min(c, ¢).dist(z, f71(0))°") for all x € V.
Proof of (d): Assume that f, = 0 and the function dist(x, f~1(0)) is unbounded on V;.

Put

p(t) == sup dist(z, [1(0))
|f(z)|=t,zeVr

Since (i) holds, ¢ is a semi-algebraic function, which is well defined on (0, §) and [A; +00), where
0 > 0 sufficiently small and A > 0 sufficiently large. We have then

o(t) = cot®™) 4 o(t*M) as t — 0
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and
p(t) = pt? V) +o(t?V)) | as t — too.

Hence, there exist § > 0 sufficiently small and A > 0 sufficiently large and ¢’ > 0 such that
f(x)] > ¢ dist(x, f~(0))M)

for all z € {x e R"||f(z)| <0} N];

and
|f(x)| > . dist(z, f71(0))c=MD)

for all x € {x € R"||f(z)] > A} N V.

Since there are no sequences of the second type of f w.r.t. Vi, the function dist(z, f~(0)) is
bounded on the set {z € R"|§ < |f(x)] < A} N V;. Thus, it easy to see that there exist ¢ > 0
such that

|f(x)| > c. min{dist(z, f~1(0))M) dist(z, f~1(0))*="}  for all € V4.
Theorem 2.5 is proved. O

Remark 2.6. The exponent £, (V1) in the proof above can be defined by
Loo(V1) = sup{s > 0|3¢ > 0, A > 0 such that

|f(@)] > edist(z, f7(0))” (4)
for all x € Vi, |f(x)] > A}.

Definition 2.7. Exponents L(V;) and L (V1) are called the Lojasiewicz exponent near to the
set f71(0) and far from the set f~1(0) of f w.r.t. Vj, respectively.

3 Global Lojasiewicz inequality

In this section we show that the global Lojasiewicz inequality of f exists if and only if there exists
the global Lojasiewicz inequality of f w.r.t.V;. Moreover, the forms of the global Lojasiewicz
inequality of f are dictated by the corresponding forms (a) — (d) of the global Lojasiewicz
inequality of f w.r.t.V;. Firstly, we consider the case when V is either empty or V; C f~1(0).

Theorem 3.1. Assume that V; is either empty or Vi C f~1(0). Then there exists ¢ > 0 such
that
|f(2)| > edist(z, f7H0))*  for all z € R™.



Proof. This theorem is a direct consequence of Theorem 2.1 of [HNS], which says that if f: R" —

R is a function of class C? such that
ad
ST @Izp>0 o

then

f(2)| > #dist(aj, ViU FH0)¢  for all o € R™.

The following technical result is crucial for our further investigation.

Lemma 3.2. Let f(x) be a polynomial of the form (2). Let v = (2/,x,) € R" ! x R be a point
of R" and x ¢ f~1(0) U V4. Then, there exists a point z* = (2/,x}) € R"! x R satisfying the

following conditions
(i) z* € f7H(0) U Vi
(ii) [f(z)] < |f(2)];

(iii) || © — z* ||< (2¢)]|ag|.d!(d + 1))a|f ()|, where e = lim (1 + %)nn — 0.

Proof. Let x = (2/,x,) € R"™! x R be a point of R™ such that = ¢ f~1(0) U V;.
Put Q(z'): = {zn € R||f(2",2n)| < [f(#)} and p(zn): = f(2',20).
Since |0 @ (z,,)| = |agl|.d! for all z,, € R, by the van der Corput Lemma (see [G], 2.6.2) we have

mesQz') < (2€)[|ao|-d!(d + 1)1]7| £ ()] (5)
Since Q(2') is a compact semi-algebraic subset of R, we have

Q(l’/) = U?:l[a’h bl] U {y17 toe 73/8}7

where a; < b; and
|f(@', )| = (' b:)| = | f(2,y5)| = | f ()],
fori=1,--- k;j=1,---,s.
Clearly =, € {a1, -+ ,ag, b1, -+ bk, Y1, ,Ys}-
We claim that x,, € {ay, -+ ,a, by, -, bx}.
By contradition, assume that it is not the case, i.e. x, =y, for some j € {1,--- , s}. Since y; is
an isolated point of Q(z’), it is easy to see that the function ¢(z,) attains its local extremum
at the point z,, = y;. Therefore we have

d_¢(x ) = of
de, " Oz,

() =0
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which means that x € V), a contradiction.

Thus, without loss of generality, we may assume that x,, = a;. Then, since

[f(@, an)l = |f(2', b)) = [ f(2)] #0,

either f(x/,aq).f(2',b1) <0 or f(x',ay).f(2',b1) > 0.
Firstly, assume that f(2',a;1).f(2',01) < 0. Then, there exists t; € (aq,by) such that f(a',¢;) = 0.
Hence the point z* = (2/,t;) belongs to f~1(0). By (5), we have
& =2 ||= |ay — 1] < mesQ(a’) < (2€)[Jao|.d(d + )17] f ()]
and z* satisfies (i) - (iii).
Now, assume that f(2',a;).f(2',01) > 0. We have then f(2',a;) = f(2/,b1) € {£|f(z)|}. By
0
Rolle’s theorem, there exists a point ¢y € (a1, by) such that —f(x’, to) = 0.

oz,
Let z*: = (2/,19), then 2* € Vi. Since ty € (a1,b1) C Q(2), |f(2*)] < |f(x)| and

=

|z — 2" ||< (2¢)[|aol-d!(d + 1)]7] f(x)|7.
Lemma 3.2 is proved. O

Theorem 3.3. (The global Lojasiewicz inequality)

The following statements are equivalent
(i) There are no sequences of the first and the second types of f;
(i1) There exist ¢ > 0, > 0 and B > 0 such that

|f(z)| > c.min{dist(x, f71(0))*, dist(z, f71(0))’} for all x € R™;

(iii) There are no sequences of the first and the second types of f w.r.t. Vi;
(iv) The following statements hold true:

(a) If f. > 0 and the function dist(x, f~1(0)) is bounded on Vi, then there exists ¢ > 0 such
that
|f(z)| > c.dist(z, f7H(0)  for all z € R™;

(b) If f. > 0 and the function dist(z, f~1(0)) is unbounded on Vi, then there exists ¢ > 0 such
that
|f ()| > c. min{dist(x, f1(0))*=") dist(z, f71(0))?} for all x € R™;

(c) If f. =0 and the function dist(z, f~1(0)) is bounded on Vi, then there exists ¢ > 0 such
that
|f(x)| > c. min{dist(z, f~1(0))") dist(z, f71(0))?} for all x € R™;
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(d) If f. =0 and the function dist(z, f~1(0)) is unbounded on Vi, then there exists ¢ > 0 such
that

|f(x)] > c.min{dist(z, f~1(0))*=") dist(x, f71(0))>V) dist(z, f71(0))%}
for all x € R™.

Proof. (i)« (ii) was proved in ([DHT], Proposition 3.10).
(i) = (iil) and (iv) = (i) are straightfoward.

It rests to prove (iii) = (iv).

We need

Lemma 3.4. Assume that there are co > 0 and p; > 0,--- , ps > 0 such that
|f(z)| > co. min{dist(z, f1(0),i=1,---,s} forall x €V;. (6)
Then, there exists ¢ > 0 such that
|f(2)| > c.min{dist(x, f~(0)7 dist(z, f(0)%,i=1,--- s} forall z € R™ (7)

Proof of Lemma 3.4. Let x = (2/,z,) be an abritrary point of R"! x R = R". If z € f~1(0)
then (7) holds automatically. Also, if x € V4, then (7) follows from (6).
Assume that = ¢ f~'(0) U V4. Then by Lemma 3.2, there exists z* € R such that

v € ViU f7H(0), [f(27)] < [£(2)] (8)

and
(2¢) Yaol.di(d + 1)]7 ||z —a* || | f(x)|7 (9)

Clearly, if z* € f71(0), (7) follows from (9).
Assume that x* € V;. Let us denote by H(z*) the point of f~!(0) such that

dist(a®, f(0)) =]l «* — H(z") ||.

Consider two possibilities. If
|z —a"[[<|| 2" = H(z") |,

then
dist(z, f71(0)) <[ = — H(z") [[< 2 || " — H(2") ||= 2dist(z", f~1(0)).

Since p; > 0, forv=1,2,--- ,s. We have

2 Pidist(z, f~1(0))" < dist(z*, f~(0))"
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Then (7) follows easily from (6) and (8).

Now, assume that || x — z* ||>]| z* — H(x*) ||, then
dist(x, f1(0)) <2 || x — 2" ||
Hence, by (9), there exists ¢ > 0 such that
c.dist(z, f71(0))" < [ f(2)|

and (7) hold true. Lemma 3.4 is proved.

Proof (iii)= (iv): Assertions (b), (c¢) and (d) follow from Theorem 2.5 and Lemma 3.4.

Let us prove (a). By Theorem 2.5, if f, > 0 and if the function dist(z, f~*(0)) is bounded on
the set Vi, then for any p > 0, there exists ¢y > 0 such that

|[f(@)] > codist(z, f~(0))° (10)

for all z € V.
By choosing p = d in (10), then the assertion (a) of (iv) follows from (10) and Lemma 3.4.
Theorem 3.3 is proved. 0

4 Lojasiewicz exponents of the global Lojasiewicz inequal-
ity
Through all this section we assume that
e fis a polynomial of the form (2);
e The global Lojasiewicz inequality of f holds true.

Then we can define two exponents Lo(f) and L (f), are called respectively the Lojasiewicz
exponent near to the set f~1(0) and the Lojasiewicz exponent far from the set f~1(0).

Before recalling the definitions of Lo(f) and L (f), we begin with a simple result. First, we
need the following notation: if h(t) and g(t) are positive functions in ¢ € R, by h(t) < g(t) we

mean that

Lemma 4.1. Let f be of the form (2) and (0,a) € R"* x R. Then we have

1£(0,a)| =< |al* < dist((0, a), f~(0))*

12



Proof. Clearly, |f(0,a)] < |a|. We will prove that |a|? < dist((0,a), f71(0))%, ie. |a| <
dist((0,a), f~1(0)).
Claim. There exist r > 0 and ¢ > 0 such that if (2/, A\(z’)) € R"™! X R is a point of f~1(0) with
| 2" [|> r, then

@) < el |l

Proof of Claim: By contradiction, there exists a sequence ¥ = (2/* A\(2’%)) — oo such that

)\ 1k
f(x¥) =0 and lim ‘H (qjk f‘| = 00. Then, since
x

f(@, 2,) = apzd + ay ()28 + -+ ay(z)
and deg(a;(z")) < i, we have

(Alk
i la®)

-0 as | 2% ||— oo

[A(z®)["
Since (2%, A\(z™%)) € £71(0),
a (:L"k) ad(l’/k)
.. -0
ao + M) oot M) ’
which implies that ag = 0, a contradiction.
Let us use the {'-norm in R" : If z = (21, ,z,) € R" then

| (@1, @) ln: = Z|$z‘|-
i=1
Now, let ¢ and r be as in the claim. Let (z(, Z,0) be a point of f~1(0), we have
dist((0,a), f~1(0)) <[ (0,a) — (5, o) 1=l 75 [l +la — 2ol ~ lal. (11)

Let (2/(a),\(2'(a))) € R™! x R be the point of f~'(0) such that dist((0,a), f~1(0)) =||
(' (a), A\(2'(a))) —(0,a) ||;r . Since the distance from the point (2'(a), A(z'(a))) to the hyperplane

x, = 0 is equal to |A(2(a))|, we have
lal =11 (0,a) = (0,0) [ln <[ (0, a) = ('(a), A(z(a))) ln +[A(«"(a))] (12)
Firstly we assume that || 2’(a) ||, < r. Then, since f is of the form (2), the set
{(2,2,) e R X R| || 2 [|[n< r, f(2, 2,,) = 0}

is compact. Therefore there exists a constant ¢(r) > 0 such that |z,| < ¢(r) if f(2',z,) =0
and || 2 [|[pn< 7.
It follows from (12) that

lal <II (0, a)=("(a), A(z"(a))) llir +e(r) = dist((0, a), f~(0))+(r) < dist((0,a), f(0)) (13)

13



As consequence of (11) and (13) we have
la| < dist((0,a), f~(0))

if || 2'(a) [[pn< .
Assume that || 2'(a) ||p> r, then it follows from (12) that

lal <l #'(a) ln +la = A(2"(a))] + [A(@'(a))] <[l #'(a) [l +la = Az"(a)) + ¢ || '(a) [l

< (c+ Dl 2(a) ln +la = A@'(a)]) = (¢ + 1)dist((0,a), f~(0)).
This inequality, together with (11), implies that |a| =< dist((0,a), f7*(0)) and Lemma 4.1 is
proved. ]

Assume that there are no sequences of the first and of the second types of f. Then the function

p(t) = sup dist(z, ~1(0))
@)=t

is well defined on (0, +00) and is semi-algebraic. Hence, there exist ¢y > 0, ¢o, > 0 and rational
numbers « and [ such that
o(t) = cot® +o(t*), as t—0
and
o(t) = coot? +0o(t?), as t— oco.

Since there are no sequences of the first type, ¢(t) — 0 as t — 0, hence o > 0. It follows from
Lemma 4.1 that ¢(t) — 400 as t — +o0, which implies that 8 > 0.

1 1
Putting Lo(f) = o Lo(f) = 5 we can show that there exist 6 € (0,1) and A > 1 and

|f(z)| > ey dist(z, f71(0))500),
for all z & {x c Ran(x)l < 5}7 and

c1 > 0,c9 > 0 such that

()] = cadist(w, f(0))5=D),

for all z € {z € R"||f(x)] > A}.
Moreover, the exponents Ly(f) and L (f) statisfies respectively the following formula

Lo(f) =inf{p > 0|36 >0 and ¢ > 0 such that

|f(2)] > edist(x, f(0))" (14)
for all x € {x € R"|,|f(x)] < 0}}.
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and
Loo(f) =sup{p >0/3A > 1 and ¢ > 0 such that
|f(2)] = edist(z, f(0))" (15)
for all x € {x € R"|,|f(z)| > A}}.
Following [H1] we call Lo(f) and L..(f), respectively the Lojasiewicz exponent near to the set
f710) and the Lojasiewicz exponent far from the set f=1(0).

In this section we estimate Lo(f) and L. (f) via d and the exponients Lo(V}) and L (V1), where
the exponents Lo(V1) and L (V7) are defined in section 2.

Put

Q: = {z € R"dist(x, f(0)) < 1}
and

Qy: = {z € R"|dist(x, f71(0)) > 1}
Put

L(f,1): =inf{p > 0|3Fc > 0 such that
|[f(2)| > e.dist(x, f7(0))"
for all x € Oy}

and

L(f,Qs): =sup{p > 0|3Fc > 0 such that
|[f(2)| > edist(x, f71(0))"
for all € Qy}.

Proposition 4.2. If there are no sequences of the first and the second type of f then
Lo(f) = L(f, 1)

EOO(f) = ‘C(fv Q2)

Proof. .

Proof of Lo(f) = L(f, ).
Since there are no sequences of the first type, there exist ¢ > 0 and § > 0 such that

|f(x)| > edist(x, f71(0))50 W)

for all x € {x € R"||f(z)| < 0}. Choose dy > 0 such that ¢y < min{J,c}, we see that {x €
R™||f(z)| < do} C . In fact, since §y <

|f(x)] > edist(x, F71(0))50 )
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for all z € {x € R™||f(z)| < do}.
This implies that
b0 > cdist(z, f71(0))~W)

hence

§
1> ?0 > dist(z, f~1(0))%0)

therefore dist(x, f~1(0)) < 1.
Clearly, if x € Q1 \ {z € R"||f(z)| < dp} then

f(x)] > 8 > do.dist(x, f71(0))V).
Thus, we can conclude that the inequality
f(2)] > e.dist(z, f71(0))),

with ¢, = min{c, do} = dy, holds true for all z € Q;. Hence, we have Lo(f) > L(f, ).

Proof of Lo(f) < L(f, ).
Let p > 0. Assume that there exists ¢ > 0 such that

|f(z)| > c.dist(x, f71(0))" for all z € Q.

The inequality Lo(f) < L(f,€2) will be proved, if we show that p > Lo(f).
Let us take 9y the constant defined in the proof above. Then

{z e R"||f(x)] < o} C Q.

Therefore,
|f ()] > edist(z, f71(0))”

forallz € {z € R"||f(x)| < do}. Since Ly( f) satisfies (14), this inequality implies that Lo(f) < p.
Thus, Lo(f) = L(f, ).

Proof of Loo(f) < L(f, ).
Since there are no sequeces of the second type, there exist ¢ > 0 and A > 1 such that

[ (@) = edist(x, f71(0)) =P (16)

for all z € {z € R"||f(x)] > A}.
Moreover, the function dist(z, f~'(0)) is bounded on the set

0\ {z e R"||f(z)] = A},

l.e

D: = sup{dist(z, f1(0))|z € Qy and |f(z)] < A} < +o0.
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Since there are no sequence of the first type, |f(x)| > § > 0 on the set Qs \ {z € R"||f(z)| > A}.
Hence, if x € Qo \ {z € R"||f(z)| > A} we have

[f(@)] =0 = ﬁdist(x, F7H0))E D an
It follows from (16) and (17) that
|f(2)] > cdist(z, f71(0))F=0)
for all z € Q5. Hence, by the definition of L(f, ), we have
Lool(f) < L(f, ).

Proof of Loo(f) 2 L(f, ).
Let p > 0 and there exists ¢ > 0 such that

|f(2)| > c.dist(x, f7(0))" (18)

for all x € Q. Let # € R™ such that |f(z)| > ¢ and dist(z, f~'(0)) < 1, then since p > 0, we
have

|f(2)] = edist(z, f(0))".
This fact, together with (18) implies that

|[f(2)| > e.dist(x, f7(0))"

for all x € {x € R"||f(z)| > c}.
Hence, by (15), we get p < L(f), which, by the definition of L(f,2s) implies that Lo.(f) >
L(f, Q). The equality Lo (f) = L(f,Qs) is proved. O

Now, we study the Lojasiewicz exponents Lo(f) and L (f) by investigating the relationship
between them and the exponents d, Lo(V;) and L (V1).
According to Theorem 3.3, if the global Lojasiewicz inequality of f holds true, then it has one
of 4 forms, described in (iv) of Theorem 3.3. We will consider each of these cases saparately.

Before doing that, let us state an easy result.

Lemma 4.3. We have

()
Loo(f) < min{Loo(V1), d};

(i)
Lo(f) = Lo(V1).
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Proof. .

Proof of (i): 1t follows from Lemma 4.1 that L. (f) < d.

The relation (4) implies that Lo (f) < Lo(V1). Hence, (i) is true.

Proof of (ii): This follows from (3). O

Let cases (a) — (d) be as in Theorem 3.3 (iv).

Proposition 4.4. Assume that there are no sequences of the first and the second types of f
w.r.t.V1 then the following hold

Case (a):
Lo(Vi) < Lo(f) <d
Lo(f)=d.
Case (b):
Lo(V1) < Lo(f) < max{L(V1),d}
Lo(f) = min{L(V1),d}
Case (c):

(1) If Lo(Vi) > d then
Loo(f) =

Lo(f) = Lo(V1).

(i1) If Lo(V1) < d then
Lo(Vi) < Lo(f) <d

Lo(V1) < Loo(f) < d.
Case (d):
(i) If Lo(Vi) < min{Lao(V1),d} then
Lo(Vi) < Lo(f) < max{Loo(V1),d}
Lo(V1) < Loo(f) < min{Leo(V1), d}.
(ii) If min{Loo(V),d} < Lo(Vi) < max{Lo(V1),d} then
Lo(V1) < Lo(f) < max{Loo(V1),d}

and

Loo(f) =min{L(V1),d}
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(111) If Lo(V1) > max{L(V}),d} then
Lo(f) = Lo(V1)

and

Loo(f) = min{Loo(V3), d}.

Proof. The proof follows from Lemma 4.3 and Proposition 4.2. O]

5 Method of checking for the existence of the global

Lojasiewicz inequality of polynomials in two variables

In this section we consider the following question: How to check for the condition of the existence
of the global Lojasiewicz inequality?
If n > 2, these problems seem still difficult, but if n = 2, it is easy.

Let f(x,y) be a polynomial in two variables. We assume f is of the form
fla,y) = ay® + ar(2)y"™" + - + aq(w) (19)

where d is the degree of f.

Then, according to the Puiseux theorem [GV], f can be factored as
d
flay) = ao [[(w = M),
j=1

where each expression \j(x) is a function of v for certain integer p in the neighborhood of
x = oo. The function \;(z) have no essential singularity at infinity, hence they can be written

as fractional power series
k;
E
Ai(@) = agar (20)
—00

for |x| > 1, where k; are integer numbers. Each \;(x) is called a Puiseux series at infinity of f.
Since f is of the specific form (19),it is important to note that, k; < p for j =1,--- ,d. We also
call \;j(x) a root at infinity of f.

Let Aj(x) be one of the roots of the form (20), then \;(z) is called real root if all coefficients
ajr of A\j(x) are reals. Note that for a non real root \*(x), the curve y = A*(z) has no locus
in x > 0, z is closed to +o00. This is because for > 0, all fractional power series of x are real

numbers, and so A*(z) is not a real number. In order to consider the real locus of f(x,y) =0
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for z < 0, we must take the real roots of f(z,y): = f(—z,v).

Let i
of
—(z,y) = apd Yy — )\ (x)),
dy H

_ 0
where \;(z),i=1,2,--- ,d — 1, are Puiseux’s roots at infinity of a—f(:c,y).
Y

We will consider the domain z > 0 and = < 0 separately. Assume that x > 0, we denote

P(f) = { (@), - Aal)}

and

PG = (i), (o)

0
the set of Puiseux’s roots at infinity of f and of G_f’ respectively.
Y
of
Ror g € {f, 50

Let ¢ (x) be a fractlonal power series,

m f , } we denote Pr(g) the set of all real roots at infinity of g.

U(x) = box” + o(z)
where by # 0. Then the exponent p will be called the order of ¥ at infinity and we will denote
it by v(¢(x)).
Proposition 5.1. The following statements are equivalent

(i) There are no sequences (z*,y*),x% > 0 of the first type of f w.r.t. Vi;

(i) There are no \(x) € PR(a—f

oy ) such that

v(f(z,A(z))) <0;
and

Ae%%r(lf)U(X(x) — Az)) > 0.

Proposition 5.2. The following statements are equivalent

(i) There are no sequences (z*,y*), 2% > 0 of the second type of f w.r.t. Vi;

(i) There are no \(x) € PR(g

o ) such that

and



Proposition 5.3. Two conditions are equivalent

(i)
o= Jnf @)l >0
1 —
(i) £~1(0)N (g—:{;) (0) = 0 and there are no \(x) € PR(Z;C) UPR(aJyC) such that

of

v(f(2,M2)) <0, if Nz) € PR(ay)

and

(X)) < 0, 1f Aw) € Pa )

The following facts help us to know which form of 4 form (a) - (d) of Theorem 3.3 will have
the global Lojasiewicz inequality.

Proposition 5.4. Two conditions are equivalent

(i) The function dist(z, f~1(0)) is unbounded on Vi;

(i) There is M(z) € PR(?;;) U PR(az) such that

Ly of
JYRLLS ){v( () = A(2))} >0, if Ax)e PR(8y>

and

min _ {v(\(z) — A(z))} >0, if \x)€ PR(gf)
A(@)€Pa(P) 4

Similarly, replacing f(z,y), Pr(f) and PR(g—?J;) respectively by f(z,y) = f(—z,y), Pr(f) and

PR((?_) in Propositions 5.1 and 5.2, we obtain the criterion for the non-existence of sequences

(zF,y*), 2% < 0, of the first and the second types of f, w.r.t. Vi.
The proof of Propositions 5.1, 5.2, 5.3 and 5.4 follows from

Lemma 5.5. Let \(x) € PR(%) and A(x) € Pr(f). Let

Va: ={(z,y) € R*|lz >0,y = A(z)}.

Then
dist((z, \(z)), Vy) =< a?*@=2@)
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1.e. there are ¢y > 0 and co > 0 such that the inequalities
12" A@ D) < dist((x, X(2)), V) < cpu? 3@ =A@
holds for x > 0 sufficiently large.

Proof. For r > 0 sufficiently large, we denote
U: ={(z,y) € R?|z > r}.

Let A(z) = baz” + o(x”), for x > 0 sufficiently large, with b # 0. Since A(z) € Pr(f), p < 1.
Firstly, assume that p < 1. Consider the map

¢:U—=U, (2,9) = (z,y — M)
We will prove that ¢ is a bilipschitz mapping, i.e. there exist ¢; > 0 and ¢y > 0 such that

€1 || gZS(CL’,y) - ¢($0,y0) ||ll§|| (l’,y) - (l’o,yo) HllS C2 “ gb(x,y) - gb(‘rO?yO) “117

for all (z,y) and (x¢,yo) from U.
We have
I oz, y) = &0, o) lln= l& = zo| + [y = yo + Mwo) = A2)]
< |z —zo| + [y — yol + [AMz) — Alzo)].

Since \(x) = bx? + o(2”) with p < 1, it is easy to see that
1
[A(@) = Alzo)| = Sz — 2ol

if x and z( sufficiently large. Hence

3 3
I ¢(z,y) = dlzo, 90) [ln= (12 = 2ol + [y = vol) = 5 Il (,y) = (0, y0) [lin -

Conversly
I o(x,y) — b0, yo) 0= 2 = w0l + |y = ol = [A(@) = Alzo)|

|z — 20| + [y — Yol
2

1
2 |z = o + |y = yol = Sl — w0l 2

1
3 | (z,y) — (o, 90) [l -
Hence, ¢ is bilipschitz if p < 1.

Assume now that
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where b # 0 and X(x) = byz” + o(z”'), with p; < 1 and |z| sufficiently large.
Put
¢1: U= U, (2,y) = (z,y — bx)

and

do: U = U, (z,y) > (2,5 — M)

Clearly, ¢, is a bilipschitz equivalent. Since p; < 1, ¢ is also a bilipschitz equivalent. Therefore,
the map ¢ = ¢5 o ¢ is a bilipschitz equivalent. Then we have

dist((z, \(x)), Vy) < dist(¢(x, A(z)), o(V3)).

Moreover, since

d(Vy) = {(u,v) € R*|lu > r,v =0}

and
O((2, () = (u, Mu) = Mu)) = (2, Mz) — A(z))
we have
dist(¢(x, X(x)), (V2)) = [X(x) — A(x)]| = 2" O@ =X
and Lemma 5.5 is proved. O

Remark 5.6. Theorem 3.3 and Propositions 5.1, 5.2 provide the following method of checking

for the existence of the global Lojasiewicz inequality of polynomials in two variables.

0 - of
e We compute the real roots at infinity of f(x,y), 8—§(x,y) and of f(z,y) and 8—§(x,y)

e Next, we verify if the conditions (ii) in Propositions 5.1 and 5.2 holds or not. If they hold,
then f has the global Lojasiewicz inequality.

6 Computation of the Lojasiewicz exponents

In this section we will compute explicitly the exponents Lo(V}), Loo(V1) and Lo(f), Loo(f),

where f is a polynomial in two variables. We will keep all the notations of Section 5.

6.1 Computation of £y(V7) and L (V1)

We start with the computation of L, (V;). We denote by Pﬁo(g—f) (resp., Pﬁo(?)) the set of
Y Y

all X\(z) € PR(g—Z];) (resp., A € PR(%)) such that

/\g%r(lf)v@(x) —AMz)) >0
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(resp., min_ v(Mz) — \(z)) > o)

AEPR(Sf)
— 0 of
Let X e Pﬁo(a—g) U Pﬁf(a—g).
We put
B (1 ierPﬁo(g—Jyp) and Pr(f) =10
D, (A) = _ _
’ \mil’l)\e'pR(f) v(A(z) = Ax)) if A€ Pﬁo(g—i) and Pr(f) # 0
and ) _
_ 1 if A€ Pﬁo(g—z) and Pg(f) =0
D_(\) =« B 3 oF B
\min)\epR(?) v(A(z) — A=) if A€ Pﬁo(a—i) and Pr(f) #0
We also put _
oy, o v A@) s e O
LI(AN): = Dy it Ae Py (8y)’
" (. X(x) o7
o o(f(a M - N
L (N): = DOy it e Py (3y)’
£L(W): =min{CL(0] Xe PE(h)
LoV = min{Lo (W] Xe PG,
Theorem 6.1. If f has no sequences of the second type w.r.t. Vi and if the set Pﬁ{’(g—i) U

0
Pﬁo(—f) is not empty then the minimum of LI (V1) and L (V1) is a positive rational number

dy
and equal to Lo (V7).

Proof. The proof of Theorem 6.1 follows from definitions of £ (1), £ (V1) and Lemma 5.5. [

We have seen that the computation of £, (V) is a problem purely ”at infinity”. This exponent
can be expressed in terms of the Puiseux roots at infinity of f and 0 For computing the
Y

exponent Ly(V7), the Puiseux roots at infinity are not enough and we have to use also the

0
Puiseux series of f and of 91 at the points of intersections of the curves {8_f =0} and {f = 0}.

dy
We recall that
Lo(V1) = inf{a||f(x)| > e.dist(z, f1(0))* for some ¢ >0
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and V¥(z,y) € {(z,y) € R*||f(z,y)] <} NV1}.

Firstly, we compute the Lojasiewicz exponent of f in the domain
{(z,y) € R |f(z,y)| <& ]| >r} Vi,

where r is sufficiently large, and ¢ is sufficiently small.

For \ € PR((;‘;) UPR(a‘;;) we put
A): = mi AMz) — A(z)) if A (9_f
Di(A): —Agﬂl{?f)v(k(x) A(z)) if A EPR(E)y)’
A): = min v(A(z) — A(z)) i of
D-(0: = min o(3s)~ \e) if X & Pe()
ES-OO(X) — U(f(l’,x_(l’)))
’ Di(})
L OO(X): — <_(I‘,X_(£B)))
D_()\)
Let us denote b_ypﬂ%(%) (resp.,PR(_a—f)_) the set of all A\(z) € PR((;—‘;), (resp., M(z) € PR((;];))
such that v(f(z, A(x))) < 0, (resp.,v(f(z, A(z))) < 0).
For \ € PR((;J;) UPR(a‘;;) we put
LinlVi): = max{Lf (D] X PUGDY

L7+ (1) = max{Lgo(}) AEPJR(%)}

Theorem 6.2. Assume that there are no sequences of the first type of f w.r.t.Vy then the

following statements hold

9,
(i) If Pﬂg(a—f) is not empty, then there exist ¢ > 0,7 > 0 and § > 0 such that
)

|z, y)| > edist((z,y), f71(0)) 50D,

for all (x,y) € {(x,y) € R?||f(z,y)] < 6,z >r}nV.
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7
(i1) If PH%(—f) is not empty, then there exist ¢ > 0,7 > 0 and § > 0 such that

dy
|f(x, )| > edist((x,y), f7H(0)) o)
for all (z,y) € {(z,y) € R?||f(z,y)| < d,x < —r} NV
(i1i) If there are no sequences of the first type of f w.r.t.Vy and the set Pﬂ%(%) U Pﬂ%(%) is

not empty, then there exist ¢ > 0,0 > 0 and r > 0 such that

|f(z, )| > edist((z,y), F7H(0)) 0=

for all (z,y) € Vin{(z,y) € R?||f(z,y)] <4, |z >r},
where Lo (V1) = max{L{ (V1) Ly (V1)}.

Proof. This follows from definitions of the exponents £f ,(V1), £y (V1) and Lemma 5.5. [

Now, let ¢, d, and r be as in Theorem 6.2, (iii). Then, we see that
Vlﬂ{(:c,y) €R2Hf<l',y)| < 57 |£C‘ ST} :Slu‘S’QU'”USka

where S;,7=1,2,--- |k, are compact semi-algebraic curves.
Let A be the set of all isolated points in the intersection of set S; U S U--- U Sg and f1(0).
Clearly, we can choose ¢ and r such that each of points of A is contained in the interior of the

set
{(z,y) e R?||f(z,y)| <&, ]z] <7}

Let € > 0 sufficiently small such that each ball B(A,¢) = {(z,y) € R?| || (z,y)—A||< e}, A € A,
is contained in the interior of the set {|x| < r,|f(x,y)| < d}.
We define

Lo(AV3) = inf{a > O]|f(2.9)] > edist((z.y). f(0))°

for all (z,y) € V1N B(A,¢) with some ¢ > 0}.

By the classical Lojasiewicz inequality, the exponent Lq(A,V;) is well defined.

With the notations above, we have

Proposition 6.3.
£0<‘/1) = max{ﬁo,oo(‘/l)7£0(Aa ‘/1)|A € A}

Proof. This fomula is a consequence of the following facts
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(i) In the domain
{(z,y) e R?||f(z,y)| <6 |z| > r}n Vi

we have
|f(z,y)| > edist((x,y), f*l(()))ﬁo,oo(Vl)

(ii) In each domain V3 N B(A,¢€), A € A, we have

|f(z,y)| > edist((x,y), f(0))cAW)

(iii) Moreover, the exponents Lo (V1) and Ly(A, V}) are best possible.

(iv) There exist p > 0 such that |f(x,y)| > p, provided

(z,9) € {(z,9) € B[ f(z,y)| <4, |z <r} WA\ [ B(4,e).
AcA

Thus, to compute Ly(V}), it rests to compute the exponents Lo(A4, V1), A € A.

Computation of £y(A, V1), with A € A.

We will work in the following situation. Given polynomials f(z,y) and ¢(z,y). Let A be an
isolated point of f~1(0) N ¢~1(0). It is required to compute

Lo(A,¢7(0)) = inf{a > 0[|f(z,y)| > cdist((z,y), [7(0))",

for all (x,y) closed to A and (x,y) € ¢~ 1(0)}.
The computation of exponents Ly(A, ¢~1(0)) is carrying out in two steps.
Step 1: We compute Ly(A, ¢~1(0)), with the assumption that the polynomials f(x,y) and ¢(x,y)

satisfy the following condition

(i) A=(0,0);
L o0mf . - .
(ii) 83/_m(0’ 0) # 0, where m is the multiplicity of f at the point (0,0);
... 0l . o .
(iii) $(O, 0) # 0, where [ is the multiplicity of ¢ at the point (0, 0).
Y

With these conditions, locally in a neighborhood of (0,0) € C, the polynomials f(z,y) and

¢(z,y) can be factorized as follows

f(l',y) :u(x,y) (y_)‘j(x))

s

<
Il
—

—~

qb(x,y) = U(Jf,y) | (y - )‘z(x))

N
Il
i
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where u(0,0) # 0 and v(0,0) # 0, \;(z) and \;(x), j = 1,2,--- ,m; i = 1,2,--- [ are fractional
power series of the form

Pj2

Aj(x) = bﬂx% +bjpxm + -

(@) = caz' T + ezt 4 -
Here pj, € Nygie € NJk = 1,2,--- and pj1 < pjo < -+, ¢i1 < @2 < ---. The series \;(t™)
and \;(t), j = 1,2,--- ,m; i =1,2,--- 1 converge in a small disk centered in (0,0). (See, for
example [W]).
It is important to note that Condition (ii) implies that % > 1, forall j € {1,2,--- ,m}.
The series A (z), Ao (), - -, A () and Ay (2), Xa(2), - - - , N () are called Puiseuz’s roots at (0,0)
of f and ¢, respectively.
As in the case of Puiseux’s roots at infinity, a Puiseux’s root A(z) is called real at (0,0) if all
the coefficients of A(z) are real numbers.
Notation: Let f(z,y): = f(—z,y) and ¢(z,y): = ¢(—z,y).
Let g(x,y) € {f, &, f,¢}. We denote by Pg(g,0) the set of all real Puiseux’s roots of g at (0,0).
For A\(z) € Pr(¢,0) UPg(9,0), we put

D.(N0): = max (u(X(r) = A(@))) if A(w) € Pa(6.0):

D_(X\,0): = max (v(A(z) — A(z))) if Mz) € Pr(0,0).

XePr(f)

£.((0,0),\) = L ,if X € Pr(e,0);
(007 = TR it e Pa(o0)
o _ v(f@ @) o+ =
L_((0,0),A) = — , if A € Pr(0,0).
(0.0.%) = LI it K Pa(o.0
Finally, we put
L£((0,0),67(0)): =_ max L4((0,0),})
A(z)EPr(9,0)
and
L£((0,0),671(0)): =_ max_ L ((0,0),})
A(z)€Pr(¢,0)
Proposition 6.4. Assume that
(i) A=(0,0);
., O"f . o .
(1) ay—m(O, 0) # 0, where m is the multiplicity of f at the point (0,0);

I
(1i1) %(O, 0) # 0, where [ is the multiplicity of ¢ at the point (0,0).
Y
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Then we have

Lo(A,¢71(0)) = max{L.((0,0),67'(0)), L_((0,0), ¢~ (0))}.

Proposition 6.4 follows from the definitions of the exponents £, ((0,0), ¢~*(0)), £_((0,0), ¢~*(0))

and the following analog of Lemma 5.5.

Lemma 6.5. Assume that

(i) (0,0) € f71(0) N ¢~(0);

(i1) g—m(O, 0) # 0, where m is the multiplicity of f at the point (0,0).
Y

Let X(x) € Pr(#,0) and \N(x) € Pr(f,0). Then, for all x sufficiently close to 0, we have
dist((z, Mz)), Vi) = z"O@&-A@),

where
Vi ={(z,y) e R?ly = A(2)}.

am
Proof. Since a—f(O, 0) # 0 and m is the multiplicity of f at the point (0,0), if A(x) is a Puiseux
ym
root of f at (0,0), then

AMx) = bxm + o(xm)

with £ > 1. Using this fact, the proof of lemma 6.5 is completely analogous to that of lemma
m
5.5. O

Step 2: Let us consider the general case: A is an isolated point of f~(0) N ¢~'(0), not
necessarily coincided to (0,0). Let denote m and [ respectively the multiplicity of f and of ¢ at
A.

The following lemma is evident

Lemma 6.6. There exists an affine isomorphism
L:R* - R? (x,y)— L(x,y) = (u,v) such that

(1) L(A) = (0,0);

'
(0,0) # 0 and 8—010(0, 0) # 0.

" fo
ovm

Lemma 6.7. Let L, fo and ¢g be as in Lemma 6.6. Then we have

(ii) If we denote by fo = fo L™ and ¢y = ¢po L1, then

Lo(A, ¢71(0)) = Lo((0,0), 65" (0)).

29



Proof. 1t is easy to see that the following statement hold

(i) There exist ¢; > 0 and ¢, > 0 such that
Iz=2"lI< e || L(z) = LD

and
| z=2 |<e || L7H(z) = L7H(2) |,

for all z, 2" € R?;
(ii) The maps
L7 f5(0) = £74(0)
L7 ¢5'(0) = ¢7'(0)
are bijections.
Now, firstly, we show that

L£o((0,0),65(0)) < Lo(A,¢7(0)).

Let p be any number such that
p > Lo(A,¢7H(0)).

Let w be an abritrary point of ¢;'(0), closed to (0,0). Then,
dist(w, f5(0)) <[ w — ' |
for any w’ € f;(0). Since L is a bijection, the above inequality follows that

dist(w, fy'(0)) <|| w — L(z') ||,

for all 2/ € f~1(0). Hence, we have

dist(w, f31(0)) <|| LIL™ (w)) = L() [|< e1 || L7 (w) = 2|
provided 2z’ € f~1(0). Hence, we obtain
dist(w, f(0)) < eodist(L™" (w), f7(0)).
Since L~ (w) € ¢~1(0) and by assumption p > Lo(A, $~1(0)), we have
7 = clfo(w)]?,

dist(w, f5(0)) < ca.dist(L™ (w), f71(0)) < e[ f(L7H(w))]
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for each w close to (0,0). This means that L£,((0,0),¢,'(0)) < p. Since this holds for any
p > Lo(A, ¢71(0)) we conclude that

£o((0,0),65"(0)) < Lo(A,¢7(0)).

The proof of the converse inequality

Lo(A,¢71(0)) < Lo((0,0), ¢y (0))
is similar. O

Now, using Lemma 6.6 and Lemma 6.7, for f and ¢ = , we can compute the exponent

dy
Lo(A;,V1),j =1,2,--- k. Thus, the exponent £(V}) is computed. a

6.2 Computation of Ly(f)

Let
Lo(f): =inf{p > 0[Fc > 0,6 >0 such that

|f(z,y)| > c.dist((x,y), f~(0))
for (z,y) € R?, f(z,y)| < 6}

Looo(f): =inf{p>0|34c> 0,6 > 0,7 >0 such that

f(z,9)] > c.dist((x,y), f71(0))°
for (z,y) € R?, |z| > r, f(z,y)] < 6};

Loo(f): =inf{p >0[3c > 0,0 > 0,r >0 such that

[f(z,y)] > edist((z,y), f(0))"
for (z,y) € R |z| <, f(z,y)] < o}

Clearly
Lo(f) = max{Looo(f), Loo(f)}

The computation of Lgo(f) is based on the work of Kuo [Ku]. Firstly, we note that if f~*(0)
has no singular points in the set {(z,y) € R?||f(x,y)| < 4, |z| < r}, then

Loo(f) =1.
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If f71(0) has singular points in this domain, then
Loo(f) = max{L(f, A)| A is a singular point of f~*(0)},
where L(f, A) is the Lojasiewicz exponent of f at A, i.e.

L(f,A): =inf{p > 0/dc > 0,¢ >0 such that

|[f(z.y)| = edist((z,y), f7(0))”
for all (z,y) € R || (z,y) — A ||< €}

The exponent L£(f, A) can be computed explicitly by Kuo’s formula [Ku]. It seems that this
formular well-known, so we prefer do not to go in details.

The exponent Lo~ (f) was computed in [VD]. We will recall this formula.

Let Ai(z) € P(f) \ Pa(f)

Ai(x) = a1z + - a1z a ™ A+

where a; > ap > -+ and a, € C.
Assume that aq, a9, ,as_1 € R and as ¢ R, then the series
M(2): = az®™ 4+ -+ ag_ ™ + ™

where ¢ ¢ R and c is generic is called the real appoximation of \;(x).
Let A\i(2), A\j(z) € P(f) \ Pr(f) and

Pij = U(A]F(x) - Aﬁ{(fv))
Let
M(x) = @™ + -+ a3+ axf + o(aP)
)\R(:c) =@z + -+ a7t + bxPi 4 o(xPi)

We put

)\]5- () = a1z + -+ - + ag_ 1% + cxPi

where ¢ is a generic real number. We put

pory =41 it Pr(f)

minyep, () v(A(z) — A5 (2)), if Pr(f) #

0
0
and
v(f (@, X5 (2)))

D(X)
Let A(z) € Pr(f). We denote t(\) the multiplicity of A as a root of the equation f(z, A(z)) = 0.
Put t(f) = max{t(\)|\ € Pr(f)}

L(X) =
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Proposition 6.8. ([VD], Theorem 2.5)
If f has no sequences (zx,yr), x> 0, of the first type, then L (f) >0 and

L§o(f) =inf{a>0[3c¢>0,0 >0,r >0 such that

|f(z,9) > e.dist((z,y), f71(0)"
for all (z,y) € {(z,y) € R*,z > r,|f(z,y)| < 6}}
= max{t(f), LX) | v(f(z, \j(x)) < 0}

Y

where \; and \; run through all elements of the set P(f) \ Pr(f).

Similary, for P(f) \ Pr(f), f(z,y) = f(—z,y), we can define the exponent Lo oo(f)
We have

»CO,oo(f) = max{'c(—{oo(f)? ‘C(Ioo(f)}

i.e. Looo(f) can be computed via the real approximations of Puiseux’s roots at infinity of f and

f. The exponent Lo(f) is computed.

6.3 Computation of L. (f)

We need
Lemma 6.9. ([VD], Proposition 2.7) Let f: R* — R be a polynomial function of the form
fz,y) = aoy” + ar(2)y™" + -+ + aa(2).
where d = deg f. Then there are ¢, R,r > 0 and p € R such that
(@, y)| = edist((z,y), f71(0)),

for all (z,y) € {(z,y) € R?||z| > r,dist((z,y), f~1(0)) > R}.
Moreover, if EOO( f) denotes the suppremum of the exponent p satisfying this inequality, then

Loo(f) = min{L(AE)DOE) > 0}

where \; and \; are Puiseux roots at infinity of f and f, and either \;, \; € P(f) \ Pr(f) or
iy Aj € P(F)\ Pe(f).

Lemma 6.10. If f has no sequences of the first and the second types, then



Proof. Since there are no sequences of the second type, Zoo( f) >0 and

\f(z,y)| > cdist((z,y), F7(0))E=)

for all (z,y) € R? such that |z| > r and dist((z,y), f~1(0)) > R.
Since there are no sequences of the first type we have

for =if{|f(z,y)||1 < dist((z,y), f(0)) < R} > 0.

Hence, we can extend the inequality (28) to a larger domain and get

|f(z,9)| > c.dist((x,y), f1(0))5=)

for all (z,y) € R? such that |z| > r and dist((z,y), f~1(0)) > 1.
Now, equality Lo.(f) = EAOO( f) is a consiquence of Proposition 4.2. O]

7 Non-degenerate polynomials at infinity

In this section we study the global Lojasiewicz inequality for polynomials in two variables, which
are non-degenerate w.r.t. the Newton part at infinity of their Newton polygons.
As before let

fla,y) = agy” + ar(@)y™" + - + aq(),

with d = degf.
To define the Newton polygon of f, we write f in the form

flz,y) = Z 'y’

i+j<d
We put
supp(f): = {(i,))]c;; # 0},

the support of f and

I'(f) = co(supp(f)),

the convex hull of supp(f).
According to [K], [AGV], we will call T'(f) the Newton polygon of f. Clearly, the point (0, d) is
a vertex of I'(f) (the highest ones). Moreover, I'(f) is situated lower the line

L:i+j5=d

Let denote by OI'(f) the boundary of I'(f). We denote by o, the edge of OI'(f) which is the
nearest ones to the line L (hence, o, contains the point (0,d) as one of its vertex). We denote
(G, i) the vertex of T'(f) such that

b.. = min{b|da such that (a,b) € I'(f)}
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1.6, (@yx, bsx) 18 the lowest vertex of I'(f).
Let 01,09, - ,0k_1, 0% be the sequence of edges of OI'(f) such that

01 = O«

(A, bis) € O
and
oiNoi 1 #0, i=1,--- k-1
We put
0L (f) = {01,092, ,0k_1,04}.
Definition 7.1. The set 0. I'(f) is called the Newton part at infinity of f.

Remark 7.2. Usually, (see [K], [AGV]), for studying the behavior of f in a neighborhood of the
infinity, one uses the notion of the Newton diagram at infinity of f, which is defined as follows.
Let I'o(f) denote the convex hull of the union supp(f)U{(0,0)}. Let (T's(f)) be the boundary
of I'o(f). Then, by definition, the Newton diagram at infinity of f, denoted by D(I'«(f)), is
the union of all edges of OI',(f), which do not contain the origin.

It is easy to see that if f is convenient, i.e. if I'(f) intersects all the coordinate axises in points

different from the origin, then
0o (I'(f)) = Do (f))-

But in general, these two sets are different. We can see this on the following example. Let
fla,y) =y + 2ty + 2%y = 22%° + a%y? +
then

D(T(f)) = 01U oy

and
05 (I'(f)) = 01 U o U 03,

where o1 = [(0, 14), (4, 10)], the edge joining the points (0, 14) and (4, 10), and o9 = [(4, 10), (8,4)], 03 =
[(87 4)7 (27 2)]'

For o € 0(I'(f)) we put
folz,y) = D aya'y’.

(i,5)€c
For each edge o = [(a1,b1), (ag, ba)] with by > by, we put
d(O’) = b1 — bg
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and
a2 — aq

v(o) = —

Definition 7.3. We say that f is non-degenerate w.r.t the Newton part at infinity of f (f is
non-degenerate at infinity, for short), if the following condition holds: for any o € 0, (I'(f)),

the system

0fo

has no solutions in (R \ 0)%.
Lemma 7.4. The following statements hold
(i) d=d(oy) + -+ d(og) + bus;
(1)) 1 > wv(oy) > v(og) > -+ > v(og);
(11i) y = 0 is the Puiseux root at infinity of f, with multiplicity b,.;
() Fori € {1,2,--- ,k}, there are exactly d(o;) Puiseux’s roots at infinity (counting with
multiplicities), each of the roots is of the form
y(z) = c.x’) 4 o(x¥)
where ¢ is a non-zero root of the polynomial hy, (u): = fs,(1,u).

(v) If f is non-degenerate at infinity, then the polynomial h,,(u) has no non-zero real root of

multiplicity > 2.

Proof. The statement (i)-(iii) are straightforward. Statement (iv) is well-known. We will prove
(v)-
Since f,,(x,y) is a quasi-homogeneous polynomial, i.e. there are p,q and m € Z, such that
ip+Jg=m
for any (i,j) € supp(f,,). It is easy to show that f,, (x,y) can be written in the form
fO’i(x?y) = 'rplym (x%py - Cl) (l’%py - C2> e (x%y - Cs)
where ¢q, g, -+ , ¢s are non-zero roots of polynomial h,(u) = f,(1,u).

By contradiction, assume that h,(u) has ¢ as a non-zero real root of multiplicity > 2, i.e. f,,
2

has <$_pr — c) as a factor with ¢ € {R\ 0}.
Then, the point (1,¢) € (R\ 0)? is a root of the system
L, O

oz YT oy

a contradiction. O

(z,y) =0,
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Let us describe the Newton part at infinity of g—f, which we denote by 800(1"(?)). Assume
Y Y
that

800(F(f)) = {0-17 02, )O-k}
denotes the Newton part at infinity of f, where oy = [(0,d), (a1, b1)], 02 = [(a1,b1), (az,b2)], -+ , 061 =
[(ar—2,br—2), (ar—1,bx—1)] and o = [(ar—1, k1), (Qux, bi )]

It is easy to see that the first (k — 1) edges of 0. (I'(==)) are of,0%,--- 0}, where o] =

dy
[(0,d—1), (a1,b1—1)],05 = [(a1,b1—1), (az,bo—1)], -+ , 05y = [(@—2, bp—2—1), (ag-1, bp—1 —1)].
Clearly, d(o}) = d(o;) and v(0}) = v(0y),i =1,2,--- k — 1.
Next, if the edge o = [(ak—1,bk-1), (Qux, bux)] With b, > 1, then the k — th edge of 8OO(F(g—f))
Y

will be 0}, = [(ar—1,bk—1 — 1), (Gux, b — 1)] and

of

aOO(F(a_y)) = {01’ Uév T 7012}'
Clearly, d(o},) = d(oy) and v(o},) = v(oy).
If b.. = 0, then aw(F(a—f)) can has k — 1,k or more edges. The fact which is most important
Y

for our further investigation is the following

Claim: If
0o0(OL)) = 01,0+ 0y, s+ 0L,
Y
then for ¢ > k, we have
v(a}) < (o).

of

Proof. This follows from the construction of d.(I'( 5
Y

) O

- 0
Lemma 7.5. Assume that [ is non-degenerate at infinity and \;,(x) € PR(a—f) is of the form
Y

—_— !

Rio(2) = ") + o(a" 7))

then we have

20

o(f (X (2))) = Y d(or)v(or) +

=1

> d(om)] v(oy,) = ag, +

m=ig+1

k
Z d(gm)] U(Uio)
m=t9+1
if io € {1,2,--- ,k — 1}, where gy, is the edge of O(I'(f)), joining the points (a;,—1,bi,—1) and
(@i, biy), and
B k
V(f (2 X (@) = Y d(a)v(oy) = awe if io > k.

=1
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Proof. Firstly, we show that if \x) € PR(?), and \(x) € Pr(f), then we have
Y

v(A@) = A(z)) = max{v(A@)), v(A(x)} (21)

In fact, since A\x) € PR(g—f), and A(z) € Pr(f), we see that A\(x) is of the form
Y

—_ /

Nz) = c.a”%0) + o(2"0))

af
dy

— 0
)), where ¢ is a non-zero real root of the polynomial h% (u) = (—f) (1, u).

for some 0} € 0o (I'( 2y

i0
and

Mz) = 2 4 o(zvo0)

for some 0; € 0 (I'(f)), where ¢’ is a non-zero root of the polynomial h,,(u) = fs, (1, u).
Clearly, if v(oj, ) # v(0:), then (21) is true.

Assume that v(oj ) = v(0;), this happens if only if o} = of, with ¢ € {1,2,--- , k}.

By contradiction, assume v(Ax) — A(z)) = max{v(A\x)),v(A(z)} = v(0;). This implies that

ory _ e
(ay)a; Oy

¢ = . Clearly, we have

0 Ofs, :
Hence, the equality implies that ¢ = ¢/, then (8_f) (1,¢) = 8f (1, ¢) = 0, which means that
Y7 ! Y
the polynomial h,,(u): = f,,(1,u) has non-zero real root of multiplicity > 2. This contradict

Lemma 7.4, (v).
Lemma 7.5 follows easily from (21) and the following equality the proof of which is straighfoward:

> d(o)v(or) = aj,.

Let us recall that f is convenient, if I'(f) intersects both coordinate axises.

Theorem 7.6. Let f(x,y) be a polynomial which non-degenerate at infinity. Then the following

statements holds

(i) There exist r > 1 and € > 0 such that

|f(2,y)| > €

for all (z,y) € {(z,y) € R?||z| > r} NV
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(i) If, in addition, f is convenient, then

lim xr,y)| = 00.
(z,y)—00,(z,y)EV1 ’f( y>|

Proof. The proof of Theorem 7.6 follows directly from lemma 7.5. O]

Corollary 7.7. (i) If f is non-degenerate at infinity, then f has no sequences of the first

type, or equivalently, the following Lojasiewicz inequality near to the set f~1(0) ewists:

[f(z,y)] > edist((z,y), f7(0))"
for all (z,y) € {(x,y) € R¥||f(z,y)| < 0}, where ¢, p and § are positive numbers.

(i1) If f is convenient and non-degenerate at infinity, then there are no sequences of the first

and the second types of f, or equivalently, there exist ¢ > 0, > 0 and 5 > 0 such that

|f (2, y)] > min{dist((z,y), f~1(0))*, dist((z,y), f(0))"}
for all (z,y) € R,

Remark 7.8. Assertion (ii) of Corollary 7.7 was proved in [H1] for the case of abritrary dimen-
sion by a different method. Nevertheless, assertion (ii) of Theorem 7.6 is stronger than the fact

that there are no sequences of the first and the second types of f.

Theorem 7.9. If f is convenient and non-degenerate at infinity, then the exponient Lo oo(V1), Loo(V1),
Looo(f) and Loo(f) can be expressed in terms of the Newton part at infinity of f.

Proof. 1t follows from Lemma 7.5 and Section 6.1 that Lo (V1) and Lo(V1) can be expressed
in terms of d(o;),v(0;),i =1,--- k.

The fact that the exponents Lo (f) and Lo(f) are determined in terms of d(o;),v(0;),i =
1,---, k follows from Sections 6.1 and 6.2, and Lemma 7.4 (v). O

8 A version of Hormander’s inequality

In [Hor|, L. Hérmander proved the following version of the global Lojasiewicz inequality

Theorem 8.1. ([Hor|, Lemma 1 and Lemma 2).
Let f: R™ — R be a polynomial function. Then there exist ¢ > 0, > 0,1’ > 0 and p” > 0 such
that

(1)
|[f(2)] = edist(z, f(0))"
forallz € {z e R"| || = ||< 1}.
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(i)

(I (L )1 ()] = edist(w, f74(0))"

for allz € {z e R"| || = || > 1}.

Clearly, ones need the factor (1+ || « ||)* for controlling the bad behavior of f at infinity,
which was caused by the existence of the first and the second types of f. Note that, the concrete
values of 1/ and p” are not given in [Hor].

In this section, in the spirit of the Hormander inequality, we propose, for the case n = 2, and
another version of the Hormander inequality. In our formula,the exponent y” is equal to 1, the

factor (14 || = ||)* also appears and the exponent p/ will be given with a concrete value. This

1

of

value can be easily computed via the Puiseux’s roots at infinities of f and of —.

Since the factor (1+ || o ||)* is needed only in the case when there are sequences of the first or

the second types of f, in this section that we will consider only this case. In other words, we

assume that the following set P* is not empty

P =

where

of

Pﬂ(ay

i

and ?(1',3/) = f(xay)

of
Jy ):

Let A € P*, we put

P

and

): ={\ePu(-

): ={X € Pr(=

= {\ € Pg(

= {\ € Pg(

Po(o-

of
dy

o
G

o
Al

= v(f(z, M)

=v(f(z,\(z)) if X € P(

AEPR(f)

of
dy

)| v(f(@, M) <0

v(f(@, M) <0

v(f(z,A(z)) <0

min {v( (z) — M=)} if X € Pr(==

of
>0y

af

3 VPG,

JUPL(o>

AePR(f)

XePr(f)

AePr(f)

NEPR(S)

of

ierPo(ay

)UPL(5-

of

5 VPG
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of
dy

and min v(A(z) —

and min v(\(z) —

and min v(A\(z) —

and min v(\(z) —

of
dy

of
Jy

aof
Jy

A(z)) = 0}

A(z)) > 0}



and

We also put

Finally, we put

Clearly, v(f) > 0, since P* # ().
Theorem 8.2. Let
f(@,y) = agy” + ar(2)y" " + -+ + aq(x),

where d = deg f. Then there exist p > 0 and ¢ > 0 such that

Fley)F + [ F@y)]s + (4 [2) DN f(2,9)] > edist((z,9), f7(0)) (23)
for all (x,y) € R?.

Proof. Firstly we show that there exist g > 0 and ¢; > 0 such that
[z y)le + (L4 |2)" D f (@, y)] > erdist((@,y), f(0)) forall (z,y) € Vi (24)

Let |z[ > r > 0, for r sufficiently large. Then (x,y) € Vi if only if there exists Mz) €

9] 0 2
PR(a_gJ;) U PR(a—jyc) such that (z,y) = (z, \(z)).
We see then

@, y)] = £, Mx))] <[]
and
dist((z,y), f(0)) = dist((z, X(z)), f1(0)) =< |z[*™
of of

Hence, for any A(z) € PR(a—) U PR(a—) we have, for some ¢; > 0 :
Y Y

[f (@, M) |- (1 + [2))") = er.dist((z, A(x)), f(0))
or equivalently
f (2, )| (1 + 2" > e dist((z, y), f(0)) (25)

for all (z,y) € Vi N {(z,y) € R?||z| > r}.
The set Vi N {(x,y) € R?||z| < r} is compact. Hence, by the classical Lojasiewicz inequality,
there exist © > 0 and ¢y > 0 such that

(2, 9)| = cadist((x,y), f71(0))" (26)
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for all (x,y) € Vi N {(z,y) € R?||z| < r}. Thus, (24) follows from (25) and (26).

As consequence, the desired inequality (23) holds true if (z,y) € V4.

Now, let (z,y) be an abritrary point of R? such that (z,y) ¢ f~'(0) U V;. Then, by Lemma 3.2
there exists a point (z,y.) € R? such that

(z,5.) € fH0)UW

|f(z,y)] > | fz,y)) (27)
and
| (z,9) — (2,9.) [|= [y — va| < ezl f(z,y)]d (28)

with some c3 > 0. We have then

dist((z,y), f~1(0)) < dist((2,y), (z,3.)) + dist((z,ys), [7(0))

Hence, using (26), (27), (28), we get

dist(r, ), S (O) < | fg)lE + 1 F )+ L)1+ o)
3 C2 C1

1 11 o1 ,
< —|f@ )l + =yl + —|f @ y)|(1+[a])".
C3 Co C1
This implies that desired inequality (23) holds true. O

Clearly, the value v(f), depending only of the behavior of f on Vj, is not the smallest one’s
satisfying the inequality (22). In what follows we will give an another form of Hérmander’s
inequality, in which the factor (1 + |z|)” will appear with the optimal value.

We still use the notation of 6.2 - 6.3 of section 6.
We put
Focelf): = ma{t(F), LOE) D) < 0)
H(f): =max{D(\;) — v(f(z, Xj;(2))|D(N]) > 0}

9 zj

Lemma 8.3. The following statements hold
(i) There are ¢, R, 6,0 > 0 satisfying the inequality
|f (2, y)| = edist((x,y), f71(0)

for all || (z,y) |> R, and dist((x,y), f~1(0)) < 6.

Moreover, onoo(f) 1s the infimum of the exponents a satisfying this inequality.
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(ii) If f has sequences of the first and the second types, then there are ¢, R,r > 0 and v > 0
satisfying the inequality

(14 1 (2, 9) D71 (@, 9)| > edist((z,y), f(0))

for all || (z,y) |> R and dist((z,y), f~1(0)) >r.
Moreover, H(f) > 0 and H(f) is the infimum of the exponents v satisfying this inequality.

Proof. (i) is proved in [[VD], Proposition 2.6].

(ii) The proof of (ii) can done by the some method as in [[VD], Proposition 2.7].
O

Now, assume that ¢, R, be as in the Lemma 8.3. Let o denote the Lojasiewicz exponent of

f in the domain || (z,y) ||[< R, i.e. uo is the smallest exponents « such that

|[f(z.y)| = edist((z,y), f71(0))",

for all || (z,y) [|[< R.
We have

Theorem 8.4. If f has sequences of the first and the second types, then there exists ¢ > 0 such
that

=l —t . _
@, y)l7o + [z, )o@ + (1 || (2,y) D] f(,9)] 2 edist((@,y), f(0)),
for all (z,y) € R2.
Proof. 1t follows from Lemma 8.3 ]
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